Research article

Methods to find strength of job competition among candidates under single-valued neutrosophic soft model

  • Received: 21 August 2022 Revised: 06 October 2022 Accepted: 11 October 2022 Published: 27 December 2022
  • Neutrosophic soft set theory is one of the most developed interdisciplinary research areas, with multiple applications in various fields such as computational intelligence, applied mathematics, social networks, and decision science. In this research article, we introduce the powerful framework of single-valued neutrosophic soft competition graphs by integrating the powerful technique of single-valued neutrosophic soft set with competition graph. For dealing with different levels of competitive relationships among objects in the presence of parametrization, the novel concepts are defined which include single-valued neutrosophic soft k-competition graphs and p-competition single-valued neutrosophic soft graphs. Several energetic consequences are presented to obtain strong edges of the above-referred graphs. The significance of these novel concepts is investigated through application in professional competition and also an algorithm is developed to address this decision-making problem.

    Citation: Sundas Shahzadi, Areen Rasool, Gustavo Santos-García. Methods to find strength of job competition among candidates under single-valued neutrosophic soft model[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4609-4642. doi: 10.3934/mbe.2023214

    Related Papers:

    [1] Tahir Khan, Fathalla A. Rihan, Muhammad Ibrahim, Shuo Li, Atif M. Alamri, Salman A. AlQahtani . Modeling different infectious phases of hepatitis B with generalized saturated incidence: An analysis and control. Mathematical Biosciences and Engineering, 2024, 21(4): 5207-5226. doi: 10.3934/mbe.2024230
    [2] Xichao Duan, Sanling Yuan, Kaifa Wang . Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024
    [3] Kaushik Dehingia, Anusmita Das, Evren Hincal, Kamyar Hosseini, Sayed M. El Din . Within-host delay differential model for SARS-CoV-2 kinetics with saturated antiviral responses. Mathematical Biosciences and Engineering, 2023, 20(11): 20025-20049. doi: 10.3934/mbe.2023887
    [4] Balázs Csutak, Gábor Szederkényi . Robust control and data reconstruction for nonlinear epidemiological models using feedback linearization and state estimation. Mathematical Biosciences and Engineering, 2025, 22(1): 109-137. doi: 10.3934/mbe.2025006
    [5] Yoichi Enatsu, Yukihiko Nakata . Stability and bifurcation analysis of epidemic models with saturated incidence rates: An application to a nonmonotone incidence rate. Mathematical Biosciences and Engineering, 2014, 11(4): 785-805. doi: 10.3934/mbe.2014.11.785
    [6] Mengya Huang, Anji Yang, Sanling Yuan, Tonghua Zhang . Stochastic sensitivity analysis and feedback control of noise-induced transitions in a predator-prey model with anti-predator behavior. Mathematical Biosciences and Engineering, 2023, 20(2): 4219-4242. doi: 10.3934/mbe.2023197
    [7] Zhenzhen Shi, Huidong Cheng, Yu Liu, Yanhui Wang . Optimization of an integrated feedback control for a pest management predator-prey model. Mathematical Biosciences and Engineering, 2019, 16(6): 7963-7981. doi: 10.3934/mbe.2019401
    [8] Jiying Ma, Shasha Ma . Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China. Mathematical Biosciences and Engineering, 2023, 20(2): 3070-3098. doi: 10.3934/mbe.2023145
    [9] Guirong Jiang, Qishao Lu, Linping Peng . Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences and Engineering, 2005, 2(2): 329-344. doi: 10.3934/mbe.2005.2.329
    [10] Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259
  • Neutrosophic soft set theory is one of the most developed interdisciplinary research areas, with multiple applications in various fields such as computational intelligence, applied mathematics, social networks, and decision science. In this research article, we introduce the powerful framework of single-valued neutrosophic soft competition graphs by integrating the powerful technique of single-valued neutrosophic soft set with competition graph. For dealing with different levels of competitive relationships among objects in the presence of parametrization, the novel concepts are defined which include single-valued neutrosophic soft k-competition graphs and p-competition single-valued neutrosophic soft graphs. Several energetic consequences are presented to obtain strong edges of the above-referred graphs. The significance of these novel concepts is investigated through application in professional competition and also an algorithm is developed to address this decision-making problem.





    [1] J. E. Cohen, Interval graphs and food webs: a finding and a problem, Document 17696-PR, RAND Corporation, Santa Monica, 1968.
    [2] J. R. Lundgren, Food webs, competition graphs, competition-common enemy graphs, and niche graphs, in Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, (1989), 221–243. https://doi.org/10.1007/978-1-4684-6381-1_9
    [3] S. R. Kim, T. A. McKee, F. R. McMorris, F. S. Roberts, p-Competition graphs, Linear Algebra Appl., 217 (1995), 167–178. https://doi.org/10.1016/0024-3795(94)00060-Q doi: 10.1016/0024-3795(94)00060-Q
    [4] R. C. Brigham, F. R. McMorris, R. P. Vitray, Tolerance competition graphs, Linear Algebra Appl., 217 (1995), 41–52. https://doi.org/10.1016/0024-3795(94)00059-M doi: 10.1016/0024-3795(94)00059-M
    [5] H. H. Cho, S. R. Kim, Y. Nam, The m-step competition graph of a digraph, Discrete Appl. Math., 105 (2000), 115–127. https://doi.org/10.1016/S0166-218X(00)00214-6 doi: 10.1016/S0166-218X(00)00214-6
    [6] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [7] A. Kaufmann, Introduction à la théorie des sous-ensembles flous: À l'usage des ingénieurs (Fuzzy Sets Theory), Tome Ⅲ, Paris, French, 1975.
    [8] L. A. Zadeh, Similarity relations and fuzzy orderings, Inf. Sci., 3 (1971), 177–200. https://doi.org/10.1016/S0020-0255(71)80005-1 doi: 10.1016/S0020-0255(71)80005-1
    [9] A. Rosenfeld, Fuzzy graphs, in Fuzzy Sets and their Applications to Cognitive and Decision Processes, Academic Press, (1975), 77–95. https://doi.org/10.1016/B978-0-12-775260-0.50008-6
    [10] P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognit. Lett., 6 (1987), 297–302. https://doi.org/10.1016/0167-8655(87)90012-2 doi: 10.1016/0167-8655(87)90012-2
    [11] J. N. Mordeson, P. S. Nair, Fuzzy Graphs and Fuzzy Hhypergraphs, Physica, Springer Verlag, Heidelberg, 2012.
    [12] S. Samanta, M. Pal, Fuzzy k-competition graphs and p-competition fuzzy graphs, Fuzzy Inf. Eng., 5 (2013), 191–204. https://doi.org/10.1007/s12543-013-0140-6 doi: 10.1007/s12543-013-0140-6
    [13] M. Sarwar, M. Akram, Novel concepts of bipolar fuzzy competition graphs, J. Appl. Math. Comput., 54 (2017), 511–547. https://doi.org/10.1007/s12190-016-1021-z doi: 10.1007/s12190-016-1021-z
    [14] R. Sahu, S. R. Dash, S. Das, Career selection of students using hybridized distance measure based on picture fuzzy set and rough set theory, Decis. Mak. Appl. Manag. Eng., 4 (2021), 104–126. https://doi.org/10.31181/dmame2104104s doi: 10.31181/dmame2104104s
    [15] A. Ashraf, K. Ullah, A. Hussain, M. Bari, Interval-valued picture fuzzy Maclaurin symmetric mean operator with application in multiple attribute decision-making, Rep. Mech. Eng., 3 (2022), 301–317. https://doi.org/10.31181/rme20020042022a doi: 10.31181/rme20020042022a
    [16] S. Shahzadi, A. Rasool, M. Sarwar, M. Akram, A framework of decision making based on bipolar fuzzy competition hypergraphs, J. Intell. Fuzzy Syst., 41 (2021), 1319–1339. https://doi.org/10.3233/JIFS-210216 doi: 10.3233/JIFS-210216
    [17] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [18] S. Sahoo, M. Pal, Intuitionistic fuzzy competition graphs, J. Appl. Math. Comput., 52 (2016), 37–57. https://doi.org/10.1007/s12190-015-0928-0 doi: 10.1007/s12190-015-0928-0
    [19] F. Smarandache, Neutrosophy, Neutrosophic Probability, Set and Logic, American Research Press, Rehoboth, USA, 105 (1998).
    [20] M. Akram, G. Shahzadi, Operations on single-valued neutrosophic graphs, J. Uncertain Syst., 11 (2017), 1–26.
    [21] M. Akram, A. Luqman, Certain network models using single-valued neutrosophic directed hypergraphs, J. Intell. Fuzzy Syst., 33 (2017), 575–588. https://doi.org/10.3233/JIFS-162347 doi: 10.3233/JIFS-162347
    [22] M. Akram, S. Siddique, Neutrosophic competition graphs with applications, J. Intell. Fuzzy Syst., 33 (2017), 921–935. https://doi.org/10.3233/JIFS-162207 doi: 10.3233/JIFS-162207
    [23] C. Karamasa, E. Demir, S. Memis, S. Korucuk, Weighting the factors affecting logistics outsourcing, Decis. Mak. Appl. Manag. Eng., 4 (2020), 19–32.
    [24] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [25] P. K. Maji, Neutrosophic soft set, Ann. Fuzzy Math. Inf., 5 (2013), 157–168.
    [26] B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), 1–6. https://doi.org/10.1155/2009/586507 doi: 10.1155/2009/586507
    [27] F. Feng, C. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6
    [28] I. Deli, S. Broumi, Neutrosophic soft matrices and NSM-decision making, J. Intell. Fuzzy Syst., 28 (2015), 2233–2241. https://doi.org/10.3233/IFS-141505 doi: 10.3233/IFS-141505
    [29] I. Deli, S. Broumi, Neutrosophic soft relations and some properties, Ann. Fuzzy Math. Inf., 9 (2015), 169–182.
    [30] M. Akram, S. Shahzadi, A. Rasool, M. Sarwar, Decision-making methods based on fuzzy soft competition hypergraphs, Complex Intell. Syst., 8 (2022), 2325–2348. https://doi.org/10.1007/s40747-022-00646-4 doi: 10.1007/s40747-022-00646-4
    [31] H. S. Nawaz, M. Akram, Oligopolistic competition among the wireless internet service providers of Malaysia using fuzzy soft graphs, J. Appl. Math. Comput., 67 (2021), 855–890. https://doi.org/10.1007/s12190-021-01514-z doi: 10.1007/s12190-021-01514-z
    [32] H. S. Nawaz, M. Akram, J. C. R. Alcantud, An algorithm to compute the strength of competing interactions in the Bering Sea based on Pythagorean fuzzy hypergraphs, Neural Comput. Appl., 34 (2022), 1099–1121. https://doi.org/10.1007/s00521-021-06414-8 doi: 10.1007/s00521-021-06414-8
    [33] M. Akram, S. Shahzadi, Neutrosophic soft graphs with application, J. Intell. Fuzzy Syst., 32 (2017), 841–858. https://doi.org/10.3233/JIFS-16090 doi: 10.3233/JIFS-16090
    [34] M. Akram, H. S. Nawaz, Implementation of single-valued neutrosophic soft hypergraphs on human nervous system. Artif. Intell. Rev., 2022 (2022). https://doi.org/10.1007/s10462-022-10200-w doi: 10.1007/s10462-022-10200-w
    [35] M. Akram, H. S. Nawaz, Algorithms for the computation of regular single-valued neutrosophic soft hypergraphs applied to supranational asian bodies, J. Appl. Math. Comput., 2022 (2022). https://doi.org/10.1007/s12190-022-01714-1 doi: 10.1007/s12190-022-01714-1
    [36] H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single Valued Neutrosophic Sets, Infinite Study, Coimbatore, India, 2010.
  • This article has been cited by:

    1. Qingyi Zhu, Pingfan Xiang, Xuhang Luo, Chenquan Gan, Mamoun Alazab, Dynamical Behavior of Hybrid Propagation of Computer Viruses, 2022, 2022, 1939-0122, 1, 10.1155/2022/2576685
    2. 秀秀 王, Impulsive State Feedback Control Model of Predator Population with Constant Release Rate in Polluted Water, 2022, 11, 2324-7991, 7302, 10.12677/AAM.2022.1110775
    3. Tieying Wang, Microbial insecticide model and homoclinic bifurcation of impulsive control system, 2021, 14, 1793-5245, 2150043, 10.1142/S1793524521500431
    4. Wenjie Li, Jinchen Ji, Lihong Huang, Global dynamics analysis of a water hyacinth fish ecological system under impulsive control, 2022, 359, 00160032, 10628, 10.1016/j.jfranklin.2022.09.030
    5. 烁烁 王, Study on the Second Model of State Feedback Impulsive Model of Red Squirrel Protection, 2021, 10, 2324-7991, 3640, 10.12677/AAM.2021.1011385
    6. Qingyi Zhu, Pingfan Xiang, Kefei Cheng, Chenquan Gan, Lu-Xing Yang, Hybrid Propagation and Control of Network Viruses on Scale-Free Networks, 2022, 1556-5068, 10.2139/ssrn.4012957
    7. Qingyi Zhu, Pingfan Xiang, Kefei Cheng, Chenquan Gan, Lu-Xing Yang, Hybrid Propagation and Control of Network Viruses on Scale-Free Networks, 2023, 49, 1017-060X, 10.1007/s41980-023-00834-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2259) PDF downloads(70) Cited by(4)

Article outline

Figures and Tables

Figures(29)  /  Tables(19)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog