[1]
|
W. Hou, Z. Ning, L. Guo, X. Zhang, Temporal, functional and spatial big data computing framework for large-scale smart grid, IEEE Trans. Emerging Top. Comput., 7 (2019), 369–379. https://doi.org/10.1109/TETC.2017.2681113 doi: 10.1109/TETC.2017.2681113
|
[2]
|
B. V. Vishakh, M. K. Khwaja, Wearable device for hearing impaired individuals using ZigBee protocol, in 2015 9th Asia Modelling Symposium (AMS), (2015), 181–184. https://doi.org/10.1109/AMS.2015.37
|
[3]
|
A. I. Hussein, Wearable computing: Challenges of implementation and itsfuture, in 2015 12th Learning and Technology Conference, (2015), 14–19. https://doi.org/10.1109/LT.2015.7587224
|
[4]
|
L. M. Koonin, B. Hoots, C. A. Tsang, Z. Leroy, K. Farris, B. T. Jolly, et al., Trends in the use of telehealth during the emergence of the COVID-19 pandemic-United States, January–March 2020, Morb. Mortal. Wkly. Rep., 69 (2020), 1595–1599. https://doi.org/10.15585%2Fmmwr.mm6943a3
|
[5]
|
Y. Mehmood, F. Ahmad, I. Yaqoob, A. Adnane, M. Imran, S. Guizani, Internet-of-things-based smart cities: Recent advances and challenges, IEEE Commun. Mag., 55 (2017), 16–24. https://doi.org/10.1109/MCOM.2017.1600514 doi: 10.1109/MCOM.2017.1600514
|
[6]
|
O. AlShorman, B. AlShorman, M. Al-khassaweneh, F. Alkahtani, A review of internet of medical things (iomt)-based remote health monitoring through wearable sensors: a case study for diabetic patients, Indones. J. Electr. Eng. Comput. Sci., 20 (2020), 414–422. https://doi.org/10.11591/IJEECS.V20.I1.PP414-422 doi: 10.11591/IJEECS.V20.I1.PP414-422
|
[7]
|
M. A. U. Khalid, S. H. Chang, Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: A review, Compos. Struct., 284 (2022), 115214. https://doi.org/10.1016/j.compstruct.2022.115214 doi: 10.1016/j.compstruct.2022.115214
|
[8]
|
F. J. Tovar-Lopez, Recent progress in micro-and nanotechnology-enabled sensors for biomedical and environmental challenges, Sensors, 23 (2023), 5406. https://doi.org/10.3390/s23125406 doi: 10.3390/s23125406
|
[9]
|
F. Ju, Y. Wang, B. Yin, M. Zhao, Y. Zhang, Y. Gong, et al., Microfluidic wearable devices for sports applications, Micromachines, 14 (2023), 1792. https://doi.org/10.3390/mi14091792 doi: 10.3390/mi14091792
|
[10]
|
W. Wang, Fusion application of cloud computing technology in the field of artificial intelligence, in 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture, (2021), 289–292. https://doi.org/10.1145/3495018.3495067
|
[11]
|
K. Ahmed, M. Gregory, Integrating wireless sensor networks with cloud computing, in 2011 Seventh International Conference on Mobile Ad-hoc and Sensor Networks, (2011), 364–366. https://doi.org/10.1109/MSN.2011.86
|
[12]
|
M. Kumar, An incorporation of artificial intelligence capabilities in cloud computing, Int. J. Eng. Comput. Sci., 5 (2016), 19070–19073. https://doi.org/10.18535/ijecs/v5i11.63 doi: 10.18535/ijecs/v5i11.63
|
[13]
|
S. Razdan, S. Sharma, Internet of medical things (IoMT): Overview, emerging technologies, and case studies, IETE Tech. Rev., 39 (2022), 775-788. https://doi.org/10.1080/02564602.2021.1927863 doi: 10.1080/02564602.2021.1927863
|
[14]
|
X. Jin, B. W. Wah, X. Cheng, Y. Wang, Significance and challenges of big data research, Big Data Res., 2 (2015), 59–64. https://doi.org/10.1016/j.bdr.2015.01.006 doi: 10.1016/j.bdr.2015.01.006
|
[15]
|
A. Katal, M. Wazid, R. H. Goudar, Big data: issues, challenges, tools and good practices, in 2013 Sixth International Conference on Contemporary Computing (IC3), (2013), 404–409. https://doi.org/10.1109/IC3.2013.6612229
|
[16]
|
W. Hu, Big Data Management, Technologies, and Applications, IGI Global, Pennsylvania, 2013.
|
[17]
|
N. Shakhovska, N. Boyko, Y. Zasoba, E. Benova, Big data processing technologies in distributed information systems, Proc. Comput. Sci., 160 (2019), 561–566. https://doi.org/10.1016/j.procs.2019.11.047 doi: 10.1016/j.procs.2019.11.047
|
[18]
|
V. Storey, I. Song, Big data technologies and management: What conceptual modeling can do, Data Knowl. Eng., 108 (2017), 50–67. https://doi.org/10.1016/j.datak.2017.01.001 doi: 10.1016/j.datak.2017.01.001
|
[19]
|
C. Yang, Q. Huang, Z. Li, K. Liu, F. Hu, Big data and cloud computing: Innovation opportunities and challenges, Int. J. Digital Earth, 10 (2017), 13–53. https://doi.org/10.1080/17538947.2016.1239771 doi: 10.1080/17538947.2016.1239771
|
[20]
|
M. Hajibaba, S. Gorgin, A review on modern distributed computing paradigms: Cloud computing, jungle computing and fog computing, J. Comput. Inf. Technol., 22 (2014), 69–84. https://doi.org/10.2498/cit.1002381 doi: 10.2498/cit.1002381
|
[21]
|
S. Goyal, Public vs private vs hybrid vs community-cloud computing: a critical review, Int. J. Comput. Network Inf. Secur., 6 (2014), 20–29. https://doi.org/10.5815/ijcnis.2014.03.03 doi: 10.5815/ijcnis.2014.03.03
|
[22]
|
X. He, G. Qi, Z. Zhu, Y. Li, B. Cong, L. Bai, Medical image segmentation method based on multi-feature interaction and fusion over cloud computing, Simul. Modell. Pract. Theory, 126 (2023), 102769. https://doi.org/10.1016/j.simpat.2023.102769 doi: 10.1016/j.simpat.2023.102769
|
[23]
|
M. N. O. Sadiku, S. M. Musa, O. D. Momoh, Cloud computing: opportunities and challenges, IEEE Potentials, 33 (2014), 34–36. https://doi.org/10.1109/MPOT.2013.2279684 doi: 10.1109/MPOT.2013.2279684
|
[24]
|
S. Zhang, H. Yan, X. Chen, Research on key technologies of cloud computing, Phys. Proc., 33 (2012), 1791–1797. https://doi.org/10.1016/j.phpro.2012.05.286 doi: 10.1016/j.phpro.2012.05.286
|
[25]
|
P. Kalagiakos, P. Karampelas, Cloud computing learning, in 2011 5th International Conference on Application of Information and Communication Technologies (AICT), (2011), 1–4. https://doi.org/10.1109/ICAICT.2011.6110925
|
[26]
|
T. Hu, H. Chen, L. Huang, X. Zhu, A survey of mass data mining based on cloud-computing, Anti-counterfeiting Secur. Identif., (2012), 1–4. https://doi.org/10.1109/ICASID.2012.6325353 doi: 10.1109/ICASID.2012.6325353
|
[27]
|
H. Nashaat, N. Ashry, R. Rizk, Smart elastic scheduling algorithm for virtual machine migration in cloud computing, J. Supercomput., 75 (2019), 3842–3865. https://doi.org/10.1007/s11227-019-02748-2 doi: 10.1007/s11227-019-02748-2
|
[28]
|
Statista, Amazon Maintains Lead in the Cloud Market, 2023. Available from: https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/.
|
[29]
|
R. Hammad, M. Barhoush, B. H. Abed-Alguni, A semantic-based approach for managing healthcare big data: A survey, J. Healthcare Eng., 2020 (2020), 8865808. https://doi.org/10.1155/2020/8865808 doi: 10.1155/2020/8865808
|
[30]
|
R. Lin, Z. Ye, H. Wang, B. Wu, Chronic diseases and health monitoring big data: A survey, IEEE Rev. Biomed. Eng., 11 (2018), 275–288. https://doi.org/10.1109/RBME.2018.2829704 doi: 10.1109/RBME.2018.2829704
|
[31]
|
L. Sun, X. Jiang, H. Ren, Y. Guo, Edge-cloud computing and artificial intelligence in internet of medical things: architecture, technology and application, IEEE Access, 8 (2020), 101079–101092. https://doi.org/10.1109/ACCESS.2020.2997831 doi: 10.1109/ACCESS.2020.2997831
|
[32]
|
H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ramakrishnan, et al., Big data and its technical challenges, Commun. ACM, 57 (2014), 86–94. https://doi.org/10.1145/2611567 doi: 10.1145/2611567
|
[33]
|
C. H. Lee, H. Yoon, Medical big data: promise and challenges, Kidney Res. Clin. Pract., 36 (2017), 3–11. https://doi.org/10.23876/j.krcp.2017.36.1.3 doi: 10.23876/j.krcp.2017.36.1.3
|
[34]
|
P. Langkafel, Big Data in Medical Science and Healthcare Management: Diagnosis, Therapy, Side Effects, De Gruyter, Boston, 2016. https://doi.org/10.1515/9783110445749
|
[35]
|
X. Xu, C. Li, X. Lan, X. Fan, X. Lv, X. Ye, et al., A lightweight and robust framework for circulating genetically abnormal cells (CACs) identification using 4-color fluorescence in situ hybridization (FISH) image and deep refined learning, J. Digit. Imaging, 36 (2023), 1687–1700. https://doi.org/10.1007/s10278-023-00843-8 doi: 10.1007/s10278-023-00843-8
|
[36]
|
X. Xu, C. Li, X. Fan, X. Lan, X. Lu, X. Ye, et al., Attention mask r-cnn with edge refinement algorithm for identifying circulating genetically abnormal cells, Cytom. Part A, 103 (2023), 227–239. https://doi.org/10.1002/cyto.a.24682 doi: 10.1002/cyto.a.24682
|
[37]
|
W. Wang, J. Chen, J. Wang, J. Chen, Z. Gong, Geography-aware inductive matrix completion for personalized point of interest recommendation in smart cities, IEEE Internet Things J., 7 (2020), 4361–4370. https://doi.org/10.1109/JIOT.2019.2950418 doi: 10.1109/JIOT.2019.2950418
|
[38]
|
W. Wang, J. Chen, J. Wang, J. Chen, J. Liu, Z. Gong, Trust-enhanced collaborative filtering for personalized point of interests recommendation, IEEE Trans. Ind. Inf., 16 (2020), 6124–6132. https://doi.org/10.1109/TII.2019.2958696 doi: 10.1109/TII.2019.2958696
|
[39]
|
W. Wang, N. Kumar, J. Chen, Z. Gong, X. Kong, W. Wei, et al., Realizing the potential of the internet of things for smart tourism with 5G and AI, IEEE Network, 34 (2020), 295–301. https://doi.org/10.1109/MNET.011.2000250 doi: 10.1109/MNET.011.2000250
|
[40]
|
W. Wang, X. Yu, B. Fang, Y. Zhao, Y. Chen, W. Wei, et al., Cross-modality LGE-CMR segmentation using image-to-image translation based data augmentation, IEEE/ACM Trans. Comput. Biol. Bioinf., 20 (2023), 2367–2375. https://doi.org/10.1109/TCBB.2022.3140306 doi: 10.1109/TCBB.2022.3140306
|
[41]
|
J. Chen, Z. Guo, X. Xu, L. Zhang, Y. Teng, Y. Chen, et al., A robust deep learning framework based on spectrograms for heart sound classification, IEEE/ACM Trans. Comput. Biol. Bioinf., (2023), 1–12. https://doi.org/10.1109/TCBB.2023.3247433 doi: 10.1109/TCBB.2023.3247433
|
[42]
|
P. Manickam, S. A. Mariappan, S. M. Murugesan, S. Hansda, A. Kaushik, R. Shinde, et al., Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare, Biosensors, 12 (2022), 562. https://doi.org/10.3390/bios12080562 doi: 10.3390/bios12080562
|
[43]
|
Z. Ning, P. Dong, X. Wang, J. J. Rodrigues, F. Xia, Deep reinforcement learning for vehicular edge computing: An intelligent offloading system, ACM Trans. Intell. Syst. Technol., 10 (2019), 1–24. https://doi.org/10.1145/3317572 doi: 10.1145/3317572
|
[44]
|
Z. Ning, P. Dong, X. Wang, M. S. Obaidat, X. Hu, L. Guo, et al., When deep reinforcement learning meets 5G-enabled vehicular networks: A distributed offloading framework for traffic big data, IEEE Trans. Ind. Inf., 16 (2020), 1352–1361. https://doi.org/10.1109/TII.2019.2937079 doi: 10.1109/TII.2019.2937079
|
[45]
|
M. N. Hossen, V. Panneerselvam, D. Koundal, K. Ahmed, F. M. Bui, S. M. Ibrahim, Federated machine learning for detection of skin diseases and enhancement of internet of medical things (IoMT) security, IEEE J. Biomed. Health. Inf., 27 (2022), 835–841. https://doi.org/10.1109/JBHI.2022.3149288 doi: 10.1109/JBHI.2022.3149288
|
[46]
|
A. Cuevas-Chávez, Y. Hernández, J. Ortiz-Hernandez, E. Sánchez-Jiménez, G. Ochoa-Ruiz, J. Pérez, et al., A systematic review of machine learning and IoT applied to the prediction and monitoring of cardiovascular diseases, Healthcare, 11 (2023), 2240. https://doi.org/10.3390/healthcare11162240 doi: 10.3390/healthcare11162240
|
[47]
|
A. E. Hassanien, A. Khamparia, D. Gupta, K. Shankar, A. Slowik, Cognitive Internet of Medical Things for Smart Healthcare, Springer, Cham, 2021. https://doi.org/10.1007/978-3-030-55833-8_9
|
[48]
|
A. L. N. Al-Hajjar, A. K. M. Al-Qurabat, An overview of machine learning methods in enabling iomt-based epileptic seizure detection, J. Supercomput., 79 (2023), 16017–16064. https://doi.org/10.1007/s11227-023-05299-9 doi: 10.1007/s11227-023-05299-9
|
[49]
|
W. Zhao, Y. Wang, X. Sun, S. Zhang, X. Li, IoMT-based seizure detection system leveraging edge machine learning, IEEE Sens. J., 23 (2023), 21474–21483. https://doi.org/10.1109/JSEN.2023.3300743 doi: 10.1109/JSEN.2023.3300743
|
[50]
|
T. M. Ghazal, S. Abbas, M. Ahmad, S. Aftab, An IoMT based ensemble classification framework to predict treatment response in hepatitis C patients, in 2022 International Conference on Business Analytics for Technology and Security (ICBATS), (2022), 1–4. https://doi.org/10.1109/ICBATS54253.2022.9759059
|
[51]
|
A. S. Rajawat, S. Goyal, P. Bedi, T. Jan, M. Whaiduzzaman, M. Prasad, Quantum machine learning for security assessment in the internet of medical things (IoMT), Future Internet, 15 (2023), 271. https://doi.org/10.3390/fi15080271 doi: 10.3390/fi15080271
|
[52]
|
A. Si-Ahmed, M. A. Al-Garadi, N. Boustia, Survey of machine learning based intrusion detection methods for internet of medical things, Appl. Soft Comput., 140 (2023), 110227. https://doi.org/10.1016/j.asoc.2023.110227 doi: 10.1016/j.asoc.2023.110227
|
[53]
|
V. Chang, J. Bailey, Q. A. Xu, Z. Sun, Pima indians diabetes mellitus classification based on machine learning (ML) algorithms, Neural Comput. Appl., 35 (2023), 16157–16173. https://doi.org/10.1007/s00521-022-07049-z doi: 10.1007/s00521-022-07049-z
|
[54]
|
C. Iwendi, S. Khan, J. H. Anajemba, A. K. Bashir, F. Noor, Realizing an efficient iomt-assisted patient diet recommendation system through machine learning model, IEEE Access, 8 (2020), 28462–28474. https://doi.org/10.1109/ACCESS.2020.2968537 doi: 10.1109/ACCESS.2020.2968537
|
[55]
|
T. Mishra, M. Wang, A. A. Metwally, G. K. Bogu, A. W. Brooks, A. Bahmani, et al., Pre-symptomatic detection of COVID-19 from smartwatch data, Nat. Biomed. Eng., 4 (2020), 1208–1220. https://doi.org/10.1038/s41551-020-00640-6 doi: 10.1038/s41551-020-00640-6
|
[56]
|
F. Li, M. Valero, H. Shahriar, R. A. Khan, S. I. Ahamed, Wi-COVID: A COVID-19 symptom detection and patient monitoring framework using WiFi, Smart Health, 19 (2021), 100147. https://doi.org/10.1016/j.smhl.2020.100147 doi: 10.1016/j.smhl.2020.100147
|
[57]
|
M. Otoom, N. Otoum, M. A. Alzubaidi, Y. Etoom, R. Banihani, An IoT-based framework for early identification and monitoring of COVID-19 cases, Biomed. Signal Process. Control, 62 (2020), 102149. https://doi.org/10.1016/j.bspc.2020.102149 doi: 10.1016/j.bspc.2020.102149
|
[58]
|
S. Venkatasubramanian, Ambulatory monitoring of maternal and fetal using deep convolution generative adversarial network for smart health care IoT system, Int. J. Adv. Comput. Sci. Appl., 13 (2022), 214–222. https://doi.org/10.14569/IJACSA.2022.0130126 doi: 10.14569/IJACSA.2022.0130126
|
[59]
|
P. K. Vemuri, A. Kunta, R. Challagulla, S. Bodiga, S. Veeravilli, V. L. Bodiga, et al., Artificial intelligence and internet of medical things based health-care system for real-time maternal stress-strategies to reduce maternal mortality rate, Drug Invent. Today, 13 (2020), 1126–1129. http://dx.doi.org/10.6084/m9.figshare.13213631 doi: 10.6084/m9.figshare.13213631
|
[60]
|
X. Li, Y. Lu, X. Fu, Y. Qi, Building the Internet of Things platform for smart maternal healthcare services with wearable devices and cloud computing, Future Gener. Comput. Syst., 118 (2021), 282–296. https://doi.org/10.1016/j.future.2021.01.016 doi: 10.1016/j.future.2021.01.016
|
[61]
|
Y. Hao, R. Foster, Wireless body sensor networks for health-monitoring applications, Physiol. Meas., 29 (2008), 27. https://doi.org/10.1088/0967-3334/29/11/R01 doi: 10.1088/0967-3334/29/11/R01
|
[62]
|
S. Li, B. Zhang, P. Fei, P. M. Shakeel, R. D. J. Samuel, WITHDRAWN: Computational efficient wearable sensor network health monitoring system for sports athletics using IoT, Aggress Violent Behav., (2020), 101541. https://doi.org/10.1016/j.avb.2020.101541 doi: 10.1016/j.avb.2020.101541
|
[63]
|
X. Shi, Z. Huang, Wearable device monitoring exercise energy consumption based on Internet of things, Complexity, 2021 (2021), 8836723. https://doi.org/10.1155/2021/8836723 doi: 10.1155/2021/8836723
|
[64]
|
J. Chen, S. Sun, L. Zhang, B. Yang, W. Wang, Compressed sensing framework for heart sound acquisition in internet of medical things, IEEE Trans. Ind. Inf., 18 (2022), 2000–2009. https://doi.org/10.1109/TII.2021.3088465 doi: 10.1109/TII.2021.3088465
|
[65]
|
Y. Yao, H. Wu, L. Shu, C. Lu, Developing a multifunctional heating pad based on fuzzy-edge computations and IoMT approach, J. Internet Technol., 23 (2022), 1519–1525. https://doi.org/10.53106/160792642022122307007 doi: 10.53106/160792642022122307007
|
[66]
|
A. N. Trunov, I. M. Dronyuk, V. S. Martynenko, S. I. Maltsev, I. V. Skopenko, M. Y. Skoroid, Formation of a recurrent neural network for the description of IoMT processes in restorative medicine for post-stroke patients, in AI Models for Blockchain-Based Intelligent Networks in IoT Systems, 6 (2023), 185–202. https://doi.org/10.1007/978-3-031-31952-5_9
|
[67]
|
S. Shaji, R. Sankaran, R. Guntha, R. K. Pathinarupothi, A real-time IoMT enabled remote cardiac rehabilitation framework, in 2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS), (2023), 153–158. https://doi.org/10.1109/COMSNETS56262.2023.10041272
|
[68]
|
A. Buzachis, G. M. Bernava, M. Busa, G. Pioggia, M. Villari, Towards the basic principles of osmotic computing: a closed-loop gamified cognitive rehabilitation flow model, in 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC), (2018), 446–452. https://doi.org/10.1109/CIC.2018.00067
|
[69]
|
N. Yadav, F. Keshtkar, C. Schweikert, G. Crocetti, Cradle: An IoMT psychophysiological analytics platform, in Proceedings of the Workshop on Human-Habitat for Health (H3): Human-Habitat Multimodal Interaction for Promoting Health and Well-Being in the Internet of Things Era, (2018), 1–7. https://doi.org/10.1145/3279963.3279970
|
[70]
|
N. Yadav, Y. Jin, L. J. Stevano, AR-IoMT mental health rehabilitation applications for smart cities, in 2019 IEEE 16th International Conference on Smart Cities: Improving Quality of Life Using ICT & IoT and AI (HONET-ICT), (2019), 166–170. https://doi.org/10.1109/HONET.2019.8907997
|
[71]
|
J. Chen, L. Chen, Y. Zhou, Cryptanalysis of a dna-based image encryption scheme, Inf. Sci., 520 (2020), 130–141. https://doi.org/10.1016/j.ins.2020.02.024 doi: 10.1016/j.ins.2020.02.024
|
[72]
|
J. Chen, Z. Zhu, L. Zhang, Y. Zhang, B. Yang, Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption, Signal Process., 142 (2018), 340–353. https://doi.org/10.1016/j.sigpro.2017.07.034 doi: 10.1016/j.sigpro.2017.07.034
|
[73]
|
L. Liu, B. Xu, Research on information security technology based on blockchain, in 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), (2018), 380–384. https://doi.org/10.1109/ICCCBDA.2018.8386546
|
[74]
|
C. Zhang, C. Wu, X. Wang, Overview of blockchain consensus mechanism, in Proceedings of the 2020 2nd International Conference on Big Data Engineering, (2020), 7–12. https://doi.org/10.1145/3404512.3404522
|
[75]
|
S. Kaur, S. Chaturvedi, A. Sharma, J. Kar, A research survey on applications of consensus protocols in blockchain, Secur. Commun. Networks, 2021 (2021), 6693731. https://doi.org/10.1155/2021/6693731 doi: 10.1155/2021/6693731
|
[76]
|
P. Chinnasamy, P. Deepalakshmi, V. Praveena, K. Rajakumari, P. Hamsagayathri, Blockchain technology: A step towards sustainable development, Int. J. Innovative Technol. Explor. Eng., 9 (2019), 1034–1040. https://doi.org/10.35940/ijitee.b1109.1292s219 doi: 10.35940/ijitee.b1109.1292s219
|
[77]
|
Y. Cui, B. Pan, Y. Sun, A survey of privacy-preserving techniques for blockchain, in International Conference on Artificial Intelligence and Security, 11635 (2019), 225–234. https://doi.org/10.1007/978-3-030-24268-8_21
|
[78]
|
A. Ghosh, S. Gupta, A. Dua, N. Kumar, Security of cryptocurrencies in blockchain technology: State-of-art, challenges and future prospects, J. Network Comput. Appl., 163 (2020), 102635. https://doi.org/10.1016/j.jnca.2020.102635 doi: 10.1016/j.jnca.2020.102635
|
[79]
|
B. A. Tama, B. J. Kweka, Y. Park, K. Rhee, A critical review of blockchain and its current applications, in 2017 International Conference on Electrical Engineering and Computer Science (ICECOS), (2017), 109–113. https://doi.org/10.1109/ICECOS.2017.8167115
|
[80]
|
P. Ratta, A. Kaur, S. Sharma, M. Shabaz, G. Dhiman, Application of blockchain and internet of things in healthcare and medical sector: Applications, challenges, and future perspectives, J. Food Qual., 2021 (2021), 7608296. https://doi.org/10.1155/2021/7608296 doi: 10.1155/2021/7608296
|
[81]
|
I. Yaqoob, K. Salah, R. Jayaraman, Y. Al-Hammadi, Blockchain for healthcare data management: Opportunities, challenges, and future recommendations, Neural Comput. Appl., 34 (2022), 11475–11490. https://doi.org/10.1007/s00521-020-05519-w doi: 10.1007/s00521-020-05519-w
|
[82]
|
Z. Zhang, L. Zhao, A design of digital rights management mechanism based on blockchain technology, in International Conference on Blockchain, 10974 (2018), 32–46. https://doi.org/10.1007/978-3-319-94478-4_3
|
[83]
|
W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, A. Ahmed, Edge computing: A survey, Future Gener. Comput. Syst., 97 (2019), 219–235. https://doi.org/10.1016/j.future.2019.02.050 doi: 10.1016/j.future.2019.02.050
|
[84]
|
W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges, IEEE Internet Things J., 3 (2016), 637–646. https://doi.org/10.1109/JIOT.2016.2579198 doi: 10.1109/JIOT.2016.2579198
|
[85]
|
S. Wang, Edge computing: Applications, state-of-the-art and challenges, Adv. Networks, 7 (2019), 8–15. https://doi.org/10.11648/j.net.20190701.12 doi: 10.11648/j.net.20190701.12
|
[86]
|
W. Shi, S. Dustdar, The promise of edge computing, Computer, 49 (2016), 78–81. https://doi.org/10.1109/MC.2016.145 doi: 10.1109/MC.2016.145
|
[87]
|
A. A. Abdellatif, A. Mohamed, C. F. Chiasserini, M. Tlili, A. Erbad, Edge computing for smart health: Context-aware approaches, opportunities, and challenges, IEEE Networks, 33 (2019), 196–203. https://doi.org/10.1109/MNET.2019.1800083 doi: 10.1109/MNET.2019.1800083
|
[88]
|
P. P. Ray, D. Dash, D. De, Edge computing for internet of things: A survey, e-healthcare case study and future direction, J. Network Comput. Appl., 140 (2019), 1–22. https://doi.org/10.1016/j.jnca.2019.05.005 doi: 10.1016/j.jnca.2019.05.005
|
[89]
|
S. M. Kumar, D. Majumder, Healthcare solution based on machine learning applications in IoT and edge computing, Int. J. Pure Appl. Math., 119 (2018), 1473–1484.
|
[90]
|
K. Subramanian, Digital twin for drug discovery and development-The virtual liver, J. Indian Inst. Sci., 100 (2020), 653–662. https://doi.org/10.1007/s41745-020-00185-2 doi: 10.1007/s41745-020-00185-2
|
[91]
|
B. Björnsson, C. Borrebaeck, N. Elander, T. Gasslander, D. R. Gawel, M. Gustafsson, et al., Digital twins to personalize medicine, Genome Med., 12 (2020). https://doi.org/10.1186/s13073-019-0701-3 doi: 10.1186/s13073-019-0701-3
|
[92]
|
Y. Tai, L. Zhang, Q. Li, C. Zhu, V. Chang, J. J. P. C. Rodrigues, et al., Digital-twin-enabled IoMT system for surgical simulation using rAC-GAN, IEEE Internet Things J., 9 (2022), 20918–20931. https://doi.org/10.1109/JIOT.2022.3176300 doi: 10.1109/JIOT.2022.3176300
|
[93]
|
Q. Qu, H. Sun, Y. Chen, Light-weight real-time senior safety monitoring using digital twins, in Proceedings of the 8th ACM/IEEE Conference on Internet of Things Design and Implementation, (2023), 450–451. https://doi.org/10.1145/3576842.3589163
|
[94]
|
O. Moztarzadeh, M. Jamshidi, S. Sargolzaei, A. Jamshidi, N. Baghalipour, M. M. Moghani, et al., Metaverse and healthcare: Machine learning-enabled digital twins of cancer, Bioengineering, 10 (2023), 455. https://doi.org/10.3390/bioengineering10040455 doi: 10.3390/bioengineering10040455
|
[95]
|
Z. Qu, Y. Li, B. Liu, D. Gupta, P. Tiwari, Dtqfl: A digital twin-assisted quantum federated learning algorithm for intelligent diagnosis in 5G mobile network, IEEE J. Biomed. Health Inf., (2023), 1–10. https://doi.org/10.1109/JBHI.2023.3303401 doi: 10.1109/JBHI.2023.3303401
|
[96]
|
Y. Liu, L. Zhang, Y. Yang, L. Zhou, L. Ren, F. Wang, et al., A novel cloud-based framework for the elderly healthcare services using digital twin, IEEE Access, 7 (2019), 49088–49101. https://doi.org/10.1109/ACCESS.2019.2909828 doi: 10.1109/ACCESS.2019.2909828
|
[97]
|
Z. Lou, L. Wang, K. Jiang, Z. Wei, G. Shen, Reviews of wearable healthcare systems: Materials, devices and system integration, Mater. Sci. Eng. R Rep., 140 (2020), 100523. https://doi.org/10.1016/j.mser.2019.100523 doi: 10.1016/j.mser.2019.100523
|
[98]
|
G. Medic, M. Wille, M. E. Hemels, Short-and long-term health consequences of sleep disruption, Nat. Sci. Sleep, 9 (2017), 151–161. https://doi.org/10.2147/NSS.S134864 doi: 10.2147/NSS.S134864
|
[99]
|
V. P. Tran, A. A. Al-Jumaily, S. M. S. Islam, Doppler radar-based non-contact health monitoring for obstructive sleep apnea diagnosis: A comprehensive review, Big Data Cognit. Comput., 3 (2019), 3. https://doi.org/10.3390/bdcc3010003 doi: 10.3390/bdcc3010003
|
[100]
|
L. Ismail, R. Buyya, Artificial intelligence applications and self-learning 6G networks for smart cities digital ecosystems: Taxonomy, challenges, and future directions, Sensors, 22 (2022), 5750. https://doi.org/10.3390/s22155750 doi: 10.3390/s22155750
|
[101]
|
X. Lin, J. Wu, A. K. Bashir, W. Yang, A. Singh, A. A. AlZubi, Fairhealth: Long-term proportional fairness-driven 5G edge healthcare in internet of medical things, IEEE Trans. Ind. Inf., 18 (2022), 8905–8915. https://doi.org/10.1109/TII.2022.3183000 doi: 10.1109/TII.2022.3183000
|
[102]
|
L. Kouhalvandi, L. Matekovits, I. Peter, Magic of 5G technology and optimization methods applied to biomedical devices: A survey, Appl. Sci., 12 (2022), 7096. https://doi.org/10.3390/app12147096 doi: 10.3390/app12147096
|
[103]
|
M. Malik, S. K. Garg, Towards 6G: Network evolution beyond 5G & indian scenario, in 2022 2nd International Conference on Innovative Practices in Technology and Management (ICIPTM), (2022), 123–127. https://doi.org/10.1109/ICIPTM54933.2022.9753847
|
[104]
|
S. T. Ahmed, V. V. Kumar, K. K. Singh, A. Singh, V. Muthukumaran, D. Gupta, 6G enabled federated learning for secure IoMT resource recommendation and propagation analysis, Comput. Electr. Eng., 102 (2022), 108210. https://doi.org/10.1016/j.compeleceng.2022.108210 doi: 10.1016/j.compeleceng.2022.108210
|
[105]
|
P. N. Srinivasu, M. F. Ijaz, J. Shafi, M.Woźniak, R. Sujatha, 6G driven fast computational networking framework for healthcare applications, IEEE Access, 10 (2022), 94235–94248. https://doi.org/10.1109/ACCESS.2022.3203061 doi: 10.1109/ACCESS.2022.3203061
|
[106]
|
A. Koren, R. Prasad, IoT health data in electronic health records (EHR): Security and privacy issues in era of 6G, J. ICT Stand., 10 (2022), 63–84. https://doi.org/10.13052/jicts2245-800X.1014 doi: 10.13052/jicts2245-800X.1014
|
[107]
|
I. U. Din, M. Guizani, S. Hassan, B. Kim, M. K. Khan, M. Atiquzzaman, et al., The Internet of Things: A review of enabled technologies and future challenges, IEEE Access, 7 (2018), 7606–7640. https://doi.org/10.1109/ACCESS.2018.2886601 doi: 10.1109/ACCESS.2018.2886601
|
[108]
|
S. Nasiri, F. Sadoughi, M. H. Tadayon, A. Dehnad, Security requirements of internet of things-based healthcare system: A survey study, Acta Inf. Med., 27 (2019), 253–258. https://doi.org/10.5455/aim.2019.27.253-258 doi: 10.5455/aim.2019.27.253-258
|
[109]
|
J. Granjal, E. Monteiro, J. S. Silva, Security for the internet of things: A survey of existing protocols and open research issues, IEEE Commun. Surv. Tutorials, 17 (2015), 1294–1312. https://doi.org/10.1109/COMST.2015.2388550 doi: 10.1109/COMST.2015.2388550
|
[110]
|
S. Alasmari, M. Anwar, Security & privacy challenges in IoT-based health cloud, in 2016 International Conference on Computational Science and Computational Intelligence (CSCI), (2016), 198–201. https://doi.org/10.1109/CSCI.2016.0044
|
[111]
|
S. Agrawal, K. Sharma, Software defined millimeter wave 5th generation communications system, Appl. Theory Comput. Technol., 2 (2017), 46–56.
|
[112]
|
T. Lin, C. Hsu, T. Le, C. Lu, B. Huang, A smartcard-based user-controlled single sign-on for privacy preservation in 5G-IoT telemedicine systems, Sensors, 21 (2021), 2880. https://doi.org/10.3390/s21082880 doi: 10.3390/s21082880
|
[113]
|
S. H. Alsamhi, B. Lee, Blockchain-empowered multi-robot collaboration to fight COVID-19 and future pandemics, IEEE Access, 9 (2020), 44173–44197. https://doi.org/10.1109/ACCESS.2020.3032450 doi: 10.1109/ACCESS.2020.3032450
|
[114]
|
T. Zhang, J. Zhao, L. An, D. Liu, Energy efficiency of base station deployment in ultra dense HetNets: A stochastic geometry analysis, IEEE Wireless Commun. Lett., 5 (2016), 184–187. https://doi.org/10.1109/LWC.2016.2516010 doi: 10.1109/LWC.2016.2516010
|
[115]
|
A. P. C. Da Silva, M. Meo, M. A. Marsan, Energy-performance trade-off in dense WLANs: A queuing study, Comput. Networks, 56 (2012), 2522–2537. https://doi.org/10.1016/j.comnet.2012.03.017 doi: 10.1016/j.comnet.2012.03.017
|
[116]
|
P. K. Sadhu, V. P. Yanambaka, A. Abdelgawad, Physical unclonable function and machine learning based group authentication and data masking for in-hospital segments, Electronics, 11 (2022), 4155. https://doi.org/10.3390/electronics11244155 doi: 10.3390/electronics11244155
|
[117]
|
P. K. Sadhu, A. Baul, V. P. Yanambaka, A. Abdelgawad, Machine learning and puf based authentication framework for internet of medical things, in 2022 International Conference on Microelectronics (ICM), (2022), 160–163. https://doi.org/10.1109/ICM56065.2022.10005380
|
[118]
|
A. Darwish, A. E. Hassanien, M. Elhoseny, A. K. Sangaiah, K. Muhammad, The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems, J. Ambient Intell. Human. Comput., 10 (2019), 4151–4166. https://doi.org/10.1007/s12652-017-0659-1 doi: 10.1007/s12652-017-0659-1
|