Loading [MathJax]/extensions/TeX/boldsymbol.js
Research article

The impact of digital technology on enterprise green innovation: quality or quantity?

  • Received: 21 May 2024 Revised: 18 July 2024 Accepted: 14 August 2024 Published: 28 August 2024
  • JEL Codes: C1, C33, Q56

  • Digital technology promotes the dual transformation of enterprise digitization and greenization, thereby promoting the synergistic efficiency between the digital economy and the green economy. This paper collected financial data from 2010 to 2021 from Chinese listed companies on the Shanghai and Shenzhen stock exchanges. Through an in-depth semantic analysis of textual data, the study constructed an index to measure the level of enterprise digitization. Utilizing panel data models, the paper explored the impact of digital technology on enterprise green innovation and its mechanisms from the perspectives of quality and quantity. The research findings are as follows: (1) Digital technology significantly enhances the capability of enterprises for green innovation, with an emphasis on quality rather than quantity; (2) digital technology effectively alleviates financing constraints and information constraints, thereby enhancing the level of enterprise green innovation, but the former's effect is limited to small and medium-sized enterprises; (3) the "quality over quantity" effect of digital technology on enterprise green innovation is more pronounced in state-owned enterprises, non-heavy polluting industries, and enterprises located in regions with moderate to low levels of economic development.

    Citation: Xinyu Fu, Yanting Xu. The impact of digital technology on enterprise green innovation: quality or quantity?[J]. Green Finance, 2024, 6(3): 484-517. doi: 10.3934/GF.2024019

    Related Papers:

    [1] Leilei Wei, Xiaojing Wei, Bo Tang . Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066
    [2] E. A. Abdel-Rehim . The time evolution of the large exponential and power population growth and their relation to the discrete linear birth-death process. Electronic Research Archive, 2022, 30(7): 2487-2509. doi: 10.3934/era.2022127
    [3] Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195
    [4] Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao . A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28(4): 1439-1457. doi: 10.3934/era.2020076
    [5] Bidi Younes, Abderrahmane Beniani, Khaled Zennir, Zayd Hajjej, Hongwei Zhang . Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity. Electronic Research Archive, 2024, 32(9): 5268-5286. doi: 10.3934/era.2024243
    [6] Jun Pan, Yuelong Tang . Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365
    [7] Jun Liu, Yue Liu, Xiaoge Yu, Xiao Ye . An efficient numerical method based on QSC for multi-term variable-order time fractional mobile-immobile diffusion equation with Neumann boundary condition. Electronic Research Archive, 2025, 33(2): 642-666. doi: 10.3934/era.2025030
    [8] Jingyun Lv, Xiaoyan Lu . Convergence of finite element solution of stochastic Burgers equation. Electronic Research Archive, 2024, 32(3): 1663-1691. doi: 10.3934/era.2024076
    [9] Qingming Hao, Wei Chen, Zhigang Pan, Chao Zhu, Yanhua Wang . Steady-state bifurcation and regularity of nonlinear Burgers equation with mean value constraint. Electronic Research Archive, 2025, 33(5): 2972-2988. doi: 10.3934/era.2025130
    [10] Nelson Vieira, M. Manuela Rodrigues, Milton Ferreira . Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. Electronic Research Archive, 2022, 30(10): 3595-3631. doi: 10.3934/era.2022184
  • Digital technology promotes the dual transformation of enterprise digitization and greenization, thereby promoting the synergistic efficiency between the digital economy and the green economy. This paper collected financial data from 2010 to 2021 from Chinese listed companies on the Shanghai and Shenzhen stock exchanges. Through an in-depth semantic analysis of textual data, the study constructed an index to measure the level of enterprise digitization. Utilizing panel data models, the paper explored the impact of digital technology on enterprise green innovation and its mechanisms from the perspectives of quality and quantity. The research findings are as follows: (1) Digital technology significantly enhances the capability of enterprises for green innovation, with an emphasis on quality rather than quantity; (2) digital technology effectively alleviates financing constraints and information constraints, thereby enhancing the level of enterprise green innovation, but the former's effect is limited to small and medium-sized enterprises; (3) the "quality over quantity" effect of digital technology on enterprise green innovation is more pronounced in state-owned enterprises, non-heavy polluting industries, and enterprises located in regions with moderate to low levels of economic development.



    Fractional calculus (FC) theory was proposed by N. H. Abel and J. Liouville, and a description of their work is presented in [1]. By using FC, integer derivatives, and integrals can be generalized to real or variable derivatives and integrals. FC is studied since fractional differential equations (FDEs) are better suited to modeling natural physics processes and dynamic systems than integer differential equations. Furthermore, FDEs that incorporate memory effects are better suited to describing natural processes that have memory and hereditary properties. In other words, because fractional derivatives have memory effects, FDEs are more accurate in describing physical phenomena with memory or hereditary characteristics. There was a trend to consider FC to be an esoteric theory with no application until the last few years. Now, more and more researchers are investigating how it can be applied to economics, control system and finance. As a result, many fractional order differential operators were developed, such as Hadamard, Riemann-Liouville, Caputo, Riesz, Grünwald-Letnikov, and variable order differential operators. The researchers have devoted considerable effort to solving FDEs numerically so that they can be applied to a variety of problems [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]. Several numerical approaches have been proposed in the literature, including eigenvector expansion, the fractional differential transform technique [21], the homotopy analysis technique [22], the homotopy perturbation transform technique [23], the generalized block pulse operational matrix technique [24] and the predictor-corrector technique [25]. In addition, the use of Legendre wavelets to integrate and differentiate fractional order matrices has been suggested as a numerical method [26,27].

    In this paper, we study the numerical solution of the time-fractional Burger's equation (TFBE) [28] as follows:

    γU(x,t)tγ+U(x,t)U(x,t)xv2U(x,t)x2=f(x,t), (1)

    which is subject to the following boundary conditions (BCs):

    U(a,t)=l1(t),U(b,t)=l2(t),axb,t[0,tf], (2)

    and the following initial condition (IC):

    U(x,0)=g(x)andaxb, (3)

    in which 0<γ1 is a parameter representing the order of the fractional time, v denotes a viscosity parameter and g(x),l1(t)andl2(t) are given functions of their argument. The TFBE is a kind of sub-diffusion convection, which is widely adopted to describe many physical problems such as unidirectional propagation of weakly nonlinear acoustic waves, shock waves in flow systems, viscous media, compressible turbulence, electromagnetic waves and weak shock propagation [29,30,31]. In recent years, there has been some technique development in the study of Burger's equation: an implicit difference scheme and algorithm implementation [32], pointwise error analysis of the third-order backward differentiation formula (BDF3) [33], pointwise error estimates of a compact difference scheme [34], efficient (BDF3) finite-difference scheme [35], semi-analytical methods [36], composite spectral methods [37], least-squares methods [38], geometric analysis methods [39], error and stability estimate techniques [40].

    Definition 1. Suppose that m is the smallest integer exceeding γ; the Caputo time fractional derivative operator of order γ>0 can be defined as follows [41]:

    CDγ0,tu(x,t)={mu(x,t)tmγ=mN1Γ(mγ)t0(tω)mγ1mu(x,ω)ωmdω,m1<γ<m,mN, (4)

    where u(x,t) is the unknown function that is (m1) times continuously differentiable and Γ(.) denotes the usual gamma function. The finite-element method has been an important method for solving both ordinary and partial differential equation, therefore, in recent research, it has been applied to solve the TFBE. In what follows, we describe the solution process by using the finite-element scheme for solving the TFBE.

    To discretize the TFBE (1), first let us define the cubic B-spline base function. We partition the interval [a,b], which represents the solution domain of (1) into M uniformly spaced points xm such that a=x0<x1<<xM1<xM=b and h=(xm+1xm). Then, the cubic B-spline Cm(x),(m=1(1)(M+1), at the knots xm which form basis on the solution interval [a,b], is defined as follows [42]:

    Cm(x)=1h3{(xxm2)3,ifx[xm2,xm1],h3+3h2(xxm1)+3h(xxm1)23(xm+1x)3,ifx[xm1,xm],h3+3h2(xm+1x)+3h(xm+1x)23(xm+1x)3,ifx[xm,xm+1],(5)(xm+2x)3,ifx[xm+1,xm+2],o,otherwise. (5)

    where the set of cubic B-splines (C1(x),C0(x),,CM(x),CM+1(x)) is a basis for the functions defined over interval [a,b]. Thus, the numerical solution UM(x,t) to the analytic solution U(x,t) can be illustrated as

    UM(x,t)=M+1m=1σm(t)Cm(x), (6)

    where σm(t) are unknown time-dependent parameters to be determined from the initial, boundary and weighted residual conditions. Since each cubic B-spline covers four consecutive elements, each element [xm,xm+1] is also covered by four cubic B-splines. So, the nodal values Um and its first and second derivatives U'm, U"m can be respectively computed in terms of the element parameter σm(t), at the knot xm as follows:

    Um=σm1+4σm+σm+1,U'm=3h(σm1σm+1),U"m=6h2(σm12σm+σm+1), (7)

    and by means of the local coordinate transformation [43] as follows:

    hη=xxm,0η1. (8)

    A cubic B-spline shape function in terms of η over the element [xm,xm+1] is formulated as:

    Cm1=(1η)3,Cm1=1+3(1η)+3(1η)23(1η)3,Cm+1=1+3η+3η23η3,Cm+2=η3 (9)

    and the variation of UM(η,t) over the typical element [xm,xm+1] is represented as

    UM(x,t)=m+2j=m1σj(t)Cj(η), (10)

    in which B-splines Cm1(η),Cm(η),Cm+1(η), Cm+2(η) and σm1(t), σm(t),σm+1 and σm+2(t) are element shape functions and element parameters, respectively.

    Based on the Galerkin's method with weight function W(x)>0, we get the following weak formula of (1):

    baW(γUtγ+UUxv2Ux2)dx=baWf(x,t); (11)

    using transformation (8) and by apply partial integration we obtain:

    10(WγUtγ+λWUη+ΦWηUη)dη=ΦWUη10+baWƑ(η,t)dη, (12)

    where λ=1hÛ, Φ=vh2 and Û=U(η,t) which is considered to be a constant on an element to simplify the integral [43]; replace the weight function W by quadratic B-spline {B}_{\boldsymbol{m}}\left(\boldsymbol{x}\right), \mathrm{m} = -1\left(1\right)M , at the knots {x}_{m} , which forms a basis on the solution interval [a, b] , introduced as follows [44]:

    {B_m}\left( x \right) = \frac{1}{{{h^2}}}\left\{ {\begin{array}{*{20}{l}} {{{\left( {{x_{m + 2}} - x} \right)}^2} - 3{{\left( {{x_{m + 1}} - x} \right)}^2} + 3{{\left( {{x_m} - x} \right)}^2}, \;\;{\rm{if}}\;\;x \in \left[ {{x_{m - 1}}, {x_m}} \right], }\\ {{{\left( {{x_{m + 2}} - x} \right)}^2} - 3{{\left( {{x_{m + 1}} - x} \right)}^2}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;x \in \left[ {{x_m}, {x_{m + 1}}} \right], }\\ {{{({x_{m + 2}} - x)}^2}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{if}}\;x \in \left[ {{x_{m + 1}}, {x_{m + 2}}} \right], }\\ {\;\;\;\;0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{otherwise}}.} \end{array}} \right. (13)

    where {({B}_{-1}\left(x\right), B}_{0}\left(x\right), \dots , {B}_{M}\left(x\right)) is the set of splines for the basis of functions introduced on [a, b] . The numerical solution {U}_{M}(x, t) to the analytic solution U(x, t) is expanded by

    {U}_{M}(x, t) = \sum \limits_{m = -1}^{M}{{\vartheta }_{m}\left(t\right)B}_{m}\left(x\right), (14)

    where {\vartheta }_{m} are unknown time-dependent parameters, and by using local coordinate transformation (8), the quadratic B-spline shape functions for the typical element [ {x}_{m}, {x}_{m+1} ] are given as

    \begin{array}{c} {B}_{m-1} = {(1-\eta )}^{2} \\{B}_{m} = 1+2\eta -2{\eta }^{2} \\ {B}_{m+1} = {\eta }^{2} \end{array} (15)

    The variation of the function U(\eta , t) is approximated by

    {U}_{M}\left(\eta , t\right) = \sum \limits_{i = m-1}^{m+1}{{\vartheta }_{i}\left(t\right)B}_{i}\left(\eta \right), (16)

    where {\vartheta }_{m-1}\left(t\right) , {\vartheta }_{m}\left(t\right) and {\vartheta }_{m+1}\left(t\right) act as element parameters and B-splines {B}_{m-1}\left(\eta \right), {B}_{m}\left(\eta \right) and {B}_{m+1}\left(\eta \right) as element shape functions based on the above; (12) will be in the following form:

    \begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum \limits_{j = m-1}^{m+2}[{\int }_{0}^{1}{B}_{i}{C}_{j}d\eta ]\dot{\sigma }+\sum \limits_{j = m-1}^{m+2}[{\int }_{0}^{1}(\mathrm{\lambda }{B}_{i}{C}_{j}^{\text{'}}+\mathit{\Phi} {B}_{i}^{\text{'}}{C}_{j}^{\text{'}})d\eta -\mathit{\Phi} {B}_{i}{C}_{j}^{\text{'}}{|}_{0}^{1}]\sigma \\ = {\int }_{0}^{1}{B}_{i}\mathrm{Ƒ}\left(\eta , t\right)d\eta , i = m-1, m, m+1, \end{array} (17)

    in which "Dot" represents the \sigma \mathrm{t}\mathrm{h} fractional derivative with respect to time. We can write (17) in matrix notation as follows:

    {X}_{ij}^{e}{\dot{\sigma }}^{e}+({\mathrm{\lambda }Y}_{ij}^{e}+\mathit{\Phi} ({Z}_{ij}^{e}-{Q}_{ij}^{e}\left)\right){\sigma }^{e} = {E}_{i}^{e}, (18)

    in which {\sigma }^{e} = {({\sigma }_{m-1}, {\sigma }_{m}, {\sigma }_{m+1}, {\sigma }_{m+2})}^{T} are the element parameters. The element matrices {X}_{ij}^{e}, {Y}_{ij}^{e}, {Z}_{ij}^{e}, {Q}_{ij}^{e} and {E}_{i}^{e} are rectangular 3\times 4 matrices introduced through the following integrals:

    {X}_{ij}^{e} = \underset{0}{\overset{1}{\int }}{B}_{i}{C}_{j}d\eta = \frac{1}{60}\left[\begin{array}{cccc}10& 71& 38& 1\\ 19& 221& 221& 19\\ 1& 38& 71& 10\end{array}\right],
    {Y}_{ij}^{e} = \underset{0}{\overset{1}{\int }}{B}_{i}{C}_{j}^{\text{'}}d\eta = \frac{1}{10}\left[\begin{array}{cccc}-6& -7& 12& 1\\ -13& -41& 41& 13\\ -1& -12& 7& 6\end{array}\right],
    {Z}_{ij}^{e} = \underset{0}{\overset{1}{\int }}{B}_{i}^{\text{'}}{C}_{j}^{\text{'}}d\eta = \frac{1}{2}\left[\begin{array}{cccc}3& 5& -7& -1\\ -2& 2& 2& -2\\ -1& -7& 5& 3\end{array}\right],
    {Q}_{ij}^{e} = {B}_{i}{C}_{j}^{\text{'}}{\mid }_{0}^{1} = 3\left[\begin{array}{cccc}1& 0& -1& 0\\ 1& -1& -1& 1\\ 0& -1& 0& 1\end{array}\right] \;\;{\rm{and}}
    {E}_{i}^{e} = {\int }_{0}^{1}{B}_{i}\mathrm{Ƒ}\left(\eta , t\right)d\eta ,

    where i and j take only the values (m-1, m, m+1) and (m-1, m, m+1, m+2) respectively, and a lumped value for λ is defined by \mathrm{\lambda } = \frac{1}{2h}({\sigma }_{m-1}+{5\sigma }_{m}+5{\sigma }_{m+1}+{\sigma }_{m+2}) .

    By assembling all contributions from all elements, we get the following matrix equation:

    X\dot{\sigma }+\left(\mathrm{\lambda }Y+\mathit{\Phi} \left(Z-Q\right)\right)\sigma = E, (19)

    where \sigma = {({\sigma }_{-1}, {\sigma }_{0}, {\sigma }_{1}, \dots , {\sigma }_{M}, {\sigma }_{\mathrm{M}+1})}^{T} denotes a global element parameter. The matrices \mathrm{X}, \;\mathrm{Z} and Y represent rectangular, septa-diagonal and every sub-diagonal matrices, which include the following forms:

    X = \frac{1}{60}(1, 57, 302, 302, 57, 1, 0) ,
    Z = \frac{1}{2}(-1, -9, 10, 10, -9, -1, 0) ,
    \begin{array}{l} \lambda Y = \frac{1}{10}({-\lambda }_{1}, -12{\lambda }_{1}-13{\lambda }_{2}, 7{\lambda }_{1}-41{\lambda }_{2}-6{\lambda }_{3}, 6{\lambda }_{1}+41{\lambda }_{2}-7{\lambda }_{3}, 13{\lambda }_{2}+\\ 12{\lambda }_{3}, {\lambda }_{3}, 0), \end{array}

    in which,

    {\lambda }_{1} = \frac{1}{2h}({\sigma }_{m-2}+5{\sigma }_{m-1}+5{\sigma }_{m}+{\sigma }_{m+1}) ,
    {\lambda }_{2} = \frac{1}{2h}({\sigma }_{m-1}+5{\sigma }_{m}+5{\sigma }_{m+1}+{\sigma }_{m+2}) ,
    {\lambda }_{3} = \frac{1}{2h}({\sigma }_{m}+5{\sigma }_{m+1}+5{\sigma }_{m+2}+{\sigma }_{m+3}) .

    Following [45], we can approximate the temporal Caputo derivative with the help of the L1 formula:

    \frac{{d}^{\gamma }f\left(t\right)}{d{t}^{\gamma }}{\mid }_{{t}_{f}} = \frac{{\left(\Delta t\right)}^{-\gamma }}{\mathit{\Gamma} \left(2-\gamma \right)}\sum \limits_{k = 0}^{m-1}{b}_{k}^{\gamma }\left[f\right({t}_{m-k}-f\left({t}_{m-1k}\right)]+O({\Delta t)}^{2-\gamma },

    where {b}_{k}^{\gamma } = ({k+1)}^{1-\gamma }-{k}^{1-\gamma }\;\mathrm{a}\mathrm{n}\mathrm{d}\;\Delta t = \frac{{t}_{f}-0}{N} , and {t}_{f} = n\left(\Delta t\right), n = \mathrm{0, 1}, \dots N, \mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}N represents a positive integer. Now, we recall the following lemma.

    Lemma 1: Suppose that 0 < \gamma < 1and{b}_{k}^{\gamma } = ({k+1)}^{1-\gamma }-{k}^{1-\gamma }, k = \mathrm{0, 1}, \dots ;then, 1 = {b}_{0}^{\gamma } > {b}_{1}^{\gamma } > \dots > {b}_{k}^{\gamma }\to 0, ask\to \mathrm{\infty } [46].

    Then, we can we write the parameter {\sigma }_{m}^{ \cdot } as follows:

    \begin{array}{l} {\sigma }_{m}^{ \cdot } = \frac{{d}^{\gamma }\sigma }{d{t}^{\gamma }} = \frac{{(\Delta t)}^{-\gamma }}{\mathit{\Gamma} (2-\gamma )}\sum \limits_{k = 0}^{m-1}{b}_{k}^{\gamma }\left[\right({\sigma }_{m-1}^{n-k+1}-{\sigma }_{m-1}^{n-k})+4\left({\sigma }_{m}^{n-k+1}-{\sigma }_{m}^{n-k}\right)\\ \;\;\;\;\;\;\;\;\;\;\;\;+({\sigma }_{m+1}^{n-k+1}-{\sigma }_{m+1}^{n-k})]+O({\Delta t)}^{2-\gamma }, \;\;\;\;\;\;\;\;{b}_{k}^{\gamma }\\ \;\;\;\;\;\;\;\;\;\;\;\; = ({k+1)}^{1-\gamma }-{k}^{1-\gamma }, \end{array}

    while the parameter \sigma by the Crank-Nicolson scheme, is as follows:

    {\sigma }_{m} = \frac{1}{2}({\sigma }_{m}^{n}+{\sigma }_{m}^{n+1}) .

    Substitution both parameters above into \left(18\right) , we obtain the (M+2)\times (M+3) matrix system:

    \begin{array}{l} \;\;\; \;\;\; \;\;\;\left[X+\frac{\left[{\left(\Delta t\right)}^{-\gamma }\mathit{\Gamma} \left(2-\gamma \right)\left(\lambda Y+\mathit{\Phi} (Z-Q\right)\right]}{2}\right]{\sigma }^{n+1}\\ \;\;\; \;\;\; \;\;\; = \left[X-\frac{\left[{\left(\Delta t\right)}^{-\gamma }\mathit{\Gamma} \left(2-\gamma \right)\left(\lambda Y+\mathit{\Phi} (Z-Q\right)\right]}{2}\right]{\sigma }^{n} \\ -X\sum \limits_{k = 1}^{n}{b}_{k}^{\gamma }\left[\left({\sigma }_{m-1}^{n-k+1}-{\sigma }_{m-1}^{n-k}\right)+4\left({\sigma }_{m}^{n-k+1}-{\sigma }_{m}^{n-k}\right)+\left({\sigma }_{m+1}^{n-k+1}-{\sigma }_{m+1}^{n-k}\right)\right]\\ \;\;\; \;\;\; \;\;\;+{\left(\Delta t\right)}^{-\gamma }\mathit{\Gamma} \left(2-\gamma \right)E, \end{array} (20)

    where \sigma = {({\sigma }_{m-2}+{\sigma }_{m-1}+{\sigma }_{m}+{\sigma }_{m+1}+{\sigma }_{m+1}+{\sigma }_{m+2}+{\sigma }_{m+3})}^{T} ; to make the matrix equation be square, we need to find an additional constraint of BC (2) and their second derivatives and we obtain discard {\sigma }_{-1} from system (20) as follows:

    {\sigma }_{-1}\left(t\right) = -4{\sigma }_{0}\left(t\right)-{\sigma }_{1}\left(t\right){+U(x}_{0}, t) ;

    the variables {\sigma }_{-1}^{n} and {\sigma }_{M+1}^{n} can be ignored from system (20) and then the system can be converted to an (M+1)\times (M+1) matrix system. The initial vector of parameter {\sigma }^{0} = ({\sigma }_{0}^{0}, {\sigma }_{1}^{0}, \dots , {\sigma }_{M}^{0}) should be obtained to iterate system (20); the approximation of (6) has been reformulated on the interval [a, b] when time t = 0 as follows:

    {U}_{N}(x, 0) = \sum \limits_{m = 0}^{M}{C}_{m}{\sigma }_{m}^{0},

    where U\left(x, 0\right) fulfills the following equation at node {x}_{m}:

    {U}_{M}\left({x}_{m}, 0\right) = U\left({x}_{m}, 0\right), \;\;m = \mathrm{0, 1}, \dots , M+1
    {U}_{M}^{\text{'}}\left({x}_{0}, 0\right) = {U}^{\text{'}}\left({x}_{M}, 0\right) = 0,
    {U}_{M}^{\text{'}\text{'}}\left({x}_{0}, 0\right) = {U}^{\text{'}\text{'}}\left({x}_{M}, 0\right) = 0.

    Therefore, we can obtain the following system:

    \left[\begin{array}{c}{\sigma }_{0}^{0}\\ {\sigma }_{1}^{0}\\ ⋮\\ {\sigma }_{M-1}^{0}\\ {\sigma }_{M}^{0}\end{array}\begin{array}{cccccccc}6& 0& 0& & & & & 0\\ 1& 4& 1& & & & & 0\\ & 1& 4& 4& & & & \\ & & & \ddots & \ddots & & & \\ & & & & \ddots & 1& 4& 1\\ 0& & & & & & 0& 6\end{array}\right]\left[\begin{array}{c}{\sigma }_{0}^{0}\\ {\sigma }_{1}^{0}\\ ⋮\\ {\sigma }_{M-1}^{0}\\ {\sigma }_{M}^{0}\end{array}\right] = \left[\begin{array}{c}U\left({x}_{0}, 0\right)-\frac{{h}^{2}}{6}{g}^{"}\left(a\right)\\ U\left({x}_{1}, 0\right)\\ ⋮\\ U\left({x}_{M-1}, 0\right)\\ U\left({x}_{M}, 0\right)-\frac{{h}^{2}}{6}{g}^{"}\left(b\right)\end{array}\right]

    and we solve this identity matrix by applying the Jain algorithm [47].

    This section adopts the von Neumann stability analysis to investigate the stability of approximation obtained by scheme (20). First, we introduce the recurrence relationship between successive time levels relating unknown element parameters {\sigma }_{m}^{n+1}\left(t\right) , as follows:

    \begin{array}{l} {q}_{1}{\sigma }_{m-2}^{n+1}+{q}_{2}{\sigma }_{m-1}^{n+1}+{q}_{3}{\sigma }_{m}^{n+1}+{q}_{4}{\sigma }_{m+1}^{n+1}+{q}_{5}{\sigma }_{m+2}^{n+1}+{q}_{6}{\sigma }_{m+3}^{n+1}\\ = {q}_{6}{\sigma }_{m-2}^{n}+{q}_{5}{\sigma }_{m-1}^{n}+{q}_{4}{\sigma }_{m}^{n}+{q}_{3}{\sigma }_{m+1}^{n}+{q}_{2}{\sigma }_{m+2}^{n}+{q}_{1}{\sigma }_{m+3}^{n}\\ -20\sum \limits_{k = 1}^{n}{b}_{k}^{\gamma }[(({\sigma }_{m-2}^{n-k+1}-{\sigma }_{m-2}^{n-k})+4({\sigma }_{m-2}^{n-k+1}-{\sigma }_{m-2}^{n-k})+({\sigma }_{m-2}^{n-k+1}-{\sigma }_{m-2}^{n-k}))\\ +57(({\sigma }_{m-1}^{n-k+1}-{\sigma }_{m-1}^{n-k})+4({\sigma }_{m-1}^{n-k+1}-{\sigma }_{m-1}^{n-k})++({\sigma }_{m-1}^{n-k+1}-{\sigma }_{m-1}^{n-k}))\\ +302(({\sigma }_{m}^{n-k+1}-{\sigma }_{m}^{n-k})+4({\sigma }_{m}^{n-k+1}-{\sigma }_{m}^{n-k})+({\sigma }_{m}^{n-k+1}-{\sigma }_{m}^{n-k}))\\ +302(({\sigma }_{m+1}^{n-k+1}-{\sigma }_{m+1}^{n-k})+4({\sigma }_{m+1}^{n-k+1}-{\sigma }_{m+1}^{n-k})+({\sigma }_{m+1}^{n-k+1}-{\sigma }_{m+1}^{n-k}))\\ +57(({\sigma }_{m+2}^{n-k+1}-{\sigma }_{m+2}^{n-k})+4({\sigma }_{m+2}^{n-k+1}-{\sigma }_{m+2}^{n-k})+({\sigma }_{m+2}^{n-k+1}-{\sigma }_{m+2}^{n-k}))\\ +(({\sigma }_{m+3}^{n-k+1}-{\sigma }_{m+3}^{n-k})+4({\sigma }_{m+3}^{n-k+1}-{\sigma }_{m+3}^{n-k})\\ +({\sigma }_{m+3}^{n-k+1}-{\sigma }_{m+3}^{n-k}))] \end{array} (21)

    where

    {q}_{1} = 20-300\mathit{\Phi} \alpha -60\lambda \alpha , \;\;{q}_{2} = 1140-2700\mathit{\Phi} \alpha -1500\lambda \alpha , \;\;{q}_{3} = 6040+3000\mathit{\Phi} \alpha -2400\lambda \alpha
    {q}_{4} = 6040+3000\mathit{\Phi} \alpha +2400\lambda \alpha , \;\;{q}_{5} = 1140-2700\mathit{\Phi} \alpha +1500\lambda \alpha , \;\;{q}_{6} = 20-300\mathit{\Phi} \alpha +60\lambda \alpha

    and \alpha = {\left(\Delta t\right)}^{-\gamma }\mathit{\Gamma} \left(2-\gamma \right) .

    The growth factor of the typical Fourier mode is defined as

    {\sigma }_{m}^{n} = {\xi }^{n}{e}^{i\beta mh} (22)

    where, i = \sqrt{-1, }\beta is a mode number and h is the element size. Substitution of (22) into (21) yields

    \begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {\xi }^{n+1}\left({q}_{1}{e}^{-2i\beta h}+{q}_{2}{e}^{-i\beta h}+{q}_{3}+{q}_{4}{e}^{i\beta h}+{q}_{5}{e}^{2i\beta h}+{q}_{6}{e}^{3i\beta h}\right) = \\ \;\;\;\;\;\;\;{\xi }^{n}\left({q}_{6}{e}^{-2i\beta h}+{q}_{5}{e}^{-i\beta h}+{q}_{4}+{q}_{3}{e}^{i\beta h}+{q}_{2}{e}^{2i\beta h}+{q}_{1}{e}^{3i\beta h}\right) \\ -20\sum \limits_{k = 1}^{n}{b}_{k}^{\gamma }\left[\left(\left({\sigma }_{m-2}^{n-k+1}-{\sigma }_{m-2}^{n-k}\right)+4\left({\sigma }_{m-2}^{n-k+1}-{\sigma }_{m-2}^{n-k}\right)+\left({\sigma }_{m-2}^{n-k+1}-{\sigma }_{m-2}^{n-k}\right)\right)({e}^{-2i\beta h}302\\ \;\;\;\;\;\;\;\;\;+302{e}^{i\beta h}+57{e}^{2i\beta h}+{e}^{2i\beta h})\right]; \end{array} (23)

    let {\xi }^{n+1} = Ϋ{\xi }^{n} and assume that Ϋ\equiv Ϋ\left(\theta \right) is independent of time, therefore, we can write Ϋ as follows:

    Ϋ = \frac{A-iB}{A+iB},

    where

    A = \left(6040+3000\mathit{\Phi} \alpha \right)\mathrm{cos}\left(\frac{\theta }{2}\right)h+\left(1140-2700\mathit{\Phi} \alpha \right)\mathrm{cos}\left(\frac{3\theta }{2}\right)h
    +\left(20-300\mathit{\Phi} \alpha \right)\mathrm{cos}\left(\frac{5\theta }{2}\right)h,
    B = \left(2400\lambda \alpha \right)\mathrm{sin}\left(\frac{\theta }{2}\right)h++\left(1500\lambda \alpha \right)\mathrm{sin}\left(\frac{3\theta }{2}\right)h+\left(60\lambda \alpha \right)\mathrm{sin}\left(\frac{\theta }{2}\right)h,

    Obviously note that \left|\mathrm{Ϋ}\right|\le 1 . Therefore, according to the Fourier condition, the scheme (20) is unconditionally stable.

    This section introduces two numerical examples, which highlight numerical results for the TFBE with different IC and BCs given by the CBSGM with quadratic weight function. In this section, we use the {L}_{2} and {L}_{\infty } to calculate the accuracy of the CBSGM with a quadratic weight function, which has been employed in this study; we will also show how the analytical results and the numerical results are close to each other. To do this, first we will find the exact solutions to the problem (1) by applying the following problems; then, we compare the results with the numerical solution obtained from the given method. To this aim, the {\boldsymbol{L}}_{{\infty }} and {\boldsymbol{L}}_{2} error norms are respectively defined as [48]

    {L}_{\infty } = {||U-{U}_{M}||}_{\infty }\cong \underset{j}{\mathit{max}}\left|{U}_{j}-{\left({U}_{M}\right)}_{j}\right|,
    {L}_{2} = {||U-{U}_{M}||}_{2}\cong \sqrt{h\sum \limits_{j = 0}^{M}{\left|{U}_{j}-{\left({U}_{M}\right)}_{j}\right|}^{2}}

    where U and {U}_{M} represent the exact solution and numerical solution, respectively.

    Example 1: Let us consider the TFBE (1) with the BCs

    U\left(O, t\right) = {l}_{1}\left(t\right) = {t}^{2} , \;\;\;\; U\left(1, t\right) = {l}_{2}\left(t\right) = -{t}^{2}, \;\;\;\;t\ge 0 ,

    and IC

    U\left(x, 0\right) = g\left(x\right) = 0, \;\;\;\;\;\; 0\le x\le 1 ,

    such that the forcing term f(x, t) is achieved as [45]

    f\left(x, t\right) = \frac{2{t}^{2-\gamma }{e}^{x}}{\mathit{\Gamma} (3-\gamma )}+{t}^{4}{e}^{2x}-v{t}^{2}{e}^{x},

    where the analytic solution is obtained as

    U\left(x, t\right) = {t}^{2}{e}^{x} .

    Numerical results are reported in Tables 13 and Figure 1. Table 1 lists the numerical solutions and the {L}_{2} and {L}_{\infty } error norms with \gamma = 0.5, \Delta t = 0.0025, {t}_{f} = 0.05\;\mathrm{a}\mathrm{n}\mathrm{d}\;v = 1 for various numbers of partitions M. As seen in Table 1, we notice that when the number of partitions M are increased, the {L}_{\infty } and {L}_{2} error norms will decrease considerably. Table 2 displays the numerical solutions with \gamma = 0.5, M = 40, t = 1, {t}_{f} = 0.05\;\mathrm{a}\mathrm{n}\mathrm{d}\;v = 1 for various values of \Delta t. In view of Table 2, we can see that when \Delta t decreases, the {L}_{\infty } and {L}_{2} error norms decrease, as was expected. Table 3 shows the numerical solutions with \Delta t = 0.00025, M = 40, t = 1, {t}_{f} = 0.05, v = 1 for various values of \gamma . As observed in Table 3, the {L}_{\infty } and {L}_{2} error norms decrease when γ increases. A comparison between the results of our proposed strategy and two other methods is demonstrated in detail, the researchers of which relied on their work on a weight function corresponding to the spline function in terms of degree; see [44,45]. Figure 1 represents the surfaces of the exact and numerical solutions of the TFBE in Example (1).

    Table 1.  Numerical solutions with \gamma = 0.5, \Delta t = 0.0025, {t}_{f} = 0.05, v = 1 for various numbers of partitions M .
    x M = 10 M = 20 M = 40 M = 80 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.104360 1.105211 1.105166 1.105122 1.105101
    0.2 1.222151 1.222040 1.221593 1.221555 1.221511
    0.3 1.351010 1.350426 1.350012 1.349831 1.349789
    0.4 1.493377 1.492288 1.491990 1.491910 1.491844
    0.5 1.650589 1.650001 1.649822 1.648889 1.648731
    0.6 1.824211 1.823336 1.822449 1.822214 1.822110
    0.7 2.015587 2.014111 2.013822 2.013776 2.013692
    0.8 2.227577 2.226110 2.225699 2.225611 2.225562
    0.9 2.461410 2.461101 2.460893 2.459550 2.459491
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} 1.631895 0.440555 0.160761 0.062504
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 1.764966 0.465690 0.167743 0.095754
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 1.632995 0.447720 0.161833 0.082624
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} 2.291578 0.64933 0.206677 0.032882
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [49] 3.101238 0.812842 0.209495 0.069208
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [50] 2.296683 0.625018 0.207352 0.033125

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical solutions with \gamma = 0.5, M = 40, t = 1, {t}_{f} = 0.05, v = 1 for various values of \Delta t.
    x \Delta \mathrm{t} = 0.005 \Delta \mathrm{t} = 0.001 \Delta \mathrm{t} = 0.0005 \Delta \mathrm{t} = 0.00025 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.105216 1.105211 1.105199 1.105186 1.105150
    0.2 1.221701 1.221601 1.221511 1.221445 1.221389
    0.3 1.350321 1.350188 1.350141 1.350110 1.349998
    0.4 1.492461 1.492211 1.492101 1.491879 1.491804
    0.5 1.649485 1.649112 1.648961 1.648822 1.648690
    0.6 1.822941 1.822675 1.822431 1.822310 1.822144
    0.7 2.014601 2.014201 2.014055 2.013979 2.013788
    0.8 2.226288 2.226001 2.225812 2.225699 2.225528
    0.9 2.260100 2.459980 2.459862 2.459785 2.459655
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.659999 0.374901 0.232591 0.092489
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.176195 0.068869
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.375012 0.232768 0.092624
    {\boldsymbol{L}}_{\mathrm{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.936512 0.529997 0.326112 0.132945
    {\boldsymbol{L}}_{\mathrm{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.665419 0.411883
    {\boldsymbol{L}}_{\mathrm{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.530231 0.328303 0.133125

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical solutions with \Delta t = 0.00025, \;M = 40, \;t = 1, \;{t}_{f} = 0.05, \;v = 1 for various values of γ.
    x \gamma =0.10 \gamma =0.25 \gamma =0.75 \gamma =0.90 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.105068 1.104981 1.104890 1.104899 1.104882
    0.2 1.221701 1.221601 1.221511 1.221445 1.221389
    0.3 1.350321 1.350188 1.350141 1.350110 1.349998
    0.4 1.492461 1.492211 1.492101 1.491879 1.491804
    0.5 1.649485 1.649112 1.648961 1.648822 1.648690
    0.6 1.822941 1.822675 1.822431 1.822310 1.822144
    0.7 2.014601 2.014201 2.014055 2.013979 2.013788
    0.8 2.226288 2.226001 2.225812 2.225699 2.225528
    0.9 2.260100 2.459980 2.459862 2.459785 2.459655
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.659999 0.374901 0.232591 0.092489
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.096733 0.090053 0.035448 0.044398
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.167077 0.165443 0.159924 0.166085
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.936512 0.529997 0.328112 0.132945
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.272943 0.258623 0.124569 0.066682
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.235837 0.232645 0.224532 0.232565

     | Show Table
    DownLoad: CSV
    Figure 1.  The surfaces of the exact and numerical solutions of the TFBE in Example (1).

    Example 2: Finally, we consider the TFBE (1) with the BCs

    U\left(0, t\right) = 0 , \;\;\;\; U\left(1, t\right) = 0, \;\;\;\;t\ge 0 ,

    and IC

    U\left(x, 0\right) = 0, \;\;\;\; 0\le x\le 1 ,

    where the source term f\left(x, t\right) can be obtained as [44]

    f\left(x, t\right) = \frac{2{t}^{2-\gamma }\mathrm{sin}\left(2\pi x\right)}{\mathit{\Gamma} (3-\gamma )}+{2\pi t}^{4}\mathrm{sin}\left(2\pi x\right)\mathrm{cos}\left(2\pi x\right)+4v{t}^{2}{\pi }^{2}\mathrm{sin}\left(2\pi x\right).

    The exact solution is

    U\left(x, t\right) = {t}^{2}\mathrm{sin}\left(2\pi x\right) .

    Numerical results are represented in Tables 4 and 5 and Figure 2. Tables 4 and 5 report the numerical solutions for various numbers of partitions M and values of \Delta t . As seen in Tables 4 and 5, when the number of partitions M increased, the error norms {L}_{\infty } and {L}_{\bf{2}} will decrease considerably, while, in Table 5, we can see that when ∆t decrease, the error norms {L}_{\infty } and {L}_{\bf{2}} decrease. Figure 2 demonstrates the surfaces of the exact and numerical solutions of the TFBE in Example (2).

    Table 4.  Numerical solutions with \gamma = 0.5, \Delta t = 0.0025, {t}_{f} = 0.05, v = 1 for various numbers of partitions M .
    x M = 10 M = 20 M = 40 M = 80 Exact
    0.0 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000
    0.1 0.951196 0.950876 0.951005 0.951077 0.951070
    0.2 0.808211 0.808681 0.808911 0.808988 0.808978
    0.3 0.587211 0.587513 0.587699 0.587761 0.587754
    0.4 0.308662 0.308901 0.308987 0.309011 0.309006
    0.5 0.000000 0.000000 0.000000 0.000000 0.000000
    0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006
    0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732
    0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970
    0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960
    1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.435298 0.183971 0.041943 0.001960
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 1.224329 0.177703
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 2.899412 0.577143
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.731071 0.273289 0.063201 0.004168
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 1.730469 0.253053
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 4.063808 0.813220

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical solutions with \gamma = 0.5, M = 80, t = 1, {t}_{f} = 0.05, v = 1 for various values of \Delta t. .
    x \Delta t = 0.005 \Delta t = 0.001 \Delta t = 0.0005 \Delta t = 0.00025 Exact
    0.0 1000000 1000000 1000000 1000000 1000000
    0.1 0.951196 0.950876 0.951005 0.951077 0.951070
    0.2 0.808211 0.808681 0.808911 0.808988 0.808978
    0.3 0.587211 0.587513 0.587699 0.587761 0.587754
    0.4 0.308662 0.308901 0.308987 0.309011 0.309006
    0.5 0.000000 0.000000 0.000000 0.000000 0.000000
    0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006
    0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732
    0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970
    0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960
    1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.124034 0.054081 0.014255 0.001960
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.532436 0.188710
    {\boldsymbol{L}}_{\bf{2}}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.359489 0.017828
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} 0.175611 0.077465 0.028523 0.004168
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [44] 0.753171 0.267546
    {\boldsymbol{L}}_{{\infty }}{\bf{\times}} {\bf{10}}^{\bf{3}} [45] 0.512105 0.0321162

     | Show Table
    DownLoad: CSV
    Figure 2.  The surfaces of the exact and numerical solutions of the TFBE in Example (2).

    This paper presented a numerical approach based on the CBSGM with a quadratic weight function for the TFBE including the time Caputo derivative. Numerical results have shown that the proposed method is an appropriate and efficient scheme for solving such problems.

    The authors declare no conflict of interest.



    [1] Albort-Morant G, Leal-Millán A, Cepeda-Carrion G, et al. (2018) Developing green innovation performance by fostering of organizational knowledge and coopetitive relations. Rev Manag Sci 12: 499–517. https://doi.org/10.1007/s11846-017-0270-z doi: 10.1007/s11846-017-0270-z
    [2] Bernardi C, Stark AW (2018) Environmental, social and governance disclosure, integrated reporting, and the accuracy of analyst forecasts. Brit Account Rev 50: 16–31. https://doi.org/10.1016/j.bar.2016.10.001 doi: 10.1016/j.bar.2016.10.001
    [3] Bhattacharya S (2023) Industry 5.0's role in achieving sustainability in multiple sectors, In: Quality Management, Value Creation, and the Digital Economy, 1st Edition, Routledge: 44–55. https://doi.org/10.4324/9781003404682-3
    [4] Broccardo L, Truant E, Dana LP (2023) The interlink between digitalization, sustainability, and performance: An Italian context. J Bus Res 158: 113621. https://doi.org/10.1016/j.jbusres.2022.113621 doi: 10.1016/j.jbusres.2022.113621
    [5] Broccardo L, Zicari A, Jabeen F, et al. (2023) How digitalization supports a sustainable business model: A literature review. Technol Forecast Soc 187: 122146. https://doi.org/10.1016/j.techfore.2022.122146 doi: 10.1016/j.techfore.2022.122146
    [6] Chen J, Wu L, Hao L, et al. (2024) Does the import of green products encourage green technology innovation? Empirical evidence from China. Technol Forecast Soc 200: 123137. https://doi.org/10.1016/j.techfore.2023.123137 doi: 10.1016/j.techfore.2023.123137
    [7] Chen Q, Li Y, Zhao Q, et al. (2024) Information quality and cost of credit bond financing. Financ Res Lett 59: 104708. https://doi.org/10.1016/j.frl.2023.104708 doi: 10.1016/j.frl.2023.104708
    [8] Chen S, Wang Y, Albitar K, et al. (2021) Does ownership concentration affect corporate environmental responsibility engagement? The mediating role of corporate leverage. Borsa Istanb Rev 21: S13–S24. https://doi.org/10.1016/j.bir.2021.02.001 doi: 10.1016/j.bir.2021.02.001
    [9] Chen X, Despeisse M, Johansson B (2020) Environmental Sustainability of Digitalization in Manufacturing: A Review. Sustainability 12: 10298. https://doi.org/10.3390/su122410298 doi: 10.3390/su122410298
    [10] Chen Z, Zhang Y, Wang H, et al. (2022) Can green credit policy promote low-carbon technology innovation? J Clean Prod 359: 132061. https://doi.org/10.1016/j.jclepro.2022.132061 doi: 10.1016/j.jclepro.2022.132061
    [11] Cheng J, Yu Z, Xue Z, et al. (2024) Firms' GVC positioning and corporate environmental performance: Micro evidence from China. Struct Change Econ D 70: 268–278. https://doi.org/10.1016/j.strueco.2024.02.011 doi: 10.1016/j.strueco.2024.02.011
    [12] Czarnitzki D, Hottenrott H (2011) R&D investment and financing constraints of small and medium-sized firms. Small Bus Econ 36: 65–83. https://doi.org/10.1007/s11187-009-9189-3 doi: 10.1007/s11187-009-9189-3
    [13] Ding H, Chen E, Qu M (2021) Research on Tax Planning and Asymmetry of Listed Companies: Based on the Structure of Corporate Governance. Nankai Econ Stud, 140–157.
    [14] Du K, Cheng Y, Yao X (2021) Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities. Energ Econ 98: 105247. https://doi.org/10.1016/j.eneco.2021.105247 doi: 10.1016/j.eneco.2021.105247
    [15] Du S, Cao J (2023) Non-family shareholder governance and green innovation of family firms: A socio-emotional wealth theory perspective. Int Rev Financ Anal 90: 102857. https://doi.org/10.1016/j.irfa.2023.102857 doi: 10.1016/j.irfa.2023.102857
    [16] Fang H, Huo Q, Hatim K (2023) Can Digital Services Trade Liberalization Improve the Quality of Green Innovation of Enterprises? Evidence from China. Sustainability 15: 6674. https://doi.org/10.3390/su15086674 doi: 10.3390/su15086674
    [17] Fang X, Liu M (2024) How does the digital transformation drive digital technology innovation of enterprises? Evidence from enterprise's digital patents. Technol Forecast Social 204: 123428. https://doi.org/10.1016/j.techfore.2024.123428 doi: 10.1016/j.techfore.2024.123428
    [18] Feng H, Wang F, Song G, et al. (2022) Digital Transformation on Enterprise Green Innovation: Effect and Transmission Mechanism. Int J Env Res Pub He 19: 10614. https://doi.org/10.3390/ijerph191710614 doi: 10.3390/ijerph191710614
    [19] Fu L, Yi Y, Wu T, et al. (2023) Do carbon emission trading scheme policies induce green technology innovation? New evidence from provincial green patents in China. Environ Sci Pollut R 30: 13342–13358. https://doi.org/10.1007/s11356-022-22877-1 doi: 10.1007/s11356-022-22877-1
    [20] Gao J, Chen Y, Zhang X (2023) Digital Technology Driving Exploratory Innovation in the Enterprise: A Mediated Model with Moderation. Systems 11: 118. https://doi.org/10.3390/systems11030118 doi: 10.3390/systems11030118
    [21] Gao S, Li W, Meng J, et al. (2023) A Study on the Impact Mechanism of Digitalization on Corporate Green Innovation. Sustainability 15: 6407. https://doi.org/10.3390/su15086407 doi: 10.3390/su15086407
    [22] Hall B, Lerner J (2010) Chapter 14 - The Financing of R&D and Innovation, In: Handbook of the Economics of Innovation, B. H. Hall and N. Rosenberg, North-Holland. 1: 609–639. https://doi.org/10.1016/S0169-7218(10)01014-2
    [23] Han F, Mao X, Yu X, et al. (2024) Government environmental protection subsidies and corporate green innovation: Evidence from Chinese microenterprises. J Innov Knowl 9: 100458. https://doi.org/10.1016/j.jik.2023.100458 doi: 10.1016/j.jik.2023.100458
    [24] Han L, Chen S, Liang L (2021) Digital economy, innovation environment and urban innovation capabilities. Sci Res Manage 42: 35–45.
    [25] Han Y, Zhang F, Huang L, et al. (2021) Does industrial upgrading promote eco-efficiency?—A panel space estimation based on Chinese evidence. Energ Policy 154: 112286. https://doi.org/10.1016/j.enpol.2021.112286 doi: 10.1016/j.enpol.2021.112286
    [26] He F, Wang M, Zhou P (2022) Evaluation of market risk and resource allocation ability of green credit business by deep learning under internet of things. PLOS ONE 17: e0266674. https://doi.org/10.1371/journal.pone.0266674 doi: 10.1371/journal.pone.0266674
    [27] He Q, Ribeiro-Navarrete S, Botella-Carrubi D (2024) A matter of motivation: the impact of enterprise digital transformation on green innovation. Rev Manag Sci 18: 1489–1518. https://doi.org/10.1007/s11846-023-00665-6 doi: 10.1007/s11846-023-00665-6
    [28] Hilbert M (2020) Digital technology and social change: the digital transformation of society from a historical perspective. Dialogues Clin Neuro 22: 189–194. https://doi.org/10.31887/DCNS.2020.22.2/mhilbert doi: 10.31887/DCNS.2020.22.2/mhilbert
    [29] Hong M, He J, Zhang K, et al. (2023) Does digital transformation of enterprises help reduce the cost of equity capital. Math Biosci Eng 20: 6498–6516. https://doi.org/10.3934/mbe.2023280 doi: 10.3934/mbe.2023280
    [30] Hu GG (2021) Is knowledge spillover from human capital investment a catalyst for technological innovation? The curious case of fourth industrial revolution in BRICS economies. Technol Forecast Soc 162: 120327. https://doi.org/10.1016/j.techfore.2020.120327 doi: 10.1016/j.techfore.2020.120327
    [31] Huang Q, Xu C, Xue X, et al. (2023) Can digital innovation improve firm performance: Evidence from digital patents of Chinese listed firms. Int Rev Financ Anal 89: 102810. https://doi.org/10.1016/j.irfa.2023.102810 doi: 10.1016/j.irfa.2023.102810
    [32] Huang Y, Tu J, Lin T (2017) Key success factors of green innovation for transforming traditional industries, In: Sustainability Through Innovation in Product Life Cycle Design, Springer, 779–795. https://doi.org/10.1007/978-981-10-0471-1_53
    [33] Huang Z, Liao G, Li Z (2019) Loaning scale and government subsidy for promoting green innovation. Technol Forecast Soc 144: 148–156. https://doi.org/10.1016/j.techfore.2019.04.023 doi: 10.1016/j.techfore.2019.04.023
    [34] Karlilar S, Balcilar M, Emir F (2023) Environmental sustainability in the OECD: The power of digitalization, green innovation, renewable energy and financial development. Telecommun Policy 47: 15. https://doi.org/10.1016/j.telpol.2023.102568 doi: 10.1016/j.telpol.2023.102568
    [35] Keswani M, Khedlekar U (2024) Optimizing pricing and promotions for sustained profitability in declining markets: A Green-Centric inventory model. Data Sci Financ Econ 4: 83–131. https://doi.org/10.3934/DSFE.2024004 doi: 10.3934/DSFE.2024004
    [36] Khin S, Ho TC (2020) Digital technology, digital capability and organizational performance. Int J Innov Sci 11: 177–195. https://doi.org/10.1108/IJIS-08-2018-0083 doi: 10.1108/IJIS-08-2018-0083
    [37] Kohli R, Melville NP (2019) Digital innovation: A review and synthesis. Inf Syst J 29: 200–223. https://doi.org/10.1111/isj.12193 doi: 10.1111/isj.12193
    [38] Kumar P, Polonsky M, Dwivedi YK, et al. (2021) Green information quality and green brand evaluation: the moderating effects of eco-label credibility and consumer knowledge. Eur J Marketing 55: 2037–2071. https://doi.org/10.1108/EJM-10-2019-0808 doi: 10.1108/EJM-10-2019-0808
    [39] Kurniawan TA, Othman MHD, Hwang GH, et al. (2022) Unlocking digital technologies for waste recycling in Industry 4.0 era: A transformation towards a digitalization-based circular economy in Indonesia. J Clean Prod 357: 131911. https://doi.org/10.1016/j.jclepro.2022.131911 doi: 10.1016/j.jclepro.2022.131911
    [40] Lai K, Feng Y, Zhu Q (2023) Digital transformation for green supply chain innovation in manufacturing operations. Transport Res E-Log 175: 103145. https://doi.org/10.1016/j.tre.2023.103145 doi: 10.1016/j.tre.2023.103145
    [41] Lee S, Yoon B, Park Y (2009) An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation 29: 481–497. https://doi.org/10.1016/j.technovation.2008.10.006 doi: 10.1016/j.technovation.2008.10.006
    [42] Li C, Long G, Li S (2023) Research on measurement and disequilibrium of manufacturing digital transformation: Based on the text mining data of A-share listed companies. Data Sci Financ Econ 3: 30–54. https://doi.org/10.3934/DSFE.2023003 doi: 10.3934/DSFE.2023003
    [43] Li D, Zheng M, Cao C, et al. (2017) The impact of legitimacy pressure and corporate profitability on green innovation: Evidence from China top 100. J Clean Prod 141: 41–49. https://doi.org/10.1016/j.jclepro.2016.08.123 doi: 10.1016/j.jclepro.2016.08.123
    [44] Li H, Liu Q, Ye H (2023) Digital development influencing mechanism on green innovation performance: a perspective of green innovation network. IEEE Access 11: 22490–22504. https://doi.org/10.1109/ACCESS.2023.3252912 doi: 10.1109/ACCESS.2023.3252912
    [45] Li H, Wu Y, Cao D, et al. (2021) Organizational mindfulness towards digital transformation as a prerequisite of information processing capability to achieve market agility. J Bus Res122: 700–712. https://doi.org/10.1016/j.jbusres.2019.10.036 doi: 10.1016/j.jbusres.2019.10.036
    [46] Li H, Zhang Y, Li Y (2023) The impact of digital inputs on pollution reduction in Chinese manufacturing enterprises. J Clean Prod 428: 139393. https://doi.org/10.1016/j.jclepro.2023.139393 doi: 10.1016/j.jclepro.2023.139393
    [47] Li J, Zhang G, Ned JP, et al. (2023) How does digital finance affect green technology innovation in the polluting industry? Based on the serial two-mediator model of financing constraints and research and development (R&D) investments. Environ Sci Pollut Res 30: 74141–74152. https://doi.org/10.1007/s11356-023-27593-y doi: 10.1007/s11356-023-27593-y
    [48] Li Q, Xiao Z (2020) Heterogeneous Environmental Regulation Tools and Green Innovation Incentives: Evidence from Green Patents of Listed Companies. Econ Res J 55: 192–208.
    [49] Li W, Zheng M (2016) Is it Substantive innovation or Strategic lnnovation?—Impact of Macroeconomic Policies on Microenterprises' Innovation. Econ Res J 51: 60–73.
    [50] Li Z, Chen B, Lu S, et al. (2024) The impact of financial institutions' cross-shareholdings on risk-taking. Int Rev Econ Financ 92: 1526–1544. https://doi.org/10.1016/j.iref.2024.02.080 doi: 10.1016/j.iref.2024.02.080
    [51] Li Z, Chen H, Mo B (2023) Can digital finance promote urban innovation? Evidence from China. Borsa Istanb Rev 23: 285–296. https://doi.org/10.1016/j.bir.2022.10.006 doi: 10.1016/j.bir.2022.10.006
    [52] Li Z, Liao G, Wang Z, et al. (2018) Green loan and subsidy for promoting clean production innovation. J Clean Prod 187: 421–431. https://doi.org/10.1016/j.jclepro.2018.03.066 doi: 10.1016/j.jclepro.2018.03.066
    [53] Li Z, Wang Y (2021) Is there a moderate range of impact of financialization on corporate R&D? PLOS ONE 16: e0253380. https://doi.org/10.1371/journal.pone.0253380 doi: 10.1371/journal.pone.0253380
    [54] Li Z, Zou F, Mo B (2021) Does mandatory CSR disclosure affect enterprise total factor productivity? Ekonomska Istraživanja/ Econ Res 34: 4902–4921. https://doi.org/10.1080/1331677X.2021.2019596 doi: 10.1080/1331677X.2021.2019596
    [55] Lian G, Xu A, Zhu Y (2022) Substantive green innovation or symbolic green innovation? The impact of ER on enterprise green innovation based on the dual moderating effects. J Innov Knowl 7: 100203. https://doi.org/10.1016/j.jik.2022.100203 doi: 10.1016/j.jik.2022.100203
    [56] Liao G, Li Z, Wang M, et al. (2022) Measuring China's urban digital finance. Quant Financ Econ 6: 385–404. https://doi.org/10.3934/QFE.2022017 doi: 10.3934/QFE.2022017
    [57] Liu J, Wang QB, Wei CY (2024) Unleashing Green Innovation in Enterprises: The Transformative Power of Digital Technology Application, Green Human Resource, and Digital Innovation Networks. Systems 12: 11. https://doi.org/10.3390/systems12010011 doi: 10.3390/systems12010011
    [58] Liu J, Jiang Y, Gan S, et al. (2022) Can digital finance promote corporate green innovation? Environ Sci Pollut Res 29: 35828–35840. https://doi.org/10.1007/s11356-022-18667-4 doi: 10.1007/s11356-022-18667-4
    [59] Liu L, Peng Q (2022) Evolutionary Game Analysis of Enterprise Green Innovation and Green Financing in Platform Supply Chain. Sustainability 14: 7807. https://doi.org/10.3390/su14137807 doi: 10.3390/su14137807
    [60] Liu Y, Chen L (2022) The impact of digital finance on green innovation: resource effect and information effect. Environ Sci Pollut Res 29: 86771–86795. https://doi.org/10.1007/s11356-022-21802-w doi: 10.1007/s11356-022-21802-w
    [61] Liu Y, Ma C, Huang Z (2023) Can the digital economy improve green total factor productivity? An empirical study based on Chinese urban data. Math Biosci Eng 20: 6866–6893. https://doi.org/10.3934/mbe.2023296 doi: 10.3934/mbe.2023296
    [62] Ma J, Li Z (2022) Measuring China's urban digital economy. Natl Acc Rev 4: 329–361. https://doi.org/10.3934/NAR.2022019 doi: 10.3934/NAR.2022019
    [63] Martínez-Ros E, Kunapatarawong R (2019) Green innovation and knowledge: The role of size. Bus Strateg Environ 28: 1045–1059. https://doi.org/10.1002/bse.2300 doi: 10.1002/bse.2300
    [64] Matallín-Sáez J, Soler-Domínguez A (2023) Cost and performance of carbon risk in socially responsible mutual funds. Quant Financ Econ 7: 50–73. https://doi.org/10.3934/QFE.2023003 doi: 10.3934/QFE.2023003
    [65] Ning J, Jiang X, Luo J (2023) Relationship between enterprise digitalization and green innovation: A mediated moderation model. J Innov Knowl 8: 100326. https://doi.org/10.1016/j.jik.2023.100326 doi: 10.1016/j.jik.2023.100326
    [66] Nosova S, Norkina A, Makar S, et al. (2021) Digital transformation as a new paradigm of economic policy. Procedia Comput Sci 190: 657–665. https://doi.org/10.1016/j.procs.2021.06.077 doi: 10.1016/j.procs.2021.06.077
    [67] Ortega-Gras JJ, Bueno-Delgado MV, Cañ avate-Cruzado G, et al. (2021) Twin Transition through the Implementation of Industry 4.0 Technologies: Desk-Research Analysis and Practical Use Cases in Europe. Sustainability 13: 13601. https://doi.org/10.3390/su132413601 doi: 10.3390/su132413601
    [68] Pal P (2022) The adoption of waves of digital technology as antecedents of digital transformation by financial services institutions. J Digital Bank 7: 70–91. https://doi.org/10.69554/QHFT9370 doi: 10.69554/QHFT9370
    [69] Rizzo C, Sestino A, Gutuleac R, et al. (2023) Managing food-wasting: the role of customer cooperation in influencing firms' pro-environmental behavior. Manage Decis. https://doi.org/10.1108/MD-05-2023-0685 doi: 10.1108/MD-05-2023-0685
    [70] Sestino A, Kahlawi A, De Mauro A (2023) Decoding the data economy: a literature review of its impact on business, society and digital transformation. Eur J Innov Manage. https://doi.org/10.1108/EJIM-01-2023-0078 doi: 10.1108/EJIM-01-2023-0078
    [71] Sestino A, Leoni E, Gastaldi L (2024) Exploring the effects of digital transformation from a dual (internal vs external) marketing management perspective. Eur J Innov Manage. https://doi.org/10.1108/EJIM-09-2023-0794 doi: 10.1108/EJIM-09-2023-0794
    [72] Su X, Pan C, Zhou S, et al. (2022) Threshold effect of green credit on firms' green technology innovation: Is environmental information disclosure important? J Clean Prod 380: 134945. https://doi.org/10.1016/j.jclepro.2022.134945 doi: 10.1016/j.jclepro.2022.134945
    [73] Sun S, Zhang X, Li D, et al. (2023) Research on the Impact of Green Technology Innovation on Enterprise Financial Information Management Based on Compound Neural Network. J Organ End User Comput 35: 1–13. https://doi.org/10.4018/JOEUC.326519 doi: 10.4018/JOEUC.326519
    [74] Tang C, Xu Y, Hao Y, et al. (2021) What is the role of telecommunications infrastructure construction in green technology innovation? A firm-level analysis for China. Energ Econ 103: 105576. https://doi.org/10.1016/j.eneco.2021.105576 doi: 10.1016/j.eneco.2021.105576
    [75] Tang Y, Wang Y, Tang C (2022) Digital Economy, Market Structure and Innovation Performance. China Ind Econ, 62–80.
    [76] Tao F, Zhu P, Qiu C, et al. (2023) The Impact of Digital Technology Innovation on Enterprise Market Value. J Quant Technol Econ 40: 1–24.
    [77] Tsagkanos A, Sharma A, Ghosh B (2022) Green Bonds and Commodities: A New Asymmetric Sustainable Relationship. Sustainability 14: 6852. https://doi.org/10.3390/su14116852 doi: 10.3390/su14116852
    [78] Vial G (2019) Understanding digital transformation: A review and a research agenda. J Strat Inf Syst 28: 118–144. https://doi.org/10.1016/j.jsis.2019.01.003 doi: 10.1016/j.jsis.2019.01.003
    [79] Wang C, Nie P, Peng D, et al. (2017) Green insurance subsidy for promoting clean production innovation. J Clean Prod 148: 111–117. https://doi.org/10.1016/j.jclepro.2017.01.145 doi: 10.1016/j.jclepro.2017.01.145
    [80] Wang D, Ge G (2022) Development of a Sustainable Collaborative Management Strategy for Green Supply Chains in E-Business: Collaborative Management Strategy of Green Supply Chain Considering Sustainable Development. Inf Resour Manage J (IRMJ) 35: 1–21. https://doi.org/10.4018/IRMJ.304453 doi: 10.4018/IRMJ.304453
    [81] Wang G, Zhang G, Guo X, et al. (2021) Digital twin-driven service model and optimal allocation of manufacturing resources in shared manufacturing. J Manuf Syst 59: 165–179. https://doi.org/10.1016/j.jmsy.2021.02.008 doi: 10.1016/j.jmsy.2021.02.008
    [82] Wang M, Liao G, Li Y (2021) The Relationship between Environmental Regulation, Pollution and Corporate Environmental Responsibility. Int J Environ Res Pub He 18: 8018. https://doi.org/10.3390/ijerph18158018 doi: 10.3390/ijerph18158018
    [83] Wang P, Cen C (2022) Does digital economy development promote innovation efficiency? A spatial econometric approach for Chinese regions. Technol Analy Strat Manage 36: 931–945. https://doi.org/10.1080/09537325.2022.2065980 doi: 10.1080/09537325.2022.2065980
    [84] Wang X, Zhong X (2024) Digital transformation and green innovation: firm-level evidence from China. Front Env Sci 12: 1389255. https://doi.org/10.3389/fenvs.2024.1389255 doi: 10.3389/fenvs.2024.1389255
    [85] Wu B, Gong C (2019) Impact of Open Innovation Communities on Enterprise Innovation Performance: A System Dynamics Perspective. Sustainability 11: 4794. https://doi.org/10.3390/su11174794 doi: 10.3390/su11174794
    [86] Wu D, Jia W, Xie Y (2023) The impact of environmental information disclosure on green innovation in extractive enterprises: Promote or crowd out? Extractive Ind Soc 14: 101247. https://doi.org/10.1016/j.exis.2023.101247 doi: 10.1016/j.exis.2023.101247
    [87] Wu D, Xie Y, Lyu S (2023) Disentangling the complex impacts of urban digital transformation and environmental pollution: Evidence from smart city pilots in China. Sustain Cities Soc 88: 104266. https://doi.org/10.1016/j.scs.2022.104266 doi: 10.1016/j.scs.2022.104266
    [88] Wu G, Xu Q, Niu X, et al. (2022) How does government policy improve green technology innovation: An empirical study in China. Front Environ Sci 9: 799794. https://doi.org/10.3389/fenvs.2021.799794 doi: 10.3389/fenvs.2021.799794
    [89] Wu J, Xia Q, Li Z (2022) Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J Clean Prod 344: 131070. https://doi.org/10.1016/j.jclepro.2022.131070 doi: 10.1016/j.jclepro.2022.131070
    [90] Xie RH, Yuan YJ, Huang JJ (2017) Different Types of Environmental Regulations and Heterogeneous Influence on "Green" Productivity: Evidence from China. Ecol Econ 132: 104–112. https://doi.org/10.1016/j.ecolecon.2016.10.019 doi: 10.1016/j.ecolecon.2016.10.019
    [91] Xu C, Sun G, Kong T (2024) The impact of digital transformation on enterprise green innovation. International Review of Economics & Finance 90: 1-12. https://doi.org/10.1016/j.iref.2023.11.001 doi: 10.1016/j.iref.2023.11.001
    [92] Xu J, Cui J (2020) Low-Carbon Cities and Firms' Green Technological Innovation. China Ind Econ 12: 178–196.
    [93] Xu S, Yang C, Huang Z, et al. (2022) Interaction between Digital Economy and Environmental Pollution: New Evidence from a Spatial Perspective. Intl J Environ Res Pub He 19: 5074. https://doi.org/10.3390/ijerph19095074 doi: 10.3390/ijerph19095074
    [94] Xue L, Zhang Q, Zhang X, et al. (2022) Can Digital Transformation Promote Green Technology Innovation? Sustainability 14: 7497. https://doi.org/10.3390/su14127497 doi: 10.3390/su14127497
    [95] Yang J, Li Z, Kang Q (2020) Impact of Digital Transformation on National Innovation System and Countermeasures. R&D Manage 32: 26–38.
    [96] Yang J, Su J, Song L (2019) Selection of Manufacturing Enterprise Innovation Design Project Based on Consumer's Green Preferences. Sustainability 11: 1375. https://doi.org/10.3390/su11051375 doi: 10.3390/su11051375
    [97] Yang P, Sun WZ (2023) How does digital technology facilitate the green innovation of enterprises? Evidence from China. Int Rev Appl Econ 37: 621–641. https://doi.org/10.1080/02692171.2023.2240262 doi: 10.1080/02692171.2023.2240262
    [98] Yang Y, Chen W, Yu Z (2023) Local government debt and corporate digital transformation: Evidence from China. Financ Res Lett 57: 104282. https://doi.org/10.1016/j.frl.2023.104282 doi: 10.1016/j.frl.2023.104282
    [99] Yao Y, Liu H (2018). Research on Financing Modes of Small and Medium-Sized Enterprises on the Background of Supply Chain Finance. 2018 International Conference on Robots & Intelligent System (ICRIS). https://doi.org/10.1109/ICRIS.2018.00147
    [100] Yin S, Zhang N, Ullah K, et al. (2022) Enhancing Digital Innovation for the Sustainable Transformation of Manufacturing Industry: A Pressure-State-Response System Framework to Perceptions of Digital Green Innovation and Its Performance for Green and Intelligent Manufacturing. Systems 10: 72. https://doi.org/10.3390/systems10030072 doi: 10.3390/systems10030072
    [101] Yu C, Jia N, Li W, et al. (2022) Digital inclusive finance and rural consumption structure–evidence from Peking University digital inclusive financial index and China household finance survey. China Agr Econ Rev 14: 165–183. https://doi.org/10.1108/CAER-10-2020-0255 doi: 10.1108/CAER-10-2020-0255
    [102] Yu C, Wu X, Zhang D, et al. (2021) Demand for green finance: Resolving financing constraints on green innovation in China. Energ Policy 153: 112255. https://doi.org/10.1016/j.enpol.2021.112255 doi: 10.1016/j.enpol.2021.112255
    [103] Zhang C, Zhou B, Tian X (2022) Political connections and green innovation: The role of a corporate entrepreneurship strategy in state-owned enterprises. J Bus Res 146: 375–384. https://doi.org/10.1016/j.jbusres.2022.03.084 doi: 10.1016/j.jbusres.2022.03.084
    [104] Zhang F, Zhu L (2019) Enhancing corporate sustainable development: Stakeholder pressures, organizational learning, and green innovation. Bus Strat Environ 28: 1012–1026. https://doi.org/10.1002/bse.2298 doi: 10.1002/bse.2298
    [105] Zhang Y, Chen H, Ju K (2023) Research on Enterprise Digital Agility Based on Machine Learning: An Evaluation of Green Financial Technology. J Glob Inf Manage 31: 1–13. https://doi.org/10.4018/JGIM.327006 doi: 10.4018/JGIM.327006
    [106] Zhang Y, Lu Y, Li L (2021) Effects of Big Data on Firm Value in China: Evidence from Textual Analysis of Chinese Listed Firms' Annual Reports. Econ Res J 56: 42–59.
    [107] Zhang Z, Zhang D, Qiu R (2020) Deep reinforcement learning for power system applications: An overview. CSEE J Power Energ Syst 6: 213–225.
    [108] Zhao X, Qian YY (2023) Does Digital Technology Promote Green Innovation Performance? J Knowl Econ, 1–20. https://doi.org/10.1007/s13132-023-01410-w doi: 10.1007/s13132-023-01410-w
    [109] Zhou J, Li P, Zhou Y, et al. (2018) Toward New-Generation Intelligent Manufacturing. Engineering 4: 11–20. https://doi.org/10.1016/j.eng.2018.01.002 doi: 10.1016/j.eng.2018.01.002
    [110] Zhou P, Wang Z, Tan C, et al. (2024) The Value of Digital Technology Innovation:From the M & A Perspective and Machine Learning Methods. China Ind Econ 2: 137–154.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2257) PDF downloads(162) Cited by(4)

Figures and Tables

Figures(3)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog