[1]
|
B. Alhijawi, A. Awajan, Genetic algorithms: theory, genetic operators, solutions, and applications, Evol. Intel., 2023. https://doi.org/10.1007/s12065-023-00822-6
|
[2]
|
V. Araña, A. G. Camacho, A. Garcia, F. G. Montesinos, I. Blanco, R. Vieira, et al., The internal structure of Tenerife (Canary Islands) based on gravity aeromagnetic and volcanological data, J. Volcanol. Geoth. Res., 103 (2000), 43–64. https://doi.org/10.1016/S0377-0273(00)00215-8
|
[3]
|
V. C. F. Barbosa, J. B. C. Silva, Generalized compact gravity inversion, Geophysics, 59 (1994), 57–68. https://doi.org/10.1190/1.1443534 doi: 10.1190/1.1443534
|
[4]
|
V. C. F. Barbosa, J. B. C. Silva, W. E. Medeiros, Gravity inversion of basements relief using approximate equality constraints on depths, Geophysics, 62 (1997), 1745–1757. https://doi.org/10.1190/1.1444275 doi: 10.1190/1.1444275
|
[5]
|
G. Berrino, A. G. Camacho, 3D gravity inversion by growing bodies and shaping layers at Mt. Vesuvius (Southern Italy), Pure Appl. Geophys., 165 (2008), 1095–1115. https://doi.org/10.1007/s00024-008-0348-2 doi: 10.1007/s00024-008-0348-2
|
[6]
|
G. Berrino, P. Vajda, P. Zahorec, A. G. Camacho, V. De Novellis, S. Carlino, et al., Interpretation of spatiotemporal gravity changes accompanying the earthquake of 21 August 2017 on Ischia (Italy), Contrib. Geophys. Geod., 51 (2021), 345–371. https://doi.org/10.31577/congeo.2021.51.4.3
|
[7]
|
H. Bertete-Aguirre, E. Cherkaev, M. Oristaglio, Non-smooth gravity problem with total variation penalization functional, Geophys. J. Int., 149 (2002), 499–507. https://doi.org/10.1046/j.1365-246X.2002.01664.x doi: 10.1046/j.1365-246X.2002.01664.x
|
[8]
|
J. Bódi, Inversion of 3D microgravity data for near surface applications for free geometry sources, Rigorous thesis, Comenius University in Bratislava, Slovakia, 2023.
|
[9]
|
J. Bódi, P. Vajda, A. G. Camacho, J. Papčo, J. Fernández, On gravimetric detection of thin elongated sources using the growth inversion approach, Surv. Geophys., 44 (2023), 1811–1835. https://doi.org/10.1007/s10712-023-09790-z doi: 10.1007/s10712-023-09790-z
|
[10]
|
O. Boulanger, M. Chouteau, Constraints in 3D gravity inversion, Geophys. Prospect., 49 (2001), 265–280. https://doi.org/10.1046/j.1365-2478.2001.00254.x doi: 10.1046/j.1365-2478.2001.00254.x
|
[11]
|
A. G. Camacho, R. Vieira, C. de Toro, Microgravimetric model of the Las Cañadas caldera (Tenerife), J. Volcanol. Geoth. Res., 47 (1991), 75–88. https://doi.org/10.1016/0377-0273(91)90102-6
|
[12]
|
A. G. Camacho, R. Vieira, F. G. Montesinos, V. Cuéllar, A gravimetric 3D Global inversion for cavity detection, Geophys. Prospect., 42 (1994), 113–130. https://doi.org/10.1111/j.1365-2478.1994.tb00201.x doi: 10.1111/j.1365-2478.1994.tb00201.x
|
[13]
|
A. G. Camacho, F. G. Montesinos, R. Vieira, A three-dimensional gravity inversion applied to Sao Miguel Island (Azores), J. Geophys. Res., 102 (1997), 7705–7715. https://doi.org/10.1029/96JB03667 doi: 10.1029/96JB03667
|
[14]
|
A. Camacho, F. Montesinos, R. Vieira, Gravity inversion by means of growing bodies, Geophysics, 65 (2000), 95–101. https://doi.org/10.1190/1.1444729 doi: 10.1190/1.1444729
|
[15]
|
A. Camacho, F. Montesinos, R. Vieira, J. Arnoso, Modelling of crustal anomalies of Lanzarote (Canary Islands) in light of gravity data, Geophys. J. Int., 147 (2001), 403–414. https://doi.org/10.1046/j.0956-540x.2001.01546.x doi: 10.1046/j.0956-540x.2001.01546.x
|
[16]
|
A. G. Camacho, F. G. Montesinos, R. Vieira, A 3-D gravity inversion tool based on exploration of model possibilities, Comput. Geosci., 28 (2002), 191–204. https://doi.org/10.1016/S0098-3004(01)00039-5 doi: 10.1016/S0098-3004(01)00039-5
|
[17]
|
A. G. Camacho, J. C. Nunes, E. Ortíz, Z. Franca, R. Vieira, Gravimetric determination of an intrusive complex under the island of Faial (Azores): some methodological improvements, Geophys. J. Int., 171 (2007), 478–494. https://doi.org/10.1111/j.1365-246X.2007.03539.x doi: 10.1111/j.1365-246X.2007.03539.x
|
[18]
|
A. G. Camacho, J. Fernández, P. J. González, J. B. Rundle, J. F. Prieto, A. Arjona, Structural results for La Palma island using 3-D gravity inversion, J. Geophys. Res., 114 (2009), B05411. https://doi.org/10.1029/2008JB005628
|
[19]
|
A. Camacho, J. Fernández, J. Gottsmann, The 3-D gravity inversion package GROWTH 2.0 and its application to Tenerife Island, Spain, Comput. Geosci., 37 (2011), 621–633. https://doi.org/10.1016/j.cageo.2010.12.003
|
[20]
|
A. G. Camacho, J. Fernández, J. Gottsmann, A new gravity inversion method for multiple subhorizontal discontinuity interfaces and shallow basins, J. Geophys. Res., 116 (2011), B02413. https://doi.org/10.1029/2010JB008023
|
[21]
|
A. G. Camacho, P. J. González, J. Fernández, G. Berrino, Simultaneous inversion of surface deformation and gravity changes by means of extended bodies with a free geometry: application to deforming calderas, J. Geophys. Res., 116 (2011), B10. https://doi.org/10.1029/2010JB008165
|
[22]
|
A. G. Camacho, E. Carmona, A. García-Jerez, F. Sánchez-Martos, J. F. Prieto, J. Fernández, et al., Structure of alluvial valleys from 3-D gravity inversion: the Low Andarax Valley (Almería, Spain) test case, Pure Appl. Geophys., 172 (2015), 3107–3121. https://doi.org/10.1007/s00024-014-0914-8
|
[23]
|
A. G. Camacho, J. Fernández, Modeling 3D free-geometry volumetric sources associated to geological and anthropogenic hazards from space and terrestrial geodetic data, Remote Sens., 11 (2019), 2042. https://doi.org/10.3390/rs11172042 doi: 10.3390/rs11172042
|
[24]
|
A. G. Camacho, J. F. Prieto, E. Ancochea, J. Fernández, Deep volcanic morphology below Lanzarote, Canaries, from gravity inversion: new results for Timanfaya and implications, J. Volcanol. Geoth. Res., 369 (2019), 64–79. https://doi.org/10.1016/j.jvolgeores.2018.11.013
|
[25]
|
A. G. Camacho, J. Fernández, S. V. Samsonov, K. F. Tiampo, M. Palano, 3D multi-source model of elastic volcanic ground deformation, Earth Planet. Sci. Lett., 547 (2020), 116445. https://doi.org/10.1016/j.epsl.2020.116445 doi: 10.1016/j.epsl.2020.116445
|
[26]
|
A. G. Camacho, J. F. A. Aparicio, E. Ancochea, J. Fernández, Upgraded GROWTH 3.0 software for structural gravity inversion and application to El Hierro (Canary Islands), Comput. Geosci., 150 (2021), 104720. https://doi.org/10.1016/j.cageo.2021.104720 doi: 10.1016/j.cageo.2021.104720
|
[27]
|
A. G. Camacho, P. Vajda, C. A. Miller, J. Fernández, A free-geometry geodynamic modelling of surface gravity changes using Growth-dg software, Sci. Rep., 11 (2021), 23442. https://doi.org/10.1038/s41598-021-02769-z doi: 10.1038/s41598-021-02769-z
|
[28]
|
A. G. Camacho, P. Vajda, J. Fernández, GROWTH-23: an integrated code for inversion of complete Bouguer gravity anomaly or temporal gravity changes, Comput. Geosci., 182 (2024), 105495. https://doi.org/10.1016/j.cageo.2023.105495 doi: 10.1016/j.cageo.2023.105495
|
[29]
|
F. Cannavò, A. G. Camacho, P. J. González, M. Mattia, G. Puglisi, J. Fernández, Real time tracking of magmatic intrusions by means of ground deformation modeling during volcanic crises, Sci. Rep., 5 (2015), 10970. https://doi.org/10.1038/srep10970 doi: 10.1038/srep10970
|
[30]
|
Z. Chen, X. Meng, L. Guo, G. Liu, GICUDA: a parallel program for 3D correlation imaging of large scale gravity and gravity gradiometry data on graphics processing units with CUDA, Comput. Geosci., 46 (2012), 119–128. https://doi.org/10.1016/j.cageo.2012.04.017 doi: 10.1016/j.cageo.2012.04.017
|
[31]
|
Z. Chen, X. Meng, S. Zhang, 3D gravity interface inversion constrained by a few points and its GPU acceleration, Comput. Geosci., 84 (2015), 20–28. https://doi.org/10.1016/j.cageo.2015.08.002 doi: 10.1016/j.cageo.2015.08.002
|
[32]
|
C. G. Farquharson, M. R. Ash, H. G Miller, Geologically constrained gravity inversion for the Voisey's Bay Ovoid deposit, Lead. Edge, 27 (2008), 64–69. https://doi.org/10.1190/1.2831681
|
[33]
|
J. Fernández, J. F. Prieto, J. Escayo, A. G. Camacho, F. Luzón, K. F. Tiampo, et al., Modeling the two-and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications, Sci. Rep., 8 (2018), 14782. https://doi.org/10.1038/s41598-018-33128-0
|
[34]
|
J. Fernández, J. Escayo, Z. Hu, A. G. Camacho, S. V. Samsonov, J. F. Prieto, et al., Detection of volcanic unrest onset in La Palma, Canary Islands, evolution and implications, Sci. Rep., 11 (2021), 2540. https://doi.org/10.1038/s41598-021-82292-3
|
[35]
|
J. Fernández, J. Escayo, A. G. Camacho, M. Palano, J. F. Prieto, Z. Hu, et al., Shallow magmatic intrusion evolution below La Palma before and during the 2021 eruption, Sci. Rep., 12 (2022), 20257. https://doi.org/10.1038/s41598-022-23998-w
|
[36]
|
J. Fullea, J. C. Afonso, J. A. D. Connolly, M. Fernàndez, D. Garcia-Castellanos, H. Zeyen, LitMod3D: an interactive 3D software to model the thermal, compositional, density, rheological, and seismological structure of the lithosphere and sublithospheric upper mantle, Geochem. Geophys. Geosy., 10 (2009), Q08019. https://doi.org/10.1029/2009GC002391
|
[37]
|
M. H. Ghalehnoee, A. Ansari, A. Ghorbani, Improving compact gravity inversion using new weighting functions, Geophys. J. Int., 208 (2017), 546–560. https://doi.org/10.1093/gji/ggw413 doi: 10.1093/gji/ggw413
|
[38]
|
D. Gómez-Ortiz, B. N. P. Agarwal, 3DINVER.M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker–Oldenburg's algorithm, Comput. Geosci., 31 (2005), 513–520. https://doi.org/10.1016/j.cageo.2004.11.004 doi: 10.1016/j.cageo.2004.11.004
|
[39]
|
J. Gottsmann, L. Wooller, J. Martí, J. Fernández, A. G. Camacho, P. J. Gonzalez, et al., New evidence for the reawakening of Teide volcano, Geophys. Res. Lett., 33 (2006), L20311. https://doi.org/10.1029/2006GL027523
|
[40]
|
J. Gottsmann, A. G. Camacho, J. Martí, L. Wooller, J. Fernández, A. García, et al., Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data: implications for its evolution and recent reactivation, Phys. Earth Planet. Int., 168 (2008), 212–230. https://doi.org/10.1016/j.pepi.2008.06.020
|
[41]
|
A. Guillen, V. Menichetti, Gravity and magnetic inversion with minimization of a specific functional, Geophysics, 49 (1984), 1354–1360. https://doi.org/10.1190/1.1441761 doi: 10.1190/1.1441761
|
[42]
|
J. R. Kennedy, J. D. Larsen, Heavy: software for forward modeling gravity change from MODFLOW output, Environ. Modell. Softw., 165 (2023), 105714. https://doi.org/10.1016/j.envsoft.2023.105714 doi: 10.1016/j.envsoft.2023.105714
|
[43]
|
C. Klesper, IVIS-3D: a tool for interactive 3D-visualisation of gravity models, Phys. Chem. Earth, 23 (1998), 279–283. https://doi.org/10.1016/S0079-1946(98)00025-1 doi: 10.1016/S0079-1946(98)00025-1
|
[44]
|
R. A. Krahenbuhl, Y. Li, Inversion of gravity data using a binary formulation, Geophys. J. Int., 167 (2006), 543–556. https://doi.org/10.1111/j.1365-246X.2006.03179.x doi: 10.1111/j.1365-246X.2006.03179.x
|
[45]
|
B. J. Last, K. Kubik, Compact gravity inversion, Geophysics, 48 (1983), 713–721. https://doi.org/10.1190/1.1441501
|
[46]
|
P. G. Lelievre, D. W. Oldenburg, A comprehensive study of including structural information in geophysical inversions, Geophys. J. Int., 178 (2009), 623–637. https://doi.org/10.1111/j.1365-246X.2009.04188.x doi: 10.1111/j.1365-246X.2009.04188.x
|
[47]
|
P. G. Lelièvre, R. Bijani, C. G. Farquharson, Joint inversion using multi-objective global optimization methods, 78th EAGE Conference and Exhibition, 2016 (2016), 1–5. https://doi.org/10.3997/2214-4609.201601655 doi: 10.3997/2214-4609.201601655
|
[48]
|
Y. Li, D. W. Oldenburg, 3-D inversion of gravity data, Geophysics, 63 (1998), 109–119. https://doi.org/10.1190/1.1444302 doi: 10.1190/1.1444302
|
[49]
|
S. Mallick, Optimization using genetic algorithms–Methodology with examples from seismic waveform inversion (chapter), In: Y. H. Chemin, Genetic algorithms: theory, design and programming, IntechOpen, 2024. https://doi.org/10.5772/intechopen.113897
|
[50]
|
C. M. Martins, W. A. Lima, V. C. F. Barbosa, J. B. C. Silva, Total variation regularization for depth-to-basement estimate: Part 1–Mathematical details and applications, Geophysics, 76 (2011), I1–I12. https://doi.org/10.1190/1.3524286
|
[51]
|
C. A. Miller, G. Williams-Jones, D. Fournier, J. Witter, 3D gravity inversion and thermodynamic modelling reveal properties of shallow silicic magma reservoir beneath Laguna del Maule, Chile, Earth Planet. Sci. Lett., 459 (2017), 14–27. https://doi.org/10.1016/j.epsl.2016.11.007
|
[52]
|
C. A. Miller, H. Le Mével, G. Currenti, G. Williams-Jones, B. Tikoff, Microgravity changes at the Laguna del Maule volcanic field: Magma-induced stress changes facilitate mass addition, J. Geophys. Res. Solid Earth, 122 (2017), 3179–3196. https://doi.org/10.1002/2017JB014048 doi: 10.1002/2017JB014048
|
[53]
|
O. F. Mojica, A. Bassrei, Regularization parameter selection in the 3D gravity inversion of the basement relief using GCV: a parallel approach, Comput. Geosci., 82 (2015), 205–213. https://doi.org/10.1016/j.cageo.2015.06.013 doi: 10.1016/j.cageo.2015.06.013
|
[54]
|
F. G. Montesinos, A. G. Camacho, R. Vieira, Analysis of gravimetric anomalies in Furnas caldera (Saô Miguel, Azores), J. Volcanol. Geoth. Res., 92 (1999), 67–81. https://doi.org/10.1016/S0377-0273(99)00068-2
|
[55]
|
F. G. Montesinos, A. G. Camacho, J. C. Nunes, C. S. Oliveira, R. Vieira, A 3-D gravity model for a volcanic crater in Terceira Island (Azores), Geophys. J. Int., 154 (2003), 393–406. https://doi.org/10.1046/j.1365-246X.2003.01960.x doi: 10.1046/j.1365-246X.2003.01960.x
|
[56]
|
F. G. Montesinos, J. Arnoso, R. Vieira, Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands), Int. J. Earth Sci. (Geol. Rundsch.), 94 (2005), 301–316. https://doi.org/10.1007/s00531-005-0471-6
|
[57]
|
J. C. Nunes, A. Camacho, Z. França, F. G. Montesinos, M. Alves, R. Vieira, et al., Gravity anomalies and crustal signature of volcano-tectonic structures of Pico Island (Azores), J. Volcanol. Geoth. Res., 156 (2006), 55–70. https://doi.org/10.1016/j.jvolgeores.2006.03.023
|
[58]
|
E. Oksum, Grav3CH_inv: A GUI-based MATLAB code for estimating the 3-D basement depth structure of sedimentary basins with vertical and horizontal density variation, Comput. Geosci., 155 (2021), 104856. https://doi.org/10.1016/j.cageo.2021.104856 doi: 10.1016/j.cageo.2021.104856
|
[59]
|
V. C. Oliveira, V. C. F. Barbosa, 3-D radial gravity gradient inversion, Geophys. J. Int., 195 (2013), 883–902. https://doi.org/10.1093/gji/ggt307 doi: 10.1093/gji/ggt307
|
[60]
|
L. B. Pedersen, Constrained inversion of potential field data, Geophys. Prosp., 27 (1979), 726–748. https://doi.org/10.1111/j.1365-2478.1979.tb00993.x doi: 10.1111/j.1365-2478.1979.tb00993.x
|
[61]
|
D. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. ACM, 9 (1962), 84–97. https://doi.org/10.1145/321105.321114 doi: 10.1145/321105.321114
|
[62]
|
R. Pašteka, M. Terray, M. Hajach, M. Pašiaková, Výsledky geofyzikálneho (mikro-gravimetrického) prieskumu interiéru kostola Sv. Mikuláša v Trnave, unpublished work, 2006.
|
[63]
|
R. Pašteka, J. Mikuška, M. Hajach, M. Pašiaková, Microgravity measurements and GPR technique in the search for medieval crypts: a case study from the St. Nicholas church in Trnava, SW Slovakia, Proceedings of the Archaeological Prospection 7th Conference in Nitra, 41 (2007), 222–224.
|
[64]
|
R. Pašteka, F. P. Richter, R. Karcol, K. Brazda, M. Hajach, Regularized derivatives of potential fields and their role in semiautomated interpretation methods, Geophys. Prospect., 57 (2009), 507–516. https://doi.org/10.1111/j.1365-2478.2008.00780.x doi: 10.1111/j.1365-2478.2008.00780.x
|
[65]
|
R. Pašteka, J. Pánisová, P. Zahorec, J. Papčo, J. Mrlina, M. Fraštia, et al., Microgravity method in archaeological prospection: methodical comments on selected case studies from crypt and tomb detection, Archaeol. Prospect., 27 (2020), 415–431. https://doi.org/10.1002/arp.1787
|
[66]
|
M. Pick, J. Picha, V. Vyskočil, Theory of the earth's gravity field, Elsevier, 1973.
|
[67]
|
I. Prutkin, P. Vajda, M. Bielik, V. Bezák, R. Tenzer, Joint interpretation of gravity and magnetic data in the Kolárovo anomaly region by separation of sources and the inversion method of local corrections, Geol. Carpath., 65 (2014), 163–174. https://doi.org/10.2478/geoca-2014-0011 doi: 10.2478/geoca-2014-0011
|
[68]
|
I. Prutkin, P. Vajda, J. Gottsmann, The gravimetric picture of magmatic and hydrothermal sources driving hybrid unrest on Tenerife in 2004/5, J. Volcanol. Geoth. Res., 282 (2014), 9–18. https://doi.org/10.1016/j.jvolgeores.2014.06.003 doi: 10.1016/j.jvolgeores.2014.06.003
|
[69]
|
I. Prutkin, P. Vajda, T. Jahr, F. Bleibinhaus, P. Novák, R. Tenzer, Interpretation of gravity and magnetic data with geological constraints for 3D structure of the Thuringian Basin, Germany, J. Appl. Geophys., 136 (2017), 35–41. https://doi.org/10.1016/j.jappgeo.2016.10.039
|
[70]
|
A. B. Reid, J. M. Allsop, H. Granser, A. J. Millet, I. W. Somerton, Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, 55 (1990), 80–91. https://doi.org/10.1190/1.1442774 doi: 10.1190/1.1442774
|
[71]
|
R. M. René, Gravity inversion using open, reject, and "shape‐of‐anomaly" fill criteria, Geophysics, 51 (1986), 889–1033. https://doi.org/10.1190/1.1442157
|
[72]
|
D. F. Santos, J. B. C. Silva, C. M. Martins, R. C. S. Santos, L. C. Ramos, A. C. M. Araújo, Efficient gravity inversion of discontinuous basement relief, Geophysics, 80 (2015), G95–G106. https://doi.org/10.1190/geo2014-0513.1
|
[73]
|
S. V. Samsonov, K. F. Tiampo, A. G. Camacho, J. Fernández, P. J. González, Spatiotemporal analysis and interpretation of 1993–2013 ground deformation at Campi Flegrei, Italy, observed by advanced DInSAR, Geophys. Res. Lett., 41 (2014), 6101–6108. https://doi.org/10.1002/2014GL060595
|
[74]
|
P. Shamsipour, D. Marcotte, M. Chouteau, 3D stochastic joint inversion of gravity and magnetic data, J. Appl. Geophys., 79 (2012), 27–37. https://doi.org/10.1016/j.jappgeo.2011.12.012 doi: 10.1016/j.jappgeo.2011.12.012
|
[75]
|
K. Snopek, U. Casten, 3GRAINS: 3D Gravity Interpretation Software and its application to density modeling of the Hellenic subduction zone, Comput. Geosci., 32 (2006), 592–603. https://doi.org/10.1016/j.cageo.2005.08.008 doi: 10.1016/j.cageo.2005.08.008
|
[76]
|
M. Terray, Správa z georadarového prieskumu Dómu sv. Mikuláša v Trnave, unpublished work, 2006.
|
[77]
|
C. Tiede, A. G. Camacho, C. Gerstenecker, J. Fernández, I. Suyanto, Modelling the crust at Merapi volcano area, Indonesia, via the inverse gravimetric problem, Geochem. Geophy. Geosy., 6 (2005), Q09011. https://doi.org/10.1029/2005GC000986
|
[78]
|
C. Tiede, J. Fernández, C. Gerstenecker, K. F. Tiampo, A hybrid model for the summit region of merapi volcano, Java, Indonesia, derived from gravity changes and deformation measured between 2000 and 2002, In: D. Wolf, J. Fernández, Deformation and gravity change: indicators of isostasy, tectonics, volcanism, and climate change, Pageoph Topical Volumes, Birkhäuser, (2007), 837–850. https://doi.org/10.1007/978-3-7643-8417-3_12
|
[79]
|
A. N. Tikhonov, V. A. Arsenin, Solutions of ill-posed problems, Winston and Sons, Washington, 1977. https://doi.org/10.2307/2006360
|
[80]
|
L. Uieda, V. C. F. Barbosa, Robust 3D gravity gradient inversion by planting anomalous densities, Geophysics, 77 (2012), G55–G66. https://doi.org/10.1190/GEO2011-0388.1
|
[81]
|
P. Vajda, P. Vaníček, B. Meurers, A new physical foundation for anomalous gravity, Stud. Geophys. Geod., 50 (2006), 189–216. https://doi.org/10.1007/s11200-006-0012-1 doi: 10.1007/s11200-006-0012-1
|
[82]
|
P. Vajda, I. Foroughi, P. Vaníček, R. Kingdon, M. Santos, M. Sheng, et al., Topographic gravimetric effects in earth sciences: Review of origin, significance and implications, Earth-Sci. Rev., 211 (2020), 103428. https://doi.org/10.1016/j.earscirev.2020.103428
|
[83]
|
P. Vajda, P. Zahorec, C. A. Miller, H. Le Mével, J. Papčo, A. G. Camacho, Novel treatment of the deformation–induced topographic effect for interpretation of spatiotemporal gravity changes: Laguna del Maule (Chile), J. Volcanol. Geoth. Res., 414 (2021), 107230. https://doi.org/10.1016/j.jvolgeores.2021.107230 doi: 10.1016/j.jvolgeores.2021.107230
|
[84]
|
P. Vajda, A. G. Camacho, J. Fernández, Benefits and limitations of the growth inversion approach in volcano gravimetry demonstrated on the revisited Tenerife 2004/5 unrest, Surveys Geophys., 44 (2023), 527–554. https://doi.org/10.1007/s10712-022-09738-9 doi: 10.1007/s10712-022-09738-9
|
[85]
|
S. Vatankhah, V. E. Ardestani, S. S. Niri, R. S. Renaut, H. Kabirzadeh, IGUG: a MATLAB package for 3D inversion of gravity data using graph theory, Comput. Geosci., 128 (2019), 19–29. https://doi.org/10.1016/j.cageo.2019.03.008 doi: 10.1016/j.cageo.2019.03.008
|
[86]
|
E. J. Wahyudi, D. Santoso, W. G. A. Kadir, S. Alawiyah, Designing a genetic algorithm for efficient calculation in time-lapse gravity inversion, J. Eng. Tech. Sci., 46 (2014), 58–77. https://doi.org/10.5614/j.eng.technol.sci.2014.46.1.4 doi: 10.5614/j.eng.technol.sci.2014.46.1.4
|
[87]
|
R. A. Wildman, G. A. Gazonas, Gravitational and magnetic anomaly inversion using a tree-based geometry representation, Geophysics, 74 (2009), I23–I35. https://doi.org/10.1190/1.3110042
|
[88]
|
Y. Tian, X. Ke, Y. Wang, DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data, J. Geophys. Eng., 15 (2018), 354–365. https://doi.org/10.1088/1742-2140/aa8caf doi: 10.1088/1742-2140/aa8caf
|
[89]
|
P. Zahorec, R. Pašteka, J. Papčo, R. Putiška, A. Mojzeš, D. Kušnirák, et al., Mapping hazardous cavities over collapsed coal mines: case study experiences using the microgravity method, Near Surface Geophys., 19 (2021), 353–364. https://doi.org/10.1002/nsg.12139
|
[90]
|
D. Zidarov, Inverse gravimetric problem in geoprospecting and geodesy, Elsevier Science Publ. Co., 1990.
|