Processing math: 77%
Review Special Issues

Trojan horse effects of microplastics: A mini-review about their role as a vector of organic and inorganic compounds in several matrices

  • The "Trojan horse effect" of microplastics for organic and inorganic contaminants is an interesting topic. So far, the scientific community has focused on microplastics strictly as contaminants, but their role as vectors is still undefined. Adsorption of pollutants follows the Freundlich model by physisorption mechanism. Furthermore, ages and types of microplastics influence the adsorption of pollutants onto microplastics. Moreover, natural particles, like algae particles, present in the environment can interfere in the adsorption mechanisms. Due to their chemical composition of mainly O and N, it has been suggested that natural particles have a stronger adsorption affinity for some pollutants. Furthermore, microplastic's role as vector of pollutants into organisms is controversial. In fact, it has been suggested that the release is species-specific. In T. japonicus, accumulation of Hg loaded onto microplastics increased by 2.5 times, whereas a reduction of bioavailability of Hg was observed in R. lens.

    Citation: Fabiana Carriera, Cristina Di Fiore, Pasquale Avino. Trojan horse effects of microplastics: A mini-review about their role as a vector of organic and inorganic compounds in several matrices[J]. AIMS Environmental Science, 2023, 10(5): 732-742. doi: 10.3934/environsci.2023040

    Related Papers:

    [1] Chii-Dong Ho, Gwo-Geng Lin, Thiam Leng Chew, Li-Pang Lin . Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes. Mathematical Biosciences and Engineering, 2021, 18(5): 5592-5613. doi: 10.3934/mbe.2021282
    [2] Timothy C. Reluga, Jan Medlock, Alison Galvani . The discounted reproductive number for epidemiology. Mathematical Biosciences and Engineering, 2009, 6(2): 377-393. doi: 10.3934/mbe.2009.6.377
    [3] Baojun Song . Basic reinfection number and backward bifurcation. Mathematical Biosciences and Engineering, 2021, 18(6): 8064-8083. doi: 10.3934/mbe.2021400
    [4] Kazunori Sato . Basic reproduction number of SEIRS model on regular lattice. Mathematical Biosciences and Engineering, 2019, 16(6): 6708-6727. doi: 10.3934/mbe.2019335
    [5] Tom Burr, Gerardo Chowell . The reproduction number Rt in structured and nonstructured populations. Mathematical Biosciences and Engineering, 2009, 6(2): 239-259. doi: 10.3934/mbe.2009.6.239
    [6] Qixuan Wang, Hans G. Othmer . The performance of discrete models of low reynolds number swimmers. Mathematical Biosciences and Engineering, 2015, 12(6): 1303-1320. doi: 10.3934/mbe.2015.12.1303
    [7] Sergio Bermudo, Robinson A. Higuita, Juan Rada . k-domination and total k-domination numbers in catacondensed hexagonal systems. Mathematical Biosciences and Engineering, 2022, 19(7): 7138-7155. doi: 10.3934/mbe.2022337
    [8] Ali Moussaoui, Pierre Auger, Christophe Lett . Optimal number of sites in multi-site fisheries with fish stock dependent migrations. Mathematical Biosciences and Engineering, 2011, 8(3): 769-783. doi: 10.3934/mbe.2011.8.769
    [9] Chayu Yang, Jin Wang . Computation of the basic reproduction numbers for reaction-diffusion epidemic models. Mathematical Biosciences and Engineering, 2023, 20(8): 15201-15218. doi: 10.3934/mbe.2023680
    [10] José Ángel Juárez Morales, Jesús Romero Valencia, Raúl Juárez Morales, Gerardo Reyna Hernández . On the offensive alliance number for the zero divisor graph of Zn. Mathematical Biosciences and Engineering, 2023, 20(7): 12118-12129. doi: 10.3934/mbe.2023539
  • The "Trojan horse effect" of microplastics for organic and inorganic contaminants is an interesting topic. So far, the scientific community has focused on microplastics strictly as contaminants, but their role as vectors is still undefined. Adsorption of pollutants follows the Freundlich model by physisorption mechanism. Furthermore, ages and types of microplastics influence the adsorption of pollutants onto microplastics. Moreover, natural particles, like algae particles, present in the environment can interfere in the adsorption mechanisms. Due to their chemical composition of mainly O and N, it has been suggested that natural particles have a stronger adsorption affinity for some pollutants. Furthermore, microplastic's role as vector of pollutants into organisms is controversial. In fact, it has been suggested that the release is species-specific. In T. japonicus, accumulation of Hg loaded onto microplastics increased by 2.5 times, whereas a reduction of bioavailability of Hg was observed in R. lens.



    The linear Diophantine problem of Frobenius is to find the largest integer which is not expressed by a nonnegative linear combination of given positive relatively prime integers a1,a2,,al. Such a largest integer is called the Frobenius number [3], denoted by g(A)=g(a1,a2,,al), where A={a1,a2,,al}. In the literature on the Frobenius problem, the Sylvester number or genus n(A)=n(a1,a2,,al), which is the total number of integers that cannot be represented as a nonnegative linear combination of a1,a2,,al [4].

    There are many aspects to studying the Frobenius problem. For example, there are algorithmic aspects to find the values or the bounds, complexity of computations, denumerants, numerical semigroup, applications to algebraic geometry and so on (see e.g., [5,6]). Nevertheless, one of the motivations for our p-generalizations originates in the number of representations d(n;a1,a2,,al) to a1x1+a2x2++alxl=n for a given positive integer n. This number is equal to the coefficient of xn in 1/(1xa1)(1xa2)(1xal) for positive integers a1,a2,,al with gcd(a1,a2,,al)=1 [4]. Sylvester [7] and Cayley [8] showed that d(n;a1,a2,,al) can be expressed as the sum of a polynomial in n of degree k1 and a periodic function of period a1a2al. In [9], the explicit formula for the polynomial part is derived by using Bernoulli numbers. For two variables, a formula for d(n;a1,a2) is obtained in [10]. For three variables in the pairwise coprime case d(n;a1,a2,a3). For three variables, in [11], the periodic function part is expressed in terms of trigonometric functions, and its results have been improved in [12] by using floor functions so that three variables case can be easily worked with-in the formula.

    In this paper, we are interested in one of the most general and most natural types of Frobenius numbers, which focuses on the number of representations. For a nonnegative integer p, the largest integer such that the number of expressions that can be represented by a1,a2,,al is at most p is denoted by gp(A)=gp(a1,a2,,al) and may be called the p-Frobenius number. That is, all integers larger than gp(A) have at least the number of representations of p+1 or more. This generalized Frobenius number gp(A) is called the p-Frobenius number [1,2], which is also called the k-Frobenius number [13] or the s-Frobenius number [14]. When p=0, g(A)=g0(A) is the original Frobenius number. One can consider the largest integer gp(a1,a2,,al) that has exactly p distinct representations (see e.g., [13,14]). However, in this case, the ordering g0g1 may not hold. For example, g17(2,5,7)=43>g18(2,5,7)=42. In addition, for some j, gj may not exist. For example, g22(2,5,7) does not exist because there is no positive integer whose number of representations is exactly 22. Therefore, in this paper we do not study gp(A) but gp(A).

    Similarly to the p-Frobenius number, the p-Sylvester number or the p-genus np(A)=np(a1,a2,,al) is defined by the cardinality of the set of integers which can be represented by a1,a2,,al at most p ways. When p=0, n(A)=n0(A) is the original Sylvester number.

    In this paper, we are interested in one of the most crucial topics, that is, to find explicit formulas of indicators, in particular, of p-Frobenius numbers and p-Sylvester numbers. In the classical case, that is, for p=0, explicit formulas of g(a1,a2) and n(a1,a2) are shown when l=2 [3,4]. However, for l3, g(A) cannot be given by any set of closed formulas which can be reduced to a finite set of certain polynomials [15]. For l=3, there are several useful algorithms to obtain the Frobenius number (see e.g., [16,17,18]). For the concretely given three positive integers, if the conditions are met, the Frobenius number can be completely determined by the method of case-dividing by A. Tripathi [19]. Although it is possible to find the Frobenius number by using the results in [19], it is another question whether the Frobenius number can be given by a closed explicit expression for some special triplets, and special considerations are required. Only for some special cases, explicit closed formulas have been found, including arithmetic, geometric, Mersenne, repunits and triangular (see [20,21,22] and references therein).

    For p>0, if l=2, explicit formulas of gp(a1,a2) and np(a1,a2) are still given without any difficulty (see e.g., [23]). However, if l3, no explicit formula had been given even in a special case. However, quite recently, we have succeeded in giving explicit formulas for the case where the sequence is of triangular numbers [1] or of repunits [2] for the case where l=3.

    In this paper, we give an explicit formula for the p-Frobenius number for the Fibonacci number triple (Fi,Fi+2,Fi+k) (i,k3). Here, the n-th Fibonacci number Fn is defined by Fn=Fn1+Fn2 (n2) with F1=1 and F0=0. Our main result (Theorem 6.1 below) is a kind of generalizations of [24,Theorem 1] when p=0. However, when p>0, the exact situation is not completely similar to the case where p=0, and the case by case discussion is necessary. As analogues, we also show explicit formulas of gp(Li,Li+2,Li+k) for Lucas numbers Ln with i,k3. Here, Lucas numbers Ln satisfy the recurrence relation Ln=Ln1+Ln2 (n2) with L0=2 and L1=1. By using our constructed framework, we can also find explicit formulas of the p-Sylvester numbers np(Fi,Fi+2,Fi+k) and np(Li,Li+2,Li+k). Our result (Theorem 13) can extend the result in [24,Corollary 2]. The main idea is to find the explicit structure of the elements of an Apéry set [25]. In addition, we use a complete residue system, studied initially by Selmer [26]. By using Apéry sets, we construct the first least set of the complete residue system, then the second least set of the complete residue system, and the third, and so on. As a basic framework, we use a similar structure in [2]. We can safely say that one of our theorems (Theorem 6.1 below) is a kind of generalization of [24,Theorem 1]. Nevertheless, for each nonnegative integer p, the exact situation is not completely similar, but the case by case discussion is necessary.

    Without loss of generality, we assume that a1=min{a1,a2,,al}. For each 0ia11, we introduce the positive integer m(p)i congruent to i modulo a1 such that the number of representations of m(p)i is bigger than or equal to p+1, and that of mia1 is less than or equal to p. Note that m(0)0 is defined to be 0. The set

    Ap(A;p)=Ap(a1,a2,,al;p)={m(p)0,m(p)1,,m(p)a11},

    is called the p-Apéry set of A={a1,a2,,al} for a nonnegative integer p, which is congruent to the set

    {0,1,,a11}(moda1).

    When p=0, the 0-Apéry set is the original Apéry set [25].

    It is hard to find any explicit formula of gp(a1,a2,,al) when l3. Nevertheless, the following convenient formulas are known (see [28]). After finding the structure of m(p)j, we can obtain p-Frobenius or p-Sylvester numbers for triple (Fi,Fi+2,Fi+k).

    Lemma 1. Let k, p and μ be integers with k2, p0 and μ1. Assume that gcd(a1,a2,,al)=1. We have

    gp(a1,a2,,al)=max0ja11m(p)ja1, (2.1)
    np(a1,a2,,al)=1a1a11j=0m(p)ja112. (2.2)

    Remark. When p=0, (2.1) is the formula by Brauer and Shockley [27]:

    g(a1,a2,,al)=(max1ja11mj)a1, (2.3)

    where mj=m(0)j (1ja11) with m0=0. When p=0, (2.2) is the formula by Selmer [26]:

    n(a1,a2,,al)=1a1a11j=1mja112. (2.4)

    Note that m0=m(0)0=0. A more general form by using Bernoulli numbers is given in [28], as well as the concept of weighted sums [29,30].

    It is necessary to find the exact situation of 0-Apéry set Ap(Fi,0), the least complete residue system, which was initially studied in [26]. Concerning Fibonacci numbers, we use the framework in [24].

    Throughout this paper, for a fixed integer i, we write

    Ap(Fi;p)={m(p)0,m(p)1,,m(p)Fi1}

    for short. Then, we shall construct the set of the least complete residue system Ap(Fi;0). That is, mjmh(modFi) (0j<hFi1), and if for a positive integer M, Mj and Mmj (0jFi1), then M>mj. Then, for the case p=1 we shall construct the second set of the least complete residue system Ap(Fi;1). That is, m(1)jm(1)h(modFi) (0j<hFi1), m(1)jmj(modFi) (0jFi1), and there does not exist an integer M such that m(1)j>M>mj and Mj(modFi). Similarly, for p=2, we shall construct the third set of the least complete residue system Ap(Fi;2). That is, m(2)jm(2)h(modFi) (0j<hFi1), m(2)jm(1)j(modFi) (0jFi1), and there does not exist an integer M such that m(2)j>M>m(1)j and Mj(modFi).

    By using a similar frame as in [24], we first show an analogous result about Lucas triple (Li,Li+2,Li+k) when p=0. As a preparation we shall show the result when p=0, with a sketch of the proof. The results about Fibonacci numbers can be applied to get those about Lucas numbers. When p=0, by setting integers r and as Li1=rFk+ with r0 and 0Fk1 and by using the identity Ln=LmFnm+1+Lm1Fnm, we can get an analogous identity of the Fibonacci one in [24,Theorem 1].

    Theorem 1. For integers i,k3 and r=(Li1)/Fk, we have

    g0(Li,Li+2,Li+k)={(Li1)Li+2Li(rFk2+1)if r=0, or r1 and(LirFk)Li+2>Fk2Li,(rFk1)Li+2Li((r1)Fk2+1)otherwise.

    Proof. Consider the linear representation

    tx,y:=xLi+2+yLi+k=(x+yFk)Li+2yFk2Li(x,y0).

    Then, by gcd(Li,Li+2)=1, we can prove that the above table represents the least complete residue system {0,1,,Li1}(modLi).

    That is, we can prove that none of two elements among this set is not congruent modulo Fi, and if there exists an element congruent to any of the elements among this set, then such an element is bigger and not in this set.

    When r=0, the largest element among all the tx,y's in this table is t,0. When r1, the largest element is either tFk1,r1 or t,r. Since tFk1,r1<t,r is equivalent to Fk2Li<(LirFk)Li+2, the result is followed by the identity (2.3). The first case is given by t,rLi, and the second is given by tFk1,r1Li.

    Now, let us begin to consider the case p1. We shall obtain the Frobenius number using Lemma 1 (2.1). For this it is necessary to know the structure of the elements of the p-Apéry set, and the structure of the elements of the p-Apéry set depends on the structure of the elements of the (p1)-Apéry set. Therefore, in the case of p=1, the structure of the elements of the 1-Apéry set is analyzed from the structure of the elements of the 0-Apéry set, which is the original Apéry set, thereby obtaining the 1-Frobenius number. When p=1, we have the following.

    Theorem 2. For i3, we have

    g1(Fi,Fi+2,Fi+k)=(2Fi1)Fi+2Fi(ki+2), (3.1)
    g1(Fi,Fi+2,F2i+1)=(Fi21)Fi+2+F2i+1Fi, (3.2)
    g1(Fi,Fi+2,F2i)=(Fi1)Fi+2+F2iFi. (3.3)

    When r=(Fi1)/Fk1, that is, ki1, we have

    g1(Fi,Fi+2,Fi+k)={(FirFk1)Fi+2+(r+1)Fi+kFiif (FirFk)Fi+2Fk2Fi,(Fk1)Fi+2+rFi+kFiif (FirFk)Fi+2<Fk2Fi. (3.4)

    Remark. When r1 and k=i1,i2,i3,i4,i5, we have more explicit formulas.

    g1(Fi,Fi+2,F2i1)=(Fi21)Fi+2+2F2i1Fi(i4),g1(Fi,Fi+2,F2i2)=(Fi31)Fi+2+3F2i2Fi(i5),g1(Fi,Fi+2,F2i3)={(Fi61)Fi+2+5F2i3Fi(i7)Fi+2+4F2i3Fi(=149)(i=6),g1(Fi,Fi+2,F2i4)=(Fi5+Fi71)Fi+2+7F2i4Fi,g1(Fi,Fi+2,F2i5)={(Fi51)Fi+2+11F2i5Fi(i10)12F2i5Fi(i=9)11F2i5Fi(i=8).

    Proof. Put the linear representation

    tx,y:=xFi+2+yFi+k=(x+yFk)Fi+2yFk2Fi(x,y0).

    For given Fi and Fk, integers r and are determined uniquely as Fi1=rFk+ with 0Fk1.

    Table 1.  Ap(Fi;0) and Ap(Fi;1) for r1.

     | Show Table
    DownLoad: CSV

    The second set Ap(Fi;1) can be yielded from the first set Ap(Fi;0) as follows. Assume that r1. Only the first line {t0,0,t1,0,,tFk1,0} moves to fill the last gap in the (r+1)-st line, and the rest continue to the next (r+2)-nd line. Everything else from the second line shifts up by 1 and moves to the next right block (When r=1, the new right block consists of only one line tFk,0,,tFk+,0, but this does not affect the final result).

    t0,1tFk,0,t1,1tFk+1,0,,tFk1,1t2Fk1,0,t0,2tFk,1,t1,2tFk+1,1,,tFk1,2t2Fk1,1,t0,r1tFk,r2,t1,r1tFk+1,r2,,tFk1,r1t2Fk1,r2,t0,rtFk,r1,,t,rtFk+,r1,
    t0,0t+1,r,,tFk2,0tFk1,r,
    tFk1,0t0,r+1,,tFk1,0t,r+1.

    The first group is summarized as

    tx,ytFk+x,y1(modFi)

    for 0xFk1 and 1yr1 or 0x and y=r. This congruence is valid because

    tx,y=(x+yFk)Fi+2yFk2Fi(Fk+x+(y1)Fk)Fi+2(y1)Fk2Fi=tFk+x,y1(modFi).

    The second group is valid because for 0xFk2,

    tx,0=xFi+2(+1+x+rFk)Fi+2rFk2Fi=t+1+x,r(modFi).

    The third group is valid because for 0x,

    tFk1+x,0=(Fk1+x)Fi+2(x+(r+1)Fk)Fi+2(r+1)Fk2Fi=tx,r+1(modFi).
    Table 2.  Ap(Fi;0) and Ap(Fi;1) for r=0 and 2+1Fk.

     | Show Table
    DownLoad: CSV

    Assume that r=0. The first set Ap(Fi;0) consists of only the first line. If 2+1Fk, then the second set Ap(Fi;1) can be yielded by moving to fill the last gap in the line, the rest continuing to the next line.

    t0,0t+1,0,,tFk2,0tFk1,0,tFk1,0t0,1,,t,0t2+1Fk,1(modFi).

    They are valid because for 0jFk2,

    tj,0=jFi+2(Fi+j)Fi+2=(+1j)Fi+2=t+1j,0(modFi),

    and for 0j2+1Fk,

    tFk1+j,0=(Fk1+j)Fi+2(j+Fk)Fi+2Fk2Fi=tj,1(modFi).
    Table 3.  Ap(Fi;0) and Ap(Fi;1) for r=0 and 2+1Fk1.

     | Show Table
    DownLoad: CSV

    If 2+1Fk1, then the second set Ap(Fi;1) can be yielded by moving to fill the last gap in the line only.

    t0,0t+1,0,,t,0t2+1,0(modFi).

    They are valid because for 0j,

    tj,0=jFi+2(Fi+j)Fi+2=(+j+1)Fi+2=t+j+1,0(modFi).

    Next, we shall decide the maximal element in the second set Ap(Fi;1) (and also in the first set Ap(Fi;0)).

    Case 1 (1) Assume that r=0 and 2+1Fk1. The second condition is equivalent to 2FiFk, which is equivalent to ik2. The largest element in the second set Ap(Fi;1), which is congruent to {0,1,,Fi1}(modFi), is given by t2+1,0=(2Fi1)Fi+2.

    Case 1 (2) Assume that r=0 and 2+1Fk. The second condition is equivalent to 2Fi1Fk, which is equivalent to ik13. In this case there are two possibilities for the largest element in the second set Ap(Fi;1): tFk1,0=(Fk1)Fi+2 or t2+1Fk,1=(2Fi1)Fi+2Fk2Fi. However, because of ik13, always tFk1,0<t2+1Fk,1.

    Case 2 Assume that r1. This condition is equivalent to Fi1Fk, which is equivalent to ik+1.

    In this case there are four possibilities for the largest element in the second set Ap(Fi;1):

    t2Fk1,r2=(rFk1)Fi+2(r2)Fk2Fi,tFk+,r1=(Fi1)Fi+2(r1)Fk2Fi,tFk1,r=((r+1)Fk1)Fi+2rFk2Fi,t,r+1=(Fi+Fk1)Fi+2(r+1)Fk2Fi.

    However, it is clear that t2Fk1,r2<tFk1,r. Because ik+1, tFk+,r1<tFk1,r. Thus, the only necessity is to compare tFk1,r and t,r+1, and tFk1,r>t,r+1 is equivalent to (FirFk)Fi+2>Fk2Fi.

    Finally, rewriting the forms in terms of Fi+2 and Fi+k and applying Lemma 1 (2.1), we get the result. Namely, the formula (3.1) comes from Case 1 (1). The formulas (3.2) and (3.3) come from Case 1 (2) when k=i+1 and k=i, respectively. The general formula (3.4) comes from Case 2.

    When p=2, we have the following.

    Theorem 3. For i3, we have

    g2(Fi,Fi+2,Fi+k)=(3Fi1)Fi+2Fi(ki+3), (4.1)
    g2(Fi,Fi+2,F2i+2)={(Fi21)Fi+2+F2i+2Fi(i is odd)(Fi+21)Fi+2Fi(i is even), (4.2)
    g2(Fi,Fi+2,F2i+1)=(Fi1)Fi+2+F2i+1Fi, (4.3)
    g2(Fi,Fi+2,F2i)=(2Fi1)Fi+2Fi, (4.4)
    g2(Fi,Fi+2,F2i1)={(Fi41)Fi+2+3F2i1Fi(i5)Fi+2+2F2i1Fi(=31)(i=4). (4.5)

    When r=(Fi1)/Fk2, that is, ki2, we have

    g2(Fi,Fi+2,Fi+k)={(FirFk1)Fi+2+(r+2)Fi+kFiif (FirFk)Fi+2Fk2Fi;(Fk1)Fi+2+(r+1)Fi+kFiif (FirFk)Fi+2<Fk2Fi. (4.6)

    Remark. When k=i2 and k=i3, we can write this more explicitly as

    g2(Fi,Fi+2,F2i2)=(Fi31)Fi+2+4F2i2Fi(i5), (4.7)
    g2(Fi,Fi+2,F2i3)={(Fi61)Fi+2+6F2i3Fi(i7)Fi+2+5F2i3Fi(=183)(i=6), (4.8)

    respectively. The formulas (4.7) and (4.8) hold when r=2 and r=4, respectively.

    Proof. When p=2, the third least complete residue system Ap(Fi;2) is determined from the second least complete residue system Ap(Fi;1). When r2, some elements go to the third block.

    Table 4.  Ap(Fi;p) (p=0,1,2) for r=0 and Fk3+3.

     | Show Table
    DownLoad: CSV

    Case 1 (1) Let r=0 and Fk3+3=3Fi. Since for +1j2+1,

    tj,0=jFi+2(Fi+j)Fi+2=(+j+1)Fi+2=t+j+1,0(modFi),

    the third set Ap(Fi;2) is given by

    {t2+1,0,,t3+2,0}(modFi).

    As the maximal element is t3+2,0, by (2.1), we have

    g2(Fi,Fi+2,Fi+k)=(3Fi1)Fi+2Fi.
    Table 5.  Ap(Fi;p) (p=0,1,2) for r=0 and 2+2Fk3+2.

     | Show Table
    DownLoad: CSV

    Case 1 (2) Let r=0 and 2Fi=2+2Fk3+2=3Fi1. Since tj,0t+j+1,0(modFi) (+1jFk2), and for 0j3+2Fk,

    tFk1+j,0=(Fk1+j)Fi+2=(FkFi+j)Fi+2(Fk+j)Fi+2(j+Fk)Fi+2+Fk2Fi=tj,1(modFi),

    the third set Ap(Fi;2) is

    {t2+1,0,,tFk1,0,t0,1,,t3+2Fk,1}(modFi).
    Table 6.  Ap(Fi;p) (p=0,1,2) for r=0 and Fk2+1.

     | Show Table
    DownLoad: CSV

    The first elements t2+1,0,,tFk1,0 are in the last of the first line, and the last elements t0,1,,,t3+2Fk,1 are in the first part of the second line. Hence, the maximal element is tFk1,0=(Fk1)Fi+2 or t3+2Fk,1=(3Fi1)Fi+2Fk2Fi. Therefore, when (3FiFk)Fi+2Fk2Fi, g2(Fi,Fi+2,Fi+k)=(3Fi1)Fi+2(Fk2+1)Fi. When (3FiFk)Fi+2<Fk2Fi, g2(Fi,Fi+2,Fi+k)=(Fk1)Fi+2Fi.

    Case 1 (3) Let r=0 and Fk2+1=2Fi1. Since for +1jFk1

    tj,0=jFi+2(Fi+j)Fi+2(+1+j)Fi+2Fk2Fi=tFk+1+j,1(modFi),

    and for 0j2+1Fk

    tj,1=(j+Fk)Fi2Fk2Fi(Fk+j)Fi+2=tFk+j,0(modFi),

    the third set Ap(Fi;2) is

    {t2+2Fk,1,,t,1,tFk,0,,t2+1,0}(modFi).

    The first elements t2+2Fk,1,,t,1 are in the second line of the first block, and the last elements are tFk,0,,t2+1,0 in the first line of the second block. So, the maximal element is t,1=(Fi+Fk1)Fi+2Fk2Fi or t2+1,0=(2Fi1)Fi+2. Since Fk2Fi1, only when k=i+1, we have g2(Fi,Fi+2,Fi+k)=(Fi+Fk1)Fi+2(Fk2+1)Fi. When ki, we have g2(Fi,Fi+2,Fi+k)=(2Fi1)Fi+2Fi.

    Table 7.  Ap(Fi;p) (p=0,1,2) for r=1 and Fk2+2.

     | Show Table
    DownLoad: CSV

    Case 2 (1) Let r=1 and 2+2Fk, that is, 23FiFkFi1. This case happens only when i=4 and k=3. Since for +1jFk1

    tj,1=(j+Fk)Fi+2Fk2Fi(Fk+j)Fi+2=tFk+j,0(modFi),

    for 0j

    tj,2=(j+2Fk)Fi+22Fk2Fi(Fk+j+Fk)Fi+2Fk2Fi=tFk+j,1(modFi),

    and for 0j

    tFk+j,0=(Fk+j)Fi+2(Fi+j+Fk)Fi+2(+1+j+2Fk)Fi+22Fk2Fi=t+1+j,2(modFi),

    the third set Ap(Fi;2) is

    {tFk++1,0,,t2Fk1,0,tFk,1,,tFk+,1,t+1,2,,t2+1,2}(modFi).

    The first elements tFk++1,0,,t2Fk1,0 are in the first line of the second block, the second elements tFk,1,,tFk+,1 are in the second line of the second block, and the last elements t+1,2,,t2+1,2 in the third line of the first block. So, the maximal element is one of t2Fk1,0=(2Fk1)Fi+2, tFk+,1=(Fi+Fk1)Fi+2Fk2Fi or t2+1,2=(2Fi1)Fi+22Fk2Fi. As i=4 and k=3, t2+1,2=34 is the largest. Hence, g2(Fi,Fi+2,Fi+k)=(2Fi1)Fi+2(2Fk2+1)Fi, that is, g2(F4,F6,F7)=34F4=31.

    Table 8.  Ap(Fi;p) (p=0,1,2) for r=1 and Fk2+1.

     | Show Table
    DownLoad: CSV

    Case 2 (2) Let r=1 and 2+1Fk, that is, (Fi1)/2<Fk(2Fi1)/3. This relation holds only when k=i14. Since tj,1tFk+j,0(modFi) (+1jFk1), tj,2tFk+j,1(modFi) (0j), tFk+j,0t+1+j,2(modFi) (0jFk2), and for 0j2+1Fk

    t2Fk1+j,0=(2Fk1+j)Fi+2(3FkFi+j)Fi+2(j+3Fk)Fi+23Fk2Fi=tj,3(modFi),

    the third set Ap(Fi;2) is

    {tFk++1,0,,t2Fk1,0,tFk,1,,tFk+,1,t+1,2,,tFk1,2,t0,3,,t2+1Fk,3}(modFi).

    So, the maximal element is one of t2Fk1,0=(2Fk1)Fi+2, tFk+,1=(Fi+Fk1)Fi+2Fk2Fi, tFk1,2=(3Fk1)Fi+22Fk2Fi or t2+1Fk,3=(2Fi1)Fi+23Fk2Fi. As k=i14, t2+1Fk,3=(2Fi1)Fi+23Fi3Fi is the largest. Hence, g2(Fi,Fi+2,F2i1)=(2Fi1)Fi+2(3Fi3+1)Fi.

    Case 3 Let r2. The part

    tFk,1,,t2Fk1,1,,tFk,r2,,t2Fk1,r2,tFk,r1,,tFk+,r1

    in the second block among the second set Ap(Fi;1) corresponds to the part

    t2Fk,0,,t3Fk1,0,,t2Fk,r3,,t3Fk1,r3,t2Fk,r2,,t2Fk+,r2

    in the third block among the third least set Ap(Fi;2)* because

    *When r=2, only the last shorter line remains, and t3Fk1,r3 in table 9 does not appear. However, this does not affect the result.

    tFk+j,h=(Fk+j+hFk)Fi+2hFk2Fi(2Fk+j+(h1)Fk)Fi+2(h1)Fk2Fi=t2Fk+j,h1(modFi)
    Table 9.  Ap(Fi;p) (p=0,1,2) for r2.

     | Show Table
    DownLoad: CSV

    for 0jFk1 and 1hr2 or 0j and h=r1. The part t+1,r,,tFk1,r in the first block among the second set Ap(Fi;1) corresponds to the part tFk++1,r1,,t2Fk1,r1 in the second block among the third set Ap(Fi;2) because for ell+1jFk1

    tj,r=(j+rFk)Fi+2rFk2Fi(Fk+j+(r1)Fk)Fi+2(r1)Fk2Fi=tFk+j,r1(modFi).

    The part t0,r+1,,t,r+1 in the first block among the second set Ap(Fi;1) corresponds to the part tFk,r,,tFk+,r in the second block among the third set Ap(Fi;2) because for 0j

    tj,r+1=(j+(r+1)Fk)Fi+2(r+1)Fk2Fi(Fk+j+rFk)Fi+2rFk2Fi=tFk+j,r(modFi).

    The first line tFk,0,,t2Fk2,t2Fk1,,t2Fk1,0 in the second block among the second set Ap(Fi;1) corresponds to two parts t+1,r+1,,tFk1,r+1 and t0,r+2,,t,r+2 in the first block among the third set Ap(Fi;2) because for 0jFk2

    tFk+j,0=(Fk+j)Fi+2(Fi+Fk+j)Fi+2(r+1)Fk2Fi=(+1+j+(r+1)Fk)Fi+2(r+1)Fk2Fi=t+1+j,r+1(modFi),

    and for 0j,

    t2Fk1+j,0=(2Fk1+j)Fi+2=(2FkFi+rFk+j)Fi+2(j+(r+2)Fk)Fi+2(r+2)Fk2Fi=tj,r+2(modFi).

    Hence, the third set Ap(Fi;2) is given by

    {t2Fk,0,,t3Fk1,0,,t2Fk,r3,,t3Fk1,r3,t2Fk,r2,,t2Fk+,r2,tFk++1,r1,,t2Fk1,r1,tFk,r,,tFk+,r,t+1,r+1,,tFk1,r+1,t0,r+2,,t,r+2}(modFi).

    There are six candidates for the maximal element:

    t3Fk1,r3=(rFk1)Fi+2(r3)Fk2Fi,t2Fk+,r2=(Fi1)Fi+2(r2)Fk2Fi,t2Fk1,r1=((r+1)Fk1)Fi+2(r1)Fk2Fi,tFk+,r=(Fi+Fk1)Fi+2rFk2Fi,tFk1,r+1=((r+2)Fk1)Fi+2(r+1)Fk2Fi,t,r+2=(Fi+2Fk1)Fi+2(r+2)Fk2Fi.

    However, it is easy to see that the first four values are less than the last two. Hence, if (FirFk)Fi+2Fk2Fi, then g2(Fi,Fi+2,Fi+k)=t,r+2Fi=(Fi+2Fk1)Fi+2((r+2)Fk2+1)Fi. If (FirFk)Fi+2<Fk2Fi, then g2(Fi,Fi+2,Fi+k)=tFk1,r+1Fi=((r+2)Fk1)Fi+2((r+1)+1)Fk2Fi.

    Finally, we rewrite the form as the linear combination of Fi+2 and Fi+k and apply Lemma 1 (2.1). The formula (4.1) comes from Case 1 (1). The formula (4.2) comes from Case 1 (2). The formulas (4.3) and (4.4) come from Case 1 (3). The formula (4.5) comes from Case 2 (1) (2). The general formula (4.6) comes from Case 3.

    When p=3, we have the following.

    Theorem 4. For i3, we have

    g3(Fi,Fi+2,Fi+k)=(4Fi1)Fi+2Fi(ki+3), (5.1)
    g3(Fi,Fi+2,F2i+2)=(Fi1)Fi+2+F2i+2Fi,g3(Fi,Fi+2,F2i+1)=(Fi+Fi21)Fi+2+F2i+1Fi,g3(Fi,Fi+2,F2i)=(Fi1)Fi+2+2F2iFi,g3(Fi,Fi+2,F2i1)=(Fi21)Fi+2+3F2i1Fi(i4),g3(Fi,Fi+2,F2i2)={(Fi51)Fi+2+5F2i2Fi(i6)Fi+2+4F2i2Fi(=92)(i=5). (5.2)

    When r=(Fi1)/Fk3, that is, ki3, we have

    g3(Fi,Fi+2,Fi+k)={(FirFk1)Fi+2+(r+3)Fi+kFiif (FirFk)Fi+2Fk2Fi;(Fk1)Fi+2+(r+2)Fi+kFiif (FirFk)Fi+2<Fk2Fi. (5.3)
    Table 10.  Ap(Fi;p) (p=0,1,2,3) for r3.

     | Show Table
    DownLoad: CSV

    Proof. When p=3, the fourth least complete residue system Ap(Fi;3) is determined from the third least complete residue system Ap(Fi;2). When r3, some elements go to the fourth block. The proof of the cases r=0,1,2 is similar to that of Theorem 3 and needs more case-by-case discussions, and it is omitted.

    In the table, denotes the area of the n-th least set of the complete residue system Ap(Fi;n1). Here, each m(n1)j, satisfying m(n1)jj(modFi) (0jFi1), can be expressed in at least n ways, but m(n1)jFi can be expressed in at most n1 ways. As illustrated in the proof of Theorem 4.1, two areas (lines) of ④ in the first block correspond to the first line of ③ in the third block, two areas (lines) of ④ in the second block correspond to two areas (lines) of ③ in the first block, two areas (lines) of ④ in the third block correspond to two areas (lines) of ③ in the second block, and the area of ④ in the fourth block correspond to the area of ③ in the third block except the first line. Eventually, the maximal element of the fourth set of the complete residue system is from the first block, that is, tFk1,r+2=((r+3)Fk1)Fi+2(r+2)Fk2Fi or t,r+3=(Fi+3Fk1)Fi+2(r+3)Fk2Fi. Hence, if (FirFk)Fi+2Fk2Fi, then g3(Fi,Fi+2,Fi+k)=t,r+3Fi=(Fi+3Fk1)Fi+2((r+3)Fk2+1)Fi. If (FirFk)Fi+2<Fk2Fi, then g3(Fi,Fi+2,Fi+k)=tFk1,r+2Fi=((r+3)Fk1)Fi+2((r+2)Fk2+1)Fi. Notice that r3 implies that ki3.

    Repeating the same process, when r is big enough that rp, that is, k is comparatively smaller than i, as a generalization of (3.4), (4.6) and (5.3), we can have an explicit formula.

    Theorem 5. Let i3 and p be a nonnegative integer. When r=(Fi1)/Fkp with (r,p)(0,0), we have

    gp(Fi,Fi+2,Fi+k)={(FirFk1)Fi+2+(r+p)Fi+kFiif (FirFk)Fi+2Fk2Fi;(Fk1)Fi+2+(r+p1)Fi+kFiif (FirFk)Fi+2<Fk2Fi.

    Remark. When p=0, Theorem 5 reduces to [24,Theorem 1] except r=0.

    On the other hand, k is comparatively larger than i. As a generalization of (3.1), (4.1) and (5.1), we can also have the following formula.

    Proposition 1. For i,k3, we have

    gp(Fi,Fi+2,Fi+k)=gp(Fi,Fi+2)(ki+h)

    when (p,h)=(3,4), (4,4), (5,5), (6,5), (7,5), (8,5), (9,6), (10,6), (11,6), (12,6), (13,6), (14,6), (15,7), (16,7), (17,7), (18,7), (19,7), (20,7), (21,7), (22,7), (23,7), (24,8), .

    The proof depends on the fact

    (p+1)FiFi+2FiFi+2<F2i+h(i3).

    Nevertheless, such h's are not necessarily sharp because even if (p+1)FiFi+2FiFi+2>F2i+h, it is possible to have gp(Fi,Fi+2,Fi+k)=gp(Fi,Fi+2) (ki+h).

    The formulas about Fibonacci numbers can be applied to obtain those about Lucas numbers. The discussion is similar, though the value (Li1)/Fk is different from (Fi1)/Fk. So, we list the results only.

    When p=1, we have the following.

    Theorem 6. For i3, we have

    g1(Li,Li+2,Li+k)=(2Li1)Li+2Li(ki+4),g1(Li,Li+2,L2i+3)=(Fi+31)Li+2Li,g1(Li,Li+2,L2i+2)=(3Fi11)Li+2+L2i+2Li.

    When r=(Li1)/Fk1, that is, ki+1, we have

    g1(Li,Li+2,Li+k)={(LirFk1)Li+2+(r+1)Li+kLiif (LirFk)Li+2Fk2Li,(Fk1)Li+2+rLi+kLiif (LirFk)Li+2<Fk2Li.

    When p=2, we have the following.

    Theorem 7. For i3, we have

    g2(Li,Li+2,Li+k)=(3Li1)Li+2Li(ki+4),g2(Li,Li+2,L2i+3)=(Li1)Li+2+L2i+3Li,g2(Li,Li+2,L2i+2)={(Li1)Li+2+L2i+2Li(i is odd)(2Li1)Li+2Li(i is even),g2(Li,Li+2,L2i+1)=(2Fi11)Li+2+2L2i+1Li,g2(Li,Li+2,L2i)=Li+2+3L2iLi(=61)(i=3).

    When r=(Li1)/Fk2, that is, ki except i=k=3, we have

    g2(Li,Li+2,Li+k)={(LirFk1)Li+2+(r+2)Li+kLiif (LirFk)Li+2Fk2Li,(Fk1)Li+2+(r+1)Li+kLiif (LirFk)Li+2<Fk2Li.

    When p=3, we have the following.

    Theorem 8. For i3, we have

    g3(Li,Li+2,Li+k)=(4Li1)Li+2Li(ki+5),g3(Li,Li+2,L2i+4)=(4Fi1Fi21)Li+2+L2i+4Li,g3(Li,Li+2,L2i+3)=(4Fi+11)Li+2Li,g3(Li,Li+2,L2i+2)=(Fi+2Fi31)Li+2+2L2i+2Li,g3(Li,Li+2,L2i+1)=(Fi11)Li+2+3L2i+1Li,g3(Li,Li+2,L2i)={(2Fi31)Li+2+4L2iLi(i4)3Li+2+2L2iLi(=69)(i=3).

    When r = \left\lfloor{(L_i-1)/F_k}\right\rfloor\ge 3 , that is, k\le i-1 , we have

    \begin{align*} &g_3(L_i, L_{i+2}, L_{i+k})\\ & = \begin{cases} (L_i-r F_k-1)L_{i+2}+(r+3)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2}\ge F_{k-2}L_i }}, \\ (F_k-1)L_{i+2}+(r+2)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2} < F_{k-2}L_i }}. \end{cases} \end{align*}

    For general p , when r is not less than p , we have an explicit formula.

    Theorem 9. Let i\ge 3 and p be a nonnegative integer. When r = \left\lfloor{(L_i-1)/F_k}\right\rfloor\ge p with (r, p)\ne(0, 0) , we have

    \begin{align*} &g_p(L_i, L_{i+2}, L_{i+k})\notag\\ & = \begin{cases} (L_i-r F_k-1)L_{i+2}+(r+p)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2}\ge F_{k-2}L_i }};\\ (F_k-1)L_{i+2}+(r+p-1)L_{i+k}-L_i&{{if\ (L_i-r F_k)L_{i+2} < F_{k-2}L_i }}\, . \end{cases} \end{align*}

    By using the table of complete residue systems, we can also find explicit formulas of the p -Sylvester number, which is the total number of nonnegative integers that can only be expressed in at most p ways. When p = 0 , such a number is often called the Sylvester number.

    When p = 1 , we have the following.

    Theorem 10. For i\ge 3 , we have

    \begin{align} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+2)\, , \end{align} (8.1)
    \begin{align} n_1(F_i, F_{i+2}, F_{2 i+1})& = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)-(2 F_i-F_k)F_{k-2}\, , \\ &\qquad\qquad\qquad\qquad\qquad(k = i, i+1)\, . \end{align} (8.2)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 1 , that is, k\le i-1 , we have

    \begin{align} &n_1(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl(F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}\, . \end{align} (8.3)

    Proof. When r = 0 and 2\ell+1\le F_k-1 , by F_i-1 = \ell ,

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(1)}& = t_{\ell+1, 0}+\cdots+t_{2\ell+1, 0}\\ & = \left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}\\ & = \frac{(3 F_i-1)F_i F_{i+2}}{2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{(3 F_i-1)F_{i+2}}{2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align*}

    which is (8.1).

    When r = 0 and 2\ell+1\ge F_k , by F_i-1 = \ell ,

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(1)}& = (t_{\ell+1, 0}+\cdots+t_{F_k-1, 0})+(t_{0, 1}+\cdots+t_{2\ell+1-F_k, 1})\\ & = \left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}\\ &\quad +\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}F_{i+2}+(2\ell+2-F_k)F_{i+k}\\ & = \left(\frac{(3 F_i-1)F_i}{2}-2 F_i F_k+F_k^2\right)F_{i+2}+(2 F_i-F_k)F_{i+k}\, . \end{align*}

    Since F_{i+k} = F_{i+2}F_k-F_i F_{k-2} ,

    \sum\limits_{j = 0}^{F_i-1}m_j^{(1)} = \left(\frac{(3 F_i-1)F_{i+2}}{2}-(2 F_i-F_k)F_{k-2}\right)F_i\, .

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_1(F_i, F_{i+2}, F_{i+k})& = \frac{(3 F_i-1)F_{i+2}}{2}-(2 F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)-(2 F_i-F_k)F_{k-2}\, , \end{align*}

    which is (8.2).

    When r\ge 1 , by F_i-1 = r F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(1)}\\ & = \sum\limits_{h = 0}^{r-2}(t_{F_k, h}+\cdots+t_{2 F_k-1, h}) +(t_{F_k, r-1}+\cdots+t_{F_k+\ell, r-1})\\ &\quad +(t_{\ell+1, r}+\cdots+t_{F_k-1, r})+(t_{0, r+1}+\cdots+t_{\ell, r+1})\\ & = (r-1)\left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+\frac{(r-2)(r-1)}{2}F_k F_{i+k}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)(r-1)F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+(F_k-1-\ell)r F_{i+k}\\ &\quad +\frac{\ell(\ell+1)}{2}F_{i+2}+(\ell+1)(r+1)F_{i+k}\\ & = \frac{1}{2}\left((r-1)(3 F_k-1)F_k+\bigl(F_i-(r-1)F_k-1\bigr)\bigl(F_i-(r-1)F_k\bigr)\right)F_{i+2}\\ &\quad +\left(\frac{(r-2)(r-1)}{2}F_k+r\bigl(F_i-(r-1)F_k\bigr)\right)F_{i+k}\\ & = \frac{1}{2}(F_i+2 F_k-1)F_i F_{i+2}\\ &\quad -\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\bigr)\right)F_{k-2}F_i\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_1(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+2 F_k-1)F_{i+2}-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-\left(r F_i-\frac{(r-1)(r+2)}{2}F_k\right)F_{k-2}\, , \end{align*}

    which is (8.3).

    When p = 2 , we have the following.

    Theorem 11. For i\ge 3 , we have

    \begin{align} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+3)\, , \end{align} (8.4)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i+2})& = \frac{1}{2}\bigl((7 F_{i+2}-6 F_i-1)F_{i}-F_{i+2}+1\bigr)\, , \end{align} (8.5)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i+1})& = \frac{1}{2}\bigl((7 F_{i+2}-8 F_i-1)F_{i}-F_{i+2}+1\bigr)\, , \end{align} (8.6)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i})& = \frac{1}{2}(3 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align} (8.7)
    \begin{align} n_2(F_i, F_{i+2}, F_{2 i-1})& = \frac{1}{2}\bigl((170 F_i-1)F_i+(24 F_{i+2}-125 F_i-1)F_{i+2}+1\bigr)\, . \end{align} (8.8)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 2 , that is, k\le i-2 , we have

    \begin{align} &n_2(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl((F_i+4 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2}\, . \end{align} (8.9)

    Proof. When r = 0 and F_k\ge 3\ell+3 , by F_i-1 = \ell , we have

    \begin{align*} \sum\limits_{j = 0}^{F_i-1}m_j^{(2)} & = t_{2\ell+2, 0}+\cdots+t_{3\ell+2, 0}\\ & = \left(\frac{(3\ell+2)(3\ell+3)}{2}-\frac{(2\ell+1)(2\ell+2)}{2}\right)F_{i+2}\\ & = \frac{1}{2}(5 F_i-1)F_i F_{i+2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i-1)F_{i+2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)\, , \end{align*}

    which is (8.4).

    When r = 0 and 2\ell+2\le F_k\le 3\ell+2 , by F_{i+k} = F_{i+2}F_k-F_i F_{k-2} , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{2\ell+2, 0}+\cdots+t_{F_k-1, 0})+(t_{0, 1}+\cdots+t_{3\ell+2-F_k, 1})\\ & = \left(\frac{(F_k-1)F_k}{2}-\frac{(2\ell+1)(2\ell+2)}{2}\right)F_{i+2}\\ &\quad +\frac{(3\ell+2-F_k)(3\ell+3-F_k)}{2}F_{i+2}+(3\ell+3-F_k)F_{i+k}\\ & = \frac{1}{2}(5 F_i-1)F_i F_{i+2}-(3 F_i-F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(5 F_i-1)F_{i+2}-(3 F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}(5 F_i F_{i+2}-F_i-F_{i+2}+1)-(3 F_i-F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i+2 . Hence, we get (8.5).

    When r = 0 and F_k\le 2\ell+1 , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)} = (t_{F_k, 0}+\cdots+t_{2\ell+1, 0})+(t_{2\ell+2-F_k, 1}+\cdots+t_{\ell, 1})\\ & = \left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}\\ &\quad +\left(\frac{\ell(\ell+1)}{2}-\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}\right)F_{i+2}+(F_k-\ell-1)F_{i+k}\\ & = \frac{1}{2}(F_i+2 F_k-1)F_i F_{i+2}-(F_k-F_i)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(F_i+2 F_k-1)F_{i+2}-(F_k-F_i)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 F_k-1)F_{i+2}-F_i+1\bigr)-(F_k-F_i)F_{k-2}\, . \end{align*}

    This case occurs only when k = i+1 . Hence, by rewriting we get (8.6).

    When r = 1 and 2\ell+2\le F_k , by F_i-1 = F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{F_k+\ell+1, 0}+\cdots+t_{2 F_k-1, 0})+(t_{F_k, 1}+\cdots+t_{F_k+\ell, 1})\\ &\quad +(t_{\ell+1, 2}+\cdots+t_{2\ell+1, 2})\\ & = \left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)F_{i+k}\\ &\quad +\left(\frac{(2\ell+1)(2\ell+2)}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+2(\ell+1)F_{i+k}\\ & = \frac{1}{2}(3 F_i-1)F_i F_{i+2}-3(F_i-F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i-1)F_{i+2}-3(F_i-F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl(3 F_i F_{i+2}-F_i-F_{i+2}+1\bigr)-3(F_i-F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i . Hence, we get (8.7).

    When r = 1 and 2\ell+1\ge F_k , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = (t_{F_k+\ell+1, 0}+\cdots+t_{2 F_k-1, 0})+(t_{F_k, 1}+\cdots+t_{F_k+\ell, 1})\\ &\quad +(t_{\ell+1, 2}+\cdots+t_{F_k-1, 2})+(t_{0, 3}+\cdots+t_{2\ell+1-F_k, 3})\\ & = \left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+2(F_k-\ell-1)F_{i+k}\\ &\quad +\frac{(2\ell+1-F_k)(2\ell+2-F_k)}{2}F_{i+2}+3(2\ell+2-F_k)F_{i+k}\\ & = \frac{1}{2}(3 F_i-1)F_i F_{i+2}-(5 F_i-6 F_k)F_i F_{k-2}\, . \end{align*}

    Hence, we have

    \begin{align*} n_2(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(3 F_i-1)F_{i+2}-(5 F_i-6 F_k)F_{k-2}-\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl(3 F_i F_{i+2}-F_i-F_{i+2}+1\bigr)-(5 F_i-6 F_k)F_{k-2}\, . \end{align*}

    This case occurs only when k = i-1 . Hence, after rewriting, we get (8.8).

    When r\ge 2 , by F_i-1 = r F_k+\ell , we have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(2)}\\ & = \sum\limits_{h = 0}^{r-3}(t_{2 F_k, h}+\cdots+t_{3 F_k-1, h}) +(t_{2 F_k, r-2}+\cdots+t_{2 F_k+\ell, r-2})\\ &\quad +(t_{F_k+\ell+1, r-1}+\cdots+t_{2 F_k-1, r-1})+(t_{F_k, r}+\cdots+t_{F_k+\ell, r})\\ &\quad +(t_{\ell+1, r+1}+\cdots+t_{F_k-1, r+1})+(t_{0, r+2}+\cdots+t_{\ell, r+2})\\ & = (r-2)\left(\frac{(3 F_k-1)(3 F_k)}{2}-\frac{(2 F_k-1)(2 F_k)}{2}\right)F_{i+2}+\frac{(r-3)(r-2)}{2}F_k F_{i+k}\\ &\quad +\left(\frac{(2 F_k+\ell)(2 F_k+\ell+1)}{2}-\frac{(2 F_k-1)(2 F_k)}{2}\right)F_{i+2}+(\ell+1)(r-2)F_{i+k}\\ &\quad +\left(\frac{(2 F_k-1)(2 F_k)}{2}-\frac{(F_k+\ell)(F_k+\ell+1)}{2}\right)F_{i+2}+(F_k-\ell-1)(r-1)F_{i+k}\\ &\quad +\left(\frac{(F_k+\ell)(F_k+\ell+1)}{2}-\frac{(F_k-1)F_k}{2}\right)F_{i+2}+(\ell+1)r F_{i+k}\\ &\quad +\left(\frac{(F_k-1)F_k}{2}-\frac{\ell(\ell+1)}{2}\right)F_{i+2}+(F_k-\ell-1)(r+1)F_{i+k}\\ &\quad +\frac{\ell(\ell+1)}{2}F_{i+2}+(\ell+1)(r+2)F_{i+k}\\ & = \frac{1}{2}(F_i+4 F_k-1)F_i F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_i F_{k-2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_2(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+4 F_k-1)F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2} -\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+4 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+3)(r-2)F_k\bigr)F_{k-2}\, , \end{align*}

    which is (8.9).

    When p = 3 , we have the following. The process is similar, and the proof is omitted.

    Theorem 12. For i\ge 3 , we have

    \begin{align} n_3(F_i, F_{i+2}, F_{i+k})& = \frac{1}{2}(7 F_i F_{i+2}-F_i-F_{i+2}+1)\quad(k\ge i+3)\, , \\ n_3(F_i, F_{i+2}, F_{2 i+2})& = (F_{i}-1)F_{i+2}+F_{2 i+2}-F_i\, , \\ n_3(F_i, F_{i+2}, F_{2 i+1})& = (F_{i}+F_{i-2}-1)F_{i+2}+F_{2 i+1}-F_i\, , \\ n_3(F_i, F_{i+2}, F_{2 i})& = \frac{1}{2}\bigl((5 F_i-1)F_{i+2}-F_i+1\bigr)-2 F_{i}F_{i-2}\, , \\ n_3(F_i, F_{i+2}, F_{2 i-1})& = \frac{1}{2}\bigl((F_i+4 F_{i-1}-1)F_{i+2}-F_i+1\bigr)-2 F_{i-1}F_{i-3}\quad(i\ge 4)\, , \\ n_3(F_i, F_{i+2}, F_{2 i-2})& = \frac{1}{2}\bigl((3 F_i-1)F_{i+2}-F_i+1\bigr)-(8 F_i-15 F_{i-2})F_{i-4}\quad(i\ge 5)\, . \end{align} (8.10)

    When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge 3 , that is, k\le i-3 , we have

    \begin{align*} &n_3(F_i, F_{i+2}, F_{i+k})\notag\\ & = \frac{1}{2}\bigl((F_i+6 F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+4)(r-3)F_k\bigr)F_{k-2}\, . \end{align*}

    We can continue to obtain explicit formulas of n_p(F_i, F_{i+2}, F_{i+k}) for p = 4, 5, \dots . However, the situation becomes more complicated. We need more case-by-case discussions.

    For general p , when r\ge p , we can have an explicit formula.

    Theorem 13. Let i\ge 3 and p be a nonnegative integer. When r = \left\lfloor{(F_i-1)/F_k}\right\rfloor\ge p , we have

    \begin{align} &n_p(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}\bigl((F_i+2 p F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2}\, . \end{align} (8.11)

    Remark. When p = 0 , Theorem 13 reduces to [24,Corollary 2].

    Sketch of the proof of Theorem 13. We have

    \begin{align*} &\sum\limits_{j = 0}^{F_i-1}m_j^{(p)}\\ & = \sum\limits_{h = 0}^{r-p-1}(t_{p F_k, h}+\cdots+t_{(p+1)F_k-1, h})\\ &\quad +(t_{p F_k, r-p}+\cdots+t_{p F_k+\ell, r-p})\\ &\quad +(t_{(p-1)F_k+\ell+1, r-p+1}+\cdots+t_{(p-1)F_k-1, r-p+1})\\ &\quad +(t_{(p-1)F_k, r-p+2}+\cdots+t_{(p-1)F_k+\ell, r-p+2})\\ &\quad +\cdots\\ &\quad +(t_{\ell+1, r+p-1}+\cdots+t_{F_k-1, r+p-1})+(t_{0, r+p}+\cdots+t_{\ell, r+p})\\ & = \frac{1}{2}\bigl((r-p)((2 p+1)F_k-1)F_k+(F_i-(r-p)F_k-1)(F_i-(r-p)F_k)\bigr)F_{i+2}\\ &\quad +\left(\frac{(r-p-1)(r-p)}{2}F_k+r(F_i-(r-p)F_k)\right)F_{i+k}\\ & = \frac{1}{2}(F_i+2 p F_k-1)F_i F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_i F_{k-2}\, . \end{align*}

    Hence, by Lemma 1 (2.2), we have

    \begin{align*} &n_p(F_i, F_{i+2}, F_{i+k})\\ & = \frac{1}{2}(F_i+2 p F_k-1)F_{i+2}-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2} -\frac{F_i-1}{2}\\ & = \frac{1}{2}\bigl((F_i+2 p F_k-1)F_{i+2}-F_i+1\bigr)-\frac{1}{2}\bigl(2 r F_i-(r+p+1)(r-p)F_k\bigr)F_{k-2}\, , \end{align*}

    which is (8.11).

    Consider the Fibonacci triple (F_6, F_8, F_{10}) . Since F_6-1 = 2 F_4+1 , we see that r = 2 and \ell = 1 . Then, we can construct the first least set, the second least and 3rd, 4th and 5th least sets of the complete residue systems as follows.

    \begin{align*} ①{\rm Ap} (F_6;0)& = \{0, 21, 42, 55, 76, 97,110,131\}\pmod{F_6}\, , \\ ②{\rm Ap} (F_6;1)& = \{63, 84,105,118,139,152,165,186\}\pmod{F_6}\, , \\ ③{\rm Ap} (F_6;2)& = \{126,147,160,173,194,207,220,241\}\pmod{F_6}\, , \\ ④{\rm Ap} (F_6;3)& = \{168,181,202,215,228,249,262,275\}\pmod{F_6}\, , \\ ⑤{\rm Ap} (F_6;4)& = \{189,210,223,236,257,270,283,296\}\pmod{F_6}\, .\\ \end{align*}
    Table 11.  {\rm Ap}(F_6,j) (j=0,1,2,3,4).

     | Show Table
    DownLoad: CSV

    Therefore, by Lemma 1 (2.1) with (2.3), we obtain that

    \begin{align*} g_0(F_6, F_8, F_{10})& = 131-8 = 123\, , \\ g_1(F_6, F_8, F_{10})& = 186-8 = 178\, , \\ g_2(F_6, F_8, F_{10})& = 241-8 = 233\, , \\ g_3(F_6, F_8, F_{10})& = 275-8 = 267\, , \\ g_4(F_6, F_8, F_{10})& = 296-8 = 288\, . \end{align*}

    By Lemma 1 (2.2) with (2.4), we obtain that

    \begin{align*} n_0(F_6, F_8, F_{10})& = \frac{0+21+\cdots+131}{8}-\frac{8-1}{2} = 63\, , \\ n_1(F_6, F_8, F_{10})& = \frac{63+84+\cdots+186}{8}-\frac{8-1}{2} = 123\, , \\ n_2(F_6, F_8, F_{10})& = \frac{126+147+\cdots+241}{8}-\frac{8-1}{2} = 180\, , \\ n_3(F_6, F_8, F_{10})& = \frac{168+181+\cdots+275}{8}-\frac{8-1}{2} = 219\, , \\ n_4(F_6, F_8, F_{10})& = \frac{189+210+\cdots+296}{8}-\frac{8-1}{2} = 242\, . \end{align*}

    On the other hand, from (3.4), by (F_6-2 F_4)F_8 > F_2 F_6 , we get

    \begin{align*} g_1(F_6, F_8, F_{10})& = (F_6-2 F_4-1)F_{8}+3 F_{10}-F_6\\ & = 178\, . \end{align*}

    From (4.6) and (5.2), we get

    \begin{align*} g_2(F_6, F_8, F_{10})& = (F_6-2 F_4-1)F_{8}+4 F_{10}-F_6\\ & = 233\, , \\ g_3(F_6, F_8, F_{10})& = (F_{1}-1)F_{8}+5 F_{10}-F_6\\ & = 267\, , \end{align*}

    respectively. From (8.3), (8.9) and (8.10), we get

    \begin{align*} &n_1(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl(F_6+2 F_4-1)F_{8}-F_6+1\bigr)-\left(2 F_6-\frac{(2-1)(2+2)}{2}F_4\right)F_{2}\\ & = 123\, , \\ &n_2(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl((F_6+4 F_4-1)F_{8}-F_6+1\bigr)-\frac{1}{2}\bigl(4 F_6-(2+3)(2-2)F_4\bigr)F_{2}\\ & = 180\, , \\ &n_3(F_6, F_8, F_{10})\\ & = \frac{1}{2}\bigl((3 F_6-1)F_{8}-F_6+1\bigr)-(8 F_6-15 F_{4})F_{2}\\ & = 219\, , \end{align*}

    respectively.

    In [31], a more general triple g(F_a, F_b, F_c) is studied for distinct Fibonacci numbers with a, b, c\ge 3 . In [32], the Frobenius number g(a, a+b, 2 a+3 b, \dots, F_{2k-1}a+F_{2 k}b) is given for relatively prime integers a and b . Will we be able to say anything in terms of these p -Frobenius numbers?

    The authors thank the anonymous referees for careful reading of this manuscript.

    The authors declare there is no conflict of interest.



    [1] Sherlock C, Fernie K, Munno K, et al. (2022). The potential of aerial insectivores for monitoring microplastics in terrestrial environments. Sci Total Environ 807: 150453. https://doi.org/10.1016/j.scitotenv.2021.150453 doi: 10.1016/j.scitotenv.2021.150453
    [2] Hermabessiere L, Paul-Pont I, Cassone A, et al. (2019). Microplastic contamination and pollutant levels in mussels and cockles collected along the channel coasts. Environ Pollut 250: 807–819. https://doi.org/10.1016/j.envpol.2019.04.051 doi: 10.1016/j.envpol.2019.04.051
    [3] Allen D, Allen S, Abbasi S, et al. (2022). Microplastics and nanoplastics in the marine-atmosphere environment. Nat Rev Earth Environ 3: 393–405. https://doi.org/10.1038/s43017-022-00292-x doi: 10.1038/s43017-022-00292-x
    [4] Dris R, Gasperi J, Rocher V, et al. (2015). Microplastic contamination in an urban area: a case study in Grater Paris. Environ Chem 12: 592–599. 10.1071/EN14167f doi: 10.1071/EN14167f
    [5] Lane M, Gardner C (2023). Fate and transport of biological microcontaminants bound to microplastics in the soil environment. Sci Total Environ 892: 164439. http://dx.doi.org/10.1016/j.scitotenv.2023.164439 doi: 10.1016/j.scitotenv.2023.164439
    [6] Al Marshoudi M, Al Reasi H, Al-Habsi A, et al. (2023). Additive effects of microplastics on accumulation and toxicity of cadmium in male zebrafish. Chemosphere 334: 138969. https://doi.org/10.1016/j.chemosphere.2023.138969
    [7] Liu P, Wu X, Shi H, et al. (2022). Contribution of aged polystyrene microplastics to the bioaccumulation of pharmaceuticals in marine organisms using experimental and model analysis. Chemosphere 287: 132412. https://doi.org/10.1016/j.chemosphere.2021.132412 doi: 10.1016/j.chemosphere.2021.132412
    [8] Xia Y, Niu S, Yu J (2023). Microplastics as vectors of organic pollutants in aquatic environment: A review on mechanisms, numerical models, and influencing factors. Sci Total Environ 887: 164008. https://doi.org/10.1016/j.scitotenv.2023.164008 doi: 10.1016/j.scitotenv.2023.164008
    [9] Sahai H, García Valverde M, Murcia Morales M, et al. (2023). Exploring sorption of pesticides and PAHs in microplastics derived from plastic mulch films used in modern agriculture. Chemosphere 333: 138959. https://doi.org/10.1016/j.chemosphere.2023.138959 doi: 10.1016/j.chemosphere.2023.138959
    [10] Tumwesigye E, Nnadozie C.F, Akamagwuna F.C, et al. (2023). Microplastics as vectors of chemical contaminants and biological agents in freshwater ecosystems: Current knowledge status and future perspectives. Environ Pollut 330: 121829 https://doi.org/10.1016/j.envpol.2023.121829 doi: 10.1016/j.envpol.2023.121829
    [11] Elseblani R, Cobo-Golpe M, Godin S, et al. (2023). Study of metal and organic contaminants transported by microplastics in the Lebanese coastal environment using ICP MS, GC-MS, and LC-MS. Sci Total Environ 887: 164111. https://doi.org/10.1016/j.scitotenv.2023.164111 doi: 10.1016/j.scitotenv.2023.164111
    [12] Sharma S, Sharma V, Chatterjee S, (2021). Microplastics in the Mediterranean Sea: sources, pollution intensity, sea health, and regulatory policies. Front Mar Sci 8. https://doi.org/10.3389/fmars.2021.634934
    [13] Nugnes R, Russo C, Lavorgna M, et al. (2022). Polystyrene microplastic particles in combination with pesticides and antiviral drugs: Toxicity and genotoxicity in Ceridaphnia dubia. Environ Pollut 313: 120088. https://doi.org/10.1016/j.envpol.2022.120088 doi: 10.1016/j.envpol.2022.120088
    [14] Bai Z, Zhang Y, Cheng L, et al. (2023). Nanoplastics pose a greater effect than microplastics in enhancing mercury toxicity to marine copepods. Chemosphere 325: 138371. https://doi.org/10.1016/j.chemosphere.2023.138371
    [15] Pinto E.P, Paredes E, Bellas J (2023). Influence of microplastics on the toxicity of chlorpyrifos and mercury on the marine microalgae Rhodomonas lens. Sci Total Environ 857: 159605. https://doi.org/10.1016/j.scitotenv.2022.159605
    [16] Squadrone S, Pederiva S, Bezzo T, et al. (2022). Microplastics as vectors of metals contamination in Mediterranean Sea. Environ Sci Pollut Res 29: 29529–29534. https://doi.org/10.1007/s11356-021-13662-7 doi: 10.1007/s11356-021-13662-7
    [17] Chen G, Fu Q, Tan X, et al. (2022). Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics. Environ Pollut 295: 118695. https://doi.org/10.1016/j.envpol.2021.118695 doi: 10.1016/j.envpol.2021.118695
    [18] Purwiyanto A.I.S, Sutejab Y, Trisno Ningrum P.S, et al. (2020). Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment. Mar Pollut Bul 158: 111380
    [19] Chen C.C, Zhu X, Xu H, et al. (2021). Copper Adsorption to Microplastics and Natural Particles in Seawater: A Comparison of Kinetics, Isotherms, and Bioavailability. Environ Sci Technol 55: 13923–13931. https://pubs.acs.org/doi/10.1021/acs.est.1c04278
    [20] Besson M, Jacoba H, Oberhaenslia H, et al. (2020). Preferential adsorption of Cd, Cs and Zn onto virgin polyethylene T microplastic versus sediment particles. Mar. Pollut. Bul., 156: Article 111223. 10.1016/j.marpolbul.2020.111223
    [21] Rivera-Hernández J.R, Fernández B, Santos-Echeandia J, et al. (2019). Biodynamics of mercury in mussel tissues as a function of exposure pathway: natural vs microplastic routes. Sci Total Environ 674: 412–423. 10.1016/j.scitotenv.2019.04.175 doi: 10.1016/j.scitotenv.2019.04.175
    [22] Campanale C, Savino I, Massarelli C, et al. (2022). Assessment of metals associated with virgin pre-production and freshwater microplastics collected by an Italian river. NanoImpact 28: 100438. 10.1016/j.impact.2022.100438 doi: 10.1016/j.impact.2022.100438
    [23] Brennecke D, Duarte B, Paiva F, et al. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178: 189–195.
    [24] Wang X, Zhang R, Li Z, et al. (2022). Adsorption properties and influencing factors of Cu(Ⅱ) on polystyrene and polyethylene terephthalate microplastics in seawater. Sci Total Environ 812: 152573. 10.1016/j.scitotenv.2021.152573 doi: 10.1016/j.scitotenv.2021.152573
    [25] Shao X, Zhang Q, Liang W, et al. (2023). Polyamide microplastics as better environmental vectors of Cr(VI) in comparison to polyethylene and polypropylene microplastics. Mar Pollut Bull 186: 114492 10.1016/j.marpolbul.2022.114492 doi: 10.1016/j.marpolbul.2022.114492
    [26] Goh B, Pradit S, Towatana P, et al. (2022). Laboratory Experiment on Copper and Lead Adsorption Ability of Microplastics. Sains Malays 51: 993–1004. 10.17576/jsm-2022-5104-04 doi: 10.17576/jsm-2022-5104-04
    [27] Udenby F, Almuhtaram H, McKie M.J, et al. (2022). Adsorption of fluoranthene and phenanthrene by virgin and weathered polyethylene microplastics in freshwaters. Chemosphere 307: 135585. 10.1016/j.chemosphere.2022.135585
    [28] Wang Z, Chen M, Zhang L, et al. (2018). Sorption behaviors of phenanthrene on the microplastics identified in a mariculture farm in Xiangshan Bay, southeastern China. Sci Total Environ 628–629: 1617–1626 10.1016/j.scitotenv.2018.02.146
    [29] Abouda S, Missawi O, Cappello T, et al. (2022). Toxicological impact of environmental microplastics and benzo[a]pyrene in the seaworm Hediste diversicolor under environmentally relevant exposure conditions. Environ Pollut 310: 119856. 10.1016/j.envpol.2022.119856
    [30] Magara G, Khan F.R, Pinti M, et al. (2019). Effects of combined exposures of fluoranthene and polyethylene or polyhydroxybutyrate microplastics on oxidative stress biomarkers in the blue mussel (Mytilus edulis). J Toxicol Environ Health Part A. 10.1080/15287394.2019.1633451
    [31] Ito M, Hano T, Kono K, et al. (2022). Desorption of polycyclic aromatic hydrocarbons from polyethylene microplastics in two morphologically different digestive tracts of marine teleosts: Gastric red seabream (Pagrus major) and agastric mummichog (Fundulus heteroclitus). Environ Pollut 308: 119589. https://doi.org/10.1016/j.envpol.2022.119589 doi: 10.1016/j.envpol.2022.119589
    [32] Sunta U, Prosenc F, Trebse P, et al. (2020). Adsorption of acetamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil. Chemosphere 261: 127762. 10.1016/j.chemosphere.2020.127762 doi: 10.1016/j.chemosphere.2020.127762
    [33] Guo B, Meng J, Wang X, et al. (2019). Quantification of pesticide residues on plastic mulching film in typical farmlands of the North China. Front Environ Sci Eng 14: 1–10. https://doi.org/10.1007/s11783-019-1181-9 doi: 10.1007/s11783-019-1181-9
    [34] Ramos L, Berenstein G, Hughes E.A, et al. (2015). Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci Total Environ 523: 74–81. 10.1016/j.scitotenv.2015.03.142 doi: 10.1016/j.scitotenv.2015.03.142
    [35] Zhou Y, Liu X, Wang J (2019). Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Sci Total Environ 693: 133798. 10.1016/j.scitotenv.2019.133798 doi: 10.1016/j.scitotenv.2019.133798
    [36] Nizzetto L. Futter M, Langaas S (2016). Are Agricultural Soils for Microplastics of Urban Origin? Environ Sci Technol 50: 10777–10779. https://doi.org/10.1021/acs.est.6b04140
    [37] Holmes L.A, Turner A, Thompson RC (2014). Interactions between trace metals and plastic production pellets under estuatine conditions. Mar Chem 167: 25–32. https://doi.org/10.1016/j.marchem.2014.06.001
    [38] Ortega DE, Cortés-Arriagada D (2023). Atmospheric microplastics and nanoplastics as vectors of primary air pollutants – A thoracal study on the polyethylene terephthalate (PET) case. Environ Pollut 318: 120860. 10.1016/j.envpol.2022.120860 doi: 10.1016/j.envpol.2022.120860
  • This article has been cited by:

    1. Takao Komatsu, Claudio Pita-Ruiz, The Frobenius Number for Jacobsthal Triples Associated with Number of Solutions, 2023, 12, 2075-1680, 98, 10.3390/axioms12020098
    2. Takao Komatsu, Shanta Laishram, Pooja Punyani, p-Numerical Semigroups of Generalized Fibonacci Triples, 2023, 15, 2073-8994, 852, 10.3390/sym15040852
    3. Takao Komatsu, Haotian Ying, p-Numerical semigroups with p-symmetric properties, 2024, 23, 0219-4988, 10.1142/S0219498824502165
    4. Takao Komatsu, Haotian Ying, The p-Numerical Semigroup of the Triple of Arithmetic Progressions, 2023, 15, 2073-8994, 1328, 10.3390/sym15071328
    5. Takao Komatsu, On the determination of p-Frobenius and related numbers using the p-Apéry set, 2024, 118, 1578-7303, 10.1007/s13398-024-01556-5
    6. Takao Komatsu, Ruze Yin, 2024, Chapter 2, 978-3-031-49217-4, 15, 10.1007/978-3-031-49218-1_2
    7. Takao Komatsu, Vichian Laohakosol, The p-Frobenius Problems for the Sequence of Generalized Repunits, 2024, 79, 1422-6383, 10.1007/s00025-023-02055-6
    8. Ruze Yin, Takao Komatsu, Frobenius Numbers Associated with Diophantine Triples of x2-y2=zr, 2024, 16, 2073-8994, 855, 10.3390/sym16070855
    9. Ruze Yin, Jiaxin Mu, Takao Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, 2024, 16, 2073-8994, 1090, 10.3390/sym16081090
    10. Evelia R. García Barroso, Juan I. García-García, Luis José Santana Sánchez, Alberto Vigneron-Tenorio, On p-Frobenius of Affine Semigroups, 2024, 21, 1660-5446, 10.1007/s00009-024-02625-0
    11. TAKAO KOMATSU, NEHA GUPTA, MANOJ UPRETI, FROBENIUS NUMBERS ASSOCIATED WITH DIOPHANTINE TRIPLES OF x^2+y^2=z^3 , 2024, 0004-9727, 1, 10.1017/S0004972724000960
    12. Jiaxin Mu, Takao Komatsu, p-Numerical Semigroups of Triples from the Three-Term Recurrence Relations, 2024, 13, 2075-1680, 608, 10.3390/axioms13090608
    13. Takao Komatsu, Fatih Yilmaz, The p-Frobenius number for the triple of certain quadratic numbers, 2024, 1367-0751, 10.1093/jigpal/jzae125
    14. Takao Komatsu, Tapas Chatterjee, Frobenius numbers associated with Diophantine triples of x^2+3 y^2=z^3, 2025, 119, 1578-7303, 10.1007/s13398-025-01725-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2558) PDF downloads(114) Cited by(2)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog