Neutrosophic soft set theory is one of the most developed interdisciplinary research areas, with multiple applications in various fields such as computational intelligence, applied mathematics, social networks, and decision science. In this research article, we introduce the powerful framework of single-valued neutrosophic soft competition graphs by integrating the powerful technique of single-valued neutrosophic soft set with competition graph. For dealing with different levels of competitive relationships among objects in the presence of parametrization, the novel concepts are defined which include single-valued neutrosophic soft k-competition graphs and p-competition single-valued neutrosophic soft graphs. Several energetic consequences are presented to obtain strong edges of the above-referred graphs. The significance of these novel concepts is investigated through application in professional competition and also an algorithm is developed to address this decision-making problem.
Citation: Sundas Shahzadi, Areen Rasool, Gustavo Santos-García. Methods to find strength of job competition among candidates under single-valued neutrosophic soft model[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 4609-4642. doi: 10.3934/mbe.2023214
[1] | Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362 |
[2] | Ayako Suzuki, Hiroshi Nishiura . Transmission dynamics of varicella before, during and after the COVID-19 pandemic in Japan: a modelling study. Mathematical Biosciences and Engineering, 2022, 19(6): 5998-6012. doi: 10.3934/mbe.2022280 |
[3] | Anthony Morciglio, R. K. P. Zia, James M. Hyman, Yi Jiang . Understanding the oscillations of an epidemic due to vaccine hesitancy. Mathematical Biosciences and Engineering, 2024, 21(8): 6829-6846. doi: 10.3934/mbe.2024299 |
[4] | Adil Yousif, Awad Ali . The impact of intervention strategies and prevention measurements for controlling COVID-19 outbreak in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 8123-8137. doi: 10.3934/mbe.2020412 |
[5] | Avinash Shankaranarayanan, Hsiu-Chuan Wei . Mathematical modeling of SARS-nCoV-2 virus in Tamil Nadu, South India. Mathematical Biosciences and Engineering, 2022, 19(11): 11324-11344. doi: 10.3934/mbe.2022527 |
[6] | Tao Chen, Zhiming Li, Ge Zhang . Analysis of a COVID-19 model with media coverage and limited resources. Mathematical Biosciences and Engineering, 2024, 21(4): 5283-5307. doi: 10.3934/mbe.2024233 |
[7] | Gilberto González-Parra, Cristina-Luisovna Pérez, Marcos Llamazares, Rafael-J. Villanueva, Jesus Villegas-Villanueva . Challenges in the mathematical modeling of the spatial diffusion of SARS-CoV-2 in Chile. Mathematical Biosciences and Engineering, 2025, 22(7): 1680-1721. doi: 10.3934/mbe.2025062 |
[8] | Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong . Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study. Mathematical Biosciences and Engineering, 2021, 18(6): 8905-8932. doi: 10.3934/mbe.2021439 |
[9] | Antonios Armaou, Bryce Katch, Lucia Russo, Constantinos Siettos . Designing social distancing policies for the COVID-19 pandemic: A probabilistic model predictive control approach. Mathematical Biosciences and Engineering, 2022, 19(9): 8804-8832. doi: 10.3934/mbe.2022409 |
[10] | H. Swapnarekha, Janmenjoy Nayak, H. S. Behera, Pandit Byomakesha Dash, Danilo Pelusi . An optimistic firefly algorithm-based deep learning approach for sentiment analysis of COVID-19 tweets. Mathematical Biosciences and Engineering, 2023, 20(2): 2382-2407. doi: 10.3934/mbe.2023112 |
Neutrosophic soft set theory is one of the most developed interdisciplinary research areas, with multiple applications in various fields such as computational intelligence, applied mathematics, social networks, and decision science. In this research article, we introduce the powerful framework of single-valued neutrosophic soft competition graphs by integrating the powerful technique of single-valued neutrosophic soft set with competition graph. For dealing with different levels of competitive relationships among objects in the presence of parametrization, the novel concepts are defined which include single-valued neutrosophic soft k-competition graphs and p-competition single-valued neutrosophic soft graphs. Several energetic consequences are presented to obtain strong edges of the above-referred graphs. The significance of these novel concepts is investigated through application in professional competition and also an algorithm is developed to address this decision-making problem.
[1] | J. E. Cohen, Interval graphs and food webs: a finding and a problem, Document 17696-PR, RAND Corporation, Santa Monica, 1968. |
[2] | J. R. Lundgren, Food webs, competition graphs, competition-common enemy graphs, and niche graphs, in Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, (1989), 221–243. https://doi.org/10.1007/978-1-4684-6381-1_9 |
[3] |
S. R. Kim, T. A. McKee, F. R. McMorris, F. S. Roberts, p-Competition graphs, Linear Algebra Appl., 217 (1995), 167–178. https://doi.org/10.1016/0024-3795(94)00060-Q doi: 10.1016/0024-3795(94)00060-Q
![]() |
[4] |
R. C. Brigham, F. R. McMorris, R. P. Vitray, Tolerance competition graphs, Linear Algebra Appl., 217 (1995), 41–52. https://doi.org/10.1016/0024-3795(94)00059-M doi: 10.1016/0024-3795(94)00059-M
![]() |
[5] |
H. H. Cho, S. R. Kim, Y. Nam, The m-step competition graph of a digraph, Discrete Appl. Math., 105 (2000), 115–127. https://doi.org/10.1016/S0166-218X(00)00214-6 doi: 10.1016/S0166-218X(00)00214-6
![]() |
[6] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[7] | A. Kaufmann, Introduction à la théorie des sous-ensembles flous: À l'usage des ingénieurs (Fuzzy Sets Theory), Tome Ⅲ, Paris, French, 1975. |
[8] |
L. A. Zadeh, Similarity relations and fuzzy orderings, Inf. Sci., 3 (1971), 177–200. https://doi.org/10.1016/S0020-0255(71)80005-1 doi: 10.1016/S0020-0255(71)80005-1
![]() |
[9] | A. Rosenfeld, Fuzzy graphs, in Fuzzy Sets and their Applications to Cognitive and Decision Processes, Academic Press, (1975), 77–95. https://doi.org/10.1016/B978-0-12-775260-0.50008-6 |
[10] |
P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognit. Lett., 6 (1987), 297–302. https://doi.org/10.1016/0167-8655(87)90012-2 doi: 10.1016/0167-8655(87)90012-2
![]() |
[11] | J. N. Mordeson, P. S. Nair, Fuzzy Graphs and Fuzzy Hhypergraphs, Physica, Springer Verlag, Heidelberg, 2012. |
[12] |
S. Samanta, M. Pal, Fuzzy k-competition graphs and p-competition fuzzy graphs, Fuzzy Inf. Eng., 5 (2013), 191–204. https://doi.org/10.1007/s12543-013-0140-6 doi: 10.1007/s12543-013-0140-6
![]() |
[13] |
M. Sarwar, M. Akram, Novel concepts of bipolar fuzzy competition graphs, J. Appl. Math. Comput., 54 (2017), 511–547. https://doi.org/10.1007/s12190-016-1021-z doi: 10.1007/s12190-016-1021-z
![]() |
[14] |
R. Sahu, S. R. Dash, S. Das, Career selection of students using hybridized distance measure based on picture fuzzy set and rough set theory, Decis. Mak. Appl. Manag. Eng., 4 (2021), 104–126. https://doi.org/10.31181/dmame2104104s doi: 10.31181/dmame2104104s
![]() |
[15] |
A. Ashraf, K. Ullah, A. Hussain, M. Bari, Interval-valued picture fuzzy Maclaurin symmetric mean operator with application in multiple attribute decision-making, Rep. Mech. Eng., 3 (2022), 301–317. https://doi.org/10.31181/rme20020042022a doi: 10.31181/rme20020042022a
![]() |
[16] |
S. Shahzadi, A. Rasool, M. Sarwar, M. Akram, A framework of decision making based on bipolar fuzzy competition hypergraphs, J. Intell. Fuzzy Syst., 41 (2021), 1319–1339. https://doi.org/10.3233/JIFS-210216 doi: 10.3233/JIFS-210216
![]() |
[17] |
K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
![]() |
[18] |
S. Sahoo, M. Pal, Intuitionistic fuzzy competition graphs, J. Appl. Math. Comput., 52 (2016), 37–57. https://doi.org/10.1007/s12190-015-0928-0 doi: 10.1007/s12190-015-0928-0
![]() |
[19] | F. Smarandache, Neutrosophy, Neutrosophic Probability, Set and Logic, American Research Press, Rehoboth, USA, 105 (1998). |
[20] | M. Akram, G. Shahzadi, Operations on single-valued neutrosophic graphs, J. Uncertain Syst., 11 (2017), 1–26. |
[21] |
M. Akram, A. Luqman, Certain network models using single-valued neutrosophic directed hypergraphs, J. Intell. Fuzzy Syst., 33 (2017), 575–588. https://doi.org/10.3233/JIFS-162347 doi: 10.3233/JIFS-162347
![]() |
[22] |
M. Akram, S. Siddique, Neutrosophic competition graphs with applications, J. Intell. Fuzzy Syst., 33 (2017), 921–935. https://doi.org/10.3233/JIFS-162207 doi: 10.3233/JIFS-162207
![]() |
[23] | C. Karamasa, E. Demir, S. Memis, S. Korucuk, Weighting the factors affecting logistics outsourcing, Decis. Mak. Appl. Manag. Eng., 4 (2020), 19–32. |
[24] |
D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
![]() |
[25] | P. K. Maji, Neutrosophic soft set, Ann. Fuzzy Math. Inf., 5 (2013), 157–168. |
[26] |
B. Ahmad, A. Kharal, On fuzzy soft sets, Adv. Fuzzy Syst., 2009 (2009), 1–6. https://doi.org/10.1155/2009/586507 doi: 10.1155/2009/586507
![]() |
[27] |
F. Feng, C. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6
![]() |
[28] |
I. Deli, S. Broumi, Neutrosophic soft matrices and NSM-decision making, J. Intell. Fuzzy Syst., 28 (2015), 2233–2241. https://doi.org/10.3233/IFS-141505 doi: 10.3233/IFS-141505
![]() |
[29] | I. Deli, S. Broumi, Neutrosophic soft relations and some properties, Ann. Fuzzy Math. Inf., 9 (2015), 169–182. |
[30] |
M. Akram, S. Shahzadi, A. Rasool, M. Sarwar, Decision-making methods based on fuzzy soft competition hypergraphs, Complex Intell. Syst., 8 (2022), 2325–2348. https://doi.org/10.1007/s40747-022-00646-4 doi: 10.1007/s40747-022-00646-4
![]() |
[31] |
H. S. Nawaz, M. Akram, Oligopolistic competition among the wireless internet service providers of Malaysia using fuzzy soft graphs, J. Appl. Math. Comput., 67 (2021), 855–890. https://doi.org/10.1007/s12190-021-01514-z doi: 10.1007/s12190-021-01514-z
![]() |
[32] |
H. S. Nawaz, M. Akram, J. C. R. Alcantud, An algorithm to compute the strength of competing interactions in the Bering Sea based on Pythagorean fuzzy hypergraphs, Neural Comput. Appl., 34 (2022), 1099–1121. https://doi.org/10.1007/s00521-021-06414-8 doi: 10.1007/s00521-021-06414-8
![]() |
[33] |
M. Akram, S. Shahzadi, Neutrosophic soft graphs with application, J. Intell. Fuzzy Syst., 32 (2017), 841–858. https://doi.org/10.3233/JIFS-16090 doi: 10.3233/JIFS-16090
![]() |
[34] |
M. Akram, H. S. Nawaz, Implementation of single-valued neutrosophic soft hypergraphs on human nervous system. Artif. Intell. Rev., 2022 (2022). https://doi.org/10.1007/s10462-022-10200-w doi: 10.1007/s10462-022-10200-w
![]() |
[35] |
M. Akram, H. S. Nawaz, Algorithms for the computation of regular single-valued neutrosophic soft hypergraphs applied to supranational asian bodies, J. Appl. Math. Comput., 2022 (2022). https://doi.org/10.1007/s12190-022-01714-1 doi: 10.1007/s12190-022-01714-1
![]() |
[36] | H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single Valued Neutrosophic Sets, Infinite Study, Coimbatore, India, 2010. |
1. | Qifang Liang, Buping Liu, Chunping Liu, Wenxing Liu, Xiaoxue Han, Limei Wan, Xiaobo Chen, Peng wu, Hongyu Li, Yujiao Sun, Yubin Yang, Weixiong Chen, 2021, Visual analysis based on the research of SARS and COVID-19, 9781450390002, 38, 10.1145/3448748.3448756 | |
2. | Farai Nyabadza, Josiah Mushanyu, Rachel Mbogo, Gift Muchatibaya, Modelling the Influence of Dynamic Social Processes on COVID-19 Infection Dynamics, 2023, 11, 2227-7390, 963, 10.3390/math11040963 | |
3. | Jennifer M. Klasen, Deborah M. Tynes, Caspar J. Peterson, Romano Schneider, Katharina Timper, Ralph Peterli, Cameron L. Randall, Tarik Delko, The Impact of the COVID-19 Pandemic on Patients from a Bariatric Program: A Qualitative Analysis of Their Perceptions of Health and Well-Being, 2022, 10, 2227-9032, 780, 10.3390/healthcare10050780 | |
4. | Fatma Bozkurt, Ali Yousef, Thabet Abdeljawad, Adem Kalinli, Qasem Al Mdallal, A fractional-order model of COVID-19 considering the fear effect of the media and social networks on the community, 2021, 152, 09600779, 111403, 10.1016/j.chaos.2021.111403 | |
5. | Tin Phan, Samantha Brozak, Bruce Pell, Anna Gitter, Amy Xiao, Kristina D. Mena, Yang Kuang, Fuqing Wu, A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data, 2023, 857, 00489697, 159326, 10.1016/j.scitotenv.2022.159326 | |
6. | Kaiyan Peng, Zheng Lu, Vanessa Lin, Michael R. Lindstrom, Christian Parkinson, Chuntian Wang, Andrea L. Bertozzi, Mason A. Porter, A multilayer network model of the coevolution of the spread of a disease and competing opinions, 2021, 31, 0218-2025, 2455, 10.1142/S0218202521500536 | |
7. | Ali Yousef, A fractional-order model of COVID-19 with a strong Allee effect considering the fear effect spread by social networks to the community and the existence of the silent spreaders during the pandemic stage, 2022, 7, 2473-6988, 10052, 10.3934/math.2022560 | |
8. | Mohammad Masum, M.A. Masud, Muhaiminul Islam Adnan, Hossain Shahriar, Sangil Kim, Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management, 2022, 80, 00380121, 101249, 10.1016/j.seps.2022.101249 | |
9. | Yoh Iwasa, Rena Hayashi, Waves of infection emerging from coupled social and epidemiological dynamics, 2023, 558, 00225193, 111366, 10.1016/j.jtbi.2022.111366 | |
10. | M. Ali Al-Radhawi, Mahdiar Sadeghi, Eduardo D. Sontag, Long-Term Regulation of Prolonged Epidemic Outbreaks in Large Populations via Adaptive Control: A Singular Perturbation Approach, 2022, 6, 2475-1456, 578, 10.1109/LCSYS.2021.3083983 | |
11. | Kirti Jain, Vasudha Bhatnagar, Sadanand Prasad, Sharanjit Kaur, Coupling Fear and Contagion for Modeling Epidemic Dynamics, 2023, 10, 2327-4697, 20, 10.1109/TNSE.2022.3187775 | |
12. | Ali Yousef, Fatma Bozkurt, Thabet Abdeljawad, Emad Emreizeeq, A mathematical model of COVID-19 and the multi fears of the community during the epidemiological stage, 2023, 419, 03770427, 114624, 10.1016/j.cam.2022.114624 | |
13. | S. Manrubia, D. H. Zanette, Individual risk-aversion responses tune epidemics to critical transmissibility ( R = 1) , 2022, 9, 2054-5703, 10.1098/rsos.211667 | |
14. | Giulia De Meijere, Vittoria Colizza, Eugenio Valdano, Claudio Castellano, Effect of delayed awareness and fatigue on the efficacy of self-isolation in epidemic control, 2021, 104, 2470-0045, 10.1103/PhysRevE.104.044316 | |
15. | Wasim Abbas, Masud M. A., Anna Park, Sajida Parveen, Sangil Kim, Siew Ann Cheong, Evolution and consequences of individual responses during the COVID-19 outbreak, 2022, 17, 1932-6203, e0273964, 10.1371/journal.pone.0273964 | |
16. | Musa Rabiu, Sarafa A. Iyaniwura, Assessing the potential impact of immunity waning on the dynamics of COVID-19 in South Africa: an endemic model of COVID-19, 2022, 109, 0924-090X, 203, 10.1007/s11071-022-07225-9 | |
17. | Jinming Wan, Genki Ichinose, Michael Small, Hiroki Sayama, Yamir Moreno, Changqing Cheng, Multilayer networks with higher-order interaction reveal the impact of collective behavior on epidemic dynamics, 2022, 164, 09600779, 112735, 10.1016/j.chaos.2022.112735 | |
18. | Bruce Kuwahara, Chris T. Bauch, Predicting Covid-19 pandemic waves with biologically and behaviorally informed universal differential equations, 2024, 10, 24058440, e25363, 10.1016/j.heliyon.2024.e25363 | |
19. | Peter Miller, Kira Button, Nicholas Taylor, Kerri Coomber, Ryan Baldwin, Travis Harries, Brittany Patafio, Tahnee Guala, Nathan Harris, Ashlee Curtis, Gery C. Karantzas, Petra K. Staiger, Dominique de Andrade, The Impact of COVID-19 on Trends of Violence-Related Offences in Australia, 2023, 13, 2210-6014, 504, 10.1007/s44197-023-00131-2 | |
20. | Matthew Ryan, Emily Brindal, Mick Roberts, Roslyn I. Hickson, A behaviour and disease transmission model: incorporating the Health Belief Model for human behaviour into a simple transmission model, 2024, 21, 1742-5662, 10.1098/rsif.2024.0038 | |
21. | Iulia Martina Bulai, Mattia Sensi, Sara Sottile, A geometric analysis of the SIRS compartmental model with fast information and misinformation spreading, 2024, 185, 09600779, 115104, 10.1016/j.chaos.2024.115104 |