This paper is devoted to investigating the impact of vaccination on mitigating COVID-19 outbreaks. In this work, we propose a compartmental epidemic ordinary differential equation model, which extends the previous so-called SEIRD model [
Citation: Allison Fisher, Hainan Xu, Daihai He, Xueying Wang. Effects of vaccination on mitigating COVID-19 outbreaks: a conceptual modeling approach[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4816-4837. doi: 10.3934/mbe.2023223
[1] | Fabian Ziltener . Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29(4): 2553-2560. doi: 10.3934/era.2021001 |
[2] | Meng Wang, Naiwei Liu . Qualitative analysis and traveling wave solutions of a predator-prey model with time delay and stage structure. Electronic Research Archive, 2024, 32(4): 2665-2698. doi: 10.3934/era.2024121 |
[3] | Mohammed Shehu Shagari, Faryad Ali, Trad Alotaibi, Akbar Azam . Fixed point of Hardy-Rogers-type contractions on metric spaces with graph. Electronic Research Archive, 2023, 31(2): 675-690. doi: 10.3934/era.2023033 |
[4] | Souad Ayadi, Ozgur Ege . Image restoration via Picard's and Mountain-pass Theorems. Electronic Research Archive, 2022, 30(3): 1052-1061. doi: 10.3934/era.2022055 |
[5] | Xianyi Li, Xingming Shao . Flip bifurcation and Neimark-Sacker bifurcation in a discrete predator-prey model with Michaelis-Menten functional response. Electronic Research Archive, 2023, 31(1): 37-57. doi: 10.3934/era.2023003 |
[6] | Mingjun Zhou, Jingxue Yin . Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, 2021, 29(3): 2417-2444. doi: 10.3934/era.2020122 |
[7] | Xiaofei Zhang, Fanjing Wang . Brake orbits with minimal period estimates of first-order variant subquadratic Hamiltonian systems. Electronic Research Archive, 2022, 30(11): 4220-4231. doi: 10.3934/era.2022214 |
[8] | Marek Janasz, Piotr Pokora . On Seshadri constants and point-curve configurations. Electronic Research Archive, 2020, 28(2): 795-805. doi: 10.3934/era.2020040 |
[9] | Limin Guo, Weihua Wang, Cheng Li, Jingbo Zhao, Dandan Min . Existence results for a class of nonlinear singular p-Laplacian Hadamard fractional differential equations. Electronic Research Archive, 2024, 32(2): 928-944. doi: 10.3934/era.2024045 |
[10] | A. Safari-Hafshejani, M. Gabeleh, M. De la Sen . Optimal pair of fixed points for a new class of noncyclic mappings under a (φ,Rt)-enriched contraction condition. Electronic Research Archive, 2024, 32(4): 2251-2266. doi: 10.3934/era.2024102 |
This paper is devoted to investigating the impact of vaccination on mitigating COVID-19 outbreaks. In this work, we propose a compartmental epidemic ordinary differential equation model, which extends the previous so-called SEIRD model [
Consider a symplectic manifold
Problem. Find conditions under which
This generalizes the problems of showing that a given Hamiltonian diffeomorphism has a fixed point and that a given Lagrangian submanifold intersects its image under a Hamiltonian diffeomorphism. References for solutions to the general problem are provided in [20,22].
Example(translated points). As explained in [19,p. 97], translated points of the time-1-map of a contact isotopy starting at the identity are leafwise fixed points of the Hamiltonian lift of this map to the symplectization.
We denote
Nω:={isotropic leaves of N}. |
We call
1Such a structure is unique if it exists. In this case the symplectic quotient of
We denote by
The main result of [20] (Theorem 1.1) implies the following. We denote by
Theorem 1.1 (leafwise fixed points for adiscal coisotropic). Assume that
2This means compact and without boundary.
|Fix(ψ,N)|≥dimN∑i=0bi(N). | (1) |
This bound is sharp if there exists a
3[20,Theorem 1.1] is formulated in a more general setting than Theorem 1.1. Chekanov's result is needed to deal with that setting, whereas in the setting of Theorem 1.1 Floer's original article [5] suffices.
Similarly to Theorem 1.1, in [21] for a regular
Theorem 1.2 (leafwise fixed points for monotone coisotropic). Assume that
4[20,Theorem 1.1] is stated for the geometrically bounded case, but the proof goes through in the convex at infinity case.
|Fix(ψ,N)|≥m(N)−2∑i=dimN−m(N)+2bi(N). | (2) |
The idea of the proof of this theorem given in [21], is to use the same Lagrangian embedding as in the proof of Theorem 1.1. We then apply P. Albers' Main Theorem in [2], which states Theorem 1.2 in the Lagrangian case.
Finally, the main result of [22] (Theorem 1) implies that leafwise fixed points exist for an arbitrary closed coisotropic submanifold if the Hamiltonian flow is suitably
Theorem 1.3 (leafwise fixed points for
|Fix(φ1,N)|≥dimN∑i=0bi(N). | (3) |
This result is optimal in the sense that the
The point of this note is to reinterpret the proofs of Theorems 1.1 and 1.2 in terms of a version of Floer homology for an adiscal or monotone regular coisotropic submanifold. I also outline a definition of a local version of Floer homology for an arbitrary closed coisotropic submanifold and use it to reinterpret the proof of Theorem 1.3. Details of the construction of this homology will be carried out elsewhere. For the extreme cases
5In [1] a Lagrangian Floer homology was constructed that is "local" in a different sense.
Potentially a (more) global version of coisotropic Floer homology may be defined under a suitable condition on
6This can only work under suitable conditions on
Based on the ideas outlined below, one can define a Floer homology for certain regular contact manifolds and use it to show that a given time-1-map of a contact isotopy has translated points. Namely, consider a closed manifold
Various versions of coisotropic Floer homology may play a role in mirror symmetry, as physicists have realized that the Fukaya category should be enlarged by coisotropic submanifolds, in order to make homological mirror symmetry work, see e.g. [11].
To explain the coisotropic Floer homology in the regular case, consider a geometrically bounded symplectic manifold
Suppose first also that
7 By definition, for every such point
Fixc(N,φ):={(N,φ)-contractible leafwise fixed points},CF(N,φ):=⊕Fixc(N,φ)Z2. | (4) |
Remark. By definition this direct sum contains one copy of
We now define a collection of boundary operators on
ˆM:=M×Nω,ˆω:=ω⊕(−ωN),ιN:N→ˆM,ιN(x):=(x,isotropic leaf through x),ˆN:=ιN(N),ˆφt:=φt×idNω. | (5) |
The map
ιN:Fixc(N,φ)→Fixc(ˆN,ˆφ)={ˆx∈ˆN∩(ˆφ1)−1(ˆN)|t↦ˆφt(ˆx) contractible with endpoints in ˆN} | (6) |
is well-defined and injective. A straightforward argument shows that it is surjective.
Let
8 The exponent
9 It follows from the proof of [5,Proposition 2.1] that this set is dense in the set of all
∂N,φ,ˆJ:CF(N,φ)→CF(N,φ) |
to be the (Lagrangian) Floer boundary operator of
To see that this operator is well-defined, recall that it is defined on the direct sum of
10 Sometimes this is called the "
We check the conditions of [5,Definition 3.1]. Since
11In [5] Floer assumes that the symplectic manifold is closed. However, the same construction of Floer homology works for geometrically bounded symplectic manifolds. Here we use that we only consider Floer strips with compact image.
HF(N,φ,ˆJ):=H(CF(N,φ),∂N,φ,ˆJ). |
Let
12By [5,Proposition 2.4] such a grading exists and each two gradings differ by an additive constant.
Φ^J0,^J1:HF(N,φ,^J0)→HF(N,φ,^J1) |
the canonical isomorphism provided by the proof of [5,Proposition 3.1,p. 522]. This isomorphism respects the grading
Definition 2.1 (Floer homology for adiscal coisotropic). We define the Floer homology of
HF(N,φ):=((HF(N,φ,ˆJ))ˆJ∈Jreg(N,φ1),(Φ^J0,^J1)^J0,^J1∈Jreg(N,φ1)). |
Remarks. ● This is a collection of graded
● Philosophically, the Floer homology of
By the proof of [5,Theorem 1]
Suppose now that
13We continue to assume that
Definition 2.2 (Floer homology for monotone coisotropic). We define the Floer homology of
Since
Consider now the situation in which
To explain the boundary operator
˜N:={(x,x)|x∈N} | (7) |
as a Lagrangian submanifold. We shrink
The boundary operator
To understand why heuristically, the boundary operator
14Here one needs to work with a family of almost complex structures depending on the time
● Holomorphic strips with boundary on
● Disks or spheres cannot bubble off. This follows from our assumption that
● Index-1-strips generically do not break.
It follows that heuristically,
Given two choices of symplectic submanifolds
To make the outlined Floer homology rigorous, the words "close" and "short" used above, need to be made precise. To obtain an object that does not depend on the choice of "closeness", the local Floer homology of
φ↦HF(N,φ,J) |
around
By showing that
Remark(local presymplectic Floer homology). A presymplectic form on a manifold is a closed two-form with constant rank. By [12,Proposition 3.2] every presymplectic manifold can be coisotropically embedded into some symplectic manifold. By [12,4.5. Théorème on p. 79] each two coisotropic embeddings are equivalent. Hence heuristically, we may define the local Floer homology of a presymplectic manifold to be the local Floer homology of any of its coisotropic embeddings.
Remark (relation between the constructions). Assume that
(x,y)↦(x,isotropic leaf through y). |
I would like to thank Will Merry for an interesting discussion and the anonymous referees for valuable suggestions.
[1] | H. Song, G. Fan, Y. Liu, X. Wang, D. He, The second wave of COVID-19 in South and Southeast Asia and the effects of vaccination, Front. Med., 8 (2021). https://doi.org/10.3389/fmed.2021.773110 |
[2] |
H. Song, G. Fan, S. Zhao, H. Li, Q. Huang, D. He, Forecast of the COVID-19 trend in India: a simple modelling approach, Math. Biosci. Eng., 8 (2021), 9775–9786. https://doi.org/10.3934/mbe.2021479 doi: 10.3934/mbe.2021479
![]() |
[3] | S. S. Musa, A. Tariq, L. Yuan, W. Haozhen, D. He, Infection fatality rate and infection attack rate of COVID-19 in South American countries, Infect. Dis. Poverty, 11 (2022). https://doi.org/10.1186/s40249-022-00961-5 |
[4] | S. S. Musa, X. Wang, S. Zhao, S. Li, N. Hussaini, W. Wang, et al., The heterogeneous severity of COVID-19 in African countries: a modeling approach, Bull. Math. Biol., 84 (2022), 1–16. Available from: https://link.springer.com/article/10.1007/s11538-022-00992-x. |
[5] |
G. B. Libotte, F. S. Lobato, G. M. Platt, A. J. S. Neto, Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment, Comput. Methods Programs Biomed., 196 (2020), 105664. https://doi.org/10.1016/j.cmpb.2020.105664 doi: 10.1016/j.cmpb.2020.105664
![]() |
[6] |
C. M. Saad-Roy, S. E. Morris, C. J. E. Metcalf, M. J. Mina, R. E. Baker, J. Farrar, et al., Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes, Science, 372 (2021), 363–370. https://doi.org/10.1126/science.abg8663 doi: 10.1126/science.abg8663
![]() |
[7] |
M. Makhoul, H. H. Ayoub, H. Chemaitelly, S. Seedat, G. R. Mumtaz, S. Al-Omari, et al., Epidemiological impact of SARS-CoV-2 vaccination: mathematical modeling analyses, Vaccines, 8 (2020), 668. https://doi.org/10.3390/vaccines8040668 doi: 10.3390/vaccines8040668
![]() |
[8] | S. Berkane, I. Harizi, A. Tayebi, Modeling the effect of population-wide vaccination on the evolution of COVID-19 epidemic in Canada, medRxiv preprint, 2021. https://doi.org/10.1101/2021.02.05.21250572 |
[9] |
N. P. Rachaniotis, T. K. Dasaklis, F. Fotopoulos, P. Tinios, A two-phase stochastic dynamic model for COVID-19 mid-term policy recommendations in Greece: a pathway towards mass vaccination, Int. J. Environ. Res. Public Health, 18 (2021), 2497. https://doi.org/10.3390/ijerph18052497 doi: 10.3390/ijerph18052497
![]() |
[10] |
E. Shim, Optimal allocation of the limited COVID-19 vaccine supply in South Korea, J. Clin. Med., 10 (2021), 591. https://doi.org/10.3390/jcm10040591 doi: 10.3390/jcm10040591
![]() |
[11] |
E. Shim, Projecting the impact of SARS-CoV-2 variants and the vaccination program on the fourth wave of the COVID-19 pandemic in South Korea, Int. J. Environ. Res. Public Health, 18 (2021), 7578. https://doi.org/10.3390/ijerph18147578 doi: 10.3390/ijerph18147578
![]() |
[12] |
G. Webb, A COVID-19 epidemic model predicting the effectiveness of vaccination in the US, Infect. Dis. Rep., 13 (2021), 654–667. https://doi.org/10.3390/idr13030062 doi: 10.3390/idr13030062
![]() |
[13] |
S. Roy, R. Dutta, P. Ghosh, Optimal time-varying vaccine allocation amid pandemics with uncertain immunity ratios, IEEE Access, 9 (2021), 15110–15121. https://doi.org/10.1109/ACCESS.2021.3053268 doi: 10.1109/ACCESS.2021.3053268
![]() |
[14] |
F. Amaral, W. Casaca, C. M. Oishi, J. A. Cuminato, Simulating immunization campaigns and vaccine protection against COVID-19 pandemic in Brazil, IEEE Access, 9 (2021), 126011–126022. https://doi.org/10.1109/ACCESS.2021.3112036 doi: 10.1109/ACCESS.2021.3112036
![]() |
[15] |
M. Etxeberria-Etxaniz, S. Alonso-Quesada, M. De la Sen, On an SEIR epidemic model with vaccination of newborns and periodic impulsive vaccination with eventual on-line adapted vaccination strategies to the varying levels of the susceptible subpopulation, Appl. Sci., 10 (2020), 8296. https://doi.org/10.3390/app10228296 doi: 10.3390/app10228296
![]() |
[16] |
S. M. Moghadas, T. N. Vilches, K. Zhang, C. R. Wells, A. Shoukat, B. H. Singer, et al., The impact of vaccination on coronavirus disease 2019 (COVID-19) outbreaks in the United States, Clin. Infect. Dis., 73 (2021), 2257–2264. https://doi.org/10.1093/cid/ciab079 doi: 10.1093/cid/ciab079
![]() |
[17] |
L. Lin, Y. Zhao, B. Chen, D. He, Multiple COVID-19 waves and vaccination effectiveness in the United States, Int. J. Environ. Res. Public Health, 19 (2022), 2282. https://doi.org/10.3390/ijerph19042282 doi: 10.3390/ijerph19042282
![]() |
[18] |
F. T. Goh, Y. Z. Chew, C. C. Tam, C. F. Yung, H. Clapham, A country-specific model of COVID-19 vaccination coverage needed for herd immunity in adult only or population wide vaccination programme, Epidemics, 39 (2022), 100581. https://doi.org/10.1016/j.epidem.2022.100581 doi: 10.1016/j.epidem.2022.100581
![]() |
[19] | D. McEvoy, C. McAloon, A. Collins, K. Hunt, F. Butler, A. Byrne, et al., Relative infectiousness of asymptomatic SARS-CoV-2 infected persons compared with symptomatic individuals: a rapid scoping review, BMJ Open, 11 (2021), e042354. |
[20] |
B. K. Singh, J. Walker, P. Paul, S. Reddy, B. K. Gowler, J. Jernigan, et al., De-escalation of asymptomatic testing and potential of future COVID-19 outbreaks in US nursing homes amidst rising community vaccination coverage: a modeling study, Vaccine, 40 (2022), 3165–3173. https://doi.org/10.1016/j.vaccine.2022.04.040 doi: 10.1016/j.vaccine.2022.04.040
![]() |
[21] |
Y. Goldberg, M. Mandel, Y. M. Bar-On, O. Bodenheimer, L. Freedman, E. J. Haas, et al., Waning immunity after the BNT162b2 vaccine in Israel, N. Engl. J. Med., 385 (2021), e85. https://doi.org/10.1056/NEJMoa2114228 doi: 10.1056/NEJMoa2114228
![]() |
[22] |
W. Yang, J. Shaman, Development of a model-inference system for estimating epidemiological characteristics of SARS-CoV-2 variants of concern, Nat. Commun., 12 (2021), 1–9. https://doi.org/10.1038/s41467-021-25913-9 doi: 10.1038/s41467-021-25913-9
![]() |
[23] |
G. Fan, H. Song, S. Yip, T. Zhang, D. He, Impact of low vaccine coverage on the resurgence of COVID-19 in Central and Eastern Europe, One Health, 14 (2022), 100402. https://doi.org/10.1016/j.onehlt.2022.100402 doi: 10.1016/j.onehlt.2022.100402
![]() |
[24] |
J. S. Lavine, O. N. Bjornstad, R. Antia, Immunological characteristics govern the transition of COVID-19 to endemicity, Science, 371 (2021), 741–745. https://doi.org/10.1126/science.abe6522 doi: 10.1126/science.abe6522
![]() |
[25] |
X. Tang, S. S. Musa, S. Zhao, S. Mei, D. He, Using proper mean generation intervals in modeling of COVID-19, Front. Public Health, 9 (2021), 691262. https://doi.org/10.3389/fpubh.2021.691262 doi: 10.3389/fpubh.2021.691262
![]() |
[26] |
Y. Liu, K. Wang, L. Yang, D. He, Regional heterogeneity of in-hospital mortality of COVID-19 in Brazil, Infect. Dis. Modell., 7 (2022), 364–373. https://doi.org/10.1016/j.idm.2022.06.005 doi: 10.1016/j.idm.2022.06.005
![]() |
[27] | X. Q. Zhao, Dynamical Systems in Population Biology, 2nd edition, Springer, Cham, 2017. |
[28] | X. Q. Zhao, Asymptotic behavior for asymptotically periodic semiflows with applications, 1996. |
[29] | N. Bacaër, S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421–436. |
[30] |
J. M. Heffernan, R. J. Smith, L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface, 2 (2005), 281–293. https://doi.org/10.1098/rsif.2005.0042 doi: 10.1098/rsif.2005.0042
![]() |
[31] |
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. https://doi.org/10.1137/080732870 doi: 10.1137/080732870
![]() |
[32] |
W. Wang, X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Differ. Equations, 20 (2008), 699–717. https://doi.org/10.1007/s10884-008-9111-8 doi: 10.1007/s10884-008-9111-8
![]() |
[33] |
X. Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay, J. Dyn. Differ. Equations, 29 (2017), 67–82. https://doi.org/10.1007/s10884-015-9425-2 doi: 10.1007/s10884-015-9425-2
![]() |
[34] |
G. Aronsson, R. B. Kellogg, On a differential equation arising from compartmental analysis, Math. Biosci., 38 (1978), 113–122. https://doi.org/10.1016/0025-5564(78)90021-4 doi: 10.1016/0025-5564(78)90021-4
![]() |
[35] |
M. W. Hirsch, Systems of differential equations that are competitive or cooperative II: convergence almost everywhere, SIAM J. Math. Anal., 16 (1985), 423–439. https://doi.org/10.1137/0516030 doi: 10.1137/0516030
![]() |
[36] |
F. Zhang, X. Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496–516. https://doi.org/10.1016/j.jmaa.2006.01.085 doi: 10.1016/j.jmaa.2006.01.085
![]() |
[37] | H. L. Smith, Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, 2008. |
[38] | E. Mathieu, H. Ritchie, E. Ortiz-Ospina, M. Roser, J. Hasell, C. Appel, et al., A global database of COVID-19 vaccinations, Nat. Hum. Behav., 5 (2021), 947–953. |
[39] | Owid, Dataset, 2022. Available from: https://covid.ourworldindata.org. |
[40] |
L. Lin, B. Chen, Y. Zhao, W. Wang, D. He, Two waves of COVID-19 in Brazilian cities and vaccination impact, Math. Biosci. Eng., 19 (2021), 4657–4671. http://dx.doi.org/10.2139/ssrn.3977464 doi: 10.2139/ssrn.3977464
![]() |
[41] |
E. L. Ionides, C. Breto, A. A. King, Inference for nonlinear dynamical systems, Proc. Natl. Acad. Sci. U.S.A., 103 (2006), 18438–18443. https://doi.org/10.1073/pnas.0603181103 doi: 10.1073/pnas.0603181103
![]() |
[42] |
S. S. Musa, S. Zhao, D. Gao, Q. Lin, G. Chowell, D. He, Mechanistic modelling of the large-scale Lassa fever epidemics in Nigeria from 2016 to 2019, J. Theor. Biol., 493 (2020), 110209. https://doi.org/10.1016/j.jtbi.2020.110209 doi: 10.1016/j.jtbi.2020.110209
![]() |
[43] | C. Breto, D. He, E. L. Ionides, A. A. King, Time series analysis via mechanistic models, Ann. Appl. Stat., 3 (2009), 319–348. Available from: https://www.jstor.org/stable/30244243. |
[44] | D. He, S. T. Ali, G. Fan, D. Gao, H. Song, Y. Lou, et al., Evaluation of effectiveness of global COVID-19 vaccination campaign, Emerging Infect. Dis., 28 (2022), 1873–1876. |
[45] |
D. He, S. Zhao, Q. Lin, S. S. Musa, L. Stone, New estimates of the Zika virus epidemic attack rate in Northeastern Brazil from 2015 to 2016: a modelling analysis based on Guillain-Barré Syndrome (GBS) surveillance data, PLoS Negl. Trop. Dis., 14 (2020), e0007502. https://doi.org/10.1371/journal.pntd.0007502 doi: 10.1371/journal.pntd.0007502
![]() |
[46] | L. Stone, D. He, S. Lehnstaedt, Y. Artzy-Randrup, Extraordinary curtailment of massive typhus epidemic in the Warsaw Ghetto, Sci. Adv., 6 (2020). https://doi.org/10.1126/sciadv.abc0927 |
[47] |
S. Zhao, L. Stone, D. Gao, D. He, Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination, PLoS Negl. Trop. Dis., 12 (2021), e0006158. https://doi.org/10.1371/journal.pntd.0006158 doi: 10.1371/journal.pntd.0006158
![]() |
[48] | Simulation-based inference for epidemiological dynamics. Available from: https://kingaa.github.io/sbied/ |
[49] | A. A. King, E. L. Ionides, M. Pascual, M. J. Bouma, Inapparent infections and cholera dynamics, Nature, 454 (2008), 877–880. |