Processing math: 67%
Research article

The modified quadrature method for Laplace equation with nonlinear boundary conditions

  • Received: 06 May 2020 Accepted: 29 July 2020 Published: 31 July 2020
  • MSC : 65N38, 65R20

  • Here, the numerical solutions for Laplace equation with nonlinear boundary conditions is studied. Based on the potential theory, the problem can be converted into a nonlinear boundary integral equation. The modified quadrature method is presented for solving the nonlinear equation, which possesses high accuracy order O(h3) and low computing complexities. A nonlinear system is obtained by discretizing the nonlinear equation and the convergence of numerical solutions is proved by the theory of compact operators. Moreover, in order to solve the nonlinear system, the Newton iteration is provided by using the Ostrowski fixed point theorem. Finally, numerical examples support the theoretical results.

    Citation: Hu Li. The modified quadrature method for Laplace equation with nonlinear boundary conditions[J]. AIMS Mathematics, 2020, 5(6): 6211-6220. doi: 10.3934/math.2020399

    Related Papers:

    [1] Samah M. Ahmed, Abdelfattah Mustafa . Estimation of the coefficients of variation for inverse power Lomax distribution. AIMS Mathematics, 2024, 9(12): 33423-33441. doi: 10.3934/math.20241595
    [2] Mohamed S. Eliwa, Essam A. Ahmed . Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002
    [3] Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784
    [4] Amal Hassan, Sudhansu Maiti, Rana Mousa, Najwan Alsadat, Mahmoued Abu-Moussa . Analysis of competing risks model using the generalized progressive hybrid censored data from the generalized Lomax distribution. AIMS Mathematics, 2024, 9(12): 33756-33799. doi: 10.3934/math.20241611
    [5] Hanan Haj Ahmad, Ehab M. Almetwally, Dina A. Ramadan . A comparative inference on reliability estimation for a multi-component stress-strength model under power Lomax distribution with applications. AIMS Mathematics, 2022, 7(10): 18050-18079. doi: 10.3934/math.2022994
    [6] Refah Alotaibi, Mazen Nassar, Zareen A. Khan, Wejdan Ali Alajlan, Ahmed Elshahhat . Entropy evaluation in inverse Weibull unified hybrid censored data with application to mechanical components and head-neck cancer patients. AIMS Mathematics, 2025, 10(1): 1085-1115. doi: 10.3934/math.2025052
    [7] Ahmed Elshahhat, Refah Alotaibi, Mazen Nassar . Statistical inference of the Birnbaum-Saunders model using adaptive progressively hybrid censored data and its applications. AIMS Mathematics, 2024, 9(5): 11092-11121. doi: 10.3934/math.2024544
    [8] Mustafa M. Hasaballah, Oluwafemi Samson Balogun, M. E. Bakr . Frequentist and Bayesian approach for the generalized logistic lifetime model with applications to air-conditioning system failure times under joint progressive censoring data. AIMS Mathematics, 2024, 9(10): 29346-29369. doi: 10.3934/math.20241422
    [9] Haiping Ren, Ziwen Zhang, Qin Gong . Estimation of Shannon entropy of the inverse exponential Rayleigh model under progressively Type-Ⅱ censored test. AIMS Mathematics, 2025, 10(4): 9378-9414. doi: 10.3934/math.2025434
    [10] Xue Hu, Haiping Ren . Statistical inference of the stress-strength reliability for inverse Weibull distribution under an adaptive progressive type-Ⅱ censored sample. AIMS Mathematics, 2023, 8(12): 28465-28487. doi: 10.3934/math.20231457
  • Here, the numerical solutions for Laplace equation with nonlinear boundary conditions is studied. Based on the potential theory, the problem can be converted into a nonlinear boundary integral equation. The modified quadrature method is presented for solving the nonlinear equation, which possesses high accuracy order O(h3) and low computing complexities. A nonlinear system is obtained by discretizing the nonlinear equation and the convergence of numerical solutions is proved by the theory of compact operators. Moreover, in order to solve the nonlinear system, the Newton iteration is provided by using the Ostrowski fixed point theorem. Finally, numerical examples support the theoretical results.


    Data processing and computational methods are two of the most significant sciences, with many applications in key fields including engineering, medicine, and agriculture. The idea of censored samples originated from the need to discover a method for statistical inference for vast data while limiting time and expense by employing tiny samples taken in a particular way. Observed data is censored in nature in several contexts, such as life-testing studies and reliability assessments. The hybrid censoring method, which combines parts of type-Ⅰ and type-Ⅱ censoring, was first presented by Epstein [20]. The fact that units cannot be removed from an experiment at any time other than when it is finished is one of the primary issues with type-Ⅰ, type-Ⅱ, and hybrid censoring (HC) techniques. Progressive type-Ⅱ (Pro-Ⅱ) censoring is a more extensive technique to address this problem. These censoring strategies are thoroughly discussed, along with some recent developments, by Balakrishnan and Cramer [6], Kundu and Howlader [26], El-Saeed et al. [17], and Alsadat et al. [4]. The progressive type-Ⅱ censoring scheme's drawback is that the experiment might continue for a long time if the units are highly reliable. Therefore, a progressive hybrid censoring scheme (PHT-ICS) was proposed by Kundu and Joarder [27]. A progressive hybrid censoring strategy will limit the experiment's duration to T. Conversely, one limitation of the progressive hybrid censoring method is that it cannot be applied in situations where there are a small number of failures before time T.

    The PHT-ICS censoring method is explained briefly below. Consider a lifetime test with n independent and identically distributed units placed on a certain life testing experiment at time zero. Because the integer m(m<n) is fixed at the starting point of the test, each random variable, Y1:m:n,Y2:m:n,....,Ym:m:n, is identically distributed. The lifetime distributions of the n components are denoted by Y1:m:n,Y2:m:n,....,Ym:m:n,Ym+1:m:n,...., YJ:m:n, as the integer m<n is fixed at the start of the test and has the withdrawal scheme R1,R2,,Rm, so that mj=1Rj=nm as shown in Figure 1. The time point T is also predetermined. The R1 survival units are removed when the test is completed and the first failure occurs. The pro-Ⅱ methods are followed, but the test will be terminated at the shortest time between T and the time of the mth failure, whichever occurs first. If Ym:n<T, the basic Pro-Ⅱ censoring scheme is used. Otherwise, if Ym:n>T, only J failures occur before the time point T, where 0<J<m; then, at the time point T, all remaining RJ units are deleted and the experiment terminates.

    Figure 1.  Schematic representation of type-Ⅰ progressive hybrid censoring.

    The two cases as Case I and Case are given, respectively:

    Case I:{Y1:m:n<Y2:m:n<....<Ym:m:n}, if Ym:m:n<T.

    Case II: {Y1:m:n<Y2:m:n<...<Ym:m:n<Ym+1:m:n<....<YJ:m:n}, if YJ:m:n<T<YJ+1:m:n, where YJ:m:n<T<YJ+1:m:n<...<Ym:m:n and YJ+1:m:n<...<Ym:m:n are not observed. The advantage of combining Pro-Ⅱ and hybrid Type-Ⅰ is that Pro-Ⅱ has no time constraints and the researcher may be obligated to a set period for experimenting.

    Balakrishnan and Basu [38], Balakrishnan and Ng [7], Childs et al. [9,10,11], Draper and Guttman [14], Gupta and Kundu [24], Jeong et al. [25], Mansour and Ramadan [32], Dey and Dey [12], and Tolba et al. [41] have all done extensive work on hybrid censoring and its various variations. Fairbanks et al. [21] proposed that PHT-ICS under the lifetime distribution is exponential. As a result, Childs et al. [9] proposed an alternate PHT-ICS that could finish the experiment at a random time T=max{Ym:m:n,T}. Based on PHT-ICS data, Fatemeh et al. [42], Ramses and Abdellatif [16], and Ramadan et al. [31] proposed classical and Bayesian inference for the Burr type-Ⅲ distribution and a modified extended exponential distribution. However, many authors have investigated statistical inference for unknown parameters using large data sets [1,13,30,34,35,41,44].

    To the best of our knowledge, no researcher has examined the estimations of the aforementioned unknown parameters of the flexible reduced logarithmic-inverse Lomax distribution based on progressive hybrid type-Ⅰ censoring (PHT-ICS) data, which is what motivated us to start this work. To study entropy estimations, various scholars in the literature employed a variety of censoring schemes, such as enhanced adaptive type-Ⅱ progressive censoring, adaptive type-Ⅱ progressive hybrid censoring, generalized type-Ⅰ progressive hybrid censoring, and progressive First-Failure. Refer to [3,18,19,22,33,37,44] for further information. Some of these researchers just examined classical estimations, while others took into account both Bayesian and classical guesses for the unknown parameters for various lifetime distributions. Therefore, no attempt is made to use progressive regression to estimate the unknown parameters of the flexible reduced logarithmic-inverse Lomax distribution utilizing both Bayesian and conventional estimating techniques. For the unknown parameters of the flexible reduced logarithmic-inverse Lomax distribution, we therefore want to compare the maximum likelihood and Bayesian estimate approaches. There are several reasons why this study uses the FRL-IL distribution. It is frequently used to simulate life statistics, particularly in situations where failure rates are declining or show an inverted bathtub shape. In situations where standard Weibull or exponential distributions might not work, this distribution appropriately depicts the situation. It has several real-world uses in a variety of fields, including risk assessment, survival analysis, and reliability engineering. By guaranteeing a predetermined amount of observed failures, the PHT-ICS approach helps balance cost and efficiency in experimental design, which is another reason why we are interested in employing it. The study's main objective is to recommend classical and Bayesian methods for estimating unknown parameters, reliability, and hazard rate functions based on PHT-ICS samples. The Bayes estimators are derived using the MCMC technique and compared to statistical inference estimators under the SELF and LINEX loss functions. The approximate confidence intervals (ACI) and credible confidence intervals (CCI) [43] using the classical and Bayes methods are also explained.

    Despite its high incidence, mortality rates, and associated management costs, head and neck cancer is severely ignored and scientifically underestimated as a public health problem. Although survival rates for patients with other types of head and neck cancer have improved significantly in the last 30 years, the improvement in head and neck cancer has eased, and clinical and research interest in life processes has died down. According to the preceding premise, our study focuses on patients with head and neck cancer. For our research, we employ a PHT-ICS that satisfies the need to obtain an adequate estimate to limit the patient's experimental time and attempt to prevent experimental patients from failing. Failure data from a lifetime experiment for specific patients must be fitted to a probability model or a statistical lifetime distribution to compute equivalent probabilities. The purpose of this study is to assess the survival function of a set of genuine data sets that include lifetime bladder cancer rates (see Lee and Wang [29]). Buzaridah et al. [8] observed that the failure data sets were very well adapted by the flexible-reduced logarithmic inverse Lomax distribution (FRL-ILD). The cumulative and probability distribution functions (CDF and PDF) of the three parameters FRL-ILD are given as

    F(y;θ,η,ϕ)=1log{1+ϕϕ(1+ηy)θ}log(1+ϕ), (1.1)

    and

    f(y;θ,η,ϕ)=θηϕy2(1+ηy)(θ+1)log(1+ϕ){1+ϕϕ(1+ηy)θ}, (1.2)

    where y>0, θ,η>0, and ϕ>1.

    The functions S(y) and h(y) of the FRL-ILD are specified as

    S(y;θ,η,ϕ)=log{1+ϕϕ(1+ηy)θ}log(1+ϕ),

    and

    h(y;θ,η,ϕ)=θηϕy2(1+ηy)(θ+1)log{1+ϕϕ(1+ηy)θ}{1+ϕϕ(1+ηy)θ}.

    The following are the primary reasons for using the FRL-ILD in practice:

    (1) The same ability to change the original distributions by having extra parameters.

    (2) Increasing the efficiency and adaptability of the original distributions.

    (3) It is a nonmonotonic hazard rate function.

    (4) It includes the best fit for unimodal medical care data sets.

    Figure 2 shows the PDF and hazard function of the FRL-ILD distribution for various combinations of \(\theta \), \(\eta \), and \(\phi \). The plots highlight how parameter variations influence the shape and behavior of the curves, demonstrating the model's flexibility in capturing diverse data patterns and risk behaviors.

    Figure 2.  Plots of the PDF and the hazard of the FRL-ILD with different values of θ, η, and ϕ parameters.

    Table 1 summarizes the survival values (\(S \)) and hazard rates (\(h \)) at specific quantiles (\(Q_1 \), \(Q_2 \), \(Q_3 \)) and the mean value (\(\bar{y} \)) for the FRL-ILD distribution under various parameter combinations of \(\theta \), \(\eta \), and \(\phi \). The survival values \(S(Q_1) \), \(S(Q_2) \), and \(S(Q_3) \) remain relatively stable across parameter sets, reflecting consistency in survival behavior at these quantiles. However, it \(S(\bar{y}) \) exhibits greater variability, showing a more pronounced sensitivity to parameter changes. The hazard rates, \(h(Q_1) \), \(h(Q_2) \), \(h(Q_3) \), and \(h(\bar{y}) \), generally decrease as \(\eta \) or \(\phi \) increases, indicating reduced risk with higher parameter values. Notably, \(h(Q_1) \) is consistently the highest, representing the greatest risk at the first quantile. The parameter \(\theta \) also subtly influences survival and hazard rates, shaping the distribution's overall behavior. This table highlights the flexibility of the FRL-ILD model in capturing varying survival and hazard dynamics across different parameter configurations.

    Table 1.  Survival values and hazard rates of the FRL-ILD distribution for various parameters.
    θ η Φ S(Q1) S(Q2) S(ˉx) S(Q3) h(Q1) h(Q2) h(ˉx) h(Q3)
    0.5 0.4 0.3 0.7483 0.4999 0.14071 0.2516 4.8324 2.4137 0.6181 1.1192
    0.9 0.7483 0.4999 0.1411 0.2516 3.7335 1.9353 0.5051 0.9098
    1.5 0.7483 0.4999 0.1412 0.2516 3.1231 1.6491 0.4329 0.7789
    2.1 0.7483 0.4999 0.1412 0.2516 2.7271 1.4543 0.3819 0.6874
    2.7 0.7486 0.4999 0.1411 0.2516 2.4461 1.3110 0.3434 0.6189
    2 0.3 0.7483 0.4999 0.1407 0.2516 0.9665 0.4827 0.1236 0.2238
    0.9 0.7483 0.4999 0.1411 0.2516 0.7467 0.3871 0.1010 0.1820
    1.5 0.7483 0.4999 0.1412 0.2516 0.6246 0.3298 0.0866 0.1558
    2.1 0.7483 0.4999 0.1412 0.2516 0.5454 0.2909 0.0764 0.1375
    2.7 0.7483 0.4999 0.1411 0.2516 0.4892 0.2622 0.0687 0.1238
    3.2 0.3 0.7483 0.4999 0.1407 0.2516 0.6040 0.3017 0.0773 0.1399
    0.9 0.7483 0.4999 0.1411 0.2516 0.4667 0.2419 0.0631 0.1137
    1.5 0.7483 0.4999 0.1412 0.2516 0.3904 0.2061 0.0541 0.0974
    2.1 0.7483 0.4999 0.1412 0.2516 0.3409 0.1818 0.0477 0.0859
    2.7 0.7483 0.4999 0.1411 0.2516 0.3058 0.1639 0.0429 0.0774
    2 0.8 0.3 0.7483 0.4999 0.1441 0.2516 0.3708 0.2670 0.0787 0.1370
    0.9 0.7483 0.4999 0.1437 0.2516 0.3131 0.2206 0.0641 0.1121
    1.5 0.7483 0.4999 0.1434 0.2516 0.2768 0.1914 0.0548 0.0963
    2.1 0.7483 0.4999 0.1430 0.2516 0.2512 0.1707 0.0482 0.0852
    2.7 0.7483 0.4999 0.1427 0.2516 0.2318 0.1552 0.0433 0.0768
    2.6 0.3 0.7483 0.4999 0.14421 0.2516 0.1141 0.0822 0.0242 0.0422
    0.9 0.7483 0.4999 0.1438 0.2516 0.0964 0.0679 0.0197 0.0345
    1.5 0.7483 0.4999 0.1434 0.2516 0.0852 0.0589 0.0169 0.0296
    2.1 0.7483 0.4999 0.1434 0.2516 0.0773 0.0525 0.0148 0.0262
    2.7 0.7483 0.4999 0.1427 0.2516 0.0713 0.0478 0.0133 0.0236

     | Show Table
    DownLoad: CSV

    The document continues as outlined below: Section 2 delineates the likelihood estimates of the model's parameters, reliability, hazard functions, and the formulation of asymptotic confidence intervals. Section 3 presents the Bayesian estimators of unknown model parameters under the SEL and LINEX loss functions, together with Bayes credible intervals. Section 4 presents the failure data for a cohort of 44 head and neck cancer patients as an illustration. In Section 5, we utilize Monte Carlo simulations to quantitatively evaluate the proposed methodologies. Ultimately, Section ??? presents the conclusions.

    In this section, we derive estimators of the parameters from the data using log-likelihood functions. For additional information on the likelihood method, see Azzalini [5] and Royall [36,40]. The MLEs have several advantages, such as being asymptotically normally distributed, having the lowest variance asymptotically, being asymptotically unbiased, and satisfying the invariant characteristic. The likelihood function for Case Ⅰ based on the observed data is provided by

    L(θ,η,ϕ)=k1mi=1f (yi:m:n)[1F(yi:m:n)]Ri, (2.1)

    and for Case Ⅱ, it is

    L(θ,η,ϕ)=k2Ji=1f (yi:m:n)[1F(yi:m:n)]Ri[1F(T)]RJ, (2.2)

    where

    k1=mi=1[ni1k=1(1+Rk)]

    and

    k2=Ji=1[ni1k=1(1+Rk)]

    both are constant.

    Combining two Eqs (2.1) and (2.2), the likelihood function may be rewritten as

    L(θ,η,ϕ)=Cri=1f (yi:m:n)[1F(yi:m:n)]Ri[1F(T)]R(J), (2.3)

    where C=k1,r=m,R(J)=0 and C=k2,r=J,R(J)=RJ for Case Ⅰ and Case Ⅱ, respectively. Let Y1:m:n,Y2:m:n,....,Ym:m:n, 1mn denote a progressively hybrid type-Ⅰ censored sample observed from a life study examining n units drawn from a population with the PDF and CDF provided in Eqs (1.1) and (1.2).

    From Eq (2.3), the likelihood function is given by

    L(θ,η,ϕy_)θrηrϕrri=1y2i:m:n(1+ηy1i:m:n)θ1×ri=1[1+ϕϕ(1+ηy1i:m:n)θ]1×[log(1+ϕ)]r×ri=1[log(1+ϕϕ(1+ηy1i:m:n)θ)]Ri×ri=1[log(1+ϕ)]Ri[log(1+ϕϕ(1+ηT1)θ)]RJ[log(1+ϕ)]RJ, (2.4)

    where y=y1:m:n,y2:m:n,....,ym:m:n.

    For the parameters θ, η, and ϕ, the log-likelihood function is calculated as

    =logL(θ,η,ϕ{y})=rlogθ+rlogη+rlogϕrlog[log(1+ϕ)]2ri=1log(yi:m:n)(θ+1)ri=1log(log(1+ηy1i:m:n))ri=1log(1+ϕϕ(1+ηy1i:m:n)θ)+ri=1Rilog[log(1+ϕϕ(1+ηy1i:m:n)θ)]ri=1Rilog[log(1+ϕ)]+R(J)log[log(1+ϕϕ(1+ηT1)θ)]RJlog[log(1+ϕ)]. (2.5)

    When it comes to θ, η, and ϕ, we can differentiate Eq (2.5) and then bring it to zero. Here are the likelihood equations:

    θ=rθri=1log(log(1+ηy1i:m:n))ri=1ϕ(1+ηy1i:m:n)θlog(log(1+ηy1i:m:n))(1+ϕϕ(1+ηy1i:m:n)θ)+ri=1Riϕ(1+ηy1i:m:n)θlog(log(1+ηy1i:m:n))(1+ϕϕ(1+ηy1i:m:n)θ)[log(1+ϕϕ(1+ηy1i:m:n)θ)]+ri=1RJϕ(1+ηT1)θlog(log(1+ηT1))(1+ϕϕ(1+ηT1)θ)[log(1+ϕϕ(1+ηT1)θ)], (2.6)
    η=rη(θ+1)ri=1y1i:m:n(1+ηy1i:m:n))ri=1ϕθy1i:m:n(1+ηy1i:m:n)θ1(1+ϕϕ(1+ηy1i:m:n)θ)+ri=1Riϕθy1i:m:n(1+ηy1i:m:n)θ1(1+ϕϕ(1+ηy1i:m:n)θ)[log(1+ϕϕ(1+ηy1i:m:n)θ)]+ri=1RJϕθT1(1+ηT1)θlog(log(1+ηT1))(1+ϕϕ(1+ηT1)θ)[log(1+ϕϕ(1+ηT1)θ)] (2.7)

    and

    ϕ=rϕr(1+ϕ)log(1+ϕ)ri=11(1+ηy1i:m:n)(1+ϕϕ(1+ηy1i:m:n)θ)+ri=1Riϕθy1i:m:n(1+ηy1i:m:n)θ1(1+ϕϕ(1+ηy1i:m:n)θ)[log(1+ϕϕ(1+ηy1i:m:n)θ)]ri=1Ri1(1+ϕ)log(1+ϕ)+RJ1(1+ηT1)θ(1+ϕϕ(1+ηT1)θ)[log(1+ϕϕ(1+ηT1)θ)]RJ1(1+ϕ)log(1+ϕ). (2.8)

    To obtain estimates for Eqs (2.6)–(2.8), the Newton-Raphson iteration method is used. The normal equations are:

    θ=0,η=0,andϕ=0.

    These equations do not have closed-form solutions. Essam [2] provided a detailed description of the algorithm. Additionally, using the MLEs' invariant condition, the MLEs of S(y;θ,η,ϕ) and h(y;θ,η,ϕ) may be derived by substituting θ, η, and ϕ by ˆθ,ˆη, and ˆϕ as

    ˆS(y;ˆθ,ˆη,ˆϕ)=log{1+ˆϕˆϕ(1+ˆηy)ˆθ}log(1+ˆϕ),y>0 (2.9)

    and

    h(y;ˆθ,ˆη,ˆϕ)=ˆθˆηˆϕy2(1+ˆηy)(ˆθ+1)log{1+ˆϕˆϕ(1+ηy)ˆθ}{1+ˆϕˆϕ(1+ˆηy)ˆθ},y>0. (2.10)

    Analytical representations of the MLEs for the parameters are not available. It is therefore impossible to derive their true distributions. However, we may find confidence intervals for the parameters (θ,η,ϕ) using the asymptotic distribution of the MLE. The MLEs of the asymptotic variance-covariance matrix of (θ,η,ϕ) are given as

    ˆI(ˆθ,ˆη,ˆϕ)=(2θ22θη2θϕ2ηθ2η22ηϕ2ϕθ2ϕη2θ2)(θ,η,ϕ)=(ˆθ,ˆη,ˆϕ).

    The estimated asymptotic variance-covariance matrix [ˆV] for the maximum likelihood estimators is obtained by inverting the observed information matrix ˆI(θ,η,ϕ). Alternatively

    V(θ,η,ϕ)=ˆI1(ˆθ,ˆη,ˆϕ)=(Var(ˆθ)cov(ˆθ,ˆη)cov(ˆθ,ˆϕ)cov(ˆη,ˆθ)Var(ˆη)cov(ˆη,ˆϕ)cov(ˆϕ,ˆθ)cov(ˆϕ,ˆβ)Var(ˆϕ)).

    It is widely recognized that (ˆθ,ˆη,ˆϕ) is approximately multivariate normal with mean (θ,η,ϕ) and covariance matrix I1(θ,η,ϕ) given certain regularity conditions, as noted by Lawless [28]. The 100(1ϑ)% two-sided confidence intervals for θ,η, and ϕ can be expressed as

    ^θi±Zϑ2Var(^θi),^ηi±Zϑ2Var(^ηi), and ^ϕi±Zϑ2Var(^ϕi).

    The percentile of the standard normal distribution that corresponds to a right-tail probability of ϑ2 is Zϑ2.

    To calculate the ACIs of S(y;θ,η,ϕ) and h(y;θ,η,ϕ), which depend on the parameters θ, η, and ϕ, respectively, the delta method is applied to approximate the variances of ˆS(y;θ,η,ϕ) and ˆh(y;θ,η,ϕ); for more information on the delta method, see Greene [23]. The variance of ˆS(y;θ,η,ϕ) and ˆh(y;θ,η,ϕ) can be estimated using this method, as well.

    ˆσ2ˆS(y)=[ˆS(y)]T[ˆV][ˆS(y)]and ˆσ2ˆh(y)=[ˆh(y)]T[ˆV][ˆh(y)].

    The two-sided confidence intervals for S(y;θ,η,ϕ) and h(y;θ,η,ϕ), which are equal to 100(1ϑ)%, can be formulated as

    ˆS(y)±Zϑ2ˆσ2ˆS(y)and ˆh(y)±Zϑ2ˆσ2ˆh(y).

    This section discusses Bayesian estimation, which uses SE and LINEX loss functions to estimate parameters θ, η, and ϕas well as reliability functions S(y;θ,η,ϕ), and h(y;θ,η,ϕ). Independent informative prior distributions express the parameters' prior understanding. It is presumed that θ and η are independent parameters that adhere to gamma prior distributions, while the parameter ϕ has a non-informative prior where ϕ>1.

    π1(θ)θa11eb1θ θ>0,a1>0,b1>0,π2(η)ηa21eb2η η>0,a2>0,b2>0,π3(ϕ)1ϕ , ϕ>0. (3.1)

    By integrating the previous Eq (3.1) with the likelihood function, Eq (2.6) yields the posterior distribution of θ,η, and ϕ defined by π(θ,η,ϕ y_), which is represented as follows:

    π(θ,η,ϕy_)=π1(θ)π2(η)π3(ϕ)L(θ,η,ϕy_)000π1(θ)π2(η)π3(ϕ)L(θ,η,ϕy_)dθdηdϕ. (3.2)
    L(ρ,ˆρ)=(ˆρρ)2.

    The Bayes estimates (BEs) of any function of θ,η, and ϕ, such as g(θ,η,ϕ) under the SEL, can be calculated as

    ˆgBS(θ,η,ϕy_)=Eθ,η,ϕy_(g(θ,η,ϕ)),

    where

    Eθ,η,ϕy_(g(θ,η,ϕ))=000g(θ,η,ϕ)π1(θ)π2(η)π3(ϕ)L(θ,η,ϕy_)dθdηdϕ000π1(θ)π2(η)π3(ϕ)L(θ,η,ϕy_)dθdηdϕ. (3.3)

    The following steps are used to determine the LINEX loss function L() for a parameter named ρ:

    L()=(ecc1), c0, =ˆρρ.

    Thus, when applying the LINEX loss function, the BEs of a function g(θ,η,ϕ) are

    ˆgBL(θ,η,ϕy_)=1clog[E(ecg(θ,η,ϕ)y_)],c0,

    where

    E(ecg(θ,η,ϕ)y_)=000ecg(θ,η,ϕ)π1(θ)π2(η)π3(ϕ)L(θ,η,ϕy_)dθdηdϕ000π1(θ)π2(η)π3(ϕ)L(θ,η,ϕy_)dθdηdϕ. (3.4)

    It should be focused on that there is no mathematical solution to calculating the numerous integrals in Eqs (3.3) and (3.4). The MCMC method creates samples from the joint posterior density function in Eq (3.2) by using the M-H samplers approach from Eq (3.2), where the joint posterior distribution can be defined as

    π(θ,η,ϕy_)θr+a11ηr+a21ϕreb1θb2ηri=1y2i:m:n(1+ηy1i:m:n)θ1ri=1[1+ϕϕ(1+ηy1i:m:n)θ]1×[log(1+ϕ)]r×ri=1[log(1+ϕϕ(1+ηy1i:m:n)θ)]Ri×ri=1[log(1+ϕ)]Ri[log(1+ϕϕ(1+βT1)θ)]RJ[log(1+ϕ)]RJ. (3.5)

    The algorithm for M-H within Gibbs sampling is as follows:

    (1) Establish initial values (θ(0),η(0),ϕ(0)).

    (2) Determine j=1.

    (3) Employing the subsequent M-H method, use the normal distributions for the proposal to produce θ(j),η(j), and ϕ(j).

    N(θ(j1),var(θ)),N(η(j1),var(η)),and N(ϕ(j1),var(ϕ)),

    and from the main diagonal in the inverse Fisher information matrix (???), we obtained var(θ),var(η), and var(ϕ).

    (4) Formulate a proposal:

    θN(θ(j1),var(θ)),ηN(η(j1),var(η)),

    and ϕ from N(ϕ(j1),var(ϕ)).

    (ⅰ) The acceptance probabilities are

    ωθ=min[1,π1(θη(j1),ϕ(j1),y_)π1(θ(j1)η(j1),ϕ(j1),y_)],ωη=min[1,π2(ηθ(j),ϕ(j1),y_)π2(η(j1)θ(j),ϕ(j1),y_)],ωϕ=min[1,π3(ϕθ(j),η(j),y_)π3(ϕ(j1)θ(j),η(j),y_)].}.

    (ⅱ) Generate u1, u2, and u3 from a uniform (0,1) distribution.

    (ⅲ) If u1<ωθ, accept the proposal and set θ(j)=θ, otherwise set θ(j)=θ(j1).

    (ⅳ) If u2 <ωη, accept the proposal and set η(j)=η, otherwise set η(j)=η(j1).

    (ⅴ) If u3<ωϕ, accept the proposal and set ϕ(j)=ϕ, otherwise set ϕ(j)=ϕ(j1).

    (5) The reliability and hazard rate functions are computed as

    {S(j)(y;θ,η,ϕ)=log{1+ϕ(j)ϕ(j)(1+η(j)y)θ(j)}log(1+ϕ(j));y0,h(j)(y;θ,η,ϕ)=θ(j)η(j)ϕ(j)y2(1+η(j)y)(θ(j)+1)log{1+ϕ(j)ϕ(j)(1+η(j)y)θ(j)}{1+ϕ(j)ϕ(j)(1+η(j)y)θ(j)};y0.

    (6) Set j=j+1.

    (7) Steps (3)–(6) are repeat N times and obtain θ(j),η(j),ϕ(j),S(j)(y), and h(j)(y),j=1,2,...N.

    (8) Compute the CCIs of (ψ1,ψ2,ψ3,ψ4,ψ5)=(θ,η,ϕ,S(y),h(y)).

    As ψ(1)k<ψ(2)k...<ψ(N)k, then the 100(1ϑ)% CCIs of ψk is

    (ψk(Nϑ/2),ψk(N(1ϑ/2))).

    The first M simulated alternatives are eliminated to guarantee convergence and reduce the impact of the initial value selection. The chosen samples are ψ(j)k,j=M+1,...N, sufficiently high N. The SEL function is utilized to generate the estimated boundary estimations of ψk.

    ˆψk=1NMNj=M+1ψ(j).

    The estimated Bayes estimates for ψk, according to the LINEX loss function, derived from Eq (3.4), are

    ˆψk=1clog[1NMNj=M+1ecψ(j)],k=1,2,3,4,5.

    There are many billions of living cells in the human body. In the first few years of life, normal cells divide more quickly so that the person can grow. Cells in a particular body region start to proliferate uncontrollably when cancer develops. Malignant (cancer) cells proliferate in the tissues of the bladder in a condition known as bladder cancer.

    Efron [15] reported a dataset that includes survival times for 44 patients diagnosed with head and neck cancer. The dataset is presented as follows:

    12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776.

    A combination of radiation and chemotherapy was administered to these patients. Finding the best-fitting probability distribution function that describes the patients' survival durations accurately is the main goal of using this dataset for parametric analysis. It is possible to evaluate the dataset and find the right probability distribution by using statistical modeling techniques like goodness-of-fit testing and maximum likelihood estimation. In survival analysis, this is an essential stage since it allows us to analyze the pattern of survival times, estimate important parameters, and make probabilistic predictions regarding patient outcomes. By shedding light on therapy efficacy and patient prognosis, the results of this analysis can aid in medical research. Clinical decision-making and treatment planning rely heavily on survival probability models, which in turn rely on such modeling tools.

    The findings of this section indicate that the FRL-ILD is a suitable distribution for this dataset, as illustrated in Figure 3. The Kolmogorov-Smirnov (K-S) distance between the empirical distribution of the failure data and the FRL-ILD is 0.0742, with a P-value of 0.9538 and parameters (θ=4.6221,η=30.0988,ϕ=0.7035).

    Figure 3.  The FRL-ILD fitted for the real data set.

    To illustrate the discussed method, a PHT-ICS is generated from this dataset under different schemes. The number of removals is determined based on the removal process, as shown below:

    ● For T=250, and m=35:

    Removals (R): 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 .

    Survival Times (Y): 12.20, 23.56, 23.74, 31.98, 37.00, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 74.47, 78.26, 92.00, 94.00, 110.00, 112.00, 119.00, 127.00, 130.00, 133.00, 140.00, 173.00, 179.00, 194.00, 209.00, 249.00, 281.00, 319.00, 339.00, 469.00, 519.00, 633.00, 817.00, 1776.00.

    ● For T=250 and m=35:

    Removals (R): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9.

    Survival Times (Y): 12.20, 23.56, 23.74, 25.87, 31.98, 37.00, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 74.47, 78.26, 81.43, 84.00, 92.00, 94.00, 110.00, 112.00, 119.00, 127.00, 130.00, 133.00, 140.00, 146.00, 155.00, 159.00, 173.00, 179.00, 194.00, 195.00, 209.00, 249.00, 281.00

    ● For T=250 and m=35:

    Removals (R): 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4.

    Survival Times (Y): 12.20, 23.56, 23.74, 31.98, 37.00, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 74.47, 78.26, 92.00, 94.00, 110.00, 112.00, 119.00, 127.00, 130.00, 133.00, 140.00, 146.00, 155.00, 159.00, 173.00, 179.00, 194.00, 209.00, 249.00, 281.00, 319.00, 339.00, 469.00, 519.00.

    Table 2 presents the MLEs for the parameters θ, η, and ϕ, as well as the functions S(x) and h(x), derived from progressive hybrid type-Ⅰ censored data, alongside the Bayesian estimates corresponding to SEL loss functions for the same parameters. This section presents the MLEs for θ, η, and ϕ, together with the functions S(T) and h(T), derived from PHT-ICS data using the specified estimation methods. Table 2 illustrates the MLEs and BEs related to SEL loss functions for the model parameters and the functions S and h.

    Table 2.  MLE and Bayesian estimations for parameters and the reliability functions: Data 1.
    m=35 MLE Bayesian
    T Scheme   Estimates StEr Lower Upper Estimates StEr Lower Upper
    250 1 θ 8.0349 1.0827 5.9129 5.9129 27.0999 0.0118 26.0767 27.4222
    η 14.8982 3.1062 8.8100 8.8100 5.3882 0.6175 4.7390 6.0769
    Φ -0.8778 0.0392 -0.9368 -0.9368 -0.1059 0.0302 -0.1663 -0.0464
    S 0.1880 0.0690 0.7256 0.4252 0.3771 0.4728
    h 0.0037 0.0039 0.0019 0.0030 0.0031 0.0028
    250 2 θ 4.3017 0.3805 3.5560 3.5560 27.7470 0.0015 27.1441 27.9707
    η 35.2240 6.5434 22.3990 22.3990 4.0629 0.7123 2.7670 5.5534
    Φ -0.7761 0.0680 -0.8992 -0.8992 1.9673 0.0629 1.8414 2.0916
    S 0.2735 0.1176 0.9020 0.4930 0.3784 0.5938
    h 0.0034 0.0038 0.0008 0.0024 0.0028 0.0021
    250 3 θ 5.2304 0.4715 4.3062 4.3062 28.5783 0.0022 27.5738 28.8248
    η 27.7156 4.6806 18.5417 18.5417 5.1578 0.5005 4.2231 6.1661
    Φ -0.8385 0.0463 -0.9170 -0.9170 2.4865 0.0401 2.4063 2.5657
    S 0.2402 0.1119 0.8818 0.5938 0.5302 0.6507
    h 0.0036 0.0038 0.0009 0.0021 0.0023 0.0019

     | Show Table
    DownLoad: CSV

    According to Table 2, the estimators did a good job since the estimate values are near each other with different schemes. The Figure 4 profile indicates that the MLEs are unique and represent the actual maximum for the parameters θ, η, ϕ, S(y), and h(y). Figure 5 shows the posterior density function plots and the trace plots of the unknown parameters θ, η, and ϕ functions using the MCMC method, additionally plotting the profile log-likelihood plots. All censoring schemes are plotted in the same way, and it has been discovered that the trace plots of all censoring methods converge strongly.

    Figure 4.  For the parameters θ, η, and ϕ the profile log-likelihood graphs are presented for MLEs with different cases: Data 1.
    Figure 5.  The tracing graphs and posterior density plots for the parameters θ, η, and ϕ with different cases: Data 1.

    Malignant (cancer) cells proliferate in the tissues of the bladder in a condition known as bladder cancer. An uncensored data set representing the number of months that 128 bladder cancer patients experienced remission is considered in this subsection. Lee and Wang [29] previously researched these data.

    The findings of this subsection indicate that the FRL-ILD is a suitable distribution for dataset 2, as illustrated in Figure 6. The K-S distance between the empirical distribution of the failure data 2 and the FRL-ILD is 0.11166, with a P-value of 0.08219 and parameters (θ=2.3528,η=3.7933,ϕ=0.7746). Figure 6 discussed empirical CDF, histogram with PDF, PP plot, TTT [39], and estimated hazard.

    Figure 6.  The FRL-ILD fitted for the real data set 2.

    To illustrate the discussed method, a PHT-ICS is generated from this dataset 2 under different schemes. The number of removals is determined based on the removal process, as shown below:

    ● Scheme 1:

    Removals (R): 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.

    Remission time: 0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.19 1.35 1.40 1.46 1.76 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64 2.69 2.83 2.87 3.02 3.25 3.36 3.36 3.48 3.52 3.57 3.64 3.70 3.82 3.88 4.18 4.33 4.34 4.40 4.50 4.51 4.87 5.09 5.17 5.32 5.32 5.34 5.41 5.49 5.62 5.71 5.85 6.25 6.54 6.76 6.93 6.97 7.26 7.28 7.39 7.59 7.62 7.63 7.66 7.87 8.26 8.37 8.53 8.66 9.02 9.22 9.47 9.74 10.06 11.64 11.79 11.98 12.02 12.03 12.63 13.29 13.80 14.24 14.76 14.77 14.83 16.62 17.12 17.14 17.36 19.13 20.28 22.69 25.74 25.82 26.31 34.26 43.01 46.12 79.05.

    ● Scheme 2:

    Removals (R): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28.

    Remission time: 0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40 1.46 1.76 2.02 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64 2.69 2.69 2.75 2.83 2.87 3.02 3.25 3.31 3.36 3.36 3.48 3.52 3.57 3.64 3.70 3.82 3.88 4.18 4.23 4.26 4.33 4.34 4.40 4.50 4.51 4.87 4.98 5.06 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49 5.62 5.71 5.85 6.25 6.54 6.76 6.93 6.94 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.63 7.66 7.87 7.93 8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74 10.06 10.34 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07.

    ● For Scheme 3

    Removals (R): 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14.

    Remission time: 0.08 0.20 0.40 0.50 0.51 0.81 0.90 1.05 1.19 1.26 1.35 1.40 1.46 1.76 2.02 2.07 2.09 2.23 2.26 2.46 2.54 2.62 2.64 2.69 2.75 2.83 2.87 3.02 3.25 3.36 3.36 3.48 3.52 3.57 3.64 3.70 3.82 3.88 4.18 4.33 4.34 4.40 4.50 4.51 4.87 5.09 5.17 5.32 5.32 5.34 5.41 5.41 5.49 5.62 5.71 5.85 6.25 6.54 6.76 6.93 6.97 7.09 7.26 7.28 7.32 7.39 7.59 7.62 7.63 7.66 7.87 8.26 8.37 8.53 8.65 8.66 9.02 9.22 9.47 9.74 10.06 10.66 10.75 11.25 11.64 11.79 11.98 12.02 12.03 12.07 12.63 13.29 13.80 14.24 14.76 14.77 14.83 15.96 16.62 17.12.

    Table 3 presents the MLEs for the parameters θ, η, and ϕ, as well as the functions S(x) and h(x), derived from progressive hybrid type-Ⅰ censored data 2, alongside the Bayesian estimates corresponding to SEL loss functions for the same parameters. This section presents the MLEs for θ, η, and ϕ, together with the functions S(T) and h(T), derived from PHT-ICS data 2 using the specified estimation methods. Table 3 illustrates the MLEs and BEs related to SEL loss functions for the model parameters and the functions S and h.

    Table 3.  MLE and Bayesian estimations for the parameters and the reliability functions: Data 2.
    m=100 MLE Bayesian
    T Scheme   Estimates StEr Lower Upper Estimates StEr Lower Upper
    9 1 θ 2.5354 0.6139 2.5233 2.5233 41.3159 0.0617 41.1941 41.4325
    η 2.1173 1.1357 2.0950 2.0950 0.0472 0.0113 0.0261 0.0702
    Φ -0.7761 0.2458 -0.7809 -0.7809 0.3446 0.0246 0.2954 0.3933
    S 0.2595 0.2544 0.2647 0.2190 0.1261 0.3099
    h 0.0925 0.0929 0.0922 0.0961 0.1028 0.0892
    9 2 θ 2.2896 0.4616 2.2806 2.2806 38.7067 0.0464 38.6150 38.7943
    η 3.6387 1.9652 3.6002 3.6002 0.0705 0.0196 0.0339 0.1103
    Φ -0.7879 0.2507 -0.7928 -0.7928 0.5903 0.0251 0.5401 0.6400
    S 0.3578 0.3513 0.3642 0.3086 0.1632 0.4366
    h 0.0833 0.0838 0.0827 0.0883 0.0995 0.0777
    9 3 θ 2.3203 0.5121 2.3103 2.3103 37.1221 0.0514 37.0204 37.2192
    η 2.9063 1.6038 2.8748 2.8748 0.0545 0.0080 0.0396 0.0708
    Φ -0.7669 0.2722 -0.7723 -0.7723 1.7397 0.0273 1.6852 1.7937
    S 0.3132 0.3072 0.3192 0.2973 0.2281 0.3640
    h 0.0872 0.0877 0.0868 0.0854 0.0914 0.0795

     | Show Table
    DownLoad: CSV

    As shown in Table 3, the estimators performed well, with the estimated values being close to one another across different schemes. The profile in Figure 7 demonstrates that the MLEs are unique and accurately correspond to the actual maxima for the parameters θ, η, ϕ, S(y), and h(y). Figure 8 presents the posterior density function and trace plots for the unknown parameters θ, η, and ϕ using the MCMC method, along with the profile log-likelihood plots. All censoring schemes are displayed similarly, revealing that the trace plots for all censoring methods exhibit strong convergence.

    Figure 7.  For the parameters θ, η, and ϕ the profile log-likelihood graphs are presented for MLEs with different cases: Data 2.
    Figure 8.  The tracing graphs and posterior density plots for the parameters θ, η, and ϕ with different cases Data 2.

    To analyze the effects of various estimates, MCMC simulations are performed. The MCMC is used to compare the performance of the proposed estimators of the model parameters, reliability, and hazard rate functions of the FRL-ILD. We repeated progressively hybrid type-Ⅰ censored data from FRL-ILD 10000 times, with initial values θ=0.6, η=0.04 and ϕ=0.7. The comparison of the different methods of the likely-to-result estimators of θ,η, ϕ,S(y) and h(y), at y=0.4, has been examined in terms of the MSE, which is measured for k=1,2,3,4,5(ψ1=θ,ψ2=η,ψ3=ϕ,ψ4=S(0.4),ψ5=h(0.4)), as MSE(ψk)=1MMi=1(ˆψ(i)kψk)2, where M=10000 is the number of simulated samples. The ACLs and CPs of the 95% ACIs and Bayes CCIs are compared (CPs). The following progressive schemes are considered in this study:

    Ⅰ: R1=nm,Ri=0 for i1.

    Ⅱ: Rm2=Rm2+1=nm2,Ri=0 for im2 and im2+1.

    Ⅲ: Rm=nm,Ri=0 for im.

    Tables 413 show the average estimates obtained by ML and BE, along with MSEs, whereas Tables 1417 show the average 95% ACI and Bayes CCIs, as well as their lengths and CP.

    Table 4.  Bayesian and Non-Bayesian estimation for the parameter θ with θ=0.6.
        MLE   SEL   LINEX
    (n,m) CS T         c=2   c=2
    (30,20) 10 1.2914(0.0275)   1.2344(0.0421)   1.239(0.0416)   1.2298(0.0426)
      1.277(0.0264)   1.2092(0.0442)   1.2154(0.0434)   1.2031(0.0451)
      1.2868(0.029)   1.1479(0.0696)   1.1609(0.0665)   1.1352(0.0732)
    15 1.2891(0.0271)   1.229(0.046)   1.2338(0.0454)   1.2243(0.0466)
      1.2904(0.0292)   1.2235(0.0433)   1.2293(0.0426)   1.2179(0.044)
      1.3001(0.0286)   1.1686(0.0715)   1.1804(0.0679)   1.157(0.0757)
    (40,30) 10 1.3262(0.0305)   1.2679(0.0371)   1.2719(0.0369)   1.2639(0.0373)
      1.3228(0.0299)   1.2641(0.0356)   1.2688(0.0354)   1.2596(0.0358)
      1.3191(0.0292)   1.1953(0.0545)   1.2044(0.525)   1.1863(0.0571)
    15 1.3256(0.0292)   1.2791(0.0331)   1.2828(0.0331)   1.2754(0.0332)
      1.324(0.0304)   1.2535(0.0394)   1.2584(0.0389)   1.2488(0.0398)
      1.3142(0.0281)   1.1961(0.0477)   1.2052(0.046)   1.1872(0.0495)

     | Show Table
    DownLoad: CSV
    Table 5.  Bayesian & and-Bayesian estimation for the parameter θ with θ=0.6.
    MLE SEL LINEX
    (n,m) CS T c=2 c=2
    (50,20) 10 1.1197(0.0518) 1.1219(0.0534) 1.1222(0.0534) 1.1215(0.0533)
      1.2091(0.0393)   1.2137(0.0422)   1.2141(0.0424)   1.2133(0.0421)
      1.2868(0.029)   1.1479(0.0696)   1.1609(0.0665)   1.1352(0.0732)
    15 1.197(0.0473)   1.1089(0.0486)   1.1091(0.0486)   1.1086(0.0486)
      1.1759(0.032)   1.1787(0.0332)   1.179(0.0333)   1.1785(0.0331)
      1.2399(0.0400)   1.2408(0.0425)   1.2413(0.0426)   1.2404(0.0424)
    (60,30) 10 1.303(0.0285)   1.2397(0.0369)   1.2434(0.0364)   1.2361(0.0374)
      1.2781(0.0257)   1.1897(0.0458)   1.1955(0.0440)   1.1839(0.0477)
      1.3150(0.0296)   1.1026(0.0901)   1.1189(0.0831)   1.0871(0.0974)
    15 1.2931(0.0274)   1.2401(0.0421)   1.2442(0.0414)   1.2361(0.0429)
      1.2976(0.0284)   1.2290(0.0512)   1.2359(0.0499)   1.2224(0.0526)
    1.2786(0.0254) 1.0952(0.0752) 1.110(0.0707) 1.0805(0.0803)

     | Show Table
    DownLoad: CSV
    Table 6.  Bayesian and Non-Bayesian estimation for the parameter η with η=0.04.
        MLE   SEL   LINEX
    (n,m) CS T         c=2   c=2
    (30,20) 10 1.2682(0.2011)   1.8905(3.1894)   1.9978(5.3335)   1.9978(1.2679)
      1.2715(0.2109)   2.638(2.638)   3.0833(2.113)   3.0833(1.4343)
      1.1543(0.2905)   2.2273(4.6835)   2.4579(8.6185)   2.4579(1.8334)
    15 1.2768(0.2005)   2.2751(1.119)   2.528(1.73)   2.528(1.3909)
      1.263(0.2122)   1.9527(2.4939)   2.0788(4.4067)   2.0788(1.0498)
      1.0124(0.3509)   2.7104(1.215)   3.282(2.38)   3.282(1.124)
    (40,30) 10 1.127(0.2198)   2.2322(2.073)   2.5308(2.119)   2.5308(2.2955)
      1.1249(0.2273)   1.6808(0.8812)   1.758(1.4478)   1.758(0.456)
      1.0824(0.2604)   2.0968(4.3863)   2.2951(5.9567)   2.2951(1.8153)
    15 1.1255(0.2175)   1.5964(0.4632)   1.6443(0.626)   1.6443(0.3015)
      1.1284(0.2208)   1.7677(2.0704)   1.8663(3.3522)   1.8663(0.8434)
      1.0788(0.2681)   1.9386(2.5533)   2.0866(4.2943)   2.0866(0.9973)

     | Show Table
    DownLoad: CSV
    Table 7.  Bayesian and Non-Bayesian estimation for the parameter η with η=0.04.
        MLE   SEL   LINEX
    (n,m) CS T         c=2   c=2
    (50,20) 10 1.523(0.0642)   1.5234(0.1559)   1.549(0.158)   1.5439(0.1549)
      1.2091(0.1235)   1.4578(0.1877)   1.484(0.2092)   1.484(0.1829)
      1.1534(0.0963)   1.4967(0.2048)   1.5283(0.215)   1.5283(0.2001)
    15 1.5277(0.0847)   1.5546(0.1445)   1.5795(0.1485)   1.5795(0.1429)
      1.4765(0.0806)   1.4904(0.1496)   1.5216(0.1737)   1.5216(0.1394)
      1.4018(0.1144)   1.4197(0.1812)   1.4516(0.1937)   1.4516(1755)
    (60,30) 10 1.2646(0.1805)   1.8730(2.3974)   1.9866(4.2976)   1.9866(0.8197)
      1.2539(0.240)   2.0760(2.1149)   2.2170(3.2600)   2.217(0.442)
      1.1234(0.2926)   2.4333(4.4366)   2.7259(7.5232)   2.7259(2.0884)
    15 1.2816(0.1633)   2.0747(7.750)   2.2558(14.959)   2.2558(2.3633)
      1.2977(0.1882)   2.0898(2.0155)   2.2268(3.0711)   1.8663(0.8434)
      1.1161(0.3099)   2.2434(3.2894)   2.4516(5.8091)   2.4516(1.6321)

     | Show Table
    DownLoad: CSV
    Table 8.  Bayesian and Non-Bayesian estimation for the parameter ϕ with ϕ=0.7.
        MLE   SEL   LINEX
    (n,m) CS T         c=2   c=2
    (30,20) 10 0.7825(0.0971)   0.8556(0.1528)   0.862(0.1882)   0.862(0.1272)
      0.8053(0.0785)   0.9113(0.6091)   0.9283(1.2493)   0.9283(0.3042)
      0.8573(0.0498)   1.0969(0.2372)   1.1207(0.3265)   1.1207(0.1669)
    15 0.7854(0.0941)   0.8697(0.219)   0.8777(0.2889)   0.8777(0.1623)
      0.8005(0.0847)   0.8829(0.1196)   0.8882(0.1291)   0.8882(0.1096)
      0.869(0.0397)   1.1812(4.2313)   1.2645(12.9046)   1.2645(1.1755)
    (40,30) 10 0.8292(0.0627)   0.9217(0.3702)   0.9281(0.4746)   0.9281(0.1663)
      0.8353(0.0594)   0.9171(0.0748)   0.9213(0.0816)   0.9213(0.07)
      0.8727(0.0404)   1.1071(0.3565)   1.1312(0.505)   1.1312(0.2041)
    15 0.8283(0.0656)   0.8905(0.0689)   0.8928(0.0701)   0.8928(0.0677)
      0.8355(0.0603)   0.9285(0.1184)   0.9344(0.1468)   0.9344(0.0884)
      0.8644(0.0417)   1.0563(0.1588)   1.0703(0.1962)   1.0703(0.1135)

     | Show Table
    DownLoad: CSV
    Table 9.  Bayesian and Non-Bayesian estimation for the parameter ϕ with ϕ=0.7.
        MLE   SEL   LINEX
    (n,m) CS T         c=2   c=2
    (50,20) 10 0.407(0.4652)   0.4788(0.5767)   0.5391(0.5824)   0.5391(0.5952)
      0.4543(0.4047)   0.583(0.6015)   0.6765(0.7279)   0.6765(0.5749)
      0.4027(0.04531)   0.4839(0.5613)   0.5599(0.5469)   5599(0.6006)
    15 0.3499(0.5228)   0.4741(0.6269)   0.5461(0.6538)   0.5461(0.6319)
      0.3975(0.4739)   0.459(0.6097)   0.5222(0.6260)   0.5222(0.6229)
      0.5141(0.03452)   0.6605(0.4415)   0.7372(0.4513)   0.7372(0.4546)
    (60,30) 10 0.8228(0.0633)   0.9090(0.1173)   0.9145(0.1341)   0.9145(0.1007)
      0.8605(0.0445)   0.9691(0.0554)   0.9741(0.0587)   0.9741(0.0526)
      0.8635(0.0442)   1.2758(0.4824)   1.3237(0.6305)   1.3237(0.3444)
    15 0.8153(0.0766)   0.9069(0.0160)   0.9151(0.1976)   0.9151(0.1261)
      0.8253(0.0725)   0.9395(0.1034)   0.9475(0.1121)   0.9475(0.0959)
      0.8767(0.0369)   1.2472(0.7691)   1.2816(0.9776)   1.2816(0.3713)

     | Show Table
    DownLoad: CSV
    Table 10.  Bayesian and Non-Bayesian estimation for the S(y) with y=0.4.
        MLE   SEL   LINEX
    (n,m) CS T         c=2   c=2
    (50,20) 10 0.8369(0.0046)   0.8292(0.0065)   0.8299(0.0063)   0.8299(0.0067)
      0.8446(0.0033)   0.8451(0.0051)   0.8451(0.0052)   0.8451(0.0052)
      0.8442(0.0035)   0.8295(0.0078)   0.831(0.0071)   0.8310(0.097)
    15 0.8314(0.0054)   0.8289(0.0068)   0.8294(0.0067)   0.8294(0.0069)
      0.8466(0.0034)   0.8389(0.0059)   0.8399(0.0056)   0.8399(0.0065)
      0.8560(0.0027)   0.8523(0.0040)   0.8529(0.039)   0.8529(0.0041)
    (60,30) 10 0.4825(0.0044)   0.4499(0.0045)   0.4506(0.0045)   0.4506(0.0045)
      0.4817(0.00445)   0.4356(0.0040)   0.4366(0.0039)   0.4366(0.0040)
      0.4817(0.0036)   0.4322(0.0037)   0.4344(0.0036)   0.4344(0.0038)
    15 0.4869(0.0039)   0.4446(0.0035)   0.4453(0.0034)   0.4453(0.0035)
      0.4796(0.0049)   0.4309(0.0060)   0.4319(0.0059)   0.4319(0.0061)
      0.4917(0.0044)   0.4391(0.0053)   0.4410(0.0052)   0.4410(0.0053)

     | Show Table
    DownLoad: CSV
    Table 11.  Bayesian and Non-Bayesian estimation for the S(y) with y=0.4.
        MLE   SEL   LINEX
    (n,m) CS T         c=2   c=2
    (30,20) 10 0.4981(0.0069)   0.4627(0.0064)   0.4635(0.0064)   0.4635(0.0064)
      0.4958(0.0062)   0.4565(0.0094)   0.4576(0.0095)   0.4576(0.0094)
      0.4906(0.0058)   0.4405(0.0069)   0.4425(0.0068)   0.4425(0.007)
    15 0.4968(0.0066)   0.4634(0.0125)   0.4644(0.0064)   0.4644(0.0124)
      0.4938(0.0065)   0.4539(0.0067)   0.4548(0.0067)   0.4548(0.0068)
      0.4977(0.0057)   0.4531(0.0143)   0.4555(0.016)   0.4555(0.0132)
    (40,30) 10 0.4869(0.0045)   0.4497(0.0078)   0.4503(0.0078)   0.4503(0.0078)
      0.4863(0.0044)   0.4437(0.0044)   0.4443(0.0044)   0.4443(0.0044)
      0.4814(0.0039)   0.429(0.0049)   0.4311(0.0063)   0.4311(0.0049)
    15 0.4874(0.0046)   0.4475(0.0045)   0.4481(0.0045)   0.4481(0.0046)
      0.4858(0.0044)   0.4448(0.0044)   0.4455(0.0043)   0.4455(0.0044)
      0.486(0.0041)   0.4351(0.0041)   0.4363(0.004)   0.4363(0.0042)

     | Show Table
    DownLoad: CSV
    Table 12.  Bayesian and Non-Bayesian estimation for the parameter h(y) with y=0.4.
        MLE   SEL   LINEX
    (n,m) CS T         c=2   c=2
    (30,20) 10 0.2594(0.0035)   0.2991(0.0053)   0.3(0.0055)   0.3(0.0052)
      0.2592(0.0036)   0.3056(0.0066)   0.307(0.0069)   0.307(0.0064)
      0.257(0.0044)   0.3104(0.0097)   0.3131(0.0102)   0.3131(0.0092)
    15 0.2604(0.0034)   0.3018(0.0062)   0.303(0.0064)   0.303(0.006)
      0.2619(0.0038)   0.3084(0.0075)   0.3098(0.0078)   0.3098(0.0073)
      0.2455(0.0044)   0.2952(0.0069)   0.2974(0.0072)   0.2974(1.1755)
    (40,30) 10 0.2608(0.0026)   0.3045(0.0045)   0.3053(0.0046)   0.3053(0.0044)
      0.2609(0.0027)   0.3086(0.0046)   0.3095(0.0048)   0.3095(0.0045)
      0.2608(0.0029)   0.316(0.0061)   0.3177(0.0064)   0.3177(0.0059)
    15 0.2605(0.0026)   0.306(0.0044)   0.3067(0.0045)   0.3067(0.0043)
      0.2614(0.0027)   0.3075(0.0046)   0.3084(0.0047)   0.3084(0.0045)
      0.2571(0.003)   0.3096(0.005)   0.3112(0.0052)   0.3112(0.0048)

     | Show Table
    DownLoad: CSV
    Table 13.  Bayesian and Non-Bayesian estimation for the h(y) with y=0.4.
        MLE   SEL   LINEX
    (n,m) CS T         c=2   c=2
    (50,20) 10 0.4221(0.0172)   0.4427(0.0311)   0.448(0.0359)   0.448(0.028)
      0.4126(0.018)   0.4233(0.0325)   0.4267(0.0341)   0.4267(0.031)
      0.4134(0.016)   0.45(0.0425)   0.4815(0.1568)   0.4815(0.035)
    (50,20) 15 0.4355(0.0224)   0.4396(0.0298)   0.4433(0.0318)   0.4433(0.0284)
      0.4127(0.0163)   0.4324(0.0317)   0.4489(0.0622)   0.4489(0.028)
      0.3987(0.0146)   0.4068(0.0234)   0.4106(0.0249)   0.4106(0.0223)
    (60,30) 10 0.2687(0.0026)   0.3044(0.004)   0.3053(0.0041)   0.30530.0039
      0.2655(0.003)   0.3161(0.0052)   0.3173(0.0054)   0.3173(0.005)
      0.2623(0.0030)   0.3063(0.0045)   0.3089(0.0048)   0.3089(0.0043)
    (60,30) 15 0.2653(0.0021)   0.3112(0.0033)   0.3121(0.0034)   0.3121(0.0032)
      0.2732(0.0033)   0.3281(0.0078)   0.3295(0.0081)   0.3295(0.0075)
      0.2514(0.0034)   0.3029(0.0063)   0.3053(0.0066)   0.3053(0.006)

     | Show Table
    DownLoad: CSV
    Table 14.  ACL and CP of 95% ACIs for the parameters θ, η and ϕ.
        θ η ϕ
    (n,m) CS T MLE MCMC MLE MCMC MLE MCMC
    (30,20) $ 5.6529(0.9617) 0.1998(0.9568) 2.0383(0.957) 0.7687(0.9466) 5.4298(0.9627) 0.1389(0.9294)
      4.4694(0.9631) 0.2286(0.9565) 3.4167(0.9515) 1.5139(0.9729) 6.6455(0.9564) 0.1801(0.9734)
      8.5822(0.937) 0.3508(0.9382) 3.0283(0.9578) 1.2839(0.9456) 11.7588(0.9486) 0.3498(0.9655)
    (30,20) $ 7.8707(0.9692) 0.2046(0.9557) 4.4399(0.9361) 1.0811(0.9712) 5.6912(0.9661) 0.1498(0.9558)
      10.6509(0.9438) 0.2256(0.9359) 6.1915(0.9407) 0.877(0.944) 6.0646(0.9521) 0.1561(0.9522)
      23.0997(0.9577) 0.3316(0.9369) 4.252(0.9312) 1.8173(0.932) 14.0675(0.9554) 0.4375(0.9512)
    (40,30) $ 8.3426(0.9687) 0.1849(0.9309) 5.8395(0.9685) 1.1809(0.932) 5.0596(0.9359) 0.1424(0.9354)
      9.5162(0.9732) 0.1993(0.9264) 8.6481(0.9598) 0.693(0.9374) 5.1176(0.9669) 0.1395(0.9362)
      5.1507(0.937) 0.2867(0.934) 6.9679(0.9694) 1.1422(0.9259) 9.484(0.9377) 0.3143(0.9448)
    (40,30) $ 8.532(0.9558) 0.1806(0.9493) 6.7448(0.9427) 0.5848(0.9747) 4.5751(0.9704) 0.1177(0.9675)
      10.013(0.975) 0.2042(0.9289) 9.9955(0.9393) 0.7744(0.9633) 5.3558(0.9366) 0.1509(0.9732)
      3.8788(0.9316) 0.2864(0.9496) 4.5241(0.9687) 1.011(0.937) 8.6553(0.9644) 0.2759(0.9537)

     | Show Table
    DownLoad: CSV
    Table 15.  ACL and CP of 95% CIs for the parameters θ, η and ϕ.
        θ η ϕ
    (n,m) CS T MLE MCMC MLE MCMC MLE MCMC
    (50,20) 10 2.3832(0.9523) 0.054(0.9634) 21.0137(0.9557) 0.4334(0.9485) 35.8958(0.9357) 0.6381(0.9235)
      2.7704(0.9785) 0.059(0.9335) 21.0137(0.9454) 0.4197(0.9854) 41.0347(0.9369) 0.1801(0.7884)
      2.3984(0.945) 0.0511(0.9844) 22.7283(0.9782) 0.5144(0.9056) 40.9238(0.9856) 0.7526(0.9557)
    (50,20) 15 2.2377(0.9692) 0.0473(0.9557) 20.4591(0.9361) 0.4528(0.9712) 35.9984(0.9661) 0.6856(0.9558)
      2.4405(0.9438) 0.0493(0.9359) 20.4951(0.9407) 0.4654(0.944) 37.3409(0.9521) 0.6612(0.9522)
      2.9478(0.9577) 0.0631(0.9369) 22.411(0.9312) 0.5154(0.932) 46.0535(0.9554) 0.8151(0.9512)
    (60,30) 10 8.7379(0.9235) 0.1708(0.9439) 20.2582(0.9465) 0.7596(0.9832) 4.9573(0.9849) 0.1377(0.9158)
      10.8805(0.9235) 0.2225(0.9874) 24.8189(0.9685) 0.9966(0.9721) 6.0161(0.9335) 0.176(0.9559)
      20.445(0.9785) 0.3831(0.9784) 33.7699(0.9471) 1.4883(0.9365) 13.6826(0.9668) 0.5387(0.9448)
    (60,30) 15 9.5762(0.9874) 0.1799(0.9887) 21.6671(0.9336) 0.9442(0.9746) 5.0167(0.9868) 0.1428(0.9654)
      10.5869(0.9882) 0.2319(0.9912) 23.9899(0.9128) 0.9224(0.9775) 6.0736(0.9228) 0.1864(0.9328)
      18.7393(0.9168) 0.3696(0.9456) 31.4035(0.9872) 1.2581(0.9537) 13.1471(0.9842) 0.4717(0.9758)

     | Show Table
    DownLoad: CSV
    Table 16.  ACL and CP of 95% ACIs for the parameters S(y) and h(y).
        S(y) h(y)
    (n,m) CS T MLE MCMC MLE MCMC
    (30,20) 10 0.4145(0.9445) 0.0865(0.9639) 0.3631(0.9592) 0.0928(0.9291)
      0.4837(0.936) 0.1009(0.932) 0.5998(0.9677) 0.1106(0.9735)
      0.3298(0.9724) 0.1441(0.9295) 0.3391(0.9276) 0.1563(0.9297)
    (30,20) 15 0.4741(0.966) 0.0923(0.9536) 0.4773(0.9632) 0.099(0.9588)
      0.3886(0.9446) 0.098(0.9675) 0.3827(0.9455) 0.1089(0.9473)
      0.3338(0.9613) 0.1414(0.9521) 0.4532(0.9466) 0.1423(0.9452)
    (40,30) 10 0.3983(0.9722) 0.0776(0.9492) 0.3661(0.9646) 0.0843(0.9678)
      0.3027(0.9454) 0.0821(0.9748) 0.2863(0.9712) 0.0897(0.9441)
      0.2839(0.9328) 0.1178(0.9723) 0.2463(0.9448) 0.126(0.9571)
    (40,30) 15 0.3173(0.9642) 0.0761(0.9314) 0.2669(0.9263) 0.0829(0.9337)
      0.3079(0.9429) 0.0858(0.9734) 0.3008(0.9691) 0.0935(0.9273)
      0.2818(0.9573) 0.1116(0.9757) 0.2379(0.9387) 0.1192(0.9711)

     | Show Table
    DownLoad: CSV
    Table 17.  ACL and CP of 95% CIs for the parameters S(y) and h(y).
        S(y) h(y)
    (n,m) CS T MLE MCMC MLE MCMC
    (50,20) 10 0.2198(0.9634) 0.0623(0.9558) 0.0902(0.9245) 0.1617(0.9192)
      0.1724(0.9428) 0.0582(0.9447) 0.1203(0.9887) 0.1562(0.9356)
      0.3298(0.958) 0.1673(0.9425) 0.1304(0.9685) 0.2186(0.9792)
    (50,20) 15 0.2237(0.9859) 0.0591(0.9381) 0.1069(0.9584) 0.1513(0.9335)
      0.1721(0.9884) 0.0702(0.9632) 0.1172(0.9534) 0.1844(0.9753)
      0.1627(0.9341) 0.0653(0.9119) 0.119(0.9228) 0.1733(0.9718)
    (60,30) 10 0.3506(0.9224) 0.0808(0.9854) 0.3052(0.9911) 0.0863(0.9884)
      0.3392(0.9885) 0.0953(0.9447) 0.36(0.9535) 0.1057(0.9336)
      0.2709(0.9663) 0.1523(0.9458) 0.4885(0.9338) 0.1578(0.9748)
    (60,30) 15 0.3486(0.9865) 0.0814(0.9789) 0.3227(0.9685) 0.089(0.9228)
      0.3438(0.9393) 0.0955(0.9915) 0.3402(0.9552) 0.1109(0.9273)
      0.261(0.9474) 0.1438(0.9636) 0.4167(0.9781) 0.1496(0.9822)

     | Show Table
    DownLoad: CSV

    Specifically, to obtain a PHT-ICS sample of size m from the FRL-ILD, after assigning T, n, and R, do the following procedure:

    Step 1: Set the specified actual values of FRL-ILD(θ,η,ϕ).

    Step 2: Obtain an ordinary progressive type-Ⅱ censored sample as:

    (a) Simulate u independent items (say u1,u2,,um) from the uniform U(0,1) distribution.

    (b) Set

    Hi=ui(i+ml=mi+1Rl)1,for i=1,2,,m.

    (c) Set

    Ui=1HmHm1Hmi+1,for i=1,2,,m.

    (d) Collect a progressive type-Ⅱ censored sample (with size m) from the FRL-ILD(θ,η,ϕ) distribution by setting

    yi=1η([1ϕ(eUilog(1+ϕ)1ϕ)]1θ1)1,i=1,2,,m.

    Step 3: Determine d at predetermined T.

    Step 4: Discard the remaining sample (Yj+1,,Ym) when T<Ym.

    Step 5: Use the truncated f(y;θ,η,ϕ)[1F(yd+1;θ,η,ϕ)]1 distribution to obtain (Yj+1,,Ym) order statistics with size njdl=1Rl1.

    To perform the necessary calculations for the Bayes point (or interval) estimates, different priors are assigned to the hyperparameters using the elective hyperparameter method. Following the Bayes MCMC procedure outlined in Section 3, the initial 2000 iterations (out of a total of 12000) are discarded to minimize the influence of the starting values. Once 10000 target PHT-ICS samples are collected, the 'maxLik' and 'coda' packages are utilized in R 4.3.0 software to compute the maximum likelihood and Bayes MCMC estimates, along with their 95% ACI and HPD interval estimates for θ, η, and ϕ.

    Tables 417 result in the following conclusions.

    ● When we compared the BEs and MLEs based on the MCMC algorithm, they have the smallest MSE values (Tables 413).

    ● We reported that the BEs under the SEL function with the assumption informative prior performed better than the MLEs. Finally, regarding the MSEs, the BEs that employ informative priors outperform the BEs based on the MLEs.

    Tables 1417 exhibit the ALs and CPs for 95% CIs estimates for the parameters θ,η,ϕ,S(y) and h(y). The ALs of ACI for θ,η,ϕ,S(y), and h(y) obtained with MLE are somewhat longer than the comparable lengths determined using MCMC. This is valid for the parameters θ,η,ϕ,S(y) and h(y). Furthermore, the ALs of all CIs decrease as the effective sample size (m) increases. We tabulate the CP for the interval estimates of θ,η,ϕ,S(y), and h(y) in the tables. As can be seen, most of the CPs for various censoring schemes are below the nominal criterion of 95%.

    ● In general, as T increases, they become more efficient estimators.

    ● In particular, MSE values of all estimators decrease as n increases.

    ● In investigating the effect of various censoring schemes, we discovered that for θ,η, and ϕ parameters, the MSE values in the case of all removals are smaller at the first failure than the other two schemes, and for η parameters, it is smaller at the last failure than the other two schemes.

    This work uses a progressive hybrid Type-Ⅰ censored sample for the parameters of the FRL-ILD that match the failure data well for a real-life application of head and neck cancer data. Bayesian inference procedures and MLE procedures are discussed. The average lengths and coverage probabilities for 95% CI estimates for the parameters θ,η,ϕ,S(y), and h(y) were obtained with MLE. The Bayesian method offers Bayesian estimates using the Markov chain Monte Carlo sampling methodology. This is accomplished using two loss functions: squared error and general entropy loss functions. Additionally, we investigate Bayes' credible intervals. Monte Carlo simulations are performed to assess the estimation efficiency of the proposed inferential approaches. A numerical comparison of the Bayes and ML estimations is made. The computational research showed that all estimators perform well with increased sample sizes. The study demonstrates that it is reasonable to estimate the failure probability of the actual two data sets with the lifetime of bladder cancer that was previously stated using the distribution that has been presented. The posterior density function plots and trace plots using the MCMC method for the unknown parameters θ,η, and ϕ have been shown in Figures 5 and 8 to show the diagnostic tests for the MCMC method. Some possible directions for future research include: (1) analyzing entropy measure estimation in a competing risks model; (2) analyzing entropy measure estimation problems in the context of accelerated life tests; and (3) investigating traditional estimation techniques other than maximum likelihood, such as weighted least squares, least squares, and maximum product of spacings methods, among others.

    Ehab M. Almetwally: Methodology, Software, Formal analysis, Writing-original draft, Writing-review and editing; Ahlam H. Tolba: Conceptualization, Methodology, Validation, Investigation, Resources, Writing-original draft, Writing-review and editing; Dina A. Ramadan: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing-original draft, Writing-review and editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-DDRSP2501).

    The authors declare no conflicts of interest.



    [1] S. Dohr, C. Kahle, S. Rogovs, et al. A FEM for an optimal control problem subject to the fractional Laplace equation, Calcolo, 56 (2019), 1-21. doi: 10.1007/s10092-018-0296-x
    [2] C. Kuo, W. Yeih, C. Ku, et al. The method of two-point angular basis function for solving Laplace equation, Eng. Anal. Bound. Elem., 106 (2019), 264-274. doi: 10.1016/j.enganabound.2019.05.018
    [3] P. Dehghan, M. Dehghan, On the Numerical Solution of Logarithmic Boundary Integral Equations Arising in Laplace's Equations Based on the Meshless Local Discrete Collocation Method, Adv. Appl. Math. Mech., 11 (2019), 807-837. doi: 10.4208/aamm.OA-2018-0050
    [4] M. A. Jankowska, Interval Nine-Point Finite Difference Method for Solving the Laplace Equation with the Dirichlet Boundary Conditions, In: Parallel Processing and Applied Mathematics, Springer, Cham, 2016, 474-484.
    [5] X. Li, J. Oh, Y. Wang, et al. The method of transformed angular basis function for solving the Laplace equation, Eng. Anal. Bound. Elem., 93 (2018), 72-82. doi: 10.1016/j.enganabound.2018.04.001
    [6] K. Ruotsalainen, W. Wendland, On the boundary element method for some nonlinear boundary value problems, Numer. Math., 53 (1988), 299-314. doi: 10.1007/BF01404466
    [7] K. Maleknejad, H. Mesgaran, Numerical method for a nonlinear boundary integral equation, Appl. Math. Comput., 182 (2006), 1006-1009.
    [8] P. Assari, M. Dehghan, Application of thin plate splines for solving a class of boundary integral equations arisen from Laplace's equations with nonlinear boundary conditions, Int. J. comput. Math., 96 (2019), 170-198. doi: 10.1080/00207160.2017.1420786
    [9] X. Chen, R. Wang, Y. Xu, Fast Fourier-Galerkin Methods for Nonlinear Boundary Integral Equations, J. Sci. Comput., 56 (2013), 494-514. doi: 10.1007/s10915-013-9687-y
    [10] I. H. Sloan, A. Spence, The Galerkin method for integral equations of the first kind with logarithmic kernel: theory, IMA J. Numer. Anal., 8 (1988), 105-122. doi: 10.1093/imanum/8.1.105
    [11] Y. Yan, The collocation method for first-kind boundary integral equations on polygonal regions, Math. Comput., 54 (1990), 139-154. doi: 10.1090/S0025-5718-1990-0995213-6
    [12] H. Li, J. Huang, High-accuracy quadrature methods for solving nonlinear boundary integral equations of axisymmetric Laplace's equation, Comput. Appl. Math., 37 (2018), 6838-6847. doi: 10.1007/s40314-018-0714-3
    [13] S. Christiansen, Numerical solution of an integral equation with a logarithmic kernel, BIT., 11 (1971), 276-287. doi: 10.1007/BF01931809
    [14] M. S. Abou El-Seoud, Numerische behandlung von schwach singulären Integralgleichungen 1. Art. Dissertation, Technische Hochschule Darmstadt, Federal Republic of Germany, Darmstadt, 1979.
    [15] J. Saranen, The modified quadrature method for logarithmic-kernel integral equations on closed curves, J. Integral Equ. Appl., 3 (1991), 575-600. doi: 10.1216/jiea/1181075650
    [16] P. M. Anselone, J. Davis, Collectively Compact Operator Approximation Theory and applications to integral equations, Prentice Hall, 1971.
    [17] H. Li, J. Huang, A novel approach to solve nonlinear Fredholm integral equations of the second kind, SpringerPlus, 5 (2016), 1-9. doi: 10.1186/s40064-015-1659-2
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3938) PDF downloads(196) Cited by(0)

Figures and Tables

Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog