NHM, 18(3): 1024-1058.

AR Networks and DOI: 10.3934/nhm.2023045
%ﬁﬁ He terogeneous Media Received: 07 January 2023
~ - Revised: 09 March 2023

Accepted: 13 March 2023
http://www.aimspress.com/journal/nhm Published: 24 March 2023

Research article

Approximation of solutions to integro-differential time fractional wave
equations in L”—space

Yonggiang Zhao' and Yanbin Tang'->*

! School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan,
Hubei, 430074, China

2 Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of
Science and Technology, Wuhan, Hubei, 430074, China

* Correspondence: Email: tangyb@hust.edu.cn.

Abstract: In this paper, we investigate the abstract integro-differential time-fractional wave equation
with a small positive parameter &. The L? — L7 estimates for the resolvent operator family are
obtained using the Laplace transform, the Mittag-Leffler operator family, and the Cy—semigroup. These
estimates serve as the foundation for some fixed point theorems that demonstrate the local-in-time
existence of the solution in weighted function space. We first demonstrate that, for acceptable indices
p € [1,+00) and s € (1, +00), the mild solution of the approximation problem converges to the solution
of the associated limit problem in LP((0, T'), L*(R")) as € — 0*. The resolvent operator family and a
set of kernel k(#) assumptions form the foundation of the proof’s primary methodology for evaluating
norms. Moreover, we consider the asymptotic behavior of solutions as @ — 2~.
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1. Introduction

In this paper we will consider an initial value problem (IVP) to the following integro-differential
time-fractional hyperbolic equations with a tiny positive parameter € in a suitable L”—space

Diuc(t) — x(&)Auc(t) — Ak = u:)(1) = fe(1), > 0,x € R",
us(o) = Upe, u;(()) =Ulg, X € Rn,

(1.1)

where A is Laplacian in R”, the kernel k(¢) is a continuous function from R to R and

ko(t) = ék(é), (K% * u)(t) = f ko(t — s)us(s)ds, (1.2)
0
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a € (1,2), DYu(?) represents the Caputo fractional derivative of order « of u, is defined by

-1

! #
Diu(t) = f(; 8ot — )" (5)ds, gs(t) = F_(ﬁ)’ t>0,6>0, (1.3)

and (&) is a positive scalar function defined on (0, &] for a given real number &, > O such that
x(€) — xypoas e — 07, (1.4)

In mathematical physics and mechanical engineering, fractional partial differential equations are
widely used. For instance, we mention the books [1,2] and [3] for the abstract evolution equations. We
mention the sources [4-9] for the fractional integro-differential equations.

The theory of cosine operator functions is developed by applying the Caputo fractional derivative
described in Eq (1.3) to the limit situation @ = 2, Eq (1.1) is a second order abstract Cauchy problem.
We consult [10, 11] and their sources for further information on the theory of the cosine operator
function. Lorenzi-Messina [12] considered the approximation of solutions to linear
integro-differential parabolic Eq (1.1) in L”—spaces and extended the findings to the corresponding
non-linear equations [13], in contrast to the first order abstract Cauchy problem with @ = 1. Using
almost sectorial operators, Wang et al. [14] investigated abstract fractional Cauchy problems. When
k(t) exhibits sub-exponential growth, Ahmed and Mohamed [15] examined the maximal regularity
and continuity of the solution for the Eq (1.1) using the solution operator. The multiplier theorem has
been used by Rodrigo Ponce [16] to describe the existence and uniqueness of solutions to an abstract
fractional differential equation where k() is an infinite delay in Holder spaces. According to
Conti-Pata-Squassina [17], the differential systems with memory terms that might explain the
previous history of u up to time ¢. They primarily focused on the convergence of the reaction-diffusion
equation solution over a finite time period utilizing semigroup and energy approaches.
Agarwal-Santos-Uevas [18] utilized the solution operator to investigate the existence and qualitative
characteristics of an analytical @—resolvent operator for an abstract. When B(f) = k(¢)A is a closed
linear operator for @ € (0, 1), Santos—Henrfquez—Henc’zandez [19] utilized perturbation theory of
sectorial operators to analyze the abstract fractional integro-differential Cauchy problem.
Nasser-eddine Tatar [20,21] used the solution operator and energy approach, respectively, to examine
the stability of a fractional Euler-Bernoulli problem and fractional viscoelastic telegraph issue.

Recently, a coupled system of hybrid FDEs with Caputo-Hadamard fractional derivatives was
taken into consideration by P. Bedi et al. [22]. Also, they used the Dhage fixed point approach to
demonstrate the existence of mild solutions. Atangana-Baleanu-Caputo fractional Volterra
integro-differential equations were considered firstly by H. Khan et al. [23] by using a Mittag-Leffler
kernel, they investigated the existence, stability, and numerical simulations of these
equations. O. Martnez-Fuentes et al. [24] have shown asymptotic stability in the sense of operators
with general analytic kernels by investigating the recently suggested fractional-order operators with
general analytic kernels, leading to Lyapunov-like conclusions and a Lyapunov direct approach. A
novel —Hilfer differential equation with integral-type subsidiary conditions was studied by
Asma et al. [25] using the Picard operator approach, the Banach contraction principle, and Gronwall’s
inequality to analyze the stability of the solution. R. Dhayal et al. [26] discussed the existence and
uniqueness of the mild solution and stability criteria for a new class of Atangana-Baleanu fractional
stochastic differential systems driven by fractional Brownian motion with non-instantaneous
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impulsive effects using resolvent family, fixed point technique, and fractional calculus. The fractional
Gompertz equation was examined using the hyperbolic-numerical inverse Laplace transform
approach by Gonzlez-Calderna et al. [27]. They discovered a separate fractional order formula, which
is utilized to optimize the hyperbolic-NILT method’s parameter together with the starting condition.

In this research, we take into account time-fractional order super-diffusion equations in Banach
spaces along with a-order time-fractional wave equations. We know that the idea of the a—resolvent
family produced by the Laplace operator A, which will be represented by {S ,(#)}:>0, 1s connected to
the existences of solutions of the @ order fractional abstract Cauchy problem. Many studies have been
conducted on the existence and some features of {S,(t)}:>0, see for example, [28-37]. Kim [38] also
took into account the time fractional evolution equations with variable order derivatives.

The linear integro-differential wave Eq (1.1) with @ € (1, 2) is the first thing we take into account.
Our main goal is to demonstrate that the mild solution u.(f) of problem (1.1) converges to the mild
solution u(¢) of the following limit problem as € — 0" under appropriate assumptions on the function
f= and the initial data ug ., u .,

{ Du(t) — (1 + xo)Au(t) = f(t), t € (0,T],x € R, (15)

u(0) = ug, '(0) = u;, x € R™.

Any a—order Caputo fractional derivative is defined by

n

!
Dut) = [ galt = 9 Jusrds
0 ds"

where 7 is the smallest integer greater than or equal to @ > 0 and Gelfand-Shilov function gs(?) = I’_%

satisfies the semigroup property g, * g = ga+p. Similarly, the Riemann-Liouville fractional integral of
order a > is defined by

JIf@) = (8o * ))1) = fo 8a(t = 5)f(s)ds,

thus
n—1 © lk
DT f(@) = f(o), JPD{f(t) = f(2) - ;:0 S (O)E' (1.6)

Applying the properties of Laplace transform and taking into account that g,(1) = ™%, and (T;’?)(/l) =
(8o * ) = Za(D)F(1) = 172 f(2), then Eq (1.6) implies that

n—1
Dif) = °f() - > P+, (1.7)
k=0

Following the results on the linear time-fractional hyperbolic Eq (1.1) with a small positive
parameter &, we consider a semi-linear approximating problem

{ Dfu(t) — x(&)Aug(t) — A(k® * u)(t) = fo(t) + N[u:]@®), t > 0,x € R", (1.8)

us(0) = ugo(x), uy(0) = uy(x), x € R",
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and the corresponding semi-linear limit problem as & — 0"

Diu(®) + (1 + xo)(=2)u(t) = f() + N[ul(®), 1 > 0,x € R", (1.9)
u(0) = up(x), u'(0) = u1(x), x € R, '
where N is a nonlinear operator admitting the following representation
N(u)(t, x) = y(t, u(t, x)), (1.10)

and ¢ is given in later.

The Eq (1.9) is the semilinear heat equation for @ = 1 and u; = 0, the crucial exponentis p = 1 + %
when the nonlinear component is |u|”~'u. Every nontrivial solution of the equation blows up in a finite
stateif < p <1+ % and up > 0, butif p > 1 + % and the starting value u, is small enough in L% (R")
where g, = "(pz_ D then the solution of Eq (1.9) exists globally. We mention [39] for more information
on these findings.

Equation (1.9) interpolates the heat equation and the wave equation. The Fujita critical exponent of

the issue is 1 + —2— — 1 + 2 which is for the case u; = 0 and nonlinear term N(u)(7, x) = |ul"™".
The critical exponents 1 + —2— and 1 + 2% tend to 22! as @ — 1, which is an exponent that may
an+2-2a an—2 n—1

be found in the work by Kato [40]. The critical exponent in the situation #; # 0 and nonlinear term
N(u)(t,x) = |ul’ is p, where p := 1 + m We shall demonstrate the global existence of the
solution to Eq (1.9) when p > p, and no global solution exists in the subcritical range p € (1, p). The
details are available in [41].

When @ = 2, the problems (1.8) and (1.9) become the second-order abstract semi-linear
approximating problem

u (t) — x(&)Aug(t) — A(k® * u)(t) = fo(t) + N[u:](¢), t > 0,x € R", (111)
U(0) = uoe(x), uy(0) = uyo(x), x € R, '
and the corresponding semi-linear limit problem as & — 0"
uw’'(t) — (1 + xo)Au(t) = f(t) + N[u](t), t > 0,x € R", (1.12)
u(0) = up(x), ' (0) = u;(x), x € R". '

The Eq (1.12) is the semilinear wave equation for @ = 2 and the nonlinear term N(u)(¢, x) = |u|”, the
crucial exponent is p.(n), which is the positive root of (n — 1)p?> — (n + 1)p — 2 = 0. Given that ug, u;
have compact support and meet a certain positivity condition, global solutions of the equation do not
existif 1 < p < p.(n), however if p > p.(n), solutions with tiny starting values exist for all time (see
Yordanov [42] and the references therein). Using somewhat lower assumptions, Kato [40] obtained a
little less precise conclusion. If 1 < p < %{, then Kato demonstrated that the issue does not permit a
global solution.

For Banach spaces X and Y, their norms are ||+ ||y, || -||y. For a closed linear operator A : D(A) Cc X —
Y, the notation [D(A)] represents the domain of A endowed with graph norm |u||; = ||ullx + ||Aully, u €

D(A). Recall that the Mittag-Leffler function

ha Zn 1 ﬂa_ﬂeﬂ
E, = _— = — du, a,p>0,z€C, 1.13
9= LT g =z 0 -

Networks and Heterogeneous Media Volume 18, Issue 3, 1024—-1058.



1028

and E,(z) = E, 1(z), where the path C is a loop which starts and ends at —co, and encircles the disc
lul < lz|+ in the positive sense, for u € C, u® denotes the principal branch of y*. Gamma function
I'a) = fom t*~le7'dt. In the paper we will use another special Beta function B : (0, o) X (0, 00) —

(0, 00) is defined by B(a,b) = fol(l — 5)*'s*"!ds. Using a subordination principle we can write the
Mittag-Lefller family associated to the operator A in the form

E,(tA) = f ) ¥, (s)e"Ads, (1.14)
0

where {e™},5 is the analytic semigroup associated with the operator A and \P,, is the Wright function.

The novel results of this paper are described in detail as follows.

The first novel result concerns the convergence of approximating problem to a@—order
time-fractional evolution equation Dfu. — y(&)Au, — A(k® * u;) = Nlu.] to the corresponding limit
problem of Dfu — (1 + yo)Au = N[u] when @ € (1,2) as scale parameter £ — 0*. The key tool is
based on the resolvent operator family properties as well as the assumptions (HS), (H6) about the
initial data wug.,uy and u;.,u;. Unlike the first-order abstract Cauchy problem with @ = 1,
Lorenzi-Messina [12] studied the approximation of solutions to linear integro-differential parabolic
Eq (1.1) in LP—spaces and extended their results to the corresponding non-linear equation [13]. This
method can be applied to a fractional viscoelastic telegraph equation [21] as well as a fractional
Euler-Bernoulli problem [20].

The second novel result concerns the existence of a local solution to the approximating
problems (1.1) and (1.8) and the corresponding limiting problems (1.5) and (1.9) in weighted function
spaces respectively. We used a lemma from [14] on L? — L7 estimates for the semigroup of Laplace
operator to deal with the L” — L7 estimates to the the resolvent operator family. This technique comes
partly form the interesting recent work of Andrade-Siracusa-Viana [43].

The final novel result is related to the asymptotic behavior of the mild solutions to the problems (1.8)
and (1.9) when @ — 27. The convergence of solution of fractional sub-diffusion equation when «
approaches 1 was first posed by Neto-Planas [44], and then it was considered by Andrade-Siracusa-
Viana [43]. However, there are currently no similar studies on the fractional super-diffusion equation.
This research is the first step in that direction. Our method described is applicable to other applied
models [45,46] by replacing the classical derivative with the non-integer order derivative. On the
convergence of approximating IVP to a—order time-fractional evolution equation

D?l/l‘g _X(S)Aus - A(k‘9 * Ug) = Nlu,]
to the corresponding limit IVP of
Diu— (1 + yo)Au = N[u]

as scale parameter £ — 0", the novelty of this paper is to extend the results in [12, 13] from a = 1
to @ € (1,2), as well as the more general kernel k(7) is considered in the problem (1.1) instead of the
kernel including the series representation in [12]. We also extend the results that the existence of the
unique maximal solution, a blow-up alternative and the asymptotic behavior in [43] from « € (0, 1) to
a € (1,2).

For simplicity, throughout the paper C denotes a positive constant which may vary from one line to
another line, but it is not essential in analysis of the corresponding problems.
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This paper is mainly divided into five sections. Section 2 is devoted to showing some basic
properties of the resolvent operators F?, G, defined in Eqs (2.2)—(2.5) and the non-linear operator N.
Our main results are stated in Section 3, and their proofs are given in Section 4. We give a conclusion
and a discussion in Section 5.

2. Properties of resolvent operators

We first state some assumptions on the operator A and the initial data u .(x), u; (x) to our abstract
Cauchy problems of the linear Eq (1.1) and the semi-linear Eqs (1.8) and (1.11) respectively. Let X be
a Banach space with norm || - ||, @ € (1, 2).

(H1) The operator A : D(A) € X — X is a densely defined and closed linear operator. For some
¢ € (5, ) there is a positive constant C = C(¢) such that

Soas = (1 € C: [arg(D)] < ag) C p(A),

and the resolvent operator R(1, A) = (11 — A)~! satisfies that ||[R(1, A)|| < |7C|, VA€ Zpap-

(H2) The kernel k(¢) € L}OC(R+) such that k(1) exists for Re(1) > 0 and k(1) can be extended to 3’ 4, and
satisfies that ||/k\(/1)|| = O(|17|) as [4] — +oo. For p € [1, +00), there exist constants 6, > % +a, ko, r >0
and ry > r, C > 0 such that [k(2) — ko| < C|A|*, YA € Xy, N B(0, ry).

(H3) There exists a constant M > 0 such that

B M
AT = (1 + x(e)A) "l pexy < 0k YA€ Xopag, Y€ € (0, &).

(H4) The sequence f, € C([0, T], X) converges to f in C([0,T], X) as € — 0*.
(HS) ug ., up € X and u . converges to up in X as € — 07.
(H6) u; ., u; € X and u, . converges to u; in X as € — 0*.

Remark 1. The assumptions (H1) and (H2) have been considered in [7-9, 18, 19, 47], where the
operator B(t) = k(t)A for a given function k(¢) and « € (0, 2).

In the sequel, for r > 0 and 8 € (5, ), we denote a sector by
Y9={1€C:|A =r|arg() < 6}. 2.1)

In this paper we consider the Banach space X = LY(R")(q > 1), the operator A = A with domain
D(A) = {u € X|au € X} and 0(A) = [0, +00). For @ € (1,2), p(F?), p(G%), p(F ), p(G,) are the sets

p(FE) = {1 € C: F5(1) = (1] — x(e)A — k(g)a)™ € LX)}, (2.2)
p(G2) = {1 € C: GZ(A) = 1771 (A°T — x(e)A — k(eD)A) " € LX)}, (2.3)
P(Fo) ={Ad € C: Fo(d) = (AT = xoA — koA ™" € LX)}, (2.4)
P(Gy) = {1 € C: Go() = 2271 = oA — koA) ' € L(X)). (2.5)

We next collect some properties established in [18,48].
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Lemma 2.1. [18,48] Under the assumptions (H1) and (H2), there exists r > 0 such that )., , C p(Fy),
2 CP(GY), Xy C p(F3), Xrp C p(G5), and the operator-value functions F;, G, F5,G5 : Y., 4, —
L(X) are analytic. Moreover there exists a constant M Such that

. M
G (DIl < =, A € Xy

M M M
IFeDIl < ==, 16Dl < —, [IF3(DIl < o

e A [RTEN

Definition 2.2. [1,18,48] For a € (1, 2), the operator families {S 2 (#)}50, {S o (1)} 20, {T5(0)} 120, {To(H)}i0
are defined by

1 —~ -1
Se) = — | " (2T - x(e)A - k(e)A) dA
2ni Jr,,
1
- — | ecEaa, (2.6)
2ni Jr,,
1 -1
Sod) = 5= | A7 (T = oA - koA) dA
27l Tro
1
= — | "G, (dA, (2.7)
2ri Jr,,
1 —~ -1
Tit) = —— | €"(AT - x(&)A - k(e)A) dA
27 T
- L e, (2.8)
2ni Jr,,
1 -1
To(t) = = | (AT xoA-koA) dA
2mi T,
1
= — | eF.an, (2.9)
27Tl Lo

where T'1(r,0) = {te” : t > r}, ['(r,0) = {re® : |&] < 6}, T3(r,0) = {te™™ : t > r}, 6 € (£,¢), and
Iy= U?zl I';(r, 6) oriented counterclockwise.

By the Laplace transform, we give the definitions of L7—mild solutions to the problems (1.1) and
(1.5), (1.8) and (1.9), (1.11) and (1.12) respectively.

Definition 2.3. Let T > 0,e € (0,&0l, uoe U1e,uo,u; € LIR"),qg € (1,+00). Functions
u, € C([0,T], LYR™)) and u € C([0, T], LY(R")) are called L?—mild solutions of Eqs (1.1) and (1.5) in
[0, T'] if u, and u satisfy the following equations respectively

u.(1) So(Hup e + f Se(s)uy ds + f To(t = 5) fe(s)ds, (2.10)
0 0

u(t)

So(Oug + f So(Huds + f T, (t — s)f(s)ds. (2.11)
0 0
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Definition 2.4. Let 7 > 0, € (0,&0], upe, Ure, to, 1 € LI(R"), g € (1,+00). Functions u.,u €
C([0,T], LY (R™)) are called L?—mild solutions of Eqs (1.8) and (1.9) in [0, T'] if u, and u satisfy the
following equations respectively

us(t) = Sg(Duge + j; tSZ(s)ul,gds

+ fo T = 9)£05) + T~ INuy()lds, 2.12)
u(t) = Sa(t)u0+f(:sa(s)u1ds

+ fo [Tt = () + Tult — INu(s)lds. 2.13)

Definition 2.5. Let T > 0,e € (0,8, upe U1, uo,u; € LIR"), g € (1,+00). Functions
u, € C([0,T], L9R™)) and u € C([0, T'], L1(R")) are called L?—mild solutions of Eqs (1.11) and (1.12)
in [0, T] if u, and u satisty the following equations respectively

t
u(t) = Si(ug, + f S5(s)uy ods
0

_l_

f (TS0 — $)£.(s) + TS — )Nug(s)lds, (2.14)
0
u(®) = Sy(Hug + f So(s)uds
0
+ f [T2(t — ) f(s) + Ta(t — s)Nu(s)lds. (2.15)
0

Lemma 2.6. [18] Under the assumptions (H1), (H2), the operator-valued function S:(t) defined in
Definition 2.2 is (i) exponentially bounded in L(X); (ii) exponentially bounded in L([D(A))), (iii)
strongly continuous on [0, 0o) and uniformly continuous on (0, 00) in L(X); (iv) strongly continuous on
[0, o) in L([D(A)]); (v) The operator function T:(t) defined in Definition 2.2 is exponentially bounded
in L(X); (vi) exponentially bounded in L([D(A)]).

The cosine and sine operator families {S ,(#)};>0 and {T,(?)};»¢ are defined in Definition 2.2, their
properties can be found in [48-50]. We give the following L” — L7 estimates of the operators.

Lemma 2.7. [50, Lemma 4.3] For 1 < g < r < +00 and g < +oo, there exists a constant C > 0 such
that for every ¢ € L1(R") and t > 0 we have

_ancl_ 1 n 1 1

1S e D¢llr®n < Ct 2%l o 5(5 - ;) <1, (2.16)
_an(1_1y o nl 1

ITa@llrmn < C7 26" gl e, PR L (2.17)

Moreover, the operator family {S ,(t)},>o is strongly continuously in L' (R").

From Lemma 2.6, we can easily obtain the following lemma.
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Lemma 2.8. [51] For a € (1,2], there exists a positive constant C depending only on a,T, M, 6, r

such that

1S Dllzoo < G NITeDllzxy < C, Ve €[0,T],
1S el 2y < €, ITa®llzex < C, V1 €[0,T].

(2.18)
(2.19)

Lemma 2.9. Under the assumptions (H1)—-(H3), for p € [1,+), a € (1,2), §) € (% + a, +00) and
&1 € (0, min{eg, %0}), there exists a constant C > 0 depending only on o, T, M, 0,1, &y, 6y, p, 1o such that

1

ISE = Sallrorycoy < Cler + &% +x(e) = xol), Ve € (0, &],
Liqe

T2 = Tollwor.coy < Ce™ " + &%+ y(e) — xol), Ve € (0, ]

Proof. From Lemma 2.1, we have

(A% = (x(&) + k(ED)A) ™" = (AT = (ko + x0)A) Nl 2cx)

< [far- v FReDA] 0e) — xo) + (ied) — ko)) H_/;oo
Jocer- e omr ],

< %(IX(S) - xol + KeD) = kol)[|AQ = (ko + x|

) M(bc(e)lglfgclo++|’;;ﬂ> —Dlr - 2 - o x|

< l/{l\f((;)—ic);)(b(@) — xol + k(e) = ko).

According to Definition 2.2, inequality (2.22) implies that

1S 6(®) = S ol £cx)

< % | fr ) 2T = (ete) + DAY = (47 = (ko +x0)d) |
214((,30 i)c(z) 5 e;T(Lv(@ ~ ol + k(&) - kol)d,
175(1) = To(®ll 2cx)
< % | fr ) {141 = (ete) + KeAT™ = 14" = (ko +x0)A]Jda |,

M1+C) [ R

2ne(ko + x0) Jr,, |41 (IX(E) ~ Xl + lk(e) - ko')d/l'

Hence, for p > 1, we have

”SZ - Sa”Ll’((O,T),.E(X))

_ i _ +00 1
M1+ C) (&) — xol + k(gd) ko|(f e,pRe(ﬁ)dt)pd/l
2n(ko + x0) Jr,, | 0

(2.20)
(2.21)

(2.22)
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L M(+0) 2 (&) - )(o|+|k(€/1) kol )
2r(ko + x0) = Jrieo) |Re(/l)| [

4, (2.23)

T3 = Tolloro.r),ccx)
M1 +C) (&) = xol + k() — kol(j‘Jroo e”’Re“)dt)%d/l
0

27(ko + X0) |l
-1 MA+C6) C) lx(€) = xol + Ik(sfl) kol
(2.24)
27T(ko + X0) 4= Z T;(r0) |Re(/l)| ||

We first estimate the integrals over I'j(r, 6), j = 1, 3. From the assumption (H2), there exists a positive
constant C such that for I';(r, 0) = {te”’ : t > r} and T'5(r, 0) = {te™™ : t > r}, we have

+00 10 _
f Ik(g2) — kol /ISCOS_II’(H)s}vf Ik(se'®) ko|
I;(r6) |Re/l| R e s

70 1 +00
< CCOS_P(Q)gp(f seo—l—;ds +f _1_,dS)
0 "

< Cer, j=1,3, (2.25)

r

1o 1 —+00 |
where for 6, > i, I = f s "5 ds converges and Vp > 1, I, = f s™'"7ds converges.
0 o
Similarly, there exists a positive constant C such that

™ _ +00 17, 0y _
f lk(ed) ko|d/1 < cos_;(e)azlﬁ“_lf k(se'?) kolds
r

1

6 |Red|P|Al or §*h
< CCOS_%(Q)S%W_I( fom SO s + fﬂo s“‘z%‘“ds)
1o
<Cer™, j=1,3, (2.26)
where for 6, > é +a, ; = Oro s g converges and Vp > l,a € (1,2), Iy = fr:m s ds

converges.
For the function y(g) and j = 1,3 we can also get

(@ —xol ;o f‘x’ IX(S) Xl ds < Cly(e) - xolr 2.27)
Tj(r.0) IRe/l|P|/l| r 5 cos? )

(®) = xol ;) f Mds < Cly(&) = xolr™ 7. (2.28)
Tj(r.0) |Re/l|ﬂ |/l|0‘ r 5 cos? ()

From inequalities (2.25)—(2.28), we get the estimates of the integrals over I';(r, 0) for j = 1,3,

(&) — xol + Ik(sﬂ) kol ,
rjr6) IRed|7|A]

dA < Cev + Cly(e) — xolr ™7, (2.29)
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(&) — xol + Ik(£2) — kol
r(6) IReA|7| Al

1io-1 l-a-1
dA < Cer + Cly(&) — xolr " 7.

(2.30)

Now we estimate the integral over I',(r, 8) in inequalities (2.23) and (2.24). Choosing € € (0, &]

with £; < min{gy, ’70} and making use of assumptions (iv) and (v) in Lemma 2.6, we have

() — xol + lk(ed) = kol 0

T2(:0) IReA|7 ||
L[ Eebohiy, [ weox,
6  |Red|?|4| 0 |Red||A]
] 0 /k\ i€y _ 0 —
< ) |k(ere 1) O|d§+ I/\,/(E)1 XOldf]
-0 cos? (&) -6 cos? (&)
_1 o !
< crtfen® [ cos e+ i) -l [ cos o]
-9 -6
< C(e" + |x(&) — xol),
(&) = xol + kied) ~ kol ;)
I2(r,0) |Red|?|A|*
k(ed) — k -
L[ Eebobi,, (W,
N0 |Red|r|A|® 0 |Red|?|A|*
] 0 ’k‘ €Y _ e 0 —
< rl—af+;[ lk(ere®) O|d§+ lx(e) XOldf]

0 cost (&) 0 cost (&)
) 9
< Crl‘c’*;(sr)e‘)f cos 7 (&)dE + [y (&) —Xolf cos 7 (£)dé
-0 -0

< CE™ +x(e) = xol)-

2.31)

(2.32)

From inequalities (2.23), (2.29) and (2.31) we get the estimate inequality (2.20), and from inequalities
(2.24), (2.30) and (2.32) we get the estimate inequality (2.21). This completes the proof of Lemma 2.9.

Lemma 2.10. Under the assumptions (H1)-(H4), for p > 1, a € (1,2), we have
TG * fo — To * fllo.nx

Lia-1 o
< ClIfs = fllcqorix + CE?™ " + €% + [y(€) — xoDll fllcqo.r.0

where C is a positive constant depending only on a, T, M, 0,1, &, 0y, p, 1o, and

1.1_ e L1
1 [1,+q 1, if p+q21,p,q21,
r ;,

= e 1,1
if S+5<Lpg>1,
the convolution (T * f)(t) = fot T(t — s)f(s)ds and we have

Tex f, > To* fin L'((0,T); X) as e - 0.

(2.33)

(2.34)
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Proof. From the identity 75 « f. — T f = TS = (f. — f) + (TS —T,) = f, we have

TG * fo — T * fllonx
=TS+ (fe — )+ (T3 = To) * fllero.n.x
<|TZ * (fe = Dllron.x + ITE = To) * fllro.nx- (2.35)

For i + é > 1(p,q > 1), we can use Young’s inequality for convolution, together with Minkowski’s
inequality, Lemmas 2.8 and 2.9, we have

T, * fo = To * fllro.nx

< TNy, coollfe = Allusorx + 11Te = Tallrqo.m.coollfllaco.m.x
101 P

< Cllfs = fllcqor.x) + Cler™ +&% + (&) = xoDIlfllcqo.rx)-

For % + é < 1(p,q > 1), we first choose r = p and then use Young’s inequality for convolution,

together with Lemmas 2.8 and 2.9, we have

\T; * fo — To * fllron.x

< W Tellero.ry.coollfe = flloor.x + 1Ts = Talleqon).coopllfllLi o x
1ia-1 o

< Cllfs = fllcqor.x) + Cer™ ™ + &% + x(e) = xoDIlflleqo.rx)-

Thus the inequality (2.33) holds true for % + é < 1(p,q > 1). Since L4((0,T), X) — L'((0,T),X), we
easily get estimate inequality (2.34). This completes the proof of Lemma 2.10.

Lemma 2.11. Under the assumptions (H1)-(H3), (HS), for any p > 1,€ € (0, &], we have
IS Guto.c — S attollro.r).x) < Cllug.e — uoll + C((‘?% + &% + [y(e) = xoDlluoll, (2.36)
for some positive constant C depending only on a, T, M, 0, r, &, 0y, p, ro. Moreover,
Stupe = Squp in LP((0,7T);X) as € — 0™. (2.37)

Proof. Due to the identity SZup, — S.uo = Si(uoe — uo) + (S, — So)up, Minkowski’s inequality,
Lemmas 2.8 and 2.9, we obtain

IS Guoe — S oUollzr0.1).%)

= IS5 (uo,e — uo) + (S, = S Duollzro.r).x)

< IS5 (uo.e — uo)llro.r)x) + 10Se = S Duollzro.r).x)

< IS Glleeo.r).cooplluo.e — uoll + IS — S allzro.r).coon ol

< Cllug.e — uoll + (7 + &% + [y — x(&)Dluoll. (2.38)
This completes the proof of Lemma 2.11.

Lemma 2.12. Under the assumptions (H1)—(H3) and (H6), for any p > 1,& € (0, &), we have

!
H fo (SZu1, — S qu)ds
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< Cfllure — wll + (&7 + &% + [x(e) — xol ). (2.39)

for some positive constant C depending only on a, T, M, 0, r, &, 6y, p, ro. Moreover,
! !
f Studs — f Souids as € » 0" in LP((0,7), X). (2.40)
0 0
Proof. Due to the identity

! ! !
f [Sf,ul,g —Soulds = f SZ(MLS - Ltl)dS + f(SZ — Sa)ulds,
0 0 0

Minkowski’s inequality, Holder inequality, Lemmas 2.8 and 2.9, we obtain

!
Seu;.— S u dsH
Hj; (S gtt1.e = Sath) Lr(0.7).X)

t t
< ” f So(ur e —w)dsllro,r)x) + f(Sf, = Suids
0 0

< C||S§||L1'((0,T),L(X))||M1,.s — |l + ||SZ - Sa”U’((O,T),L(X))””l”
1
1 o
< Cllure —ugll + Cler + ™ + [xo — x(@)Dllu]l. (2.41)

Lr((0.7),X)

This completes the proof of Lemma 2.12.

Lemma 2.13. Under the assumptions (H1)—(H6) with X = L1(R")(q > 1), a € (1, 2), then for t > 0 we
have as @ — 27

t t
So(Dug . + f So($)uyods + f To(t = $)fe(s)ds
0 0

(S5O0, + fo S5(s)uy s + fo T3 - 9£9)ds)|, . = 0. (2.42)
‘Sa(t)u0+ f S, (s)uds + f T, (7 - $)f(s)ds

0 0
~(Sa(tuo + fo Sa(shurds + fo To(t = )f(5)ds)], . = O (2.43)

Furthermore, this convergence is unform for t in bounded subintervals and ug, u,, uo ., u; . in bounded

subsets of L1(R") and f(t), f.(t) in bounded subsets of C([0, T], L1(R")).
Proof. We only prove Eq (2.43) since the proof of Eq (2.42) is similar.

t t
2mi( S5 (1o, — S5(Duo.. + f SE(s)uy ods — f S5(s)uy ods
0 0

+ f To(t — 5)fu(s)ds — f T5(t - $)f(5)ds)
0 0

_ f M4 = YA ~FEDA) | = AL = x(@A - FEDA)  uopdA

T 0
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f t f A (2T = (&A= FEDA) | = AT - x(&)A ~KEDA)  Juy odAds

f t f (T - x(&)A ~T(eDA) | — (21 = (@A ~KeDA) | fi(s)dAds.
0 Jly

Due to Lemma 2.1, assumptions (H1) and (H3), we obtain

— -1
A7 (2T = (@A - k(e)A)  up,s

— -1 L2
“APT - x(@A = k(eDA) o), o < Ty o,
a-1{ya 7 -1
27T = Y(&)A = k(DA i
_ 2 _ _’\ -1 2C
A(XT = x(@A - k(EDA) ur, ey < 77 el

and

H(M ~ ¥(©A -KeDA) fi - (121 — Y(@A -KeDA) [,
S,
~ oA AP

Furthermore, for each A € p(A) we have

L4(R")

I felleqo.rLamm) < W”fs”C([O,T],Lq(Rn))-

a-1{ o 7 -1 2 i -1
72T = x(@)a = k(e)A) uop — AT = x(£)a = k(E)A) up,s

La(R")

(A = ()8 ~Fe)a) ure = AP = Y(@)s —Keda) u,

LI(R")

(27 = x(e)a = K(e8) o = (21 - x(e)a —K(ea) A

LI(R™)

as @ — 27 uniform for 7 in bounded subintervals of [0, +oco] and uy, u;, ug ., 41 . in bounded subsets of
L9(R™) and f(¢), f-(t) in bounded subsets of C([0, T'], LY(R")). Thus, we conclude the proof of Eq (2.42)

by using the Lebesgue dominated convergence theorem.
This completes the proof of Lemma 2.13.

3. Statement of the problems and main results

Now we consider the existence of the solutions u, and u to problem (1.1) with a small parameter &
and the corresponding limit problem (1.5) as € — 0% respectively, and then we focus on the

convergence of u, and u in the space X, for p > 1, where the space

X, = {u e C(0,T], [P/ (R") : sup 124 Vlju(t)||pparr) < 00}
te(0,7T]

endowed with the norm

o (n—1
lullx, = sup #24°~Vlju(@)l| o).
te(0,T]

Now let 8 = %(p — 1), we state our main results.

3.1

(3.2)
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1038

Theorem 3.1. Under the assumptions (H1), (H3) with A = A, X = L4(R"), forg > 1, a € (1,2), p > 1,
q > 5 (p — 1), there exist constants T > 0 and R > 0 such that the problem (1.5) admits an L1—mild
solution u : [0, T] — X which is unique in C([0,T], X) N X,, for any (f,up,u;) € C([0,T],X) x X X X.

Theorem 3.2. Under the assumptions (H1), (H3) with A = A, X = LI(R"), the nonlinear operator
N : [0,T] X X — X defined by Eq (1.10) is continuous with respect to t and there exists a constant
M > 0 such that

IA

IN (@, )| M +IxlP™Y), Yx,y € X, (3.3)

IN(t,x) = NIl < MA+|IxP~ + [yl Dllx = yll, Yx,y € X. (3.4

Forq > l,a € (1,2),p > 1,q > (p — 1), there exist constants T > 0 and R > 0 such that the

problem (1.9) admits an L—mild solution u : [0, T] — X which are unique in C([0,T], X) N X, for any
(f,uo,u1) € C([0, T], X) X X X X.

Theorem 3.3. Under the assumptions (H1)-(H3) with A = A, X = L1(R"), the coefficient y satisfies
Eq (1.4), for g > 1,a € (1,2), there exist constants T,R > 0 such that the problem (1.1) admits an
Li—mild solution u, : [0,T] — X which is unique in C([0, T], X) for any (fs, uoe, u1) € C([0,T], X) X
X x X, € €(0,&)]. For T and R, the problem (1.5) admits an L1—mild solution u : [0, T] — X which is
unique in C([0, T], X) for any (f,ug,u;) € C([0,T],X) X X X X.

Theorem 3.4. Under the assumptions (H1)-(H3) with A = A, X = LY(R"), the nonlinear operator
N : [0,T] X X — X defined by Eq (1.10) is continuous with respect to t and satisfies Eqs (3.3)
and (3.4), the coefficient x satisfies Eq (1.4), forp > 1,q > 1,a € (1,2), there exist constants T,R > 0
such that the problem (1.8) admits an L1—mild solution u, : [0, T] — X which is unique in C([0,T], X)
Sfor any (fe,upe,u1e) € C(I0,T],X) X X X X, € € [0, &y, while the problem (1.9) admits an L1—mild
solution u : [0, T] — X which is unique in C([0, T], X) for any (f, up,u;) € C([0,T],X) x X x X.

Theorem 3.5. Under the assumptions (H1)-(H6) with A = A, X = LI(R"), and the coefficient y
satisfies Eq (1.4). Fora € (1,2),p > 1,q > 1, there exists T > 0 such that the mild solutions u, of the
approximating problem (1.1) converges in C([0, T'], X) to the mild solution u of the limit problem (1.5)
as € — 0%. More exactly, there exists a positive constant C such that

bt = ullcqo.rnx < Cllluoe = uollx + e = willx + 11fz = Flleqori)
Lia-1 0
+ Cler™ ™ + &% + |y(e) — xoDllfllcqorix
1
- 6
+ Cle? +&" + x(2) = xoD(luollx + lurllx)- (3.5)

Theorem 3.6. Under the assumptions (H1)-(H6) with A = A, X = LY{(R"), the nonlinear operator
N : [0,T] X X — X defined by Eq (1.10) is continuous with respect to t and satisfies inequalities (3.3)
and (3.4), the coefficient x satisfies (1.4). Forp > 1,a € (1,2),p > 1,q > 1, there exists T > 0 such
that the mild solutions u, of the approximating problem (1.8) converges in C([0, T'], LY(R")) to the mild
solution u of the limit problem (1.9) as € — 0. More exactly, there exists a constant C > 0 such that

||zee — M”C([O,T]),X)

< C(lluge — uollx + llure — willx + lfe = flleqorx)
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Ligo
+ C(er™ " + &% + [y(e) — xoDllfllcqorix
1
+ C(er + &% + [y(e) — xoDluollx + llu1lx)
Lo
+ Cler™ ™ + 8% + y(e) — xol)luolly + Il + 1 W qo.r1x)- (3.6)

Theorem 3.7. Let u be the solution of IVP (1.9) given in Theorem 3.2. Then u can be uniquely continued
to a maximal time Ty > T.

Theorem 3.8. Let u be the solution of IVP (1.9) given in Theorem 3.2. If Tyax < oo, then

lim sup tﬂllu(t)lluyq(Rn) = oo, limsup |lu(?)||zewrr) = oo.
l_>Tl;laX t_)Tl':]aX

Theorem 3.9. If uf,u,,u5,u, are mild solutions of the problems (1.8), (1.9), (1.11) and (1.12)
respectively, then

llug (1) — 5Dl sy = 0, Nute(t) — u2(DllLawry — O,

as a — 27 uniformly for t in bounded subintervals of [0,T], where T > 0 is any common time of
existence for ui,, u,, us, u,.

4. Proof of Theorems 3.1-3.9

For the approximating problem (1.1) with a small positive parameter € and the limit problem (1.5) as
& — 0%, due to Definition 2.3 we can transform them into the integral Eq (2.10) by Laplace transform
and the operator families {S ,(7)};>0 and {7, (?)};>o defined in Eqgs (2.7) and (2.9).
Proof of Theorem 3.1. For the linear limit problem (1.5), we consider the integral Eq (2.11). Use the
space
X, = {u e C(0,T], [P/ (R™) : sup 12 Vlju(t)||pan) < 00}
1€(0,T]

defined in Eq (3.1), endowed with the norm given in Eq (3.2):

A (H—1
lully, = sup £34% D) ju(®)l|parr)»
te(0,T]

let B be the closed ball in X, centered in the origin with radius R. Since

an an n 1 1 nip—-1)
PB=ps—p-D=——p-D<1, S(--—)= a Y
2pq 2q 2'q pq 20g  «

using Lemma 2.7 and the integral Eq (2.11), we have

! t
llull, < ||Sa(t)u0”Xp+”fSa(s)uldsllXp+||fT(t(t_s)f(s)dS”Xp
0 0
t

sup #|IS o(Ouollzrawn + sup Pl | S o()urds||pare)

1€(0,T1] 1€(0,T7] 0
!
+ sup || | To(t = 8)f(s)dsllarn
te(0,T] 0
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5

IA

sup 1 P|lugllpsny + sup 7 ety || orry
te(0,T] te(0,T] 1_:8
!
+ sup | ITo(t = ) f()lumnyds
t€(0,T] 0

IA

Clluollzawry + ll2e1]]arr)

-5

!
+ Csup | (= )P N f()llarnyds
te(0,T] 0

IA

Clluollzarry + 221 ]| arr)

C
1-5
!
—1-
+  Cllfllcqo,ry,Lamny) Sup £ (t—s5)""Pds
1€(0.T] 0

IA

Clluollzawry + llee1llzorry + CT N flleqo,r1,9rm)

R.

CT
-5

IA

The contraction principle implies existence of the mild solution « in the ball B. We will prove that u is
an L7—mild solution and is unique in X,,. Indeed,

() — uollrarr)

f !
< IS o(®uo — uollzewn + f IS o ($)ur || omyd's + f ITo(t = $)f(llawrnyds
0 0

IA

! !
1S «(Duto — uollzarr + Cf il aenyds +C f (t = " NF$)llonds
0 0

IA

!
-1
IS o« (Duo — uollLawey + Cellurllewry + Cllflleqo.r1.omn) f (t—29)""ds
0

C
= IS o(®uo — upllzawny + Ctllurllowrry + ;la||f||C([o,T],Lq(Rn))
— 0Oast—0".

Therefore, u € C([0,T],LYR")) N C(0,T], [*1(R")) is an L?—mild solution the linear limit

problem (1.5). We finish the proof of Theorem 3.1.

Proof of Theorem 3.2. For pf < 1, ﬂ(é —~ pl—q) < 1, we can choose T such that

T CT”
-5 a—p

1

+CMT**(= + R'T"B(a., 1 - pB)) < R,
a

Clluollzarny + C 2y || zarry + £ lcqo,m1,20Ry)

1
MCTB(a, 1 = B) + 2R ' T *PB(a, 1 — pB) < 5

where I'(@) and B(a, ) are Gamma and Beta functions respectively. Let B be the closed ball in X,
centered in the origin with radius R. For the nonlinear limit problem (1.9), define amapI' : B — B by

i

Tu(®) = S,(Huy + f S.($uds + f T, (t—s)f(s)ds + f T,(t — s)Nu(s)ds. 4.1)
0 0 0
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By the Lemmas 2.7 and 2.8, for u € X, we have

A

! t
Wully, < ”Sw(t)u0||X,,+||fSa(s)uldS”Xp‘i'”fTa(t_s)f(s)dS”X,,
0 0

I f To(r = $)Nu(s)dsllx,
0

+
1
< C sup lﬁt_ﬁ||u0||Lq(er) + sup Z’B ||Sa(s)u1ds||m(Rn)
te(0,T] te(0,T] 0
t
+ sup | ITo(t = 9)f()lpumnds
1€(0,T] 0
t
+ sup | |[To(t — )Nu(s)llzparnds,

1€(0,T] 0

thus we have

!
1=
ICullx, < ClluollLawn + C sup | =) POl awnds
te(0,T] 0

t
-1
+CM sup 7 | (1= )" (1 + (I g dls
te(0,7T] 0
t
+C sup tﬂ S_ﬁ”l/ll”Lq(Rn)dS
te(0,7] 0
a

< Clluol|awry + llearllzorry + 1f (Ollcqor.Lomn)
1- a—p
M a+B Z’B a—1
——T% 4+ CM sup (t )" ()N g gy s
te(0,T] 0
CcT cT®
< ClluollLawny + |21 ]| arr) + f (Dllcqo.Lemn)
1-8 -B
M
—=T" + CMR’ sup ¢ (- 5y
t€(0,T] 0
CT cT®
S C u ny + u ny + S n
lluollowe) 1_ﬁll 11700 a—,B”f( Mleqo.r.Lamn)
M
+—T*F + CMR°T* "**B(a,1 — pB) < R.

a
For u,v € B, we also get

!
ITu = Tvllx, < sup # | [[To(t = $)(Nu(s) = Nv(s)llsands
1€(0,T] 0

!
<MC sup # | (¢ = 9 (1 + (), + IV i)
1€(0,T] 0

lu(s) — V(S)”LPq(R”)dS

!
< MCllu—vllx, sup # | (1—5)""s7Pds
te(0,T] 0
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!
1 -8 —(o—1 -1 -1
<+MCllu—vllx, sup # | (1= )" sPs Pl + v Hds
1€[0,T] 0 s ’

< MCllu = vllx, T*B(a, 1 = B) + 2MCllu — vlix R*~' T****B(a, 1 - pB)
< MCllu = Vllx,(T*B(a, 1 - B) + 2R T*##B(a, 1 - pp))

1
< EHM =Vl -

The contraction principle implies the existence of mild solution # in B. We will prove that u is an
L7—mild solution and is unique in X,,. Indeed,

!
lee(2) — wollLarry < IS o(Ouo — ol + |l f S o($)u1]| ey
! ! 0
+||j(; To(t = ) f(s)ds|| Loy + ||£ To(t = Nu(s)ds|| o),
thus we have
!
llee(?) — wollarry < 1S o (Duo — uollzowny + Cj; lletr || oweyd's

! !
+ f ITa(t = $)f(llzawnds + f ITo (2 = S)YNu(S)l|arryds
0 0

< IS o (Duo — uoll sy + Ctllur || zarry
!
-1
+C f = )" NfSllawnds
0
!
.
+CMf (=" (1+ ||M(S)||ﬁq(Rn))dS
0
< IS o (Duo — uollzawry + Ctllur || 9wy

!
-1
+C||f||C([O,T],Lq(R"))f(t_S)a ds
0

! t
+CM f (t—s)'ds+CM f (t = ) ()l e ds
0 0

-1
< IS o(Wuo — uollzawry + Ctllurll oy + Ca™ 1|l flleo,r1,0mmy)
+CMa™'t* + CMt* " B(a, 1 — pB)llully, — 0ast— 0.
P

Therefore, u € C([0, T'], LY(R™)) (" C((0, T'], L*9(R™)) is an L?—mild solution for the limit problem (1.9).
If v € X, is a solution of problem (1.9), we may take 0 < 77 < T such that ||v||§; < R. Then, by
uniqueness in B, we have u(z, x) = v(z, x) for all ¢t € [0, T’]. Now, we set

R = max{ sup #|u(t)|zrarrys SUP tﬂllv(t)llm(Rn)}.
1€(0,T) te(0,7)

Fort € [T’, T], we have
fﬁ”“(t, X) = v(t, X)||parr
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t
< McC# j; (t = )71+ 1O ey + VO i)
||M(S) - V(S)”L/Jq(Rn)dS
t
= mer f (0= (1457 Pl + 57 )
0
||M(S) - V(S)”Lﬁq(Rn)dS

< MC(1 + 2T P~ DBRP=1y (TP
: f (t = )" Plluls) = v()llpawnds.
0

Now, let £ : [0, T] — [0, +o0) be defined by &(1) = #||u(t) — v(t)||rarn), thus we have
E() < MC(1 + 2(T") P~ DBRP= 1Y (T") P f (t — 5)'&(s)ds,
0

apply the singular Gronwall’s Lemma [52, Theorem 4] we can obtain the uniqueness of the solution.
We finish the proof of Theorem 3.2.

Proof of Theorem 3.3. For the approximating problem (1.1) with a small positive parameter € and the
limit problem (1.5) as € — 0%, due to Definition 2.2 we can transform them into the integral Eqs (2.10)
and (2.11) by the operator families {S ,(£)}50, {To(t)}i20, {S5(O)}i=0, {Ta()}>0 and Laplace transform.
From the assumptions (HS), (H6) on u ., u; . and (i)(v) in Lemma 2.6 we obtain

”MSHC([O,T],L‘I(R")) <|IS Z(l)uo,a||C([0,T],L4(Rn))

! !
+||f Se($uyedsllcqo,ry.omm) + ||f T;,(t = ) fo(s)dsllcqo.r).amm)
0 0
3

= sup IS5 uoellrarry + sup |l | So(s)uy odsllawr)
t€[0,T] t€[0,T] 0
!

+ sup || Te(t — ) fe(8)d || Larr
ref0.r] Jo

!
< sup Cert”bto’s”Lq(Rn)‘i' sup C””l,s”L‘i(R”)f e”’ds
t€[0,T] t€[0,T] 0

!
+ sup f TS, (t = 8) fe(l|awnyds
0

t€[0,T]

C
T T
< Ce" luo ellparry + 7(€r — Dlluy gllzamrny

!
+C suPfer(t_s)||]€9(S)||L4(R")dsa

t€[0,T] JO

thus,

C
T T
“ua”C([O,T],L‘I(R”)) < Ce ”uO,s”L‘i(R”) + 7(€r - 1)||”1,£||L’1(R”)

!
+Cl| felleqo,r1,La®n) sup ertf e ds
€071 Jo
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C
T T
< Ce" lupgllorm + 7(€r — Dllus gllrowrn

C r
+7(€r = Dl felleqo,r,eomny < R.
Next, we will prove that u, is an LY—mild solution. Indeed,
e (?) — uo ellLarry < NS 5 (Do — Uo llawrr)

f f
+ f 1S5 ($)ur ellarmds + f T (t = ) fo(NlLarmd's
0 0
!
< IS5 uoe — o ellrawry + Cllu gllorn f e"'ds
0

!
+Cfer(t_s)||fa(s)||Lq(Rn)dS
0

C"-1)
< ||SZ(I)M0,8 - uO,s”L’I(R”) + f”ul,g”L‘I(R")

!
+Cl| fellcqo.ramme” f e "ds
0

C-1)
= ||SZ(I)M0,8 - uO,s”L‘I(R”) + f”ul,s”Lq(R")

Cee"-1)
+————=|Ifellcqor ey — 0 as t — 0.

Therefore, u, € C([0, T], L(€2)) is an LY—mild solution of the approximating problem (1.1).

Next, the proof of the existence of solution to the linear limit problem (1.5) is similar to the proof
of Theorem 3.1, so we omit it. We finish the proof of Theorem 3.3.
Proof of Theorem 3.4. We can choose T such that

T
Ce ”u0,8”L’1(R")

CT -1 "
+—(”ul,s”L‘1(R”) + | felleqo.ry.Lammyy + MRP + M) <R,

C(llollzory + Tl o)
a

T
(Ilf(l)||c<[o,T],L‘1(R")> +M+ MRp) <R,

o
rT rT
e’ -1 Y L 1
r r
T¢ T¢
— +2R' ) <R
a a

+

cM( )<R,
cM(
For the nonlinear approximating problem (1.8), define an operator A : B — B by

Aug(t) = SE(D)up s + f (S5(S)urods + Tt = 5)£o(s) + TE(t = Nuy(s))ds, 4.2)
0

and B is a closed ball in C([0, T'], LY(R")) centered in the origin with radius R. By the assumption on
nonlinear operator N, due to Lemma 2.6 and u, € C([0, T], LY(R")) we have we have

AUl co.ryomny < NS0 ellcqo.r)Lomm)
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; !
+||fSZ(S)ul,sdsl|C([O,T],L‘1(R”))+||fTz(t_S)fS(S)dsl|C([O’T]’Lq(Rn))
0 0
!
+l f To (1 = $)Nuc(s)dsllcqo.r1.Larn))
0

!
< sup ||SZ(l)M0,e||Lq(Rn)+ sup f ||Si(5)ul,s||Lq(Rn)dS
0

t€[0,T] t€[0,T]
! !
+ sup f ITE(t = 5) fo(S)|lLamyds + sup f ITE(t — s)Nuo(5)|lLarmds
te[0,T] JO t€[0,T]1 JO
rt __
< sup Certlluo’slqu(Rn) + sup C ||u1’8||Lq(Rn)
1€[0,T] 1€[0,T]
! !
+ sup f TSt — ) fu(S)lLagrnyd's + CM sup f I+ ()] ol
t€[0,7] JO t€[0,T]

[lee1 gl aqr r
< Cle|lug ellpowm + (€7 =1 LRI L cM sup e | e "ds
£llLaRm) p
r 1€[0,T] 0

! !
+CT”||fllcqo.r),Lomn SUp ertf e"ds+CM sup ertf e (I g g ds
o1 Jo o1 Jo

r - 21 llzarry C .,
< C(e T””O,s”L‘I(Rn) + (6’ r_ 1)—r ) + 7(6 r_ 1)||f£||C([O,T],Lq(R”))
T _ 1 C T _ 1
pem+ €Dy ok
r r

+

If u,, v, € C([0, T], L1Y(R")), we have

IAu: — Avelleqo,r).Lamm)

!
< sup f ITo(t — 9)(Nug(s) = Nve(s)llLswnds
0

te[0,7]

!
< MC sup f 1+ s ey + Ve
t€[0,T]

Jug(s) = ve()|lawnds

t
< A/[C”I/t(8 — Vgllc([(),T],Lq(Rn)) sup ertf e_”ds
t€[0,T] 0

!
1
+MCllus = vellcqo.ry.amn) sup e" fo Plet o,y 2oreny 45

t€[0,T]

t
+MCllug = velleqo.ry.Lomey sup € f & IWellg 0,710y @S
te(0,T] 0

2R
)

1
T
<CM(e" = Dllus - Vs”C([O,T],L‘i(R”))(; + .

< §||Ms = Velleqo,r1.omny).-
This yields that A is a contraction operator on C([0, T'], L/(R")), we shall prove that u, is an L?—mild
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solution and is unique in C([0, T'], LY(R")). Indeed,
!
lleto(2) — o ellLarny < 1S5 (Ouo,e — Uoellorry + I f S ($)uy odsl|rawr)
t ! 0
+H\fo To(t = 8) fo(s)d sl Lawrn) + ||f0 T (t — $)Nu(s)ds||rawr)
!
<S5 (Duo e — o ellzawn + Cf " |luy el Larmds
! 0 !
+Cf(; "IN o)l awnd's + Mcfo (1 + (g g s

C
< |ISE@uoe — uoellrawn + 7(8” = Dllfelleqo.rneamny + 1w gllawrn]

MC C
+T(€rt -1+ T(ert - l)llugllc([()’T]’Lq(Rn)) —0ast— 0",

Therefore, u.(t,x) € C([0,T],LYR")) is an L?—mild solution for the nonlinear approximating
problem (1.8). If v, € C([0,T], LY(R")) is a solution of problem (1.8), taking O < 7" < T such that
||v€||C([0 T1LIRm) S < R, the uniqueness in B implies that u.(¢, x) = v.(¢, x) for all # € [0, T"]. Now, we set

R = max{ sup |luz(*)llzewr), sup [[ve(®llawn}-
1€(0,T) te(0,7)

Fort € [T’, T], we have
llete () — ve(OllLarr

MC f (1 + (I ey + VeI e M) = VoSl oyl
0

IA

IA

!
rt —-rs
MCe fo (1 + ”“«S”cqo T1LoR) T ||"8”C<[o 71, Lff(R"»)

etz (5) = ve()llLawnds
t

< MC(1 +2R"* e f e "llug(s) = ve()llrawnds.

’

Define a function 7 : [0, T] — [0, +00) by 1.(¢) = [|u.(t) — ve(t)l|L4®rr), thus we have

t
ns(t) < MC(l + 2R’p_1)e”f e "n.(s)ds,
0

due to the Gronwall’s inequality we obtain the uniqueness.

Next for the nonlinear approximating problem (1.9), the proof is similar to the proof of Theorem 3.2,
so we only show primary difference. Define an operator I' : B — B by Eq (4.1). We use Lemma 2.7,
so we have

!
ITullcqo,ry,omry < SUP ISe(H)uollarry + sup f ISe(s)u1d sl rarr)
€[0,7] 10,77 Jo

!
+ sup f ITo( = 8)f(llLarnds + sup f ITo(t — S)Nu(s)||Lawnyds
0

t€[0,T] 1€[0,T]
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a

< Cllugllzawny + CT|ul|arry +

CMT® T
+ CMR°— < R.
o (04

o ILf Olleqo.r,Lomny)

+

For u,v € B, we also get

[Tz — FV”C([O,T],L"(R"))

t
< sup f ”T(l(t - S)(NM(S) - NV(S))”Lq(Rn)dS
te[0,T] JO
S MC u-—v n _+2RP_1_
e = Vlleqo o~ —)

< EHM — Vlleqo,r1.La®n)-

We finish the proof of Theorem 3.4.
To give the proof of Theorem 3.5 and Theorem 3.6, we need the result that the solutions u, u, €
L>((0,T), LP1(R")), where the space

L((0, T), LYR") = {u € L((0, T), LY(R") : sup (1)) < oo} (4.3)

endowed with the norm

”u”L""((O,T),Lq(R")) = sup [[u(®)|[zswr)- 4.4)
te(0,T)

Lemma 4.1. If u,, u are defined by Egs (2.10) and (2.11) respectively, then we have

||Mg||L°°((0,T),m(R"))
< C(lluo,sllzpawmy + llur llzeawny + 1 fellzio, 7,00 )5 4.5)

12 |L°°((O,T),LP‘7(R”))

C
< Cllugllzawry + CT ||lur|lorry + ETQHf”C((O,T),Lq(R"))- (4.6)
Proof. From Eqs (2.10) and (2.11), inequalities (2.16)—(2.18), we get

ezl 0.7),20Rmy) < SUP IS £zaropllteo ell arry

1€(0,T)
!
+ sup || Se()ds|| zawmpllie llarn)
te(0,T) 0
+ sup [ToOll zawry * 1 fe®llzawr)
1€(0.T)

< Cllluo gllarry + w1 gllzarny + I fellro.r),Lommy)s

and
se(O|| 20,7, 209R™)
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< sup [[Se(Buollzawn + sup || So($)urds||awr)
te(0,T) te(0,T) 0

+ sup [[To(0) * f(Ollzarr)
1€(0,T)

C
< Clluollawry + CTllus || Lowny + ;TaIIf(t)”C((O,T),L‘I(R")),
This ends the proof of Lemma 4.1.
Lemma 4.2. [f u. and u are defined by Eqs (2.12) and (2.13) respectively, then
ll2tell oo 0,7y, L9RmY) < C(||u0,g||Lq(R") + |1 ellzorry + ”fa”Ll((O,T),L‘I(R")))v 4.7)
lallzes 0.7, 20mey) < Clltollzarey + ot llzaey + 1 flleqor.come ) (4.8)

where C = C(a,1,0,T,p) > 0 is a constant.

Proof. From Eqgs (2.12) and (2.13) and Lemmas 2.6-2.8, we get

!
e (Dll Loy < IS5 £ezameyllto gl oy + ||f Se($)dsl| ol ellae
0

HITL Ol izawry * I feOllarry + I To Ol £czarry) * INu(E)larr)
< C(”MO lleawry + Tllur gll oy + 1 fell o,y Lomry + MT)

+MC f [TRO -~

Applying generalisation type of Gronwall’s inequality in [53], we get

sl < [Cltoulise + Tlltrallzsey + 1felliqor s + MT) ™+ (o = Denc]”
< C(”uo,s”Lq(R") + Tluy gllzawny + 1 felloio, Loy + MT) + C[(P - 1)TMC]p_1,
thus
el oo 0,7),09) < C(“”O,s”L‘I(R") + [l el oy + ”f:s”Ll((O,T),L‘I(R"))),
and

(07 (02

leOllsey < C(llmollzomey + CTlarlloey + —Iflleqor.omey + —)
+C f (t = )" (o gy ds-
Applying the Gronwall’s inequality in [54], we get

le(®llzorry < C(lluollzorery + CT o

[02 (02

T T 1% \p-1
+;||f||c«o,T),Lq(R")) + 7) + ((.0 - 1)C;) ,
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therefore,

|0, 7,00y < C(||M0||L4(R") + ||| zarry + ”f”C((O,T),L‘I(R”)))-

This ends the proof of Lemma 4.2.
Proof of Theorem 3.5. Using the formulas (2.10) and (2.11), from Lemmas 2.8-2.12, we have

! !
etz — ullro.1).L0mmy = IS5 (Dug - + f Se($)uyds + f Te(t = ) fo(s)ds
0 0

14 A

Syt — f Su(s)unds f To(t = ) F(5)dslliro oy
0 0

< |ISE(uo.e — So(®))uollLro.1) LR

A
+||f (SZ(S)Ml,s - Sa(t))ulds)||LP(O,T),L‘1(R”))
0

+l fo (To(t = 8)fe(s) = Tolt = ) f($)dsllLr0,1),La®r)

1 6
< C{lluo.s — uollzoey + (87 + £ + (&) = ol lluolloe |
1 6
+C{ller e = il + (€7 + &% + (&) — xol s
Lio-1 0
+C{”f€ = flronwimny + 877 + &% + o — xS ”LP((O,T),L‘(R”))}’

thus we have

||zt — u”LI’(O,T),L‘i(R")) < C{H“O,s - MO”L‘I(R") + ||M1,a - ul”L‘I(R”) +Ife — f”C((O,T),L‘!((R”))
1
1 o
+(&7 + &% + (&) = xol )(luoll s + il
lia-1 bo
e+ & + o = x@DI o omn -

This ends the proof of Theorem 3.5.
Proof of Theorem 3.6. From the Lemma 4.2, we have

A

luellzoo,rLamry < Clluoellzamry + iy gllaeny + 1 fellro,r),commy)) < C,

ullLoo,7).L0mmy) < C(“”O”L‘I(R”) + [l zarry + ”f”C((O,T),L‘I(R"))) <C.

Thus,
etz (2) — u(Ollarry < ISE@) (Mo — to)llzarry + I(SE(E) = Sa(®))uollLawrr)

+f 1S5 () (w16 — u)llzawnyds + f IS5 (1) = S (D)t awnyd's
0 0

+f(; IT5,( = )(fe(8) = f()lzawnds

+f0 (Tt = s) = To(t = ) f () Lawrnds

+ f ITo (2 = $)(Nuz(s) — Nu($))llLownyds
0
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1050

!
+ f ICT5 (2 = 8) = Talt = $))Nu(s)llawnds
0
< Dy(1) + MIT;(0) = To Ol czamny * (1 + I )

!
+Mertf0 €7 (1 e () + (S o te(5) = U)ol
!
< Di(t) + DX(1) + Me™ f e (1 + 20| (s) = u($)llarnds,
0

where

D(r) ISq (D (uoe = uo)llzan + 1S (#) = Sa(®)uollswr)

! 1
f IS (w1 e — un)llpawnds + f I(S(1) = Se(D)urllLawnd's
0 0

—+

+

fo 1T = $)(fe(s) = f(Dllzawnds

+

fO I(To (2 = 8) = To(t = ) f(llLswnds,

MIITG(1) = Ta(®)ll czagrey * (1 + [l gn)-

D3 (1)
Applying Gronwall’s inequality, we obtain
e (£) = u()l|Laweny < Dy(2) + D(0)

+MeT(1 +20) f exp (L2E VD! (s) + DAl )ds.
0

rs
r

Taking the L7((0, T'), LY(R"™))-norm and using Young inequality, we get

! 2
otz — ullzro,1),L0RY) < (HDg(t)”Ll’(O,T) + ”Dg(t)”LP(O,T))
1 _ e—rT | 5 1 _ T
p )(||Dg(f)||u’(o,T) + ”Dg(t)”LP(O,T))

< C(IDXDlluso.1) + IDX Ol ).

+Me (1 +2C) exp(

Applying Young inequality again, from Lemmas 2.9-2.12, we can deduce that

1
DY) < Cflluos — uollzome + ltre = oy
L 6
+Hfe = flleqo,m amn) + (8” +&° + [y(e) _X0|)||”1||L4(R")
1
= (&
+(er + " + y(e) = xol ol e

Lia-1
+(gp+“ + &%+ |y — X(S)I)Ilf ||c<<o,r>,Lq<R"))}a

A

2
ID:Ollror < CITEE) = Tallzeomy, casmonT + 1O, o 79 Loy
CI(To(1) = Tal)lzr 0,19, £zaRey)

IA
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1 1 4
AT + C(lolt] ey + 114118 sy + 1 o0, 20k ) -

therefore,

lleee — ullro.7).9Rm)
< C{||Mo,s = tollzawny + [lu1. — willzawny + 1fe = flleqo.r).Lomny)
+(er + &% + y(e) = xoD(luollzowny + llee1llraqrr))
+Her™ ™+ 2 + o = @D flleco.r o)
(e 4 6 4+ 1 (e) — xoDUutoll ey + 11y + 1A 07y 00y
We complete the proof of Theorem 3.6.
Proof of Theorem 3.7. Let u € X, be the solution given by Theorem 3.2. We proceed similarly to the

proof of Theorem 3.2 so that we point out the differences. Indeed, we define I' : C — C by 4.1, where
the complete metric space C is defined by

C ={veC(0,T], LF'(R") N Xg : sup V() — u(T)lloeey < R,

1€[T,T]

sup #|[v(t) = u(T)lpsrey < R, u=vonte0,T1},
te[T,T]

Given v € C, the continuity of I'v : (0, T] — L(R") follows as in Theorem 3.2. Moreover, it is easy to
see that Tv(-, 1) = u(-, 1), for every t € [0, T]. Next, for T < t < T, we have

I'v(t, x) — u(T, x)

T
= (Sa() = So(T))uo(x) + f (Talt = $) = To(T = 5))f (s, 0)ds
0
T ‘
+ f (Ta(t —8) =T, (T - s))Nu(s, x)ds + f S o(u(x)ds
0 T
+ f T, (t—s5)f(s,x)ds + f T,(t— s)Nv(s, x)ds. 4.9)
T T

Now, we note that the first, the second and the third terms on right hand side of Eq (4.9) are in L*4(R")N
L(R™) because of Lemma 2.7 so that Lebesgue’s Dominated Convergence Theorem can be applied to
prove that these three terms go to zero in the norm || - ||perr)nrerry @s ¢ = 1. Furthermore

zﬂﬂ S o(S)rds + f To(t — 5)f(s)ds + f Ta(t—s)Nv(s)dsH
T T T L

g (R)L)

! !
<ct f 5Pllutllsonds + CFF f (t = )P NF(lacrnds
T T

oM f (£ = (1 + IV )5
T

1-p _ T1-8 ~ 1)
< (=) + M+ W Dl

Networks and Heterogeneous Media Volume 18, Issue 3, 1024—-1058.
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+CPPM

t—T) _ !
-1, CPMR + TP |u(DI o)t | (1= 5)* " s7ds
a T/t

—0ast—>T.

1
T Li(R")

! !
H f S o ($)uyds + f To(t — $)f(s)ds + f Ta(t—s)Nv(s)dsH
T T
! !
SCf ||u1||L‘i(R”)ds+Cf(t_s)a_lllf(s)”Lq(R”)ds
T T
!
+CM f (1 = 87 1+ Iy o )
T

-1
< Cllug|lpawn(t = T) + C(M + || f(T) o))

t—T)*
+CM( )

1
+ CME+ T [ (1= 57
T/t
—0ast—>T".

Therefore, we can take T so close to T such that the norm || - || zparmynLerry Of €ach term on right hand
side of Eq (4.9) is less than R/5 and we have

Sup_ lﬁ”V(t) - M(T)lllf"f(R") < R, Sup_ ”V(t) - M(T)”L‘l(R”) < R
te[T,T] 1€[T.T]

It is similar to prove that I' is a contraction and the uniqueness is proved as in Theorem 3.2. We
complete the proof of Theorem 3.7.

Proof of Theorem 3.8. Suppose that 7,,,, < oo and there exists a constant M > 0 such that
NPuOlperny < M, |[u(®llarny < M, for all t € [a, Tpay), with a > 0. Thus, given a sequence of
positive real number t, — T, we will show that {u(t,)},en 1s a Cauchy sequence in

max?

LPY(R™) N L4(R™). Indeed, for 0 < t,, < t,, < T)ax, WE have

u(tn’ .X) - u(tm9 X)

(Saltn) = S altm) Juo(x) + fo " (Taltn = ) = Taltn — 9) (s, x)ds

+

f " (Ta(t,, —5) = To(ty — s))Nu(s, x)ds + f nSQ(s)ul(x)ds
0 tm

+

In n
f T, (t, — $)f(s,x)ds + f T,(t, — s)Nv(s, x)ds.
tm Im
Similar to Eq (4.9), we have ||u(t,, x) — u(t,,, X)||zperrynrerry — 0 as m,n — oo. Hence, there exists the
limit lim u(z,) = u(T ) in LPY(R")NLIR"). Thus, u(T),..) exists in L*4(R")N LY(R") and Theorem 3.7

yields a contradiction. We complete the proof of Theorem 3.8.
Proof of Theorem 3.9. For X = LY(R"), denote

It) = ||Sft(t)uo,g+fSfl(s)ul,sds+fTf’;(t—s)fg(s)ds
0 0
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1053

—(S5(Duo . + f S3(uzds + f T5(t = 9) fe($)ds)llx,
0 0
J() = j(:||T§(t—S)—Tf(t—S)IIL(X)(l+||M§(S)|I’§()dS-

From Theorem 3.4, it is easy to obtain that there exists a 7 > 0 such that for 7 € [0, T'], we have
!
lleeg (1) — uS@llx < I(r) + f I(T5(t = 5) — T5(t — 5))Nug(s)llxds
0
!
+f I75(t — s)(Nui(s) — Nu5(s))llxds < I1(t) + J(2)
0
!
+f IT5(t = Dl g1+ NI + NI DIUE(s) — us(s)llxds.
0
Due to Lemma 2.13, we have I(f) — 0 as « — 27 uniformly for ¢t € [0,7]. Furthermore, since
a1+ ||u§(s)||’£,,(R,,) remains bounded as @« — 27, and ¢t — s € [0, ¢] C [0, T'], the uniform convergence

in Lemma 2.9 gives that J(rf) — 0 as @ — 2~ uniformly for 7 € [0, T]. There exists R > 0 such that
e, u5llcqo, 7,20y < R, then

fo [ IT5(z - s)llwo(l + (sl + ||u§(s)||§’1)||u2(s) — uy(s)lIxds
< C(1 +2R7 fo t "INl (s) — uS(s)lxds,
thus we have
llug () = W5 Ol Loy < 1) + (@) + C fo t "IN (s) — u5(9)|swnds,

Gronwall’s inequality implies that

() = Ul oy < U@ + J(1)) exp(C fo ¢ ds).

Since 1(1), J(1) — 0 as @ — 27, thus we have ||u, (1) — u5(D||zsr — 0. Similarly we can get ||u,(?) —
uy ()| parry — 0 as @ — 27 uniformly for 7 in bounded subintervals of [0, T']. We complete the proof of
Theorem 3.9.

5. Conclusion and discussion

This paper mainly discusses three problems. The first question is the convergence of mild solution
u(t, x) to the initial value problems (1.1) and (1.8) which contain the small scale positive parameter &,
and the asymptotic behaviour between the approximating mild solution u.(z, x) and the limit mild
solution u(t,x) as € — 0%, where u(t,x) is mild solution of the limit problems (1.5) and (1.9)
respectively. When a € (1,2), the Egs (1.5) and (1.9) are fractional wave equations govern the
propagation of mechanical diffusion in viscoelastic media, revealing a power-law creep and thus
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providers us a physical interpretation in the frame work of dynamical viscoelasticity [55-57].
However, in many concert situations, only the most recent past history of u has an effective impact on
the future dynamics. In mathematical terms, this translates into having a rapidly fading memory
kernel k(7). The equation becomes (1.5) in the limiting situation where k() is the dirac mass at zero. It
is then reasonable to view Eq (1.5) as a good approximation of an evolution system that keeps a very
short memory of the past. The second question contains two aspects. On the one hand, by using the
properties of the resolvent operators and the representations of the mild solutions, we have obtained
the existence and uniqueness of the mild solutions. On the other hand, we demonstrate the existence
of a unique maximal solution and a blow-up alternative for the semi-linear approximating problem
with € and the limit problem using the L” — L estimates of the resolvent operator family. The last
problem is the convergence of the fractional super-diffusion Eqs (1.5) and (1.9) solutions as «
approaches 2. Our interest in studying problems (1.5) and (1.9) that come from their applications as
a model for physical systems exhibiting anomalous diffusion. In many complex processes, the
behavior usually no longer follows Gaussian statics, and thus, the Fick’s second law fails to describe
the related transport behavior. In classical diffusion, the linear time dependence of the mean squared
displacement can be observed, which indicates how fast particles diffuse, whereas, in anomalous
diffusion the mean squared displacement of a diffusive particle usually behaves like const-#* as
t — oo. So by studying the asymptotic behavior of the mild of the problems (1.5) and (1.9), we can
gain insight into the rate of convergence of the solutions to the problems (1.5) and (1.9).
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