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Abstract: Neutrosophic soft set theory is one of the most developed interdisciplinary research areas,
with multiple applications in various fields such as computational intelligence, applied mathematics,
social networks, and decision science. In this research article, we introduce the powerful framework
of single-valued neutrosophic soft competition graphs by integrating the powerful technique of single-
valued neutrosophic soft set with competition graph. For dealing with different levels of competitive
relationships among objects in the presence of parametrization, the novel concepts are defined which
include single-valued neutrosophic soft k-competition graphs and p-competition single-valued neu-
trosophic soft graphs. Several energetic consequences are presented to obtain strong edges of the
above-referred graphs. The significance of these novel concepts is investigated through application in
professional competition and also an algorithm is developed to address this decision-making problem.

Keywords: single-valued neutrosophic set; soft set; competition graphs; single-valued neutrosophic
digraph; decision-making

1. Introduction

Graph theory is a remarkable approach introduced by Euler in 1973. This alluring technique is ef-
fectively used in the mainstream of mathematics, primarily due to its applications in social networking,
communication networks, information technology, and neural networks. Digraphs are powerful mathe-
matical structures to depict point-to-point relationships among objects connected in a directed network.
In 1968, Cohen [1] introduced the idea of competition graphs of digraphs that arose in competition be-
tween species in an ecosystem. It has a remarkable origin to identify the explicit behaviors of objects
and especially used in ecological networks. Competition graphs have been applicable in different re-
search areas of scientific and technical knowledge. After this captivating scheme, several researchers
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studied competition graphs in different forms regarding double competition graphs of digraphs [2],
p-competition graphs [3], tolerance competition graphs [4], and m-step competition graphs [5].

The notion of fuzzy set theory, which generalizes the crisp theory, was initiated by Zadeh [6] to
interact with the phenomena of uncertainty and approximate reasoning in real-life problems. Fuzzy set
theory paved a different way of dealing with ambiguities in various domains of scientific and technical
knowledge. Kaufmann [7] defined the powerful and most implemented technique of a fuzzy graph
that is based on Zadeh [8] fuzzy relations. Rosenfeld [9] introduced another refined definition of a
fuzzy graph and discuss the framework of fuzzy relations between sets. Moreover, some remarkable
results on fuzzy graphs were introduced by Bhattacharya [10], Mordeson and Nair [11] studied certain
operations on fuzzy graphs. The theory of competition graphs whose idea was initiated by Cohen was
inadequate to describe all real-world competitions involving predator-prey relations, powerful commu-
nities on a social networks, rivalries in the business market, and signal influence of wireless tools. To
overcome this difficulty, Samanta and Pal [12] introduced the idea of fuzzy competition graphs and
also gave the generalizations of these graphs as fuzzy k-competition graphs and p-competition fuzzy
graphs. Sarwar and Akram [13] presented novel concepts of bipolar fuzzy (BF) competition graphs.
Sahu et al. [14] introduced picture fuzzy set and rough set-based approaches to help the student to
choose an appropriate subject and consequently provide a good service or contribution to society par-
ticularly in that domain. Ashraf et al. [15] studied Maclaurin symmetric mean in the framework of
interval-valued picture fuzzy sets and discussed their application in picking the most suitable company
benefit plan using interval-valued picture fuzzy data. Shahzadi et al. [16] also proposed BF competition
hypergraph and its application in decision-making problems.

Atanassov [17] gave the idea of intuitionistic fuzzy sets as an extension of Zadeh’s fuzzy set. In
fuzzy sets, the uncertainty was considered only in one direction but in an intuitionistic fuzzy set,
we deal with membership (truth-membership) function and a non-membership (falsity-membership)
function at a time the only requirement is that the sum of both values is not more than one. In addition,
Sahoo and Pal [18] discussed the concept of the intuitionistic fuzzy competition graph.

In many real physical problems, fuzzy sets and intuitionistic fuzzy sets cannot handle all kinds
of uncertainties even though the fuzzy set has been generalized and developed. Both theories only
deal with incomplete information, not inconsistent information and indeterminate information which
occur usually in belief systems. Smarandache [19] introduced the idea of the neutrosophic set for
dealing with problems involving imprecise, indeterminacy, and inconsistent data. The concept of a
neutrosophic set is a more general framework to overcome the mentioned issues. Further several
new concepts on neutrosophic graphs with their applications were discussed in [20, 21]. Akram and
Siddique introduced the idea of neutrosophic competition graphs [22] and presented an application of
single-valued neutrosophic (SVN) competition graphs in decision-making.

However, the idea of fuzzy sets, intuitionistic fuzzy sets, and neutrosophic sets are not sufficient
to cope with parametrization tools. Karamasa et al. [23] discussed the weighting factors affecting
logistics outsourcing. In 1999, Molodtsov [24] proposed the idea of a soft set that has the ability
to deal with this difficulty. The idea of fuzzy soft (FS) sets, intuitionistic FS sets, and neutrosophic
soft sets were proposed by Maji et al. [25] and some properties of FS sets were discussed by Ahmad
and Kharal [26]. Hybrid models: rough soft sets, soft rough sets, and soft rough fuzzy sets were
constructed by Feng et al. [27]. Deli and Broumi [28, 29] introduced several concepts including
neutrosophic soft relations, neutrosophic soft matrices, and neutrosophic soft multi-set theory.
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Akram et al. [30] proposed decision-making methods based on FS competition hypergraphs. Nawaz
and Akram [31] presented an application on FS economic competition graphs that shows diverse
competition among the wireless internet service providers of Malaysia. Nawaz et al. [32] proposed
the idea of Pythagorean fuzzy hypergraphs and also construct an algorithm to compute the strength
of competing interactions in the Bering Sea. Akram and Shahzadi [33] first introduced the concept
of neutrosophic soft graphs. Akram and Nawaz [34, 35] proposed algorithms for the computation
of regular single-valued neutrosophic soft hypergraphs applied to supranational Asian bodies and
implementation of single-valued neutrosophic soft hypergraphs on human nervous system. A list of
the involvement of authors in competition theory is presented in Table 1.

Table 1. Contribution of authors in competition graphs.

Authors Year Contributions

Cohen 1968 Defined competition graph
Samanta and Pal 2013 Introduced fuzzy competition graph
Samanta et al. 2015 Defined m-step fuzzy competition graph
Sahoo and Pal 2016 Introduced intuitionistic fuzzy competition graph
Sarwar and Akram 2017 Extended the idea of BF competition graph
Akram and Siddique 2017 Defined neutrosophic competition graph
Akram and Nasir 2017 Defined intuitionistic neutrosophic competition graphs
Sarwar et al. 2018 Presented fuzzy competition hypergraph
Habib et al. 2019 Introduced q-rung orthopair fuzzy competition graph
Akram et al. 2020 q-rung picture fuzzy competition graphs
Nawaz and Akram 2021 Introduced FS competition graph
Akram et al. 2021 Complex fuzzy competition graphs
Shahzadi et al. This paper Introduced neutrosophic soft competition graph

1.1. Motivations and objectives

The motivation of this article is as follows:

1) The single-valued neutrosophic soft (SVNS) set is a hybrid technique of SVN set and soft set
which has merged the characteristics and features of both these theories. The SVNS graphs are
able to depict all those correlations that have SVN membership grades and depend on various
factors.

2) The initiation of SVNS competition graphs and two of its generalizations are substantial to inter-
pret the different levels of competition in the ecological system. The most important feature of
this technique is that it inherits the properties of existing models.

The main contribution of this article is as follows:

1) The idea of SVNS competition graphs is initiated by merging the framework of SVNS sets with
competition graphs. Two generalizations of this proposed approach with numerical examples are
introduced in this article. We also discuss some interesting results relating to strong independent
edges of all the above-mentioned terminologies.
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2) We apply the notion of SVNS competition graphs in a decision-making problem and design an
algorithm to calculate the strength of job competition among applicants. Moreover, we prove the
effectiveness and validity of our proposed model by comparing with existing methods.

1.2. Structure of the article

The structure of this paper is as follows.

1) Section 2 presents some crucial concepts related to this article and provide the new ideas of SVNS
competition graphs, two generalizations of this proposed technique, offers certain consequences
related to strong independent edges, and add some captivating constructions of proposed method.

2) Section 3 offers the decision-making approach of our theoretical framework which not only in-
crease the significance of our article but also give us a new direction that how to solve real-life
problems in decision support system by utilizing our proposed model.

3) Section 4 allocates the comparison of SVNS competition graphs with some existing approaches
which prove the effectiveness and productivity of our planned article.

4) Section 5 tackles the conclusion and further direction.

2. Single-valued neutrosophic soft competition graphs

First, we review some fundamental notions relating to neutrosophic and SVNS sets. We also define
the SVNS competition graphs and some arithmetic operations on SVNS competition graphs.

Definition 2.1. [19] Let X be a universe of discourse. A neutrosophic set N on X is characterized
by a truth membership function TN , an indeterminacy membership function IN , and a falsity mem-
bership function FN , where TN , IN , FN : X −→ [0−, 1+] are real standard or non-standard subsets
of [0−, 1+]. It is represented as N = {x(TN (x), IN (x), FN (x)) : x ∈ X }, where the sum of TN (x),
IN (x), and FN (x) has no restriction, so 0− ≤ TN (x) + IN (x) + FN (x) ≤ 3+.

From philosophical point of view, the neutrosophic set takes the value from real standard or non-
standard subsets of [0−, 1+]. In real life applications in scientific and engineering problems, it is difficult
to use neutrosophic set with value from real standard or non-standard subsets of [0−, 1+]. So, for
technical applications, we have to take the standard unit interval [0, 1] instead of [0−, 1+].

Definition 2.2. [36] A SVN set N on X is characterized by a truth membership function TN , an
indeterminacy membership function IN , and a falsity membership function FN , where TN , IN , FN

: X −→ [0, 1]. It is written as N = {x(TN (x), IN (x), FN (x)) : x ∈ X}, where 0 ≤ TN (x) + IN (x) +

FN (x) ≤ 3.

Definition 2.3. [25] Let X be a universe of discourse and P represents the set of all parame-
ters referring to the objects in X . Suppose P(X ) denotes the set of all SVN sets over X and
K ⊆ P . The collection (U ,K ) is termed to be the SVNS set over X , where U is a mapping
given by U : K −→ P(X ). It is represented as (U ,K ) = {k,U (k) : k ∈ K }, where U (k) =

{x(TU (k)(x), IU (k)(x), FU (k)(x)) : x ∈X } is a SVN set corresponding to a parameter k.

Definition 2.4. [33] A SVNS digraph on X is a 3-tuple
−→
G = (U ,

−→
V ,K ) where

(i) (U ,K ) is a SVNS set over X .
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(ii) (
−→
V ,K ) is a SVNS set over E ⊆X ×X .

(iii) For each k ∈ K , (U (k),
−→
V (k)) is a SVN digraph. That is

T−→
V (k)

(x, y) ≤ TU (k)(x) ∧ TU (k)(y), I−→
V (k)

(x, y) ≤ IU (k)(x) ∧ IU (k)(y), F−→
V (k)

(x, y) ≤ FU (k)(x) ∨ FU (k)(y),

such that

0 ≤ T−→
V (k)

(x, y) + I−→
V (k)

(x, y) + F−→
V (k)

(x, y) ≤ 3, for all x, y ∈X .

It is denoted as
−→
G (k) = (U (k),

−→
V (k)), where k ∈ K . Hence the set of all SVN digraphs corresponding

to parameters k ∈ K is called a SVNS digraph
−→
G = {

−→
G (k) : k ∈X }.

Definition 2.5. The height of a SVNS set (U ,K ) is defined as

h(U ,K ) = (sup
k∈K

h1(U (k)), sup
k∈K

h2(U (k)), inf
k∈K

h3(U (k))),

where h1(U (k)) = sup
x∈X

(TU (k)(x)), h2(U (k)) = sup
x∈X

(IU (k)(x)), and h3(U (k)) = inf
x∈X

(FU (k)(x)) for each

k ∈ K .

Definition 2.6. The cardinality of a SVNS set (U ,K ) is defined as follows:

|(U ,K )| = (
∑
k∈K

|TU (k)|,
∑
k∈K

|IU (k)|,
∑
k∈K

|FU (k)|),

where |TU (k)| =
∑

x∈X
TU (k)(x), |IU (k)| =

∑
x∈X

IU (k)(x), |FU (k)| =
∑

x∈X
FU (k)(x) for each k ∈ K .

Definition 2.7. The support of a SVNS set (U ,K ) is defined as follows:

S upp(U ,K ) = {(k, supp(U (k))) : k ∈ K },

where supp(U (k)) = {x ∈X : TU (k)(x) > 0, IU (k)(x) > 0, FU (k)(x) > 0}.

Before moving towards the main objective of this paper, first we define the terminologies like SVNS
out neighborhood and SVNS in neighborhood of a vertex in a SVNS digraph, we introduce the concept
of SVNS competition graph.

Definition 2.8. The SVNS out neighborhood of a vertex x in a SVNS diagraph
−→
G = (U ,

−→
V ,K ) is a

SVNS set

(N +(x),K ) = {k,N +(x)(k) : k ∈ K },

where

N +(x)(k) = {y(T−→
V (k)

(x, y), I−→
V (k)

(x, y), F−→
V (k)

(x, y)) | (T−→
V (k)

(x, y) > 0, I−→
V (k)

(x, y) > 0, and F−→
V (k)

(x, y) > 0}.

Definition 2.9. The SVNS in neighborhood of a vertex x in a SVNS diagraph
−→
G = (U ,

−→
V ,K ) is a

SVNS set

(N −(x),K ) = {k,N −(x)(k) : k ∈ K },
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where

N −(x)(k) = {y(T−→
V (k)

(y, x), I−→
V (k)

(y, x), F−→
V (k)

(y, x)) | T−→
V (k)

(y, x) > 0, I−→
V (k)

(y, x) > 0, and F−→
V (k)

(y, x) > 0}.

Definition 2.10. The SVNS competition graph C(
−→
G ) = (U ,R,K ) of a SVNS digraph

−→
G =

(U ,
−→
V ,K ) having the SVNS vertex set same as in

−→
G and for all k ∈ K , there exists a SVN edge

(x, y) in C(
−→
G (k)) = (U (k),R(k)) if and only if N +(x)(k) ∩N +(y)(k) , ∅. The truth, indeterminacy,

and falsity membership values of the edge (x, y) in C(
−→
G (k)) corresponding to the parameter k ∈ K are

defined as:

TR(k)(x, y) = [TU (k)(x) ∧ TU (k)(y)]h1(N +(x)(k) ∩N +(y)(k)),
IR(k)(x, y) = [IU (k)(x) ∧ IU (k)(y)]h2(N +(x)(k) ∩N +(y)(k)),

FR(k)(x, y) = [FU (k)(x) ∨ FU (k)(y)]h3(N +(x)(k) ∩N +(y)(k)).

Example 2.1. Suppose X = {x1, y1, z1,w1} be a non-empty set and K = {k1, k2} be a set of parameter
on X . Suppose (U ,K ) be a SVNS set over X and (

−→
V ,K ) be a SVNS set over E ⊆X ×X which

are represented in Tables 2 and 3, respectively. The SVNS digraph
−→
G = {

−→
G (k1),

−→
G (k2)} is shown in

Figure 1.

Table 2. SVNS set on X .

x ∈X U (k1) U (k2)

x1 (0.4, 0.7, 0.2) (0.1, 0.7, 0.4)
y1 (0.9, 0.1, 0.4) (0.4, 0.6, 0.9)
z1 (0.2, 0.1, 0.6) (0.7, 0.8, 0.3)
w1 (0.1, 0.8, 0.7) (0.5, 0.5, 0.6)

Figure 1. SVNS digraph
−→
G = {

−→
G (k1),

−→
G (k2)}.
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Table 3. SVNS set on E ⊆X ×X .

E
−→
V (k1) E

−→
V (k2)

(−−−−→x1, y1) (0.3, 0.1, 0.4) (−−−−→x1, y1) (0.0, 0.0, 0.0)
(−−−−→y1, x1) (0.0, 0.0, 0.0) (−−−−→y1, x1) (0.1, 0.5, 0.8)
(−−−→z1, x1) (0.1, 0.1, 0.5) (−−−→z1, x1) (0.1, 0.7, 0.4)
(−−−−→w1, y1) (0.1, 0.1, 0.6) (−−−−→z1,w1) (0.0, 0.0, 0.0)
(−−−−→w1, z1) (0.0, 0.0, 0.0) (−−−−→w1, z1) (0.4, 0.2, 0.6)

The SVNS out neighborhoods of all vertices in
−→
G are specified in Table 4.

Table 4. SVNS out neighborhoods of
−→
G .

x ∈X N +(x)(k1) N +(x)(k2) (N +(x),K )

x1 {y1(0.3, 0.1, 0.4)} φ {
y1(0.3,0.1,0.4)

k1
, φk2
}

y1 φ {x1(0.1, 0.5, 0.8)} {
φ

k1
, x1(0.1,0.5,0.8)

k2
}

z1 {x1(0.1, 0.1, 0.5)} {x1(0.1, 0.7, 0.4)} {
x1(0.1,0.1,0.5)

k1
, x1(0.1,0.7,0.4)

k2
}

w1 {y1(0.1, 0.1, 0.6)} {z1(0.4, 0.2, 0.6)} {
y1(0.1,0.1,0.6)

k1
, z1(0.4,0.2,0.6)

k2
}

Since

N +(x1)(k1) ∩N +(w1)(k1) = {y1(0.1, 0.1, 0.6)}.

So, by Definition 2.10, there is a SVN edge between x1 and w1 in C(
−→
G (k1)) = (U (k1),R(k1)). We

calculate the membership grade of the edge (x1,w1) corresponding to a parameter k1 ∈ K .

TR(k1)(x1,w1) = [TU (k1)(x1) ∧ TU (k1)(w1)]h1(N +(x1)(k1) ∩N +(w1)(k1)) = (0.1)(0.1) = 0.01,
IR(k1)(x1,w1) = [IU (k1)(x1) ∧ IU (k1)(w1)]h2(N +(x1)(k1) ∩N +(w1)(k1)) = (0.7)(0.1) = 0.07,

FR(k1)(x1,w1) = [FU (k1)(x1) ∨ FU (k1)(w1)]h3(N +(x1)(k1) ∩N +(w1)(k1)) = (0.7)(0.6) = 0.42.

Similarly, there is a SVN edge between y1 and z1 in C(
−→
G (k2)) = (U (k2),R(k2)) corresponding to

a parameter k2 ∈ K whose membership grades are TR(k2)(y1, z1) = 0.04, IR(k2)(y1, z1) = 0.3, and

FR(k2)(y1, z1) = 0.72. The SVNS competition graph C(
−→
G ) = {C(

−→
G (k1)), C(

−→
G (k2))} is given in Figure 2.

Figure 2. SVNS competition graph C(
−→
G ) = {C(

−→
G (k1)), C(

−→
G (k2))}.
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Now we define the SVNS k-competition graph which is an extension of SVNS competition graph.

Definition 2.11. Let k be a non-negative number. The SVNS k-competition graphCk(
−→
G ) = (U ,S ,K )

of a SVNS digraph
−→
G = (U ,

−→
V ,K ) having the SVNS vertex set same as in

−→
G and for all k ∈ K ,

there is a SVN edge between x and y in Ck(
−→
G (k)) = (U (k),S (k)) if and only if |TN +(x)(k)∩N +(y)(k)| > k,

|IN +(x)(k)∩N +(y)(k)| > k, and |FN +(x)(k)∩N +(y)(k)| > k. The membership values of the edge (x, y) in Ck(
−→
G (k))

corresponding to a parameter k ∈ K are:

TS (k)(x, y) =
k1 − k

k1
[TU (k)(x) ∧ TU (k)(y)]h1(N +(x)(k) ∩N +(y)(k)),

IS (k)(x, y) =
k2 − k

k2
[IU (k)(x) ∧ IU (k)(y)]h2(N +(x)(k) ∩N +(y)(k)),

FS (k)(x, y) =
k3 − k

k3
[FU (k)(x) ∨ FU (k)(y)]h3(N +(x)(k) ∩N +(y)(k)),

where |N +(x)(k) ∩N +(y)(k)| = (k1, k2, k3).

So, SVNS k-competition graph is simply SVNS competition graph when k = 0. Following we give
an example of SVNS 0.1-competition graph.

Example 2.2. Consider a SVNS digraph
−→
G = (U ,

−→
V ,K ) as shown in Figure 3.

Figure 3. SVNS digraph
−→
G = {

−→
G (k1),

−→
G (k2)}.

Since

N +(y1)(k1) ∩N +(z1)(k1) = {w1(0.4, 0.3, 0.7)},
|N +(y1)(k1) ∩N +(z1)(k1)| = (k1, k2, k3) = (0.4, 0.3, 0.7).

Therefore, |TN +(y1)(k1)∩N +(z1)(k1)| = 0.4 > 0.1, |IN +(y1)(k1)∩N +(z1)(k1)| = 0.3 > 0.1, and |FN +(y1)(k1)∩N +(z1)(k1)|

= 0.7 > 0.1. So, by Definition 2.11, there exist a SVN edge (y1, z1) in C0.1(
−→
G (k1)) = (U (k1),S (k1)).

The membership values of the edge (y1, z1) corresponding to a parameter k1 ∈ K are computed as
follows.

TS (k1)(y1, z1) =
0.4 − 0.1

0.4
[TU (k1)(y1) ∧ TU (k1)(z1)]h1(N +(y1)(k1) ∩N +(z1)(k1)) = 0.21,

IS (k1)(y1, z1) =
0.3 − 0.1

0.3
[IU (k1)(y1) ∧ IU (k1)(z1)]h2(N +(y1)(k1) ∩N +(z1)(k1)) = 0.059,

Mathematical Biosciences and Engineering Volume 20, Issue 3, 4609–4642.
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FS (k1)(y1, z1) =
0.7 − 0.1

0.7
[FU (k1)(y1) ∨ FU (k1)(z1)]h3(N +(y1)(k1) ∩N +(z1)(k1)) = 0.539.

Similarly, there is an edge between x1 and v1 in C0.1(
−→
G (k2)) = (U (k2),S (k2)). The member-

ship value of the edge (x1, v1) corresponding to a parameter k2 ∈ K are TS (k2)(x1, v1) = 0.099,

IS (k2)(x1, v1) = 0.119, and FS (k2)(x1, v1) = 0.539. The SVNS 0.1-competition graph C0.1(
−→
G ) =

{C0.1(
−→
G (k1)),C0.1(

−→
G (k2))} is shown in Figure 4.

Figure 4. SVNS 0.1-competition graph C0.1(
−→
G ) = {C0.1(

−→
G (k1)),C0.1(

−→
G (k2))}.

Definition 2.12. Let p be a positive integer. The p-competition SVNS graph Cp(
−→
G ) = (U ,H ,K ) of a

SVNS digraph
−→
G = (U ,

−→
V ,K ) having the SVNS vertex set same as in

−→
G and for all k ∈ K , there is a

SVN edge between x and y in Cp(
−→
G (k)) = (U (k),H (k)) if and only if |S upp(N +(x)(k)∩N +(y)(k))| ≥

p. The membership values of the edge (x, y) in Cp(
−→
G (k)) corresponding to a parameter k ∈ K are

defined as:

TH (k)(x, y) =
(n − p) + 1

n
[TU (k)(x) ∧ TU (k)(y)]h1(N +(x)(k) ∩N +(y)(k)),

IH (k)(x, y) =
(n − p) + 1

n
[IU (k)(x) ∧ IU (k)(y)]h2(N +(x)(k) ∩N +(y)(k)),

FH (k)(x, y) =
(n − p) + 1

n
[FU (k)(x) ∨ FU (k)(y)]h3(N +(x)(k) ∩N +(y)(k)),

where n = |S upp(N +(x)(k) ∩N +(y)(k))|.

Following example illustrates the 2-competition SVNS graph.

Example 2.3. Consider a SVNS digraph
−→
G = (U ,

−→
V ,K ) as shown in Figure 5.

Figure 5. SVNS digraph
−→
G = {

−→
G (k1),

−→
G (k2)}.
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Here, N +(x1)(k1) = {z1(0.3, 0.2, 0.6),w1(0.5, 0.3, 0.4), y1(0.5, 0.4, 0.2)} and N +(y1)(k1) =

{z1(0.4, 0.3, 0.2),w1(0.4, 0.3, 0.6)}. Hence

N +(x1)(k1) ∩N +(y1)(k1) = {z1(0.3, 0.2, 0.6),w1(0.4, 0.3, 0.6)},
|S upp(N +(x1)(k1) ∩N +(y1)(k1))| = 2.

Thus, by Definition 2.12, there is a SVN edge between x1 and y1. The membership values of the edge
(x1, y1) corresponding to parameter k1 ∈ K are:

TH (k1)(x1, y1) =
2 − 2 + 1

2
[TU (k1)(x1) ∧ TU (k1)(y1)]h1(N +(x1)(k1) ∩N +(y1)(k1)) = 0.1,

IH (k1)(x1, y1) =
2 − 2 + 1

2
[IU (k1)(x1) ∧ IU (k1)(y1)]h2(N +(x1)(k1) ∩N +(y1)(k1)) = 0.075,

FH (k1)(x1, y1) =
2 − 2 + 1

2
[FU (k1)(x1) ∨ FU (k1)(y1)]h3(N +(x1)(k1) ∩N +(y1)(k1)) = 0.21.

Similarly, there is an edge between x1 and z1 in C2(
−→
G (k2)) = (U (k2),H (k2)). The membership value of

the edge (x1, z1) corresponding to parameter k2 ∈ K are TH (k2)(x1, z1) = 0.125, IH (k2)(x1, z1) = 0.125,

and FH (k2)(x1, z1) = 0.18. The 2-competition SVNS graph C2(
−→
G ) = {C2(

−→
G (k1)),C2(

−→
G (k2))} is shown in

Figure 6.

Figure 6. 2-competition SVNS graph C2(
−→
G ) = {C2(

−→
G (k1)),C2(

−→
G (k2))}.

Definition 2.13. Let
−→
G = (U ,

−→
V ,K ) be a SVNS digraph on X . An edge (−−→x, y) of a SVNS digraph is

said to be a strong independent edge if for each k ∈ K the following conditions hold:

1
2

[TU (k)(x) ∧ TU (k)(y)] < T−→
V (k)

(x, y),

1
2

[IU (k)(x) ∧ IU (k)(y)] < I−→
V (k)

(x, y),

1
2

[FU (k)(x) ∨ FU (k)(y)] > F−→
V (k)

(x, y).

Otherwise, it will be a weak edge.

Theorem 2.1. Let
−→
G = (U ,

−→
V ,K ) be a SVNS digraph on a non-void set X . If for each k ∈ K ,

N +(x)(k) ∩ N +(y)(k) contains only one SVN vertex, then the SVNS edge (x, y) of C(
−→
G ) is strong

independent if and only if |TN +(x)(k)∩N +(y)(k)| > 0.5, |IN +(x)(k)∩N +(y)(k)| > 0.5, and |FN +(x)(k)∩N +(y)(k)| < 0.5
for all k ∈ K .
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Proof. Let
−→
G = (U ,

−→
V ,K ) be a SVNS digraph and C(

−→
G ) = (U ,R,K ) be a SVNS competition graph

of
−→
G . Suppose for each k ∈ K , N +(x)(k) ∩N +(y)(k) = {a(mT ,mI ,mF)}, where mT ,mI and mF are

the truth, indeterminacy, and falsity membership values of a. Here h1(N +(x)(k) ∩N +(y)(k)) = mT =

|TN +(x)(k)∩N +(y)(k)|, h2(N +(x)(k) ∩N +(y)(k)) = mI = |IN +(x)(k)∩N +(y)(k)|, and h3(N +(x)(k) ∩N +(y)(k))
= mF = |FN +(x)(k)∩N +(y)(k)|. Therefore,

TR(k)(x, y) = (TU (k)(x) ∧ TU (k)(y)) × mT ,

IR(k)(x, y) = (IU (k)(x) ∧ IU (k)(y)) × mI ,

FR(k)(x, y) = (FU (k)(x) ∨ FU (k)(y)) × mF .

Hence, the SVNS edge (x, y) of a SVNS competition graph C(
−→
G ) is strong independent if and only if

|TN +(x)(k)∩N +(y)(k)| > 0.5, |IN +(x)(k)∩N +(y)(k)| > 0.5, and |FN +(x)(k)∩N +(y)(k)| < 0.5 for all k ∈ K .

Theorem 2.2. Let
−→
G = (U ,

−→
V ,K ) be a SVNS digraph. If for each k ∈ K , h1(N +(x)(k) ∩

N +(y)(k)) = 1, h2(N +(x)(k)∩N +(y)(k)) = 1, h3(N +(x)(k)∩N +(y)(k)) = 1, |TN +(x)(k)∩N +(y)(k)| > 2k,

|IN +(x)(k)∩N +(y)(k)| > 2k, and |FN +(x)(k)∩N +(y)(k)| < 2k then the edge (x, y) is strong independent in Ck(
−→
G ).

Proof. Let
−→
G = (U ,

−→
V ,K ) be a SVNS digraph and Ck(

−→
G ) = (U ,S ,K ) be the SVNS k-competition

graph of
−→
G . Suppose for each k ∈ K , h1(N +(x)(k) ∩N +(y)(k)) = 1 and |TN +(x)(k)∩N +(y)(k)| > 2k then

TS (k)(x, y) =
k1 − k

k1
(TU (k)(x) ∧ TU (k)(y))h1(N +(x)(k) ∩N +(y)(k)),

TS (k)(x, y) =
k1 − k

k1
(TU (k)(x) ∧ TU (k)(y)),

TS (k)(x, y)
[TU (k)(x) ∧ TU (k)(y)]

=
k1 − k

k1
>

1
2
,

1
2

[TU (k)(x) ∧ TU (k)(y)] < TS (k)(x, y).

If h2(N +(x)(k) ∩N +(y)(k)) = 1 and |IN +(x)(k)∩N +(y)(k)| > 2k then

IS (k)(x, y) =
k2 − k

k2
(IU (k)(x) ∧ IU (k)(y))h2(N +(x)(k) ∩N +(y)(k)),

IS (k)(x, y) =
k2 − k

k2
(IU (k)(x) ∧ IU (k)(y)),

IS (k)(x, y)
[IU (k)(x) ∧ IU (k)(y)]

=
k2 − k

k2
>

1
2
,

1
2

[IU (k)(x) ∧ IU (k)(y)] < IS (k)(x, y).

If h3(N +(x)(k) ∩N +(y)(k)) = 1 and |FN +(x)(k)∩N +(y)(k)| < 2k then

FS (k)(x, y) =
k3 − k

k3
(FU (k)(x) ∨ FU (k)(y))h3(N +(x)(k) ∩N +(y)(k)),
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FS (k)(x, y) =
k3 − k

k3
(FU (k)(x) ∨ FU (k)(y)),

FS (k)(x, y)
[FU (k)(x) ∨ FU (k)(y)]

=
k3 − k

k3
<

1
2
,

1
2

[FU (k)(x) ∨ FU (k)(y)] > FS (k)(x, y).

Hence the SVNS edge (x, y) is strong independent in Ck(
−→
G ).

Theorem 2.3. If all the edges of a SVNS digraph
−→
G = (U ,

−→
V ,K ) are independent strong then

TR(k)(x,y)
(TU (k)(x)∧TU (k)(y))2 > 1

2 , IR(k)(x,y)
(IU (k)(x)∧IU (k)(y))2 > 1

2 , and FR(k)(x,y)
(FU (k)(x)∨FU (k)(y))2 < 1

2 for all k ∈ K and edges (x, y)

in C(
−→
G ).

Proof. Suppose all edges of a SVNS digraph
−→
G = (U ,

−→
V ,K ) are independent strong and C(

−→
G ) be the

SVNS competition graph corresponding to
−→
G .

Case (i): Let N +(x)(k) ∩N +(y)(k) = φ for all x, y ∈ X and k ∈ K . Then there does not exist any
SVNS edge in C(

−→
G ) between x and y. In this case, there is nothing to prove.

Case (ii): Assume that for each k ∈ K , N +(x)(k) ∩ N +(y)(k) , φ. Let N +(x)(k) ∩ N +(y)(k) =

{a1(T1, I1, F1), a2(T2, I2, F2), · · · , an(Tn, In, Fn)}, where Ti, Ii, and Fi are the truth, indeterminacy, and
falsity membership values of either (−−→x, ai) or (−−→y, ai) for i = 1, 2, · · · , n, respectively. So Ti =

[T−→
V (k)

(−−→x, ai) ∧ T−→
V (k)

(−−→y, ai)], Ii = [I−→
V (k)

(−−→x, ai) ∧ I−→
V (k)

(−−→y, ai)], and Fi = [F−→
V (k)

(−−→x, ai) ∨ F−→
V (k)

(−−→y, ai)] for
i = 1, 2, · · · , n. Let

h1(N +(x)(k) ∩N +(y)(k)) = max{Ti, i = 1, 2, · · · , n} = Tmax,

h2(N +(x)(k) ∩N +(y)(k)) = max{Ii, i = 1, 2, · · · , n} = Imax,

h3(N +(x)(k) ∩N +(y)(k)) = min{Fi, i = 1, 2, · · · , n} = Fmin.

Obviously, Tmax > T−→
V (k)

(x, y), Imax > I−→
V (k)

(x, y), and Fmin < F−→
V (k)

(x, y) for all k ∈ K and edges (x, y)
shows that

Tmax

TU (k)(x) ∧ TU (k)(y)
>

T−→
V (k)

(x, y)

TU (k)(x) ∧ TU (k)(y)
> 0.5,

Imax

IU (k)(x) ∧ IU (k)(y)
>

I−→
V (k)

(x, y)

IU (k)(x) ∧ IU (k)(y)
> 0.5,

Fmin

FU (k)(x) ∨ FU (k)(y)
<

F−→
V (k)

(x, y)

FU (k)(x) ∨ FU (k)(y)
< 0.5.

Therefore,

TR(k)(x, y) = [TU (k)(x) ∧ TU (k)(y)]h1(N +(x)(k) ∩N +(y)(k)),
= [TU (k)(x) ∧ TU (k)(y)]Tmax,

TR(k)(x, y)
(TU (k)(x) ∧ TU (k)(y))2 =

Tmax

TU (k)(x) ∧ TU (k)(y)
> 0.5,
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IR(k)(x, y) = [IU (k)(x) ∧ IU (k)(y)]h2(N +(x)(k) ∩N +(y)(k)),
= [IU (k)(x) ∧ IU (k)(y)]Imax,

IR(k)(x, y)
(IU (k)(x) ∧ IU (k)(y))2 =

Imax

IU (k)(x) ∧ IU (k)(y)
> 0.5,

FR(k)(x, y) = [FU (k)(x) ∨ FU (k)(y)]h3(N +(x)(k) ∩N +(y)(k)),
= [FU (k)(x) ∨ FU (k)(y)]Fmin,

FR(k)(x, y)
(FU (k)(x) ∨ FU (k)(y))2 =

Fmin

FU (k)(x) ∨ FU (k)(y)
< 0.5.

Now, we present a method of construction of SVNS competition graph of the Cartesian product of
SVNS digraph in a Theorem.

Theorem 2.4. Let C(
−→
G 1) = (U1,R1,K ) and C(

−→
G 2) = (U2,R2,L ) be two SVNS competition graphs of

SVNS digraphs
−→
G 1 = (U1,

−→
V 1,K ) and

−→
G 2 = (U2,

−→
V 2,L ), respectively. Then for each (k, l) ∈ K ×L ,

C(
−→
G 1(k)�

−→
G 2(l)) = G

C(
−→
G 1(k))∗�C(

−→
G 2(l))∗

∪G �(k, l), where G
C(
−→
G 1(k))∗�C(

−→
G 2(l))∗

is a SVN graph on the crisp graph

(X1 ×X2,EC(
−→
G 1(k))∗

�E
C(
−→
G 2(l))∗

), C(
−→
G 1(k))∗ and C(

−→
G 2(l))∗ are the crisp competition graphs of

−→
G 1(k) and

−→
G 2(l), respectively. G �(k, l) is a SVN graph on (X1 ×X2,E �(k, l)) such that:

1) E �(k, l) = {(x1, x2)(z1, z2) : z1 ∈ N −(x1)(k)∗, z2 ∈ N +(x2)(l)∗}.
2) E

C(
−→
G 1(k))∗

�E
C(
−→
G 2(l))∗

= {(x1, x2)(x1, z2) : x1 ∈X1, x2z2 ∈ E
C(
−→
G 2(l))∗

}∪{(x1, x2)(z1, x2) : x2 ∈X2, x1z1 ∈

E
C(
−→
G 1(k))∗

}.
3) TU1(k)�TU2(l)(x1, x2) = TU1(k)(x1) ∧ TU2(l)(x2), IU1(k)�IU2(l)(x1, x2) = IU1(k)(x1) ∧ IU2(l)(x2), and

FU1(k)�FU2(l)(x1, x2) = FU1(k)(x1) ∨ FU2(l)(x2), for all (x1, x2) ∈X1 ×X2.
4) TR(k,l)((x1, x2)(x1, z2)) = [TU1(k)(x1) ∧ TU2(l)(x2) ∧ TU2(l)(z2)] × ∨a2{TU1(k)(x1) ∧ T−→

V 2(l)
(x2a2) ∧

T−→
V 2(l)

(z2a2)}, (x1, x2)(x1, z2) ∈ E
C(
−→
G 1(k))∗

�E
C(
−→
G 2(l))∗

, a2 ∈ (N+(x2)(l) ∩ N+(z2)(l))∗.
5) IR(k,l)((x1, x2)(x1, z2)) = [IU1(k)(x1)∧ IU2(l)(x2)∧ IU2(l)(z2)]×∨a2{IU1(k)(x1)∧ I−→

V 2(l)
(x2a2)∧ I−→

V 2(l)
(z2a2)},

(x1, x2)(x1, z2) ∈ E
C(
−→
G 1(k))∗

�E
C(
−→
G 2(l))∗

, a2 ∈ (N+(x2)(l) ∩ N+(z2)(l))∗.
6) FR(k,l)((x1, x2)(x1, z2)) = [FU1(k)(x1) ∨ FU2(l)(x2) ∨ FU2(l)(z2)] × ∨a2{FU1(k)(x1) ∨ F−→

V 2(l)
(x2a2) ∨

F−→
V 2(l)

(z2a2)}, (x1, x2)(x1, z2) ∈ E
C(
−→
G 1(k))∗

�E
C(
−→
G 2(l))∗

, a2 ∈ (N+(x2)(l) ∩ N+(z2)(l))∗.
7) TR(k,l)((x1, x2)(z1, x2)) = [TU1(k)(x1) ∧ TU1(k)(z1) ∧ TU2(l)(x2)] × ∨a1{TU2(l)(x2) ∧ T−→

V 1(k)
(x1a1) ∧

T−→
V 1(k)

(z1a1)}, (x1, x2)(z1, x2) ∈ E
C(
−→
G 1(k))∗

�E
C(
−→
G 2(l))∗

, a1 ∈ (N+(x1)(k) ∩ N+(z1)(k))∗.
8) IR(k,l)((x1, x2)(z1, x2)) = [IU1(k)(x1)∧IU1(k)(z1)∧IU2(l)(x2)]×∨a1{IU2(l)(x2)∧I−→

V 1(k)
(x1a1)∧I−→

V 1(k)
(z1a1)},

(x1, x2)(z1, x2) ∈ E
C(
−→
G 1(k))∗

�E
C(
−→
G 2(l))∗

, a1 ∈ (N+(x1)(k) ∩ N+(z1)(k))∗.
9) FR(k,l)((x1, x2)(z1, x2)) = [FU1(k)(x1) ∨ FU1(k)(z1) ∨ FU2(l)(x2)] × ∨a1{FU2(l)(x2) ∨ F−→

V 1(k)
(x1a1) ∨

F−→
V 1(k)

(z1a1)}, (x1, x2)(z1, x2) ∈ E
C(
−→
G 1(k))∗

�E
C(
−→
G 2(l))∗

, a1 ∈ (N+(x1)(k) ∩ N+(z1)(k))∗.
10) TR(k,l)((x1, x2)(z1, z2)) = [TU1(k)(x1)∧TU1(k)(z1)∧TU2(l)(x2)∧TU2(l)(z2)]× [TU1(k)(x1)∧T−→

V 1(k)
(z1x1)∧

TU2(l)(z2) ∧ T−→
V 2(l)

(x2z2)], (x1, x2)(z1, z2) ∈ E �(k, l).
11) IR(k,l)((x1, x2)(z1, z2)) = [IU1(k)(x1) ∧ IU1(k)(z1) ∧ IU2(l)(x2) ∧ IU2(l)(z2)] × [IU1(k)(x1) ∧ I−→

V 1(k)
(z1x1) ∧

IU2(l)(z2) ∧ I−→
V 2(l)

(x2z2)], (x1, x2)(z1, z2) ∈ E �(k, l).
12) FR(k,l)((x1, x2)(z1, z2)) = [FU1(k)(x1)∨FU1(k)(z1)∨FU2(l)(x2)∨FU2(l)(z2)]×[FU1(k)(x1)∨F−→

V 1(k)
(z1x1)∨

FU2(l)(z2) ∨ F−→
V 2(l)

(x2z2)], (x1, x2)(z1, z2) ∈ E �(k, l).

Proof. This theorem can be proved by utilizing the analogous arguments as in Theorem 3.3 [13].
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Example 2.4. Let
−→
G 1 = (U1,

−→
V 1,K ) and

−→
G 2 = (U2,

−→
V 2,L ) be two SVNS digraphs of the crisp

digraphs
−→
G ∗1 = (X1,

−→
E 1) and

−→
G ∗2 = (X2,

−→
E 2) as shown in Figures 7 and 8, respectively.

Figure 7. SVNS digraph
−→
G1 = (U1,

−→
V 1,K ).

Figure 8. SVNS digraph
−→
G2 = (U2,

−→
V 2,L ).

The SVNS out neighborhoods of both
−→
G 1 and

−→
G 2 are given in Tables 5 and 6, respectively. The

SVNS in neighborhood of
−→
G 1 and

−→
G 2 are given in Tables 7 and 8, respectively.

Table 5. SVNS out neighborhood of vertices in
−→
G 1.

x ∈X1 N +(x)(k1) N +(x)(k2) (N +(x),K )

x1 {y1(0.6, 0.5, 0.6)} φ {
y1(0.6,0.5,0.6)

k1
, φk2
}

y1 φ {x1(0.1, 0.2, 0.3)} {
φ

k1
, x1(0.1,0.2,0.3)

k2
}

z1 {y1(0.7, 0.5, 0.7)} {x1(0.2, 0.1, 0.4)} {
y1(0.7,0.5,0.7)

k1
, x1(0.2,0.1,0.4)

k2
}

Table 6. SVNS out neighborhood of vertices in
−→
G 2.

x ∈X2 N+(x)(l1) N+(x)(l2) (N+(x),L )

x2 {z2(0.4, 0.4, 0.6)} φ {
z2(0.4,0.4,0.6)

l1
, φl2 }

y2 {z2(0.4, 0.3, 0.8)} {x2(0.2, 0.3, 0.3)} {
z2(0.4,0.3,0.8)

l1
, x2(0.2,0.3,0.3)

l2
}

z2 φ {x2(0.2, 0.2, 0.4)} {
φ

l1
, x2(0.2,0.2,0.4)

l2
}
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Table 7. SVNS in neighborhood of vertices in
−→
G 1.

x ∈X1 N −(x)(k1) N −(x)(k2) (N −(x),K )

x1 φ {y1(0.1, 0.2, 0.3), z1(0.2, 0.1, 0.4)} {
φ
k1
, y1(0.1,0.2,0.3),z1(0.2,0.1,0.4)

k2
}

y1 {x1(0.6, 0.5, 0.6), z1(0.7, 0.5, 0.7)} φ {
x1(0.6,0.5,0.6),z1(0.7,0.5,0.7)

k1
, φk2
}

z1 φ φ {
φ
k1
, φk2
}

Table 8. SVNS in neighborhood of vertices in
−→
G 2.

x ∈X2 N−(x)(l1) N−(x)(l2) (N−(x),L )

x2 φ {y2(0.2, 0.3, 0.3), z2(0.2, 0.2, 0.4)} {
φ
l1
, y2(0.2,0.3,0.3),z2(0.2,0.2,0.4)

l2
}

y2 φ φ {
φ
l1
, φl2 }

z2 {x2(0.4, 0.4.0.6), y2(0.4, 0.3, 0.8)} φ {
x2(0.4,0.4.0.6),y2(0.4,0.3,0.8)

l1
, φl2 }

The SVNS competition graphs C(
−→
G 1) and C(

−→
G 2) of

−→
G 1 and

−→
G 2 are specified in Figures 9 and 10,

respectively.

Figure 9. SVNS competition graph C(
−→
G 1) = (U1,R1,K ).

Figure 10. SVNS competition graph C(
−→
G 2) = (U2,R2,L ).

Now for (k1, l1) ∈ K × L , we construct the SVN competition graph G
C(
−→
G 1(k1))∗�C(

−→
G 2(l1))∗

∪

G �(k1, l1) = (U (k1, l1),R(k1, l1)), where U (k1, l1) = (TU (k1,l1), IU (k1,l1), FU (k1,l1)) and R(k1, l1) =
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(TR(k1,l1), IR(k1,l1), FR(k1,l1)) from C(
−→
G 1(k1))∗ and C(

−→
G 2(l1))∗ by using Theorem 2.4. According to condi-

tions (1) and (2), the two set of edges corresponding to parameter (k1, l1) ∈ K ×L are

E
C(
−→
G1(k1))∗

�E
C(
−→
G2(l1))∗

= {(x1, x2)(x1, y2), (y1, x2)(y1, y2), (z1, x2)(z1, y2), (x1, x2)(z1, x2),
(x1, y2)(z1, y2), (x1, z2)(z1, z2)}.

E �(k1, l1) = {(y1, x2)(x1, z2), (y1, y2)(x1, z2), (y1, x2)(z1, z2), (y1, y2)(z1, z2)}.

According to conditions (4)–(12), the degrees of truth membership, indeterminacy membership, and
falsity membership of the edges can be calculated as

R(k1, l1)((x1, x2)(x1, y2)) = (TU1(k1)(x1) ∧ TU2(l1)(x2) ∧ TU2(l1)(y2),
IU1(k1)(x1) ∧ IU2(l1)(x2) ∧ IU2(l1)(y2),
FU1(k1)(x1) ∨ FU2(l1)(x2) ∨ FU2(l1)(y2))
×(TU1(k1)(x1) ∧ T−→

V 2(l1)
(x2z2) ∧ T−→

V 2(l1)
(y2z2),

IU1(k1)(x1) ∧ I−→
V 2(l1)

(x2z2) ∧ I−→
V 2(l1)

(y2z2),
FU1(k1)(x1) ∨ F−→

V 2(l1)
(x2z2) ∨ F−→

V 2(l1)
(y2z2)).

= (0.7, 0.6, 0.9) × (0.4, 0.3, 0.8),
= (0.28, 0.18, 0.72).

R(k1, l1)((y1, x2)(x1, z2)) = (TU1(k1)(y1) ∧ TU1(k1)(x1) ∧ TU2(l1)(x2) ∧ TU2(l1)(z2),
IU1(k1)(y1) ∧ IU1(k1)(x1) ∧ IU2(l1)(x2) ∧ IU2(l1)(z2),
FU1(k1)(y1) ∨ FU1(k1)(x1) ∨ FU2(l1)(x2) ∨ FU2(l1)(z2))
×(TU1(k1)(y1) ∧ T−→

V 1(k1)
(x1y1) ∧ TU2(l1)(z2) ∧ T−→

V 2(l1)
(x2z2),

IU1(k1)(y1) ∧ I−→
V 1(k1)

(x1y1) ∧ IU2(l1)(z2) ∧ I−→
V 2(l1)

(x2z2),
FU1(k1)(y1) ∨ F−→

V 1(k1)
(x1y1) ∨ TU2(l1)(z2) ∨ F−→

V 2(l1)
(x2z2)).

= (0.5, 0.4, 0.7) × (0.4, 0.4, 0.7),
= (0.20, 0.16, 0.49).

Table 9. Adjacency edges of G
C(
−→
G 1(k1))∗�C(

−→
G 2(l1))∗

∪ G �(k1, l1).

(a1, a2)(b1, b2) R(k1, l1)((a1, a2)(b1, b2))

(y1, x2)(x1, z2) (0.2, 0.16, 0.49)
(y1, y2)(x1, z2) (0.2, 0.12, 0.72)
(y1, x2)(z1, z2) (0.2, 0.16, 0.49)
(y1, y2)(z1, z2) (0.2, 0.12, 0.72)
(x1, x2)(x1, y2) (0.28, 0.18, 0.72)
(y1, x2)(y1, y2) (0.28, 0.18, 0.72)
(x1, x2)(z1, y2) (0.28, 0.21, 0.72)
(x1, x2)(z1, x2) (0.42, 0.3, 0.35)
(x1, y2)(z1, y2) (0.42, 0.3, 0.81)
(x1, z2)(z1, z2) (0.25, 0.16, 0.49)
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The truth membership, indeterminacy membership, and falsity membership degrees of all the adja-
cent edges of G

C(
−→
G 1(k1))∗�C(

−→
G 2(l1))∗

∪ G �(k1, l1) are given in Table 9.
The SVN competition graph corresponding to parameter (k1, l1) ∈ K × L obtained using this

method is given in Figure 11, where the solid lines indicate the part of SVN competition graph obtained
from G

C(
−→
G 1(k1))∗�C(

−→
G 2(l1))∗

, the dotted lines represent the part G �(k1, l1).

Figure 11. G
C(
−→
G 1(k1))∗�C(

−→
G 2(l1))∗

∪ G �(k1, l1).

The Cartesian product
−→
G 1(k1)�

−→
G 2(l1) of SVN digraphs

−→
G 1(k1) and

−→
G 2(l1) is shown in Figure 12.

Figure 12.
−→
G 1(k1)�

−→
G 2(l1).

The SVN out neighborhood of vertices in
−→
G 1(k1)�

−→
G 2(l1) are calculated in Table 10.
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Table 10. SVN out neighborhood of vertices in
−→
G 1(k1)�

−→
G 2(l1).

(x1, x2) ∈X ×X N +(x1, x2)(k1, l1)

(x1, x2) {(x1, z2)(0.4, 0.4, 0.6), (y1, x2)(0.6, 0.5, 0.6)}
(x1, y2) {(x1, z2)(0.4, 0.3, 0.8), (y1, y2)(0.6, 0.5, 0.9)}
(x1, z2) {(y1, z2)(0.5, 0.4, 0.7)}
(y1, x2) {(y1, z2)(0.4, 0.4, 0.7)}
(y1, y2) {(y1, z2)(0.4, 0.3, 0.8)}
(y1, z2) φ

(z1, x2) {(y1, x2)(0.7, 0.5, 0.7), (z1, z2)(0.4, 0.4, 0.6)}
(z1, y2) {(y1, y2)(0.7, 0.5, 0.9), (z1, z2)(0.4, 0.3, 0.8)}
(z1, z2) {(y1, z2)(0.5, 0.4, 0.7)}

The SVN competition graph of
−→
G 1(k1)�

−→
G 2(l1) is shown in Figure 13.

Figure 13. SVN competition graph C(
−→
G 1(k1)�

−→
G 2(l1)).

It is clear from Figures 11 and 13 that G
C(
−→
G 1(k1))∗�C(

−→
G 2(l1))∗

∪ G �(k1, l1) � C(
−→
G 1(k1)�

−→
G 2(l1)). By

a similar procedure, we can also obtain the G
C(
−→
G 1(k1))∗�C(

−→
G 2(l2))∗

∪ G �(k1, l2) � C(
−→
G 1(k1)�

−→
G 2(l2)),

G
C(
−→
G 1(k2))∗�C(

−→
G 2(l1))∗

∪ G �(k2, l1) � C(
−→
G 1(k2)�

−→
G 2(l1)), and G

C(
−→
G 1(k2))∗�C(

−→
G 2(l2))∗

∪ G �(k2, l2) �

C(
−→
G 1(k2)�

−→
G 2(l2)).

Definition 2.14. Let G1 = (U1,V1,K ) and G2 = (U2,V2,L ) be two SVNS graphs of G ∗1 = (X1,E1)
and G ∗2 = (X2,E2), respectively. The direct product of G1 and G2 is denoted by G1 × G2 and defined
as (U ,V ,K × L ), where U = (U1 × U2,K × L ) is a SVNS set on X = X × X and V =

(V1 × V2,K ×L ) is a SVNS relation on X = X ×X such that
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(i) TU (k,l)(x1, x2) = TU1(k)(x1) ∧ TU2(l)(x2), IU (k,l)(x1, x2) = IU1(k)(x1) ∧ IU2(l)(x2), and FU (k,l)(x1, x2) =

FU1(k)(x1) ∨ FU2(l)(x2), for all (x1, x2) ∈X ×X and (k, l) ∈ K ×L .
(ii) TV (k,l)((x1, x2)(z1, z2)) = TV1(k)(x1, z1) ∧ TV2(l)(x2, z2), IV (k,l)((x1, x2)(z1, z2)) = IV1(k)(x1, z1) ∧

IV2(l)(x2, z2), and FV (k,l)((x1, x2)(z1, z2)) = FV1(k)(x1, z1) ∨ FV2(l)(x2, z2),

for all x1z1 ∈ E1 and x2z2 ∈ E2.

Now we present the method of SVNS competition graph of the direct product of SVNS digraphs
from respective SVNS competition graphs of the SVNS digraphs in a theorem.

Theorem 2.5. Let C(
−→
G 1) = (U1,R1,K ) and C(

−→
G 2) = (U2,R2,L ) be two SVNS competition graphs of

SVNS digraphs
−→
G 1 = (U1,

−→
V 1,K ) and

−→
G 2 = (U2,

−→
V 2,L ), respectively, without isolated vertices such

that neither is a SVNS empty graph. Then for each (k, l) ∈ K ×L , C(
−→
G 1(k) ×

−→
G 2(l)) = [C(

−→
G 1(k)) ×

C(
−→
G 2(l))] ∪ G ×(k, l), where G ×(k, l) = (U (k, l),R(k, l)) is a SVN graph on the crisp graph (X1 ×

X2,E ×(k, l)) such that

1) TU (k,l)(x1, x2) = TU1(k)(x1) ∧ TU2(l)(x2), IU (k,l)(x1, x2) = IU1(k)(x1) ∧ IU2(l)(x2), and FU (k,l)(x1, x2) =
FU1(k)(x1) ∨ FU2(l)(x2), for all (x1, x2) ∈X1 ×X2.

2) E ×(k, l) = {(x1, x2)(x1, z2)|x1 ∈X1, x2, z2 ∈X2,N +(x1)(k) , φ, x2z2 ∈ E
C(
−→
G 2(l))∗

} ∪ {(x1, x2)(z1, x2)
|x1, z1 ∈X1, x2 ∈X2,N +(x2)(l) , φ, x1z1 ∈ E

C(
−→
G 1(k))∗

}.
3) TR(k,l)((x1, x2)(x1, z2)) = [TU1(k)(x1)∧TU2(l)(x2)∧TU2(l)(z2)]×∨a1∈X1,a2∈X2{T−→V 1(k)

(x1a1)∧T−→
V 2(l)

(x2a2)∧
T−→

V 2(l)
(z2a2)|a1 ∈ N +(x1)(k)∗, a2 ∈ N +(x2)(l)∗ ∩N +(z2)(l)∗}, (x1, x2)(x1, z2) ∈ E ×(k, l).

4) IR(k,l)((x1, x2)(x1, z2)) = [IU1(k)(x1)∧ IU2(l)(x2)∧ IU2(l)(z2)]×∨a1∈X1,a2∈X2{I−→V 1(k)
(x1a1)∧ I−→

V 2(l)
(x2a2)∧

I−→
V 2(l)

(z2a2)|a1 ∈ N +(x1)(k)∗, a2 ∈ N +(x2)(l)∗ ∩N +(z2)(l)∗}, (x1, x2)(x1, z2) ∈ E ×(k, l).
5) FR(k,l)((x1, x2)(x1, z2)) = [FU1(k)(x1) ∨ FU2(l)(x2) ∨ FU2(l)(z2)] × ∨a1∈X1,a2∈X2{F−→V 1(k)

(x1a1) ∨
F−→

V 2(l)
(x2a2) ∨ F−→

V 2(l)
(z2a2)|a1 ∈ N +(x1)(k)∗, a2 ∈ N +(x2)(l)∗ ∩ N +(z2)(l)∗}, (x1, x2)(x1, z2) ∈

E ×(k, l).
6) TR(k,l)((x1, x2)(z1, x2)) = [TU1(k)(x1) ∧ TU1(k)(z1) ∧ TU2(l)(x2)] × ∨a1∈X1,a2∈X2{T−→V 1(k)

(x1a1) ∧
T−→

V 1(k)
(z1a1) ∧ T−→

V 2(l)
(x2a2)|a2 ∈ N +(x2)(l)∗, a1 ∈ N +(x1)(k)∗ ∩ N +(z1)(k)∗}, (x1, x2)(z1, x2) ∈

E ×(k, l).
7) IR(k,l)((x1, x2)(z1, x2)) = [IU1(k)(x1)∧ IU1(k)(z1)∧ IU2(l)(x2)]×∨a1∈X1,a2∈X2{I−→V 1(k)

(x1a1)∧ I−→
V 1(k)

(z1a1)∧
I−→
V 2(l)

(x2a2)|a2 ∈ N +(x2)(l)∗, a1 ∈ N +(x1)(k)∗ ∩N +(z1)(k)∗}, (x1, x2)(z1, x2) ∈ E ×(k, l).
8) FR(k,l)((x1, x2)(z1, x2)) = [FU1(k)(x1) ∨ FU1(k)(z1) ∨ FU2(l)(x2)] × ∨a1∈X1,a2∈X2{F−→V 1(k)

(x1a1) ∨
F−→

V 1(k)
(z1a1) ∨ F−→

V 2(l)
(x2a2)|a2 ∈ N +(x2)(l)∗, a1 ∈ N +(x1)(k)∗ ∩ N +(z1)(k)∗}, (x1, x2)(z1, x2) ∈

E ×(k, l).

Proof. This can be proved by using the similar arguments as in Theorem 3.7 [13].

Now we construct the SVNS competition graph of the direct product of SVNS digraphs from re-
spective SVNS competition graphs of the SVNS digraphs in a theorem.

Example 2.5. Let
−→
G 1 = (U1,

−→
V 1,K ) and

−→
G 2 = (U2,

−→
V 2,L ) be two SVNS digraphs of the crisp

digraphs
−→
G ∗1 = (X1,

−→
E 1) and

−→
G ∗2 = (X2,

−→
E 2) as shown in Figures 14 and 15, respectively.
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Figure 14. SVNS digraph
−→
G1 = (U1,

−→
V 1,K ).

Figure 15. SVNS digraph
−→
G2 = (U2,

−→
V 2,L ).

The SVNS out neighborhoods of both
−→
G 1 and

−→
G 2 are given in Tables 11 and 12, respectively.

Table 11. SVNS out neighborhood of vertices in
−→
G 1.

x ∈X1 N +(x)(k1) N +(x)(k2) (N +(x),K )

x1 {z1(0.4, 0.3, 0.6)} φ {
z1(0.4,0.3,0.6)

k1
, φk2
}

y1 {z1(0.3, 0.3, 0.7)} {x1(0.1, 0.3, 0.5)} {
z1(0.3,0.3,0.7)

k1
, x1(0.1,0.3,0.5)

k2
}

z1 φ {x1(0.2, 0.3, 0.3)} {
φ

k1
, x1(0.2,0.3,0.3)

k2
}

Table 12. SVNS out neighborhood of vertices in
−→
G 2.

x ∈X2 N+(x)(l1) N+(x)(l2) (N+(x),L )

x2 {w2(0.5, 0.4, 0.5)} φ {
w2(0.5,0.4,0.5)

l1
, φl2 }

y2 {w2(0.7, 0.6, 0.5)} {w2(0.1, 0.4, 0.5)} {
w2(0.7,0.6,0.5)

l1
, (w2,0.1,0.4,0.5)

l2
}

z2 φ {x2(0.2, 0.3, 0.5)} {
φ

l1
, x2(0.2,0.3,0.5)

l2
}

w2 {z2(0.6, 0.5, 0.4)} {x2(0.1, 0.3, 0.3)} {
z2(0.6,0.5,0.4)

l1
, x2(0.1,0.3,0.4)

l2
}
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The SVNS competition graphs C(
−→
G 1) and C(

−→
G 2) of

−→
G 1 and

−→
G 2 are specified in Figures 16 and 17,

respectively.

Figure 16. SVNS competition graph C(
−→
G 1) = (U1,R1,K ).

Figure 17. SVNS competition graph C(
−→
G 2) = (U2,R2,L ).

For (k1, l1) ∈ K ×L , we will show that C(
−→
G 1(k1)×

−→
G 2(l1)) = [C(

−→
G 1(k1))×C(

−→
G 2(l1))]∪ G ×(k1, l1),

where G ×(k1, l1) is a SVNS digraph on (X1 ×X2,E ×(k1, l1)). We construct the edge set E ×(k1, l1) by
using condition (2) in Theorem 2.5.

E ×(k1, l1) = {(x1, x2)(x1, y2), (y1, x2)(y1, y2), (x1,w2)(y1,w2), (x1, x2)(y1, x2), (x1, y2)(y1, y2)}.

Using conditions (3) and (8), the degrees of truth membership, indeterminacy membership, and falsity
membership of all the edges from E ×(k1, l1) are calculated in Table 13.

Table 13. Adjacency edges of [C(
−→
G 1(k1)) × C(

−→
G 2(l1))] ∪ G ×(k1, l1).

(a1, a2)(b1, b2) R(k1, l1)((a1, a2)(b1, b2))

(x1, x2)(x1, y2) (0.24, 0.12, 0.36)
(x1, x2)(y1, x2) (0.09, 0.12, 0.42)
(y1, x2)(y1, y2) (0.09, 0.12, 0.42)
(x1, y2)(y1, y2) (0.09, 0.21, 0.42)
(x1,w2)(y1,w2) (0.09, 0.21, 0.42)

The SVN graph obtained using Theorem 2.5 is shown in Figure 18. The dashed lines represent the
part of SVN graph obtained from C(

−→
G 1(k1))×C(

−→
G 2(l1)) and solid lines indicate the part of SVN graph

obtained from G ×(k1, l1). The direct product of
−→
G 1(k1) and

−→
G 2(l1) is presented in Figure 19 and its
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SVN competition graph in Figure 20 which is similar as Figure 18. By repeating the same procedure,
the remaining SVN graphs corresponding to each parameter can be drawn.

Figure 18. [C(
−→
G 1(k1)) × C(

−→
G 2(l1))] ∪ G ×(k1, l1).

Figure 19.
−→
G 1(k1) ×

−→
G 2(l1).

Figure 20. C(
−→
G 1(k1) ×

−→
G 2(l1)).
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3. Decision-making approach

Competition graph theory play a vital role to present the competition among different objects. But
the existing competition graphical models in literature do not have the ability to examine all real-world
competitions among objects in the presence of parametrization. Following we present an application
of SVNS competition graph to examine the strength of job competition among candidates.

Consider James, Henry, David, Charlotte, Olivia, and Casper are five candidates that are competing
for different jobs including nutritionist, dentist, and psychologist. Each candidate competes with one
another on the basis of their qualities, e.g., honesty, adaptable, and confidence to get a job. To study
the strength of job competition among candidates corresponding to the above-mentioned qualities that
act as parameters, we use SVNS competition graph. Following Algorithm 3.1 tell us the method to
calculate the strength of job competition among candidates in the presence of above parameters k1, k2,
and k3, where k1 represents honesty, k2 represents the adaptable, and k3 represents the confidence.

Algorithm 3.1. Method to evaluate the strength of job competition among candidates

1. Input the most suitable set of parameters K on n candidates according to their r jobs.
2. Define the SVNS set (U ,K ) on n candidates and r jobs, also define SVNS relation (

−→
V ,K )

between n candidates and r jobs corresponding to each parameter.
3. Give a graphical representation of the above information, we get a SVNS digraph

−→
G =

(U ,
−→
V ,K ).

4. Calculate the SVNS out neighborhood of each candidate.
5. Construct the SVNS competition graph C(

−→
G ) = (U ,R,K ) by using Definition 2.10.

6. Compute the resultant SVN graph G (k) =
⋂

i G (ki) for k =
∧

i ki ∀i.
7. If x, c1, c2, c3, · · · , cn are the candidates that are competing for job a, then the strength of compe-

tition W (x, a) = (TW (x, a), IW (x, a), FW (x, a)) of each candidate x for a particular job a is:

TW (x, a) =
TV (k)(xc1) + TV (k)(xc2) + · · · + TV (k)(xcn)

n
,

IW (x, a) =
IV (k)(xc1) + IV (k)(xc2) + · · · + IV (k)(xcn)

n
,

FW (x, a) =
FV (k)(xc1) + FV (k)(xc2) + · · · + FV (k)(xcn)

n
.

Evaluate S (x, a) the strength of competition of each applicant x that are competing for a partic-
ular job a by utilizing the following formula:

S (x, a) = TW (x, a) − (IW (x, a) + FW (x, a)) + 1.

Graphical model of candidates that are competing for above-mentioned jobs with respect to consid-
ered three parameters is shown in Figure 21.
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Figure 21. SVNS digraph
−→
G = {

−→
G (k1),

−→
G (k2),

−→
G (k3)}.

The truth membership grade of each candidate corresponding to parameters k1, k2, and k3 indicates
the degree of honesty, adaptable, and confidence to get a job. The indeterminacy membership grade
expresses the indeterminate state of honesty, adaptable, and confidence. The false membership grade
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shows the degree of dishonesty, unadaptable, and uncertain towards their careers. For instance, the
membership grades of Henry corresponding to a parameter k1 are (0.9, 0.4, 0.7) which represents that
Henry is 90% honest, 40% is indeterminate under the specific conditions, and 70% dishonest toward
their career.

The membership grades of each job represent the honesty, adaptable, and confidence level of
candidates after getting that particular job. For instance, the membership values of psychologist corre-
sponding to a parameter k1 are (0.8, 0.2, 0.1) which represent that candidates which are competing for
this job 80% honest, 20% indeterminant, and 10% dishonest if they succeed to get this job.

The truth membership grade of each directed edge between a candidate and a job corresponding
to parameters k1, k2, and k3 indicates the eligibility for that job, the indeterminate value depicts the
indeterminate state of that job, and the false membership grade express the non-eligibility for that
particular career. For example, the directed edge between James and psychologist corresponding to
a parameter k1 has a membership grades (0.7, 0.2, 0.5) which manifest that James is 70% eligible for
psychologist, 20% is indeterminate either James is eligible for this job or not, and 50% is ineligible on
the basis of their honesty for this job.

The SVNS out neighborhood of each candidate is given in Table 14.

Table 14. SVNS out neighborhood of each candidate.
Candidates N +(Candidates)

Henry {
Nutritionist(0.8,0.03,0.7)

k1
, Nutritionist(0.3,0.02,0.7)

k2
,

Dentist(0.4,0.5,0.3),Psychologist(0.4,0.3,0.5)
k3

}

James {
Dentist(0.7,0.02,0.5),Psychologist(0.7,0.2,0.5)

k1
, Dentist(0.9,0.3,0.2)

k2
,

Dentist(0.7,0.4,0.3)
k3

}

Olivia {
Psychologist(0.8,0.01,0.1)

k1
, Psychologist(0.7,0.04,0.7)

k2
,

Psychologist(0.7,0.02,0.8)
k3

}

Charlotte {
Nutritionist(0.8,0.03,0.5)

k1
, Dentist(0.7,0.3,0.8)

k2
,

Dentist(0.6,0.3,0.3),Nutritionist(0.6,0.2,0.2)
k3

}

David {
Dentist(0.5,0.02,0.5)

k1
, Dentist(0.7,0.3,0.4),Psychologist(0.7,0.04,0.7)

k2
,

Nutritionist(0.8,0.2,0.8)
k3

}

Casper {
Nutritionist(0.7,0.03,0.4),Psychologist(0.7,0.2,0.2)

k1
, Nutritionist(0.4,0.2,0.7),Psychologist(0.4,0.04,0.7)

k2
,

Psychologist(0.7,0.02,0.5)
k3

}

The SVNS competition graph of a SVNS digraph
−→
G = {

−→
G (k1),

−→
G (k2),

−→
G (k3)} is given in Figure 22.
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Figure 22. SVNS competition graph C(
−→
G ) = (C(

−→
G (k1)), C(

−→
G (k2)), C(

−→
G (k3))).

The solid lines represent the strength of competition among each candidate and dashed lines express
the candidates that are competing for the particular job. For instance, Casper, Olivia, and James are
competing for the job psychologist and the truth membership value of each edge indicates the degree of
eligibility of both candidates for the job psychologist. After performing some operations (AND or OR);
we obtain the resultant SVN graph G (k) = (U (k),V (k)) as given in Figure 23, where k = k1 ∧ k2 ∧ k3.

Figure 23. SVN graph G (k) = (U (k),V (k)).
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We evaluate the strength of competition of each candidate by using Algorithm 3.1. The strength of
job competition among candidates with respect to a particular job is evaluated in Table 15. In Table
15, W (x, a) express the competition of candidate x for job a.

Table 15. Strength of job competition among candidates.
(Candidates, Job) In competition W (x, a) S (x, a)
(James, Dentist) (Henry, David, Charlotte) (0, 0, 0.326) 0.674
(Henry, Dentist) (James, David, Charlotte) (0, 0, 0.193) 0.807
(David, Dentist) (James, Henry, Charlotte) (0, 0, 0.296) 0.704
(Charlotte, Dentist) (James, Henry, David) (0, 0, 0.59) 0.41
(Henry, Nutritionist) (Casper, Charlotte, David) (0.03, 0.0001, 0.326) 0.703
(Casper, Nutritionist) (Henry, Charlotte, David) (0.03, 0.0001, 0.34) 0.689
(David, Nutritionist) (Henry, Charlotte, Casper) (0, 0, 0.306) 0.694
(Charlotte, Nutritionist) (Henry, Casper, David) (0, 0, 0.46) 0.54
(James, Psychologist) (Henry, David, Casper, Olivia) (0, 0, 0.21) 0.79
(Henry, Psychologist) (James, David, Casper, Olivia) (0.022, 0.0001, 0.305) 0.716
(David, Psychologist) (James, Henry, Casper, Olivia) (0, 0, 0.202) 0.798
(Casper, Psychologist) (James, Henry, David, Olivia) (0.062, 0.0001, 0.415) 0.646
(Olivia, Psychologist) (James, Henry, David, Casper) (0.04, 0.00002, 0.452) 0.587

From Table 15, we concluded that Henry has highest number of chances to be selected for the job
of Dentist, Henry has higest number of chances to be selected for the job of Nutritionist, and David
has highest number of chances to be selected for the job of Psychologist. The graphical view of these
consequences is given in Figure 24.

Figure 24. Graphical representation of strength of job competition among candidates.

4. Discussions and comparison analysis

The proposed method SVNS competition graph is more efficient and appropriate to manifest the
competition in decision support network as compared to existing approaches. In this section, we verify
the effectiveness of our proposed technique with present frameworks.

4.1. Comparison with fuzzy soft competition graphs

The energetic technique of FS competition graphs was defined and illustrated by Nawaz and Akram
[31] that tackles competitive relationships among the objects in the presence of parametrization. To
puzzle out the above decision-making problem with this model, we treat the above SVNS digraph as
FS digraph in which the uncertainty was discussed only in one direction. The FS digraph which depicts
the correlation between candidates and jobs is specified in Figure 25.
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Figure 25. FS digraph
−→
G = {

−→
G (k1),

−→
G (k2),

−→
G (k3)}.

The membership grades corresponding to parameters k1, k2, and k3 indicate the degree of honesty to
each candidate. The membership grades of each job represent the honesty of candidates after getting
that particular job. The membership grades of each directed edge between a candidate and a job
corresponding to parameters k1, k2, and k3 indicate the eligibility for that particular career.

The FS out neighborhood of each candidate is given in Table 16.

Table 16. FS out neighborhood of each candidate.
Candidates N +(Candidates)

Henry {
(Nutritionist,0.8)

k1
, (Nutritionist,0.3)

k2
, (Dentist,0.4),(Psychologist,0.4)

k3
}

James {
(Dentist,0.7),(Psychologist,0.7)

k1
, (Dentist,0.9)

k2
, (Dentist,0.7)

k3
}

Olivia {
(Psychologist,0.8)

k1
, (Psychologist,0.7)

k2
, (Psychologist,0.7)

k3
}

Charlotte {
(Nutritionist,0.8)

k1
, (Dentist,0.7)

k2
, (Dentist,0.6),(Nutritionist,0.6)

k3
}

David {
(Dentist,0.5)

k1
, (Dentist,0.7),(Psychologist,0.7)

k2
, (Nutritionist,0.8)

k3
}

Casper {
(Nutritionist,0.7),(Psychologist,0.7)

k1
, (Nutritionist,0.4),(Psychologist,0.4)

k2
, (Psychologist,0.7)

k3
}

The FS competition graph of FS digraph
−→
G = {

−→
G (k1),

−→
G (k2),

−→
G (k3)} is given in Figure 26.
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Figure 26. FS competition graph C(
−→
G ) = (C(

−→
G (k1)), C(

−→
G (k2)), C(

−→
G (k3))).

The resultant FS graph G (k) = (U (k),V (k)) is given in Figure 27, where k = k1 ∧ k2 ∧ k3.

Figure 27. FS graph G (k).

If x, c1, c2, c3, · · · , cn are the candidates that are competing for job a, then the strength of job com-
petition can be evaluated by the following formula:

Z (x, a) =
µV (k)(xc1)+µV (k)(xc2)+···+µV (k)(xcn)

n .

The strength of job competition among candidates with respect to a particular job is evaluated in Table
17.

From Table 17, we concluded that Henry and Casper have equal number of chances to be selected
for the job of Nutritionist, and Casper has highest number of chances to be selected for the job of
Psychologist. The graphical view of these consequences is given in Figure 28.
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Table 17. Strength of job competition among candidates.
(Candidates, Job) In competition Z (x, a)
(James, Dentist) (Henry, David, Charlotte) 0
(Henry, Dentist) (James, David, Charlotte) 0
(David, Dentist) (James, Henry, Charlotte) 0
(Charlotte, Dentist) (James, Henry, David) 0
(Henry, Nutritionist) (Casper, Charlotte) 0.03
(Casper, Nutritionist) (Henry, Charlotte) 0.03
(David, Nutritionist) (Henry, Charlotte, Casper) 0
(Charlotte, Nutritionist) (Henry, Casper) 0
(James, Psychologist) (Henry, David, Casper, Olivia) 0
(Henry, Psychologist) (James, David, Casper, Olivia) 0.022
(David, Psychologist) (James, Henry, Casper, Olivia) 0
(Casper, Psychologist) (James, Henry, David, Olivia) 0.062
(Olivia, Psychologist) (James, Henry, David, Casper) 0.04

Figure 28. Graphical representation of strength of job competition among candidates.

The theoretical differences of these two approaches are given in Table 18.

Table 18. Theoretical comparison of two different framework.

Proposed technique Existing technique

1- Neutrosophic occurs when a piece of information Fuzziness arises when a piece of information
contains ambiguities in three different directions. contains uncertainty in one direction only.

2- Give information of an object about truth, falsity, Due to limitation, it tells the vagueness of an object
and indeterminant state at a time. either truth, falsity, or indeterminant state.

3- Give more information in competing networks due to Due to the absence of membership values, this
to the presence of three membership values. model lacks a lot of important facts.

4- This model generalizes the existing techniques including Only generalize the crisp theory fails in other
crisp, fuzziness, and bipolarity based theories. cases.

5- We discuss the correspondence, association, or relation Fail to tell the relations, conflicts, and influences
among objects in the presence of truth, falsity, or among objects in the presence of truth, falsity,
indeterminant state. or indeterminant state.

The strength of job competition of SVNS competition graph and the evaluation of strength which
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is obtained from existing technique are given in Table 19. Graphical views of these numerical conse-
quences are given in Figure 29.

Table 19. Comparison of numerical values with two different techniques.

(Candidates, Job) In competition S (x, a) Z (x, a)

(James, Dentist) (Henry, David, Charlotte) 0.674 0
(Henry, Dentist) (James, David, Charlotte) 0.807 0
(David, Dentist) (James, Henry, Charlotte) 0.704 0
(Charlotte, Dentist) (James, Henry, David) 0.41 0
(Henry, Nutritionist) (Casper, Charlotte) 0.703 0.03
(Casper, Nutritionist) (Henry, Charlotte) 0.689 0.03
(David, Nutritionist) (Henry, Charlotte, Casper) 0.694 0
(Charlotte, Nutritionist) (Henry, Casper) 0.54 0
(James, Psychologist) (Henry, David, Casper, Olivia) 0.79 0
(Henry, Psychologist) (James, David, Casper, Olivia) 0.716 0.022
(David, Psychologist) (James, Henry, Casper, Olivia) 0.798 0
(Casper, Psychologist) (James, Henry, David, Olivia) 0.646 0.062
(Olivia, Psychologist) (James, Henry, David, Casper) 0.587 0.04

It is observed from Table 19 that Henry has highest number of chances for the Dentist job selec-
tion. While on the other way, the results that we estimate from existing model indicate that Henry has
no chance for the selection of this job. Due to the absence of indeterminacy and falsity membership
grades in present model, we obtained huge fluctuations and get not more accurate and satisfied conse-
quences from existing technique. To tackle truth, indeterminacy as well as falsity membership grade
the proposed framework give a better illustration of competition in the presence of parameterizations.
This proposed technique investigates the most common yet significant problem of competition among
the objects and provides more explicit and error free consequences. Furthermore, this model also fa-
cilitates to analyze the data when the researchers and decision-makers assign the SVN membership
grades to elements. Thus, any SVNS theory permits for a wider range of real-life applications than the
corresponding FS-based theory. SVNS texture possess better traits than FS structure. Graphical view
of proposed and existing techniques is given in Figure 29.

Figure 29. Graphical representation of proposed and existing technique.
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4.2. Comparison with single-valued neutrosophic competition graphs

The SVN competition graph theory studied and introduced by Akram and Siddique [22] that is very
generous in order to cope with competing communications of actual world riddles. In this framework,
the uncertainties and haziness are discussed in three paths which yields very beneficial facts and infor-
mation. Due to absence of parametric tools, we consider the uncertain relations between candidates
and jobs in only one way either we discuss the competitive relations of the above solved example with
respect to honest, or adaptable, or confidence level of the candidates. In case of SVN competition
graph, we cannot discuss the correspondence, association, or relation among objects in the presence of
parameters. Due to the absence of parametrization tools, this model lacks a lot of important facts. In
proposed method, we sort out reality-based problems in the presence of parameters as per requirement.
So, our proposed model generalize this existing model.

5. Conclusions and future directions

Neutrosophic soft sets theory is a rational approach to deal with vagueness and approximate
thinking in the presence of parameterizations and it helps to solve many mathematical problems to
minimize uncertainty and also used in decision support system. Neutrosophic soft models provide
more accuracy, elasticity, and consistency to the system as compared to the fuzzy and bipolar models.
We have introduced the notion of SVNS competition graphs to study the competition among objects
with respect to different parameters. We have discussed the generalization of SVNS competition graph
as SVNS k-competition graph and p-competition SVNS graph. Various results related to strong edges
of all these graphs have also been presented. We have discussed the importance of SVNS competition
graph with an application as job competition among candidates. We are planning to prolong our
research work to (i) the exploration of the HyperSoft Set, (ii) IndetermSoft Set, (iii) SuperHyperGraph,
embedded with the neutrosophic set.
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