Loading [MathJax]/jax/output/SVG/jax.js
Research article

Approximation of solutions to integro-differential time fractional wave equations in Lpspace

  • In this paper, we investigate the abstract integro-differential time-fractional wave equation with a small positive parameter ε. The LpLq estimates for the resolvent operator family are obtained using the Laplace transform, the Mittag-Leffler operator family, and the C0semigroup. These estimates serve as the foundation for some fixed point theorems that demonstrate the local-in-time existence of the solution in weighted function space. We first demonstrate that, for acceptable indices p[1,+) and s(1,+), the mild solution of the approximation problem converges to the solution of the associated limit problem in Lp((0,T),Ls(Rn)) as ε0+. The resolvent operator family and a set of kernel k(t) assumptions form the foundation of the proof's primary methodology for evaluating norms. Moreover, we consider the asymptotic behavior of solutions as α2.

    Citation: Yongqiang Zhao, Yanbin Tang. Approximation of solutions to integro-differential time fractional wave equations in Lpspace[J]. Networks and Heterogeneous Media, 2023, 18(3): 1024-1058. doi: 10.3934/nhm.2023045

    Related Papers:

    [1] Jawdat Alebraheem . Asymptotic stability of deterministic and stochastic prey-predator models with prey herd immigration. AIMS Mathematics, 2025, 10(3): 4620-4640. doi: 10.3934/math.2025214
    [2] Chuanfu Chai, Yuanfu Shao, Yaping Wang . Analysis of a Holling-type IV stochastic prey-predator system with anti-predatory behavior and Lévy noise. AIMS Mathematics, 2023, 8(9): 21033-21054. doi: 10.3934/math.20231071
    [3] Chuangliang Qin, Jinji Du, Yuanxian Hui . Dynamical behavior of a stochastic predator-prey model with Holling-type III functional response and infectious predator. AIMS Mathematics, 2022, 7(5): 7403-7418. doi: 10.3934/math.2022413
    [4] Yingyan Zhao, Changjin Xu, Yiya Xu, Jinting Lin, Yicheng Pang, Zixin Liu, Jianwei Shen . Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay. AIMS Mathematics, 2024, 9(11): 29883-29915. doi: 10.3934/math.20241445
    [5] Francesca Acotto, Ezio Venturino . How do predator interference, prey herding and their possible retaliation affect prey-predator coexistence?. AIMS Mathematics, 2024, 9(7): 17122-17145. doi: 10.3934/math.2024831
    [6] Xuyang Cao, Qinglong Wang, Jie Liu . Hopf bifurcation in a predator-prey model under fuzzy parameters involving prey refuge and fear effects. AIMS Mathematics, 2024, 9(9): 23945-23970. doi: 10.3934/math.20241164
    [7] Saiwan Fatah, Arkan Mustafa, Shilan Amin . Predator and n-classes-of-prey model incorporating extended Holling type Ⅱ functional response for n different prey species. AIMS Mathematics, 2023, 8(3): 5779-5788. doi: 10.3934/math.2023291
    [8] Naret Ruttanaprommarin, Zulqurnain Sabir, Salem Ben Said, Muhammad Asif Zahoor Raja, Saira Bhatti, Wajaree Weera, Thongchai Botmart . Supervised neural learning for the predator-prey delay differential system of Holling form-III. AIMS Mathematics, 2022, 7(11): 20126-20142. doi: 10.3934/math.20221101
    [9] Xuegui Zhang, Yuanfu Shao . Analysis of a stochastic predator-prey system with mixed functional responses and Lévy jumps. AIMS Mathematics, 2021, 6(5): 4404-4427. doi: 10.3934/math.2021261
    [10] Wei Ou, Changjin Xu, Qingyi Cui, Yicheng Pang, Zixin Liu, Jianwei Shen, Muhammad Zafarullah Baber, Muhammad Farman, Shabir Ahmad . Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay. AIMS Mathematics, 2024, 9(1): 1622-1651. doi: 10.3934/math.2024080
  • In this paper, we investigate the abstract integro-differential time-fractional wave equation with a small positive parameter ε. The LpLq estimates for the resolvent operator family are obtained using the Laplace transform, the Mittag-Leffler operator family, and the C0semigroup. These estimates serve as the foundation for some fixed point theorems that demonstrate the local-in-time existence of the solution in weighted function space. We first demonstrate that, for acceptable indices p[1,+) and s(1,+), the mild solution of the approximation problem converges to the solution of the associated limit problem in Lp((0,T),Ls(Rn)) as ε0+. The resolvent operator family and a set of kernel k(t) assumptions form the foundation of the proof's primary methodology for evaluating norms. Moreover, we consider the asymptotic behavior of solutions as α2.



    Saddle point problems occur in many scientific and engineering applications. These applications inlcudes mixed finite element approximation of elliptic partial differential equations (PDEs) [1,2,3], parameter identification problems [4,5], constrained and weighted least squares problems [6,7], model order reduction of dynamical systems [8,9], computational fluid dynamics (CFD) [10,11,12], constrained optimization [13,14,15], image registration and image reconstruction [16,17,18], and optimal control problems [19,20,21]. Mostly iterative solvers are used for solution of such problem due to its usual large, sparse or ill-conditioned nature. However, there exists some applications areas such as optimization problems and computing the solution of subproblem in different methods which requires direct methods for solving saddle point problem. We refer the readers to [22] for detailed survey.

    The Finite element method (FEM) is usually used to solve the coupled systems of differential equations. The FEM algorithm contains solving a set of linear equations possessing the structure of the saddle point problem [23,24]. Recently, Okulicka and Smoktunowicz [25] proposed and analyzed block Gram-Schmidt methods using thin Householder QR factorization for solution of 2×2 block linear system with emphasis on saddle point problems. Updating techniques in matrix factorization is studied by many researchers, for example, see [6,7,26,27,28]. Hammarling and Lucas [29] presented updating of the QR factorization algorithms with applications to linear least squares (LLS) problems. Yousaf [30] studied QR factorization as a solution tools for LLS problems using repeated partition and updating process. Andrew and Dingle [31] performed parallel implementation of the QR factorization based updating algorithms on GPUs for solution of LLS problems. Zeb and Yousaf [32] studied equality constraints LLS problems using QR updating techniques. Saddle point problems solver with improved Variable-Reduction Method (iVRM) has been studied in [33]. The analysis of symmetric saddle point systems with augmented Lagrangian method using Generalized Singular Value Decomposition (GSVD) has been carried out by Dluzewska [34]. The null-space approach was suggested by Scott and Tuma to solve large-scale saddle point problems involving small and non-zero (2, 2) block structures [35].

    In this article, we proposed an updating QR factorization technique for numerical solution of saddle point problem given as

    Mz=f(ABBTC)(xy)=(f1f2), (1.1)

    which is a linear system where ARp×p, BRp×q (qp) has full column rank matrix, BT represents transpose of the matrix B, and CRq×q. There exists a unique solution z=(x,y)T of problem (1.1) if 2×2 block matrix M is nonsingular. In our proposed technique, instead of working with large system having a number of complexities such as memory consumption and storage requirements, we compute QR factorization of matrix A and then updated its upper triangular factor R by appending B and (BTC) to obtain the solution. The QR factorization updated process consists of updating of the upper triangular factor R and avoiding the involvement of orthogonal factor Q due to its expensive storage requirements [6]. The proposed technique is not only applicable for solving saddle point problem but also can be used as an updating strategy when QR factorization of matrix A is in hand and one needs to add matrices of similar nature to its right end or at bottom position for solving the modified problems.

    The paper is organized according to the following. The background concepts are presented in Section 2. The core concept of the suggested technique is presented in Section 3, along with a MATLAB implementation of the algorithm for problem (1.1). In Section 4 we provide numerical experiments to illustrate its applications and accuracy. Conclusion is given in Section 5.

    Some important concepts are given in this section. These concepts will be used further in our main Section 3.

    The QR factorization of a matrix SRp×q is defined as

    S=QR, QRp×p, RRp×q, (2.1)

    where Q is an orthogonal matrix and R is an upper trapezoidal matrix. It can be computed using Gram Schmidt orthogonalization process, Givens rotations, and Householder reflections.

    The QR factorization using Householder reflections can be obtained by successively pre-multiplying matrix S with series of Householder matrices HqH2H1 which introduces zeros in all the subdiagonal elements of a column simultaneously. The HRq×q matrix for a non-zero Householder vector uRq is in the form

    H=IqτuuT, τ=2uTu. (2.2)

    Householder matrix is symmetric and orthogonal. Setting

    u=t±||t||2e1, (2.3)

    we have

    Ht=tτuuTt=αe1, (2.4)

    where t is a non-zero vector, α is a scalar, ||||2 is the Euclidean norm, and e1 is a unit vector.

    Choosing the negative sign in (2.3), we get positive value of α. However, severe cancellation error can occur if α is close to a positive multiple of e1 in (2.3). Let tRq be a vector and t1 be its first element, then the following Parlett's formula [36]

    u1=t1||t||2=t21||t||22t1+||t||2=(t22++t2n)t1+||t||2,

    can be used to avoid the cancellation error in the case when t1>0. For further details regarding QR factorization, we refer to [6,7].

    With the aid of the following algorithm, the Householder vector u required for the Householder matrix H is computed.

    Algorithm 1 Computing parameter τ and Householder vector u [6]
    Input: tRq
    Output: u, τ
       σ=||t||22
       u=t,u(1)=1
       if (σ=0) then
         τ=0
       else
         μ=t21+σ
       end if
       if t10 then
        u(1)=t1μ
       else
         u(1)=σ/(t1+μ)
       end if
       τ=2u(1)2/(σ+u(1)2)
       u=u/u(1)

     | Show Table
    DownLoad: CSV

    We consider problem (1.1) as

    Mz=f,

    where

    M=(ABBTC)R(p+q)×(p+q), z=(xy)Rp+q, and f=(f1f2)Rp+q.

    Computing QR factorization of matrix A, we have

    ˆR=ˆQTA, ˆd=ˆQTf1, (3.1)

    where ˆRRp×p is the upper triangular matrix, ˆdRp is the corresponding right hand side (RHS) vector, and ˆQRp×p is the orthogonal matrix. Moreover, multiplying the transpose of matrix ˆQ with matrix Mc=BRp×q, we get

    Nc=ˆQTMcRp×q. (3.2)

    Equation (3.1) is obtained using MATLAB build-in command qr which can also be computed by constructing Householder matrices H1Hp using Algorithm 1 and applying Householder QR algorithm [6]. Then, we have

    ˆR=HpH1A, ˆd=HpH1f1,

    where ˆQ=H1Hp and Nc=HpH1Mc. It gives positive diagonal values of ˆR and also economical with respect to storage requirements and times of calculation [6].

    Appending matrix Nc given in Eq (3.2) to the right end of the upper triangular matrix ˆR in (3.1), we get

    ˊR=[ˆR(1:p,1:p)Nc(1:p,1:q)]Rp×(p+q). (3.3)

    Here, if the factor ˊR has the upper triangular structure, then ˊR=ˉR. Otherwise, by using Algorithm 1 to form the Householder matrices Hp+1Hp+q and applying it to ˊR as

    ˉR=Hp+qHp+1ˊR and ˉd=Hp+qHp+1ˆd, (3.4)

    we obtain the upper triangular matrix ˉR.

    Now, the matrix Mr=(BTC) and its corresponding RHS f2Rq are added to the ˉR factor and ˉd respectively in (3.4)

    ˉRr=(ˉR(1:p,1:p+q)Mr(q:p+q,q:p+q)) and ˉdr=(ˉd(1:p)f2(1:q)).

    Using Algorithm 1 to build the householder matrices H1Hp+q and apply it to ˉRr and its RHS ˉdr, this implies

    ˜R=Hp+qH1(ˉRMr), ˜d=Hp+qH1(ˉdf2).

    Hence, we determine the solution of problem (1.1) as ˜z=backsub(˜R,˜d), where backsub is the MATLAB built-in command for backward substitution.

    The algorithmic representation of the above procedure for solving problem (1.1) is given in Algorithm 2.

    Algorithm 2 Algorithm for solution of problem (1.1)
    Input: ARp×p, BRp×q, CRq×q, f1Rp, f2Rq
    Output: ˜zRp+q
       [ˆQ,ˆR]=qr(A), ˆd=ˆQTf1, and Nc=ˆQTMc
       ˆR(1:p,q+1:p+q)=Nc(1:p,1:q)
       if pp+q then
         ˉR=triu(ˆR), ˉd=ˆd
       else
         for m=p1 to min(p,p+q) do
           [u,τ,ˆR(m,m)]=householder(ˆR(m,m),ˆR(m+1:p,m))
           W=ˆR(m,m+1:p+q)+uTˆR(m+1:p,m+1:p+q)
           ˆR(m,m+1:p+q)=ˆR(m,m+1:p+q)τW
            if m<p+q then
             ˆR(m+1:p,m+1:p+q)=ˆR(m+1:p,m+1:p+q)τuW
           end if
           ˉd(m:p)=ˆd(m:p)τ(1u)(1uT)ˆd(m:p)
         end for
         ˉR=triu(ˆR)
       end if
       for m=1 to min(p,p+q) do
           [u,τ,ˉR(m,m)]=householder(ˉR(m,m),Mr(1:q,m))
           W1=ˉR(m,m+1:p+q)+uTMr(1:q,m+1:p+q)
           ˉR(m,m+1:p+q)=ˉR(m,m+1:p+q)τW1
           if m<p+q then
             Mr(1:q,m+1:p+q)=Mr(1:q,m+1:p+q)τuW1
           end if
           ˉdm=ˉd(m)
           ˉd(m)=(1τ)ˉd(m)τuTf2(1:q)
           f3(1:q)=f2(1:q)τuˉdmτu(uTf2(1:q))
       end for
       if p<p+q then
         [ˊQr,ˊRr]=qr(Mr(:,p+1:p+q))
         ˉR(p+1:p+q,p+1:p+q)=ˊRr
         f3=ˊQTrf2
       end if
       ˜R=triu(ˉR)
       ˜d=f3
       ˜z=backsub(˜R(1:p+q,1:p+q),˜d(1:p+q))

     | Show Table
    DownLoad: CSV

    To demonstrate applications and accuracy of our suggested algorithm, we give several numerical tests done in MATLAB in this section. Considering that z=(x,y)T be the actual solution of the problem (1.1) where x=ones(p,1) and y=ones(q,1). Let ˜z be our proposed Algorithm 2 solution. In our test examples, we consider randomly generated test problems of different sizes and compared the results with the block classical block Gram-Schmidt re-orthogonalization method (BCGS2) [25]. Dense matrices are taken in our test problems. We carried out numerical experiments as follow.

    Example 1. We consider

    A=A1+A12, B=randn(state,0), and C=C1+C12,

    where randn(state,0) is the MATLAB command used to reset to its initial state the random number generator; A1=P1D1P1, C1=P2D2P2, P1=orth(rand(p)) and P2=orth(rand(q)) are randomly orthogonal matrices, D1=logspace(0,k,p) and D2=logspace(0,k,q) are diagonal matrices which generates p and q points between decades 1 and 10k respectively. We describe the test matrices in Table 1 by giving its size and condition number κ. The condition number κ for a matrix S is defined as κ(S)=||S||2||S1||2. Moreover, the results comparison and numerical illustration of backward error tests of the algorithm are given respectively in Tables 2 and 3.

    Table 1.  Test problems description.
    Problem size(A) κ(A) size(B) κ(B) size(C) κ(C)
    (1) 16×16 1.0000e+05 16×9 6.1242 9×9 1.0000e+05
    (2) 120×120 1.0000e+05 120×80 8.4667 80×80 1.0000e+05
    (3) 300×300 1.0000e+06 300×200 9.5799 200×200 1.0000e+06
    (4) 400×400 1.0000e+07 400×300 13.2020 300×300 1.0000e+07
    (5) 900×900 1.0000e+08 900×700 15.2316 700×700 1.0000e+08

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results.
    Problem size(M) κ(M) ||z˜z||2||z||2 ||zzBCGS2||2||z||2
    (1) 25×25 7.7824e+04 6.9881e-13 3.3805e-11
    (2) 200×200 2.0053e+06 4.3281e-11 2.4911e-09
    (3) 500×500 3.1268e+07 1.0582e-09 6.3938e-08
    (4) 700×700 3.5628e+08 2.8419e-09 4.3195e-06
    (5) 1600×1600 2.5088e+09 7.5303e-08 3.1454e-05

     | Show Table
    DownLoad: CSV
    Table 3.  Backward error tests results.
    Problem ||M˜Q˜R||F||M||F ||I˜QT˜Q||F
    (1) 6.7191e-16 1.1528e-15
    (2) 1.4867e-15 2.7965e-15
    (3) 2.2052e-15 4.1488e-15
    (4) 2.7665e-15 4.9891e-15
    (5) 3.9295e-15 6.4902e-15

     | Show Table
    DownLoad: CSV

    The relative errors for the presented algorithm and its comparison with BCGS2 method in Table 2 showed that the algorithm is applicable and have good accuracy. Moreover, the numerical results for backward stability analysis of the suggested updating algorithm is given in Table 3.

    Example 2. In this experiment, we consider A=H where H is a Hilbert matrix generated with MATLAB command hilb(p). It is symmetric, positive definite, and ill-conditioned matrix. Moreover, we consider test matrices B and C similar to that as given in Example 1 but with different dimensions. Tables 46 describe the test matrices, numerical results and backward error results, respectively.

    Table 4.  Test problems description.
    Problem size(A) κ(A) size(B) κ(B) size(C) κ(C)
    (6) 6×6 1.4951e+07 6×3 2.6989 3×3 1.0000e+05
    (7) 8×8 1.5258e+10 8×4 2.1051 4×4 1.0000e+06
    (8) 12×12 1.6776e+16 12×5 3.6108 5×5 1.0000e+07
    (9) 13×13 1.7590e+18 13×6 3.5163 6×6 1.0000e+10
    (10) 20×20 2.0383e+18 20×10 4.4866 10×10 1.0000e+10

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical results.
    Problem size(M) κ(M) ||z˜z||2||z||2 ||zzBCGS2||2||z||2
    (6) 9×9 8.2674e+02 9.4859e-15 2.2003e-14
    (7) 12×12 9.7355e+03 2.2663e-13 9.3794e-13
    (8) 17×17 6.8352e+08 6.8142e-09 1.8218e-08
    (9) 19×19 2.3400e+07 2.5133e-10 1.8398e-09
    (10) 30×30 8.0673e+11 1.9466e-05 1.0154e-03

     | Show Table
    DownLoad: CSV
    Table 6.  Backward error tests results.
    Problem ||M˜Q˜R||F||M||F ||I˜QT˜Q||F
    (6) 5.0194e-16 6.6704e-16
    (7) 8.4673e-16 1.3631e-15
    (8) 7.6613e-16 1.7197e-15
    (9) 9.1814e-16 1.4360e-15
    (10) 7.2266e-16 1.5554e-15

     | Show Table
    DownLoad: CSV

    From Table 5, it can bee seen that the presented algorithm is applicable and showing good accuracy. Table 6 numerically illustrates the backward error results of the proposed Algorithm 2.

    In this article, we have considered the saddle point problem and studied updated of the Householder QR factorization technique to compute its solution. The results of the considered test problems with dense matrices demonstrate that the proposed algorithm is applicable and showing good accuracy to solve saddle point problems. In future, the problem can be studied further for sparse data problems which are frequently arise in many applications. For such problems updating of the Givens QR factorization will be effective to avoid unnecessary fill-in in sparse data matrices.

    The authors Aziz Khan, Bahaaeldin Abdalla and Thabet Abdeljawad would like to thank Prince Sultan university for paying the APC and support through TAS research lab.

    There does not exist any kind of competing interest.



    [1] J. Prüss, Evolutionary Integral Equations and Applications, Basel: Birkhäuser Verlag, 87 (1993). https://doi.org/10.1007/978-3-0348-0499-8
    [2] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Basel: Birkhäuser, 16 (1995).
    [3] E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, 2001.
    [4] X. Yang, Y. Tang, Decay estimates of nonlocal diffusion equations in some particle systems, J. Math. Phys., 60 (2019), 043302. https://doi.org/10.1063/1.5085894 doi: 10.1063/1.5085894
    [5] C. Gu, Y. Tang, Chaotic characterization of one dimensional stochastic fractional heat equation, Chaos Solitons Fractals, 145 (2021), 110780. https://doi.org/10.1016/j.chaos.2021.110780 doi: 10.1016/j.chaos.2021.110780
    [6] C. Gu, Y. Tang, Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity, Netw. Heterog. Media, 18 (2023), 109–139. https://doi.org/10.3934/nhm.2023005 doi: 10.3934/nhm.2023005
    [7] J. P. C. Dos Santos, S. M. Guzzo, M. N. Rabelo, Asymptotically almost periodic solutions for abstract partial neutral integro-differential equation, Adv. Differ. Equ., 2010 (2010), 1–26. https://doi.org/10.1155/2010/310951 doi: 10.1155/2010/310951
    [8] J. P. C. Dos Santos, H. Henrˊiquez, Existence of sasymptotically ωperiodic solutions to abstract integro-differential equations, Appl. Math. Comput., 256 (2015), 109–118. https://doi.org/10.1016/j.amc.2015.01.005 doi: 10.1016/j.amc.2015.01.005
    [9] R. C. Grimmer, A. J. Prichard, Analytic resolvent operators for integral equations in Banach space, J. Differ. Equ., 50 (1983), 234–259. https://doi.org/10.1016/0022-0396(83)90076-1 doi: 10.1016/0022-0396(83)90076-1
    [10] C. C. Kuo, S. Y. Shaw, Ccosine functions and the abstract Cauchy problem, Ⅰ, J. Math. Anal. Appl., 210 (1997), 632–646. https://doi.org/10.1006/jmaa.1997.5420 doi: 10.1006/jmaa.1997.5420
    [11] C. C. Kuo, S. Y. Shaw, Ccosine functions and the abstract Cauchy problem, Ⅱ, J. Math. Anal. Appl., 210 (1997), 647–666. https://doi.org/10.1006/jmaa.1997.5421 doi: 10.1006/jmaa.1997.5421
    [12] A. Lorenzi, F. Messina, Approximation of solutions to linear integro-differential parabolic equations in Lpspaces, J. Math. Anal. Appl., 333 (2007), 642–656. https://doi.org/10.1016/j.jmaa.2006.11.042 doi: 10.1016/j.jmaa.2006.11.042
    [13] A. Lorenzi, F. Messina, Approximation of solutions to non-linear integro-differential parabolic equations in Lpspaces, Differ. Integral Equ., 20 (2007), 693–720. https://doi.org/10.57262/die/1356039433 doi: 10.57262/die/1356039433
    [14] R. N. Wang, D. H. Chen, T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equ., 252 (2012), 202–235. https://doi.org/10.1016/j.jde.2011.08.048 doi: 10.1016/j.jde.2011.08.048
    [15] A. El-Sayed, M. Herzallah, Continuation and maximal regularity of an arbitrary (fractional) order evolutionary integro-differential equation, Appl. Anal., 84 (2005), 1151–1164. https://doi.org/10.1080/0036810412331310941 doi: 10.1080/0036810412331310941
    [16] R. Ponce, Hölder continuous solutions for fractional differential equations and maximal regularity, J. Differ. Equ., 255 (2013), 3284–3304. https://doi.org/10.1016/j.jde.2013.07.035 doi: 10.1016/j.jde.2013.07.035
    [17] M. Conti, V. Pata, M. Squassina, Singular limit of differential systems with memory, Indiana Univ. Math. J., 55 (2006), 169–215. http://www.jstor.org/stable/24902350
    [18] R. Agarwal, J. P. C. Dos Santos, C. Uevas, Analytic resolvent operator and existence results for fractional integro-differential equations, J. Abstr. Differ. Equ. Appl., 2 (2012), 26–47.
    [19] J. P. C Dos Santos, H. Henrˊiquez, E. Henˊaandez, Existence results for neutral integro-differential equations with unbounded delay, J. Integral Equ. Appl., 23 (2011), 289–330. http://www.jstor.org/stable/26163698
    [20] N. Tatar, Mittag-Leffler stability for a fractional Euler-Bernoulli problem, Chaos Solitons Fractals, 149 (2021), 1110777. https://doi.org/10.1016/j.chaos.2021.111077 doi: 10.1016/j.chaos.2021.111077
    [21] N. Tatar, Mittag-Leffler stability for a fractional viscoelastic telegraph problem, Math. Methods Appl. Sci., 44 (2021), 14184–14205. https://doi.org/10.1002/mma.7689 doi: 10.1002/mma.7689
    [22] P. Bedi, A. Kumar, T. Abdeljawad, A. Khan, J. Gomez-Aguilar, Mild solutions of coupled hybrid fractional order system with caputo-hadamard derivatives, Fractals, 29 (2021), 2150158. https://doi.org/10.1142/S0218348X21501589 doi: 10.1142/S0218348X21501589
    [23] H. Khan, T. Abdeljawad, J. Gomez-Aguilar, H. Tajadodi, A. Khan, Fractional order Volterra integro-differential equation with Mittag-Leffler kernel. Fractals, 29 (2021), 2150154. https://doi.org/10.1142/S0218348X2150153X doi: 10.1142/S0218348X2150153X
    [24] O. Martnez-Fuentes, F. Melndez-Vzquez, G. Fernndez-Anaya, J.F. Gómez-Aguilar, Analysis of fractional-order nonlinear dynamic systems with general analytic kernels: Lyapunov stability and inequalities, Mathematics, 9 (2021), 2084. https://doi.org/10.3390/math9172084 doi: 10.3390/math9172084
    [25] J. Asma, G. Rahman, M. Javed, Stability analysis for fractional order implicit ψHilfer differential equations, Math. Methods Appl. Sci., 45 (2022), 2701–2712. https://doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948
    [26] R. Dhayal, J. F. Gómez-Aguilar, J. Jimenez, Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses, Int. J. Syst. Sci., 53 (2022), 3481–3495. https://doi.org/10.1080/00207721.2022.2090638 doi: 10.1080/00207721.2022.2090638
    [27] A. Gónzacutealez-Calderóna, L. X. Vivas-Cruzb, M. A. Taneco-Hernandezc, J. F. Gómezmez-Aguilar, Assessment of the performance of the hyperbolic-NILT method to solve fractional differential equations, Math. Comput. Simul., 206 (2023), 375–390. https://doi.org/10.1016/j.matcom.2022.11.022 doi: 10.1016/j.matcom.2022.11.022
    [28] A. Al-Omari, H. Al-Saadi, Existence of the classical and strong solutions for fractional semilinear initial value problems, Bound. Value Probl., 157 (2018), 1–13. https://doi.org/10.1186/s13661-018-1054-3 doi: 10.1186/s13661-018-1054-3
    [29] M. Benchohra, S. Litimein, J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, J. Fixed Point Theory Appl., 21 (2019), 1–16. https://doi.org/10.1007/s11784-019-0660-8 doi: 10.1007/s11784-019-0660-8
    [30] R. Chaudhary, M. Muslim, D. N. Pandey, Approximation of solutions to fractional stochastic integro-differential equations of order α(1,2], Stochastics, 92 (2020), 397–417. https://doi.org/10.1080/17442508.2019.1625904 doi: 10.1080/17442508.2019.1625904
    [31] J. V. da C. Sousa, D. F. Gomes, E. C. de Oliveira, A new class of mild and strong solutions of integro-differential equation of arbitrary order in Banach space, arXiv, 2018. https://doi.org/10.48550/arXiv.1812.11197
    [32] M. Li, Q. Zheng, On spectral inclusions and approximations of αtimes resolvent families, Semigroup Forum, 69 (2004), 356–368. https://doi.org/10.1007/s00233-004-0128-y doi: 10.1007/s00233-004-0128-y
    [33] K. Li, J. Peng, Fractional resolvents and fractional evolution equations, Appl. Math. Lett., 25 (2012), 808–812. https://doi.org/10.1016/j.aml.2011.10.023 doi: 10.1016/j.aml.2011.10.023
    [34] B. Li, H. Gou, Weak solutions nonlinear fractional integrodifferential equations in nonreflexive Banach spaces, Bound. Value Probl., 209 (2016), 1–13. https://doi.org/10.1186/s13661-016-0716-2 doi: 10.1186/s13661-016-0716-2
    [35] Z. D. Mei, J. G. Peng, J. H. Gao, General fractional differential equations of order α(1,2) and type β[0,1] in Banach spaces, Semigroup Forum, 94 (2017), 712–737. https://doi.org/10.1007/s00233-017-9859-4 doi: 10.1007/s00233-017-9859-4
    [36] S. A. Qasem, R. W. Ibrahim, Z. Siri, On mild and strong solutions of fractional differential equations with delay, AIP Conf. Proc., 1682 (2015), 020049. https://doi.org/10.1063/1.4932458 doi: 10.1063/1.4932458
    [37] H. Henrquez, J. Mesquita, J. Pozo, Existence of solutions of the abstract Cauchy problem of fractional order, J. Funct. Anal., 281 (2021), 109028. https://doi.org/10.1016/j.jfa.2021.109028 doi: 10.1016/j.jfa.2021.109028
    [38] I. Kim, K. H. Kim, S. Lim, An Lq(Lp)theory for the time fractional evolution equations with variable coefficients, Adv. Math., 306 (2017), 123–176. https://doi.org/10.1016/j.aim.2016.08.046 doi: 10.1016/j.aim.2016.08.046
    [39] P. Quittner, P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Basel: Birkhäuser Verlag, 2007. https://doi.org/10.1007/978-3-7643-8442-5
    [40] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Commun. Pure Appl. Math., 33 (1980), 501–505. https://doi.org/10.1002/cpa.3160330403 doi: 10.1002/cpa.3160330403
    [41] M. D'Abbicco, M. R. Ebert, T. H. Picon, The critical exponent(s) for the semilinear fractional diffusive equation, J. Fourier Anal. Appl., 25 (2019), 696–731. https://doi.org/10.1007/s00041-018-9627-1 doi: 10.1007/s00041-018-9627-1
    [42] B. T. Yordanov, Q. S. Zhang, Finite time blow-up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361–374. https://doi.org/10.1016/j.jfa.2005.03.012 doi: 10.1016/j.jfa.2005.03.012
    [43] B. de Andrade, G. Siracusa, A. Viana, A nonlinear fractional diffusion equation: well-posedness, comparison results and blow-up, J. Math. Anal. Appl., 505 (2022), 125524. https://doi.org/10.1016/j.jmaa.2021.125524 doi: 10.1016/j.jmaa.2021.125524
    [44] P. M. de Carvalho-Neto, G. Planas, Mild solutions to the time fractional Navier-Stokes equations in Rn, J. Differ. Equ., 259 (2015), 2948-2980. https://doi.org/10.1016/j.jde.2015.04.008 doi: 10.1016/j.jde.2015.04.008
    [45] V. Keyantuo, M. Warma, On the interior approximate controllability for fractional wave equations, Discrete Contin. Dyn. Syst. Ser. A, 36 (2016), 3719–3739. https://doi.org/10.3934/dcds.2016.36.3719 doi: 10.3934/dcds.2016.36.3719
    [46] E. Alvarez, C. G. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations, Nonlinear Anal., 181 (2019), 24–61. https://doi.org/10.1016/j.na.2018.10.016 doi: 10.1016/j.na.2018.10.016
    [47] J. P. C. Dos Santos, Fractional resolvent operator with α(0,1) and applications, Frac. Differ. Calc., 9 (2019), 187–208. https://doi.org/10.7153/fdc-2019-09-13 doi: 10.7153/fdc-2019-09-13
    [48] Y. Li, H. Sun, Z. Feng, Fractional abstract Cauchy problem with order α(1,2), Dyn. Partial Differ. Equ., 13 (2016), 155–177. https://dx.doi.org/10.4310/DPDE.2016.v13.n2.a4 doi: 10.4310/DPDE.2016.v13.n2.a4
    [49] Y. Li, Regularity of mild Solutions for fractional abstract Cauchy problem with order α(1,2), Z. Angew. Math. Phys., 66 (2015), 3283–3298. https://doi.org/10.1007/s00033-015-0577-z doi: 10.1007/s00033-015-0577-z
    [50] Q. Zhang, Y. Li, Global well-posedness and blow-up solution of the Cauchy problem for a time-fractional superdiffusion equation, J. Evol. Equ., 19 (2019), 271–303. https://doi.org/10.1007/s00028-018-0475-x doi: 10.1007/s00028-018-0475-x
    [51] S. I. Piskarev, Evolution Equations in Banach Spaces. Theory of Cosine Operator Functions, Internet Notes, (2004), 122.
    [52] K. Boukerrioua, D. Diabi, B. Kilani, Some new Gronwall-bihari type inequalities and its application in the analysis for solutions to fractional differential equations, Int. J. Comput. Methods, 5 (2020), 60–68.
    [53] I. Bihari, A generalisation of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Hung., 7 (1956), 81–94. https://doi.org/10.1007/bf02022967 doi: 10.1007/bf02022967
    [54] V. V. Vasilev, S. I. Piskarev, Differential equations in Banach spaces Ⅱ. Theory of cosine operator functions, J. Math. Sci., 122 (2004), 3055–3174. https://doi.org/10.1023/B:JOTH.0000029697.92324.47 doi: 10.1023/B:JOTH.0000029697.92324.47
    [55] A. Carpinteri, F. Mainardi, Fractional calculus, some basic problems in continuumand statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics (eds. A. Carpinteri, F. Mainardi), Vienna: Springer-Verlag, 378 (1997), 291–348. https://doi.org/10.1007/978-3-7091-2664-6-7
    [56] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, London: Imperial College Press, 2010.
    [57] W. R. Schnrider, W. Wyss, Fractional diffusionand and wave equations, J. Math. Phys., 30 (1989), 134–144. https://doi.org/10.1063/1.528578 doi: 10.1063/1.528578
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2116) PDF downloads(106) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog