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Abstract: This paper is devoted to investigating the impact of vaccination on mitigating COVID-19
outbreaks. In this work, we propose a compartmental epidemic ordinary differential equation model,
which extends the previous so-called SEIRD model [1–4] by incorporating the birth and death of the
population, disease-induced mortality and waning immunity, and adding a vaccinated compartment
to account for vaccination. Firstly, we perform a mathematical analysis for this model in a special
case where the disease transmission is homogeneous and vaccination program is periodic in time. In
particular, we define the basic reproduction number R0 for this system and establish a threshold type
of result on the global dynamics in terms of R0. Secondly, we fit our model into multiple COVID-19
waves in four locations including Hong Kong, Singapore, Japan, and South Korea and then forecast the
trend of COVID-19 by the end of 2022. Finally, we study the effects of vaccination again the ongoing
pandemic by numerically computing the basic reproduction number R0 under different vaccination
programs. Our findings indicate that the fourth dose among the high-risk group is likely needed by the
end of the year.
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1. Introduction

The pandemic of Coronavirus Disease 2019 (COVID-19) has given rise to an unprecedented
public health crisis globally since the onset of the epidemic. As of June 9, 2022, over 533.7 million
people in the world have been diagnosed with COVID-19 and more than 6.3 million have died.
Thanks to the rapid progress in the development of the COVID vaccine. The vaccines are highly
effective at preventing serious infection, hospitalization, and death from the disease. In many
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epidemic regions/countries, vaccination coverage rising has gradually reduced the economic and
social disruptions caused by the pandemic. However, the progressively emerging SARS-CoV-2
variants, breakthrough infections and vaccine hesitancy have complicated the transmission and spread
of COVID-19 infection, and posed new challenges for disease control. As a consequence, the
developed COVID vaccines have raised important questions that remain unanswered or only partially
answered regarding mitigating COVID-19 pandemic. For example, how effective vaccination
coverage will be in the prevention and control of COVID-19 outbreaks and how vaccination coverage
should be implemented in a region (e.g., a city, a state or a country) in short and long runs to protect
the population there?

Many mathematical models have been published to study vaccination effects against the COVID-
19 pandemic (see e.g., [5–12] and the references therein). For instance, Roy et al. [13] employed
an SEIRD (susceptible-exposed-infected-recovered-dead) model to study the strategy of vaccination
coverage in New York State. Saad-Roy et al. [6] applied a compartmental model of the SIR type to
investigate a variety of scenarios of transmission and vaccine immunity. Amaral et al. [14] used a data-
driven methodology (built upon an SIR-type model) to study the impact of vaccination rate against
the COVID-19 in Brazil. The impulsive vaccination strategy was discussed by Etxeberria-Etxaniz et
al. [15], whereas the mass vaccination was studied by Rachaniotis et al. [9] in Greece, Moghadas et
al. [16] and Lin et al. [17] in the US and Shim [10] in South Korea. Goh et al. [18] proposed a country-
specific model to compute the COVID-19 vaccination coverage needed to achieve herd immunity.
Although the aforementioned works have provided valuable insights in disease prevention, most of
these studies have been focused on the single or double doses of COVID-19 vaccine. In addition, none
of these works have conducted a thorough mathematical analysis to study the transmission and spread
of the disease with the inclusion of vaccination. This motivates our work on quantifying the impact
of vaccination against COVID-19 outbreaks in a conceptual modeling study aiming to help us better
understand the vaccination strategies in mitigating the disease.

The goal of this work is to predict the effectiveness of vaccination against the COVID-19 pandemic
in short and long runs. To that end, we propose a compartmental model which extends a so-called
SEIRD model with the inclusion of the vaccinated group, then we analyze the dynamics of this model
under periodic vaccination programs and homogeneous disease transmission. Finally, to study the
impact of vaccination, we fit our model to multiple COVID-19 waves in four locations including Hong
Kong (SAR) China, Singapore, Japan, and South Korea as vaccine findings in reducing infection and
mortality have shown to be spatially heterogeneous, and then forecast the prevalence of COVID-19 by
the end of 2022 and in the future.

2. Model

To study the impact of vaccination programs on the ongoing COVID-19 pandemic, we extend the
previous susceptible-exposed-infectious-hospitalized-recovered-dead (SEIRD) model [1–4]. Our
model is built upon the classical susceptible-exposed-infected-recovered (SEIR) compartmental
framework by incorporating the birth and death of the population, disease-induced mortality and
waning immunity induced by vaccine and infection, and adding a vaccinated compartment (V) to
capture the vaccination. In the model, we divide the human population into seven compartments:
susceptible (S ), vaccinated (V), exposed (E), infected (I), hospitalized (H), disease-induced
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dead/removed (D) and recovered (R). Susceptible individuals can become exposed after contacting
with infected people. Exposed individuals can progress to the infectious compartment after the
latency period. Infectious individuals can move to the hospitalized compartment, which comes from
either mild or severe cases. Infectious individuals can recover or be removed due to treatment or
disease-induced death and then enter compartment D. Here V is the number of vaccinated individuals.
We assumed that (i) susceptible individuals are vaccinated at time t at a rate σ(t), (ii) 100 × ϵ% of
vaccinated individuals can become infected; (iii) the vaccinated people can regain susceptibility and
come back to the S compartment at the rate of θ due to the waning of vaccine-induced immunity.
Besides, clinical and epidemiological evidence indicates that there are some individuals who never
develop symptoms (see, e.g., [19,20] and references therein). However, there is no asymptomatic case
data currently available. So, we synthesize asymptomatic and symptomatic transmission into an
overall transmission route in our model. Our model, illustrated by a flow chart in Figure 1, can be
written as:

dS
dt
= Λ − β(t)S I − (σ(t) + µ)S + θV + δR

dV
dt
= σ(t)S − ϵβ(t)VI − (θ + µ)V

dE
dt
= β(t)(S + ϵV)I − (α + µ)E

dI
dt
= αE − (γ + ξ + ω + µ)I

dH
dt
= ξI − (κ + m + µ)H

dR
dt
= γI + κH − (µ + δ)R

dD
dt
= ωI + mH.

(2.1)

The definition of the model parameters is provided in Table 1. The parameter Λ represents the
population influx, µ is the natural death rate of human individuals, α−1 is the latent period between
exposure and infection, ω is the disease-induced death rate, γ (resp. κ) is the recovery rate from
infection (resp. hospitalization), ξ is the rate of hospitalization, θ (resp. δ) is the rate of waning
immunity induced by the vaccine (resp. infection), and δ is the removal rate of the virus from the
environment. The function β(t) is the time-dependent transmission rate. The function σ(t) measures
the rate at which susceptible individuals are vaccinated at time t. The vaccination is imperfect and it
only has a degree of protection. Let ϵ = 1 − d ∈ (0, 1), where d is the vaccine efficacy. Moreover, we
assume that
(H1) β(t) is a positive continuous function.
(H2) σ(t) is a nonnegative continuous function.
(H3) All parameters are positive.

3. Analysis

To gain more analytical insight into our model, we conduct a mathematical analysis for a special
case of this model (2.1) based on the following assumptions.
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1) Transmission rate β(t) is assumed to be constant β.
2) Suppose that the vaccination program is provided on a regular basis, and we assume that σ(t) is

T -periodic, where T is the vaccination period.

Then our original model (2.1) is reduced to a system of periodic ordinary differential equations.

Figure 1. A schematic diagram of model (2.1).

Table 1. Definition of parameters and their base values. Here d−1 represents per day, and N
is the total population size at a location.

Parameter Description Base value Refs.
Λ recruitment rate of S µN Assumed
θ waning rate of vaccine-induced immunity 365 d−1 [21]
δ waning rate of infection-induced immunity 182.5 d−1 [22]
ϵ failure probability of vaccination 0.1 [23]
µ natural death rate 0.00003424 d−1 [24]
1/α latent period 2 days [25]
γ recovery rate of I 0.3 d−1 [25]
ξ rate of hospitalization 0.03267 d−1 [26]
κ recovery rate of H 0.07917 d−1 [26]
ω disease induced death rate of I 0.0006658 d−1 [24]
m disease induced death rate of H 0.004167 [24]
d vaccine efficacy 0.90 [23]
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3.1. Basic reproduction number

First, we derive the basic reproduction number R0, a key indicator of the severity of the infection.
To study the disease-free steady state (DFS), we set E = I = H = R = D = 0 and it leads to the

following linear periodic system

dS
dt
= Λ − (σ(t) + µ)S + θV

dV
dt
= σ(t)S − (θ + µ)V

(3.1)

is cooperative and strongly subhomogeneous (see, e.g., [27, Section 2.3]). It follows from [27, Theorem
2.3.2] that there exists a unique T -periodic positive solution

(S ∗(t),V∗(t)) :=
(
Λ(θ + µ)

µ(σ(t) + θ + µ)
,

σ(t)Λ
µ(σ(t) + θ + µ)

)
,

which is globally attractive in R2.
By the theory of asymptotically periodic semiflows (see, e.g., [27, section 3.2] or [28]), it is easy to

verify that when E(t) = I(t) = 0,

lim
t→∞

S (t) = S ∗(t), lim
t→∞

V(t) = V∗(t). (3.2)

Hence, the DFS of model (2.1) is given by E0 := (S ∗(t),V∗(t), 0, 0, 0, 0, 0, 0). Linearizing model
(2.1) at its DFS E0, we obtain the following periodic linear equations in terms of disease variables E
and I:

dE
dt
= βN∗ϵ (t)I − (α + µ)E

dI
dt
= αE − χI

(3.3)

where
N∗ϵ (t) = S ∗(t) + ϵV∗(t) =

Λ(ϵσ(t) + θ + µ)
µ(σ(t) + θ + µ)

, χ = γ + ξ + ω + µ.

Define

F(t) =
(
0 βN∗ϵ (t)
0 0

)
, V =

(
α + µ 0
−α χ

)
(3.4)

Since V is a constant matrix, the evolution operator, Y(t, s), t ≥ s, of the linear T -periodic model

dy
dt
= −Vy (3.5)

is its fundamental matrix; i.e., for each s ∈ R, Y(t, s) satisfies

dY(t, s)
dt

= −VY(t, s), Y(s, s) = I

where I is the 2 × 2 identity matrix. More specifically, if χ , α + µ,

Y(t, s) = e−V(t−s) =

(
e−(α+µ)(t−s) 0

α
χ−(α+µ) (e

−(α+µ)(t−s) − e−χ(t−s)) e−χ(t−s)

)
;
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and if χ = α + µ (i.e., γ + ξ + ω + µ = α + µ which is equivalent to γ + ξ + ω = α),

Y(t, s) = e−V(t−s) =

(
e−χ(t−s) 0

α(t − s)e−χ(t−s) e−χ(t−s)

)
.

Let CT be the ordered Banach space of all T -periodic functions from R to R2, which is equipped
with the maximum norm ∥ · ∥ and the positive cone C+T := {ψ ∈ CT : ψ(t) ≥ 0, ∀ t ∈ R}.

Suppose that ψ(s) ∈ CT is the initial distribution of infected individuals. Then F(s)ψ(s) is the
distribution of the new infections produced by the infected individuals who were introduced at time s.
Given t ≥ s, then Y(t, s)F(s)ψ(s) gives the distribution of those infected individuals who were newly
infected at time s and remain in the infected compartments at time t. It follows that∫ t

−∞

Y(t, s)F(s)ψ(s)ds =
∫ ∞

0
Y(t, t − a)F(t − a)ψ(t − a)da

gives the distribution of accumulative new infections at time t produced by all those infected individuals
ψ(s) introduced at time previous to t. We define a linear operator L : CT → CT by

(Lϕ)(t) =
∫ ∞

0
Y(t, t − a)F(t − a)ψ(t − a)da, ∀ t ∈ R, ϕ ∈ Cτ. (3.6)

which is referred to as the next generation operator. Motivated by the concept of next generation
operators in [29–33], the basic reproduction number is defined as the spectral radius of L; that is,
R0 := r(L).

In the special case where model (2.1) is autonomous, i.e., β(t) = β, σ(t) ≡ σ, N∗ϵ (t) ≡ Λ(ϵσ+θ+µ)
µ(σ+θ+µ) , the

basic reproduction number is reduced to

R0 =
α

α + µ
·

β

γ + ξ + ω + µ
·
Λ(ϵσ + θ + µ)
µ(σ + θ + µ)

. (3.7)

It is clear that R0 is a strictly decreasing function of the constant rate of vaccination σ as ϵ < 1.
This indicates that increasing vaccination rate could reduce the risk of infection.

3.2. Threshold dynamics

In this subsection, we establish threshold dynamics of the disease in terms of the basic reproduction
number R0.

Before proceeding, we need to review some basic results related to a monodromy matrix. Let M(t)
be a continuous, cooperative, irreducible, and T -periodic m × m matrix function. Suppose ΦM(·)(t) is
the monodromy matrix of the linear ordinary differential system

dx(t)
dt
= M(t)x, (3.8)

and r(ΦM(·)(T )) is the spectral radius of ΦM(·)(T ). By [34, Lemma 2] or [35, Theorem 1.1]), it follows
thatΦM(·)(t) is a matrix with all entries positive for each t > 0. In view of the Perron-Frobenius theorem,
r(ΦM(·)(T )) is the principal eigenvalue of ΦM(·)(T ) in the sense that it is simple and admits a positive
eigenvector.

By [32, Theorem 2.1], we have the following result.
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Lemma 3.1.
1) If r

(
Φ F(·)

µ −V
(T )

)
= 1 has a positive solution µ = µ∗, then µ∗ is an eigenvalue of operator L, and

R0 > 0.
2) If R0 > 0, then µ = R0 is the unique solution of r

(
Φ F(·)

µ −V
(T )

)
= 1.

3) R0 = 0 if and only if r
(
Φ F(·)

µ −V
(T )

)
< 1 for all µ > 0.

It is usually difficult to compute R0 using the model (3.6). The part 2) of the above result, in
particular, provides an alternative approach to numerically evaluating R0.

Moreover, by [32, Theorem 2.2], the following statement holds.

Lemma 3.2. ( [32, Theorem 2.2])

R0 < 1 (= 1, > 1) if and only if r(ΦF(·)−V(T )) < 1 (= 1, > 1)

Thus, the DFS E0(t) is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

The following result is an immediate consequence of [36, Lemma 2.1].

Lemma 3.3. ( [36, Lemma 2.1]) Let λ = ln[r(ΦM(·)(T ))]
T . Then there exists a positive T-periodic function

v(t) such that eλtv(t) is a solution of model (3.8).

Define

Fη(t) =
(
0 β(N∗ϵ (t) + η)
0 0

)
. (3.9)

Recall that F and V are defined in model (3.4). Let

λη =
1
T

ln
[
r(ΦFη(·)−V(T ))

]
. (3.10)

If η = 0, it is clear that F0 = F and λ0 =
1
T ln

[
r(ΦF(·)−V(T ))

]
.

Let X = R7
+. Note that X is positively invariant for model (2.1). By [37, Theorem 5.2.1], for every

x0 = (S 0,V0, E0, I0,H0,R0,D0) ∈ X, model (2.1) has a unique local nonnegative solution w(t, x0) =
(S (t, x0),V(t, x0), E(t, x0), I(t, x0),H(t, x0),R(t, x0),D(t, x0)) ∈ X for t ≥ 0 with initial w(0, x0) = x0.

The following theorem establishes the global stability of the DFS E0 when R0 < 1.

Theorem 3.4. If R0 < 1, the DFS, E0, of model (2.1) is globally attractive; i.e.,

lim
t→∞

(
w(t, x0) − w∗(t)

)
= 0, ∀ x0 ∈ X,

where w∗(t) = (S ∗(t),V∗(t), 0, 0, 0, 0, 0).

Proof. By R0 < 1, it follows from Lemma 3.2 that r(ΦF(·)−V(T )) < 1 and hence λ0 < 0. By continuity,
there exists η0 > 0 such that

λη0 < 0. (3.11)

In view of the global attractivity of (S ∗(t),V∗(t)) in model (3.1), there exists t0 > 0 such that

S (t) ≤ S ∗(t) + η0/(1 + ϵη0), V(t) ≤ V∗(t) + η0/(1 + ϵη0), ∀ t ≥ t0. (3.12)
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It follows from Lemma 3.3 that there exists a positive T -periodic solution vη0(t) such that v̄(t) =
ceλη0 (t−t0)vη0(t) is a solution of model (3.8) with M(t) = Fη0(t) − V. Here constant c is chosen such that
(E(t0), I(t0)) ≤ v̄(t0) = cvη0(t0).

In view of model (3.12),
dE(t)

dt
= β(S (t) + ϵV(t))I(t) − (α + µ)E(t)

≤ β
(
S ∗(t) + ϵV∗(t) + η0

)
I(t) − (α + µ)E(t),

= β
(
N∗ϵ (t) + η0

)
I(t) − (α + µ)E(t)

(3.13)

for t ≥ t0. Thus

d
dt

(
E(t)
I(t)

)
≤

(
Fη0(t) − V

) (E(t)
I(t)

)
, ∀ t ≥ t0. (3.14)

The comparison principle implies that(
E(t)
I(t)

)
≤ v̄(t) = keλη0 tv(t), ∀ t ≥ t0. (3.15)

Since λη0 < 0, it follows that
lim
t→∞

(E(t), I(t)) = (0, 0). (3.16)

This implies that S (t) and V(t) in model (2.1) is asymptotic to model (3.1). By the theory of
asymptotically periodic semiflows (see, e.g., [28] or [27, section 3.2]), it follows that limt→∞(S (t) −
S ∗(t)) = limt→∞(V(t) − V∗(t)) = 0. Then H(t) is asymptotic to

dH
dt
= −(κ + m + µ)H

and hence it follows from the theory of asymptotically periodic semiflows [28] that limt→∞ H(t) = 0.
Similarly one can verify that limt→∞ R(t) = limt→∞ H(t) = 0. This completes the proof.

Let N(t) = S (t)+V(t)+ E(t)+ I(t)+H(t)+R(t) denote the total population size at time t. By model
(2.1),

dN
dt
≤ Λ − µN. (3.17)

It follows from the comparison principle that N(t) is ultimately bounded. By the positivity of the
solution, we see that w(t) is ultimately bounded for w = S ,V, E, I,H,R. Hence the solutions of model
(2.1) admits a connected global attractor in X that attracts all positive orbits in X.

When R0 > 1, we assume that waning of infection-induced immunity is negligible, i.e., δ = 0, for
simplicity. In this case, the first four equations of model (2.1) are decoupled from the rest, and hence
it suffices to consider the following system

dS
dt
= Λ − βS I − (σ(t) + µ)S + θV

dV
dt
= σ(t)S − ϵβVI − (θ + µ)V

dE
dt
= β(S + ϵV)I − (α + µ)E

dI
dt
= αE − (γ + ξ + ω + µ)I

(3.18)
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Let Y = R4
+. Let Q(t) : Y→ Y denote the solution map of model (3.18); i.e., for any z0 ∈ Y,

Q(t)(z0) = u(t, z0)

where u(t, z0) is the unique solution of model (3.18) with initial u(0, z0) = z0. Then Q̂ = Q(T ) is the
Poincaré map associated with model (2.1) and

Q̂n(z0) = u(nT, z0), ∀ z0 ∈ Y, ∀ n ∈ N ∪ {0}.

Moreover,
{
Q̂n : Y→ Y

}
n≥0 defines a discrete-time dynamical system that admits a global attractor

in Y. Let
Y0 := {(S ,V, E, I) ∈ Y : E , 0 and I , 0},

and
∂Y0 := Y\Y0 = {(S ,V, E, I) ∈ Y : E ≡ 0 or I ≡ 0}.

If the waning of infection-induced immunity is neglected (i.e., δ = 0), we have the following
persistent result when R0 > 1.

Theorem 3.5. Suppose that δ = 0 (i.e., the waning of infection-induced immunity is neglected). If
R0 > 1, the solutions of model (3.18) are uniformly persistent; that is, there exists some constant c > 0
such that any solution u(t, z0) = (S (t, z0),V(t, z0), E(t, z0), I(t, z0)) of model (3.18) with z0 ∈ Y0 satisfies
lim inft→∞ E(t) ≥ c and lim inft→∞ I(t) ≥ c, and model (3.18) admits at least one positive T-periodic
solution.

Proof. Recall that the Poincaré map Q̂ : Y → Y associated with model (3.18) has a global attractor
in Y. Now we proceed to prove that Q̂ is uniformly persistent with respect to (Y0, ∂Y0). It is easy
to verify that Y0 and ∂Y0 are positively invariant under the solution flow of model (3.18) satisfying
Y0 ∪ ∂Y0 = Y, Y0 ∩ ∂Y0 = ∅, and ∂Y0 is relatively closed in Y.

Since R0 > 1, it follows from Lemma 3.2 that r(ΦF(·)−V(T )) > 1. Thus,

λ0 =
1
T

ln
[
(ΦF(·)−V(T )

]
> 0

and limη→0 λη = λ0 > 0, where λη is defined in model (3.10). Hence, we can choose η1 > 0 sufficiently
small such that λη1 > 0. By Lemma 3.3, model (3.18) has a positive T -periodic solution vη1(t) such that
v(t) = eλη1 tvη1(t) is a solution of model (3.8) with M(t) = Fη1(t) − V.

In view of limϕ→E0 ∥Q(t)ϕ − Q(t)E0∥ = 0 uniformly for t ∈ [0,T ], there exists ρ = ρ(η1) ∈ (0, η1)
such that for any ϕ ∈ Y0 with ∥ϕ − E0∥ < ρ, we have ∥Q(t)ϕ − Q(t)E0∥ < η := η1/(1 + ϵη1) for all
t ∈ [0,T ]. We further claim the following result.
Claim.

lim sup
n→∞

∥Q̂nϕ − E0∥ ≥ ρ, ∀ ϕ ∈ Y0.

Suppose, by contradiction, that lim supn→∞ ∥Q̂
nψ − E0∥ < ρ for some ψ ∈ Y0. Then there exists

N ∈ N such that ∥Q̂nψ − E0∥ < ρ for all n ≥ N. For any t ≥ NT , there exist m ≥ N and t′ ∈ [0,T )
such that t = mT + t′, and hence ∥Q(t)ψ − Q(t)E0∥ = ∥Q(t′)

(
Q̂m(ψ)

)
− Q(t′)E0∥ < η. It then follows
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that S (t) > S ∗(t) − η, V(t) > V∗(t) − η, E(t) < η and I(t) < η for t ≥ NT , which implies that
S (t) + ϵV(t) ≥ S ∗(t) − η + ϵ(V∗(t) − η) = N∗ϵ (t) − η1, E(t) < η1, and I(t) < η1 for t ≥ NT . Then we have

dE(t)
dt
= β(S (t) + ϵV(t))I(t) − (α + µ)E(t)

≥ β
(
N∗ϵ (t) − η1

)
I(t) − (α + µ)E(t),

dI(t)
dt
= αE − dI,

(3.19)

for t ≥ NT . Since ψ ∈ Y0, E(t, ψ) > 0 and I(t, ψ) > 0 for t ≥ 0. Thus we can choose k > 0
sufficiently small such that (E(NT, ψ), I(NT, ψ))T ≥ kv(NT ). It follows from the comparison principle
that (E(t, ψ), I(t, ψ))T ≥ kv(t) = keλη1 tvη1(t) for t ≥ NT . Since λη1 > 0, limt→∞ E(t, ψ) = limt→∞ I(t, ψ) =
∞, which contradicts the boundedness of the solutions of model (3.18). This proves the claim.

The result of this claim implies that E0 is an isolated invariant set for the Poincaré map Q̂ in Y0 and
W s(E0) ∩ Y0 = ∅, where W s(E0) of the stable set of E0 with respect to Q̂. Define

M∂ = {ϕ ∈ ∂Y0 : Q̂n(ϕ) ∈ ∂Y0, ∀ n ≥ 0}.

For any given ψ ∈ M∂, Q̂n(ψ) ∈ ∂Y0 for n ≥ 0. Thus, for each n ∈ N, either E(nT, ψ) = 0
or I(nT, ψ) = 0. Using the last two equations in system model (3.18), we see that E(t, ψ) = 0 or
I(t, ψ) = 0 for all t ≥ 0. Case 1. Suppose I(t, ψ) ≡ 0 for t ≥ 0. By the third equation of model (3.18),
dE/dt = −(α + µ)E for t ≥ 0 and hence limt→∞ E(t) = 0. It follows from the theory of asymptotically
periodic semiflows (see, e.g., [27, Section 3.2]) that limt→∞(S (t) − S ∗(t)) = limt→∞(V(t) − V∗(t)) = 0.

This implies that
Q̂n(ψ)→ E0, as n→ ∞. (3.20)

Case 2. Suppose I(t, ψ) . 0 for t ≥ 0. In this case, E(t, ψ) ≡ 0 for all t ≥ 0. Moreover, there exists
t0 ≥ 0 such that I(t0, ψ) > 0. By the fourth equation of model (3.18), I(t, ψ) > 0 for t ≥ t0. Using the
fourth equation of model (3.18), we see that limt→∞ I(t) = 0. By the theory of asymptotically periodic
semiflows (see, e.g., [27, Section 3.2]), it follows that limt→∞(S (t)− S ∗(t)) = limt→∞(V(t)−V∗(t)) = 0,
which shows that model (3.20) holds. Therefore, every orbit in M∂ approaches E0 as t → ∞, and E0

is acyclic for Q̂ in ∂Y0. By the acyclicity theorem on uniform persistence for maps (see [27, Theorem
3.1.1]), it follows that Q̂ : Y → Y is uniformly persistent with respect to (Y0, ∂Y0); namely, there
exists some constant c > 0 such that any solution u(t, ϕ) = (S (t),V(t), E(t), I(t)) of model (3.18) with
ϕ ∈ Y0 satisfies lim inft→∞ E(t) ≥ c and lim inft→∞ I(t) ≥ c. Furthermore, by [27, Theorem 1.3.6],
it follows that Q̂ has a fixed point û(0) = (Ŝ (0), V̂(0), Ê(0), Î(0)) ∈ Y0. By the first equation of
model (3.18), Ŝ (t) = e−

∫ t
0 b(s1)ds1

[
Ŝ (0) +

∫ t

0
e
∫ s2

0 b(s1)ds1a(s2)ds2

]
, where a(t) = Λ + θV(t) ≥ Λ > 0 and

b(t) = βI(t) + (σ(t) + µ), and hence Ŝ (t) > 0 for all t > 0. By the second equation of model (3.18),
V̂(t) = e−

∫ t
0 d(s1)ds1

[
V̂(0) +

∫ t

0
e
∫ s2

0 d(s1)ds1g(s2)ds2

]
, where g(t) = σ(t)S (t) > 0 and d(t) = ϵβI + θ + µ.

Thus, V̂(t) > 0 for all t > 0. Additionally, Ê(0) > 0, ÎI(0) > 0. By [37, Theorem 4.1.1] as generalized
to nonautonomous systems, the irreducibility of the cooperative matrix(

−(α + µ) β(S (t) + ϵV(t))
α −d

)
(3.21)

implies that (Ê(t), Î(t)) ≫ 0, ∀ t > 0. We show that (Ŝ (t), V̂(t), Ê(t), Î(t)) ≫ 0, ∀ t > 0 which gives us
is a positive T -periodic solution of the system. It completes the proof.
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4. Case studies

To illustrate the usage of the proposed model (2.1) in the evaluation of the long-term impact of
vaccination, we perform a case study for COVID-19 epidemics, which is to show that (1) the model is
appropriate that can be well fitted to multiple waves of COVID data and (2) this conceptional modeling
approach can be useful for investigating the effects of vaccinations on this severe and long-lasting
pandemic.

We now apply our model to study the COVID-19 epidemics in four locations, including Hong
Kong (SAR) China, Singapore, Japan, and South Korea. We use the COVID-19 datasets published by
the World Health Organization (WHO) and other sources [38, 39] for the daily confirmed cases and
daily vaccination data (fully vaccinated and third-dose vaccination) in each location. We convert daily
cases to weekly data (since daily data includes weekday effects which we do not model). We assume
a constant reporting ratio p, i.e., only p proportion infections are confirmed as cases (later we estimate
p and the estimates fall in [0.3, 0.5] which is reasonable). Vaccination data are typically in the form
per capita, namely the proportion of the population vaccinated, which cannot be directly incorporated
into the model. We need the proportion of susceptible that are vaccinated daily. Susceptible
individuals are among the group of unvaccinated. Given the daily vaccinated, we can estimate the
proportion of the population that are unvaccinated. We convert vaccination (per capita) data to
vaccination per unvaccinated [3, 17, 40]. Similarly, we convert vaccination daily (per capita) data to
vaccination proportion per fully vaccinated, and move the proportion from V class to R class.

Following the previous works [3, 4], we set the base parameter values as α = 0.5 per day, γ = 0.3
per day, ξ = 0.03267 per day, ω = 0.0006658 per day, κ = 0.07917 per day, m = 0.004167 per day,
µ = 0.00003424 per day, σ(t) = 0.3% per day, θ = 365 per day, ϵ = 0.1, δ = 182.5 per day, andΛ = µN
where N is the total population size of a location, where the references of these base parameter values
are provided in Table 1. In data fitting, we use actual daily reported proportion of population received
the second dose to fit σ(t).

Additionally, due to the immune evasion of the Omicron variant, we assume ζ proportion of
recovered and ζ proportion of vaccinated losing immunity protection and joining a susceptible pool,
i.e., V → (1 − ζ)V , R → (1 − ζ)R and S → S + ζ(V + R), when the Omicron variant evaded and
dominated in a location. We compare four timings of this transition for each location: December 31,
2021, January 12, 2022, January 24, 2022, and February 5, 2022, for Hong Kong and South Korea,
and November 24, 2021, December 6, 2021, December 18, 2021, and December 31, 2021, for
Singapore and Japan to reflect the observation that the Omicron wave took off early in Singapore and
Japan. We estimate ζ and β. We assume that β is time-varying and modeled as an exponential cubic
spline function with nβ nodes uniformly distributed over the entire period of the study. We assume ζ
in the range [0.3, 0.6]. Since the study period (January 23, 2020 – May 9, 2022) is relatively short, the
population size N at each location is roughly constant and hence in the data fitting, we set Λ = µ = 0.

By employing the method of iterated filtering, we use our model to fit the multiple waves in each
location in terms of weekly cases starting on January 23 2021. Our simulation is implemented with an
R software package named partially observed Markov process (POMP) using maximum-likelihood-
based iterated filtering technique [41]. A nice feature of our proposed model (2.1) is that it allows
time-varying transmission rate, β(t), which was set as an exponential cubic spline [42–47] to account
for the simultaneous impact of all of the all-possible interventions. For more detailed information
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regarding the model fitting procedure, we refer the readers to Appendix A for an outline of the model
fitting procedure, Appendix B for a pseudo code, and [43, 48] for the theoretical basis and technique
details of the general methodology and numerical implementation via examples.

Figure 2. Fitting model to weekly cases in four locations. In top half of each panel, the
green and blue curves show the daily data of fully vaccinated (second dose) coverage and
booster (third dose) coverage. The brown curve shows the proportion of population that
are temporally immunised via infection or vaccination. The drop in the brown curve shows
the immune evasion, i.e., a proportion of immunised loses protection (moving to S ) due to
the immune evasion ability of Omicron variant. In the bottom half, the red circles show
the observed weekly cases, and the black curve (and gray region) shows the median (and
95% range) of 1, 000 model simulation. The blue curve with cross shows the estimated
transmission rate (in the unit of βN/(γ + ξ + ω) ≈ βN/γ). We used nβ = 19 notes in the
cubic spline and we fitted 120 weeks of data (from January 23 2020 to May 9, 2022) and
additional 6 nodes covering the forecast period (from May 9, 2022 to Dec 31, 2022). We
forecast the trend of the COVID-19 till the end of the year with hypothesised transmission
rate and vaccination rate.

Our model fitting is reasonably well, and the result is displayed in Figure 2. In top half of each
panel, the green and blue curves show the daily data of fully vaccinated (second dose) coverage and
booster (third dose) coverage. The brown curve shows the proportion of population that are temporally
immunized via infection or vaccination. The drop in the brown curve shows the immune evasion, i.e., a
proportion of immunized lose protection (moving to S ) due to the immune evasion ability of Omicron
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variant. In the bottom half, the red circles show the observed weekly cases, and the black curve (and
gray region) shows the median (and 95% range) of 1, 000 model simulation. The blue curve with cross
shows the estimated transmission rate. We used nβ = 19 notes in the cubic spline and we fitted 120
weeks of data. After May 9, 2022, we forecast the trend of COVID-19 till the end of the year. We
assume the β(t) will stable at the maximum value before May 9, 2022, after a transition, till the end
of the year, while the second-dose coverage will reach 92% and the third-dose vaccination coverage
will increase by 14% at the current level by the end of the year (2022). Our model framework sets a
baseline model for the investigation of the long term trend.

In what follows, our investigation will be focused on the effects of vaccination against COVID-19
pandemic. We assume that the transmission rate β(t) is kept at the constant level after May 9, 2022,
and its value is taken to be the estimated value of β(t) on that date (which is obtained from the data
fitting). Before presenting the vaccination rate σ(t), we need to introduce an auxiliary function. Let
f (t) =

σmax

1 + e2(t−0.4T ) for 0 ≤ t ≤ T where σmax is the maximal value of vaccination rate and T is the
vaccination period. It is apparent that f (t) is a monotonically increasing function. Let 0 < dt ≪ T be
given. We set σ(t) as follows.

σ(t) =

 f (t), 0 ≤ t ≤ t1,

a line connecting (t1, f (t1)) and (T, f (0)), t1 < t ≤ T,

where t1 = T − dt. The midnight blue curve in Figure 3(a) illustrates function σ(t) when vaccination
coverage reaches Cmax = 92% by the end of T = 6 months, with dt = 10−4T . In this case, σmax is
required to be 0.72% per day to achieve 92% coverage by the end of the vaccination period. One can
see from these figures that vaccination rate σ(t) slowly increases in the beginning, then follows an
exponential growth to approach its maximal value σmax until t1, and finally linearly decay back to f (0)
by the end of the period T . The red curve in Figure 3(a) plots the respective vaccination coverage as
a function of time, which is a T -periodic increasing function and reaches its maximal value Cmax at T .
Figure 3(b) displays how σmax is shaped by the period T with varied levels of vaccination coverage
Cmax. It shows that (a) when Cmax is fixed, σmax is a decreasing function of period T ; (b) when the
value of T is fixed, σmax is an increasing function of Cmax. This indicates that (i) to achieve a certain
level of vaccination coverage by the end of the period, the longer the vaccination period, the lower
the maximal vaccination rate; (ii) on the other hand, if the vaccination period is kept constant, the
higher the vaccination coverage, the more demanding requirement for the vaccination rate per day. For
instance, if the final vaccination coverage is 60% (i.e., Cmax = 60%), σmax = 0.73%, 0.47%, 0.24%
per day when T = 4, 6, and 12 months, respectively. whereas if vaccination coverage is 92% (i.e.,
Cmax = 92%), σmax = 1.10%, 0.73%, 0.37% per day when T = 4, 6, and 12 months, respectively.

Figure 4 illustrated the dynamics of model (2.1). Particularly, it shows that when R0 < 1, the disease
dies out; when R0 > 1, the disease persists. This verifies our analytical results (Theorems 3.5 and 3.5)
by numerical simulation.

To study the impact of vaccinations on the prevention and control of the disease, we compute the
basic reproduction number R0 for these four locations as the vaccination period T increases. The value
of R0 is numerically evaluated by using part 2 of Lemma 3.1. The result is plotted in Figure 5. For
the displayed curves in each panel, the vaccination coverage is 60%, 80% and 92% by the end of the
vaccination period, respectively, from top to bottom. It shows that R0 is an increasing function of
T . This indicates that the longer the vaccination period, the higher risk of infection we may have
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to expect. Furthermore, there appears to be a critical value of vaccination period T , denoted as T c,
such that R0 < 1,R0 = 1, and R0 > 1 are equivalent to T < T c,T = T c, and T < T c, respectively.
In particular, our result predicts that T c = 4.1 (resp. T c = 5.1, T c = 5.8) months for Hong Kong
when maximal vaccination coverage Cmax can achieve 60% (resp. 80%, 92%). This indicates that if
vaccination coverage is 60%, the optimal vaccination period for Hong Kong is expected to be about
4.1 months, which indicates that if vaccination coverage will reach 60% by the end of the vaccination
period, the time between subsequent vaccinations should not be longer than 4.2 months for disease
control in Hong Kong. Whereas if vaccination coverage is higher, then the optimal vaccination period
may be longer. For instance, if Cmax is 80% or 90%, the corresponding vaccination period T c would
expect to be 5.1 or 5.8 months. For Japan, T c = 5.3 (resp. T c = 6.7, T c = 7.5) months when Cmax

can achieve 60% (resp. 80%, 92%). In contrast, the optimal vaccination period T c may have to be
shortened for Singapore and South Korea. Especially, T c = 3.1, 4.0 and 4.4 months for Singapore
and T c = 2.6, 3.1 and 3.5 months for South Korea, when Cmax is 60%, 80% and 92%, respectively.
This indicates that the fourth-dose vaccination is very likely to be needed, particularly for the high-risk
groups, this September (2022) in South Korea, October in Singapore and November in Hong Kong;
whereas for Japan, the fourth dose may wait until early of next year (2023) if vaccination coverage can
reach 92% by the end of vaccination period.
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Figure 3. (a) Illustration of vaccination rate σ(t) over 2 year where vaccination period T = 6
months and the final vaccination coverage is 92%; (b) σmax vs T as the level of vaccination
coverage changes, where vaccination coverage is 60%, 80% and 92%, respectively for the
plotted curves from bottom to top. Here dt = 10−4T .
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Figure 4. Dynamics of model (2.1): (a) R0 < 1 (b) R0 > 1. Here N = 7.482 million,
maximal vaccination coverage is 92% with period T = 6 months, and the transmission rate β
is kept at a constant value. The value of R0 is varied by changing the value of β.
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5. Discussion and conclusions

The transmission and spread of COVID-19 involve complex biological and socioeconomic
processes. The underlying mechanisms for COVID-19 outbreaks vary from place to place. In this
work, we have attempted to use mathematical modeling and data fitting to investigate the multiple
COVID-19 waves in four different locations (Hong Kong, Singapore, Japan and South Korea) in the
East Asia and Southeast Asia, with an aim to better understand the impact of vaccinations on this
severe and long-lasting epidemic of COVID-19.

If we assume that the basic reproduction number R0 will stable at the maximum value before May
9, 2022 after a transition, till the end of the year, while the second-dose coverage will reach 92% and
the third-dose vaccination coverage will increase by 14% at the current level by the end of the year
(2022), we can forecast the trend of the COVID-19 in these four locations. The trends are different
across the four locations. Hong Kong will reach a low level of daily cases in summer and expect a
bounce back at the end of the year. Japan will reach a low level at the end of the year, Singapore and
South Korea will not reach a low level and see a bounce back at the end of the year. This indicates
that a fourth dose among the high-risk group is probably needed by the end of the year. On the
other hand, we numerically compute the basic reproduction number R0, and our result shows that the
longer of the vaccination period or the lower of the vaccination coverage, the higher risk of infection.
More specifically, our findings indicate that the fourth-dose vaccination is very likely to be needed for
the high-risk groups this September (of 2022) in South Korea, October in Singapore and November
in Hong Kong; for Japan, the fourth dose may wait until early of next year (2023) provided that
vaccination coverage can reach 92% by the end of the vaccination period.

There are several limitations in our work. First, as it has been suggested by the clinical and
epidemiological evidence from COVID-19 literature, the asymptomatic transmission may play an
important role in the SARS-CoV-2 transmission. Since we modeled aggregated cases and the data for
asymptomatic cases are currently not available, we synthesize asymptomatic and symptomatic
transmission into an overall transmission route. For our present study, this simplification allows us to
make the model analytically more trackable. We plan to investigate asymptomatic transmission and
the related problems in our future study. Secondly, our mathematical epidemic model is a
non-autonomous system, for which there is no general theory to define or compute the basic
reproduction number. Thus, our analysis is focused on a special case where the model is a periodic
system. Thirdly, more compartments could be added to the model for a representation of the different
population sets and environmental components. For example, it would be interesting to introduce an
age structure into the model to represent the fact that different age groups exhibit different disease
risks, with the elderly being the most vulnerable. Fourthly, it may be more realistic to consider a
multi-strain model to account for the new variants of SARS-CoV-2, particularly the Omicron variant
that is contributing to a surge in cases throughout the world at present. Additionally, we assume that
the transmission rate β is kept constant to forecast the trend of COVID-19 in the long term, which
however is not quite realistic since disease transmission and spread are spatiotemporally
heterogeneous in reality. Such complications haven’t been explored in the current work, which will
provide interesting topics for future research.

In conclusion, we proposed a simple SEIR type of epidemic model to study the effects of vaccination
on mitigating COVID-19 outbreaks. We fit this model to reported COVID-19 cases in four locations
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(i.e., Hong Kong, Singapore, Japan and South Korea) and reconstructed the basic reproduction number
R0. We gained a qualitative idea of the long-term impact of vaccination. Our findings indicate that
a fourth dose among high-risk group is likely needed by the end of the year. At the next step, we
plan to associate the reconstructed R0 with government control measures and possible voluntary social
distancing in each location.
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Appendix

A. Model fitting

To evaluate the long-term impact of vaccination, we fit our model (2.1) to the real COVID epidemic
data in four locations: Hong Kong (SAR) China, Singapore, Japan, and South Korea. The time series
of daily confirmed cases and daily deaths in each of these locations is modeled as a partially observed
Markov process (POMP, also referred to as a hidden Markov process). The algorithm of iterated
filtering [41, 49] is utilized for the data fitting, implemented numerically in an R software package
known as POMP via maximizing the log likelihood function.
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In particular, model (2.1) has time-varying transmission rate β(t). Following the previous studies
(e.g., see [3, 4, 47] and the references therein), we define β(t) as an exponential cubic splines: β(t) =
exp(cubic splines), which has nβ nodes evenly spaced over the entire epidemic period Ts of the study.
We simulate deaths weekly and fit it to the weekly reported mortality data. Let ∆t be the reporting
period, and ∆t would be one week in this case. Based on the daily data, we simulate weekly deaths
Dt+∆t as

Dt+∆t =

∫ t+∆t

t
mH(s)ds,

where m is the disease induced death rate of hospitalized individuals (see Table 1), and H(s) is
obtained by numerically solving model (2.1) for a given value of unknown parameters. This gives us a
time-series death data {D1,D2, · · · ,DTs}. For each week t (1 ≤ t ≤ Ts), we denote Zt to be the weekly
reported deaths of that week. We assume that Zt follows a negative binomial distribution, more
specifically,

Zt ∼ NB(mean=Dt, variance =Dt(1 + τDt).

Here NB represents negative binomial distribution. τ is an over-dispersion parameter which will
be estimated. Basically parameter τ is a measurement of noise due to surveillance and heterogeneity
among individuals.

When τ = 0, the above negative binomial distribution reduces to a Poisson distribution. Let Θ
denote the vector of unknown parameters. Let D1:Ts denote time-series data for deaths. Hence the
likelihood of the week, ℓt(Θ) := ℓ(Θ|D1:Ts , τ), will be the probability of observing Zt given D1:Ts and τ,
which is a function of Θ and can be directly calculated. The overall likelihood function is

L(Θ) =
Ts∏
t=1

lt(Θ).

Then the method of iterated filtering is used to estimate model parameter Θ by maximizing the log
likelihood function, ln

(
L(Θ)

)
.

B. Pseudo-code for modeling fitting procedure

For self completeness, a pseudo-code for modeling fitting procedure from [3] is included:

(1) Prepare the data.
(2) Set up the model and provide an initial guess for the values of model parameters to be fitted.
(3) Employ pfilter of the POMP package to calculate log likelihood of model given data.
(4) Apply mif function of the POMP package to obtain the maximum likelihood estimate of

parameters.
(5) Repeat (3) and (4) until maximum log likelihood estimation converges.
(6) Use simulate function of the POMP package to perform the model simulation.
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For a step-by-step instruction and hands-on examples on the methodology, we refer the readers to
https://kingaa.github.io/sbied/.
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