Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Research article Special Issues

Data analytics in transport: Does Simpson's paradox exist in rule of ship selection for port state control?


  • Received: 13 September 2022 Revised: 17 October 2022 Accepted: 19 October 2022 Published: 28 October 2022
  • Although previous studies have applied artificial intelligence techniques to improve the accuracy and efficiency of ship selection in port state control (PSC) inspections, the new inspection regime (NIR) is still in effect and widely adopted by PSC authorities in the Tokyo Memorandum of Understanding to select ships for inspection. It considers seven features, and each candidate value of a certain feature is assigned a fixed weighting point. The sum of the weighting points of these seven features determines the risk level of a ship. The assumption behind the NIR is that ships with values attached with higher weighting points should have more deficiencies. However, this paper finds that Simpson's paradox may exist for this assumption; that is, the average number of deficiencies of ships with values attached with higher weighting points is lower than that of ships with values attached with lower weighting points. Therefore, this paper examines the plausibility of the NIR's weighted-sum method and further explores which feature flips the effect. Finally, we arrive at the conclusion that the features selected by NIR are coupled with each other, so we should not use a simple weighted-sum method to determine the risk level of a candidate ship. Based on the results, we further provide suggestions for PSC authorities with respect to the improvement of the ship selection scheme of NIR.

    Citation: Simon Tian, Xinyi Zhu. Data analytics in transport: Does Simpson's paradox exist in rule of ship selection for port state control?[J]. Electronic Research Archive, 2023, 31(1): 251-272. doi: 10.3934/era.2023013

    Related Papers:

    [1] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [2] Yingchao Zhang, Yingzhen Lin . An ε-approximation solution of time-fractional diffusion equations based on Legendre polynomials. AIMS Mathematics, 2024, 9(6): 16773-16789. doi: 10.3934/math.2024813
    [3] Yingchao Zhang, Yuntao Jia, Yingzhen Lin . An ε-approximate solution of BVPs based on improved multiscale orthonormal basis. AIMS Mathematics, 2024, 9(3): 5810-5826. doi: 10.3934/math.2024282
    [4] Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532
    [5] Hui Zhu, Liangcai Mei, Yingzhen Lin . A new algorithm based on compressed Legendre polynomials for solving boundary value problems. AIMS Mathematics, 2022, 7(3): 3277-3289. doi: 10.3934/math.2022182
    [6] Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476
    [7] A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky . High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160
    [8] Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by ψ-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372
    [9] Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367
    [10] Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen . Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509
  • Although previous studies have applied artificial intelligence techniques to improve the accuracy and efficiency of ship selection in port state control (PSC) inspections, the new inspection regime (NIR) is still in effect and widely adopted by PSC authorities in the Tokyo Memorandum of Understanding to select ships for inspection. It considers seven features, and each candidate value of a certain feature is assigned a fixed weighting point. The sum of the weighting points of these seven features determines the risk level of a ship. The assumption behind the NIR is that ships with values attached with higher weighting points should have more deficiencies. However, this paper finds that Simpson's paradox may exist for this assumption; that is, the average number of deficiencies of ships with values attached with higher weighting points is lower than that of ships with values attached with lower weighting points. Therefore, this paper examines the plausibility of the NIR's weighted-sum method and further explores which feature flips the effect. Finally, we arrive at the conclusion that the features selected by NIR are coupled with each other, so we should not use a simple weighted-sum method to determine the risk level of a candidate ship. Based on the results, we further provide suggestions for PSC authorities with respect to the improvement of the ship selection scheme of NIR.



    In this paper, we propose shifted-Legendre orthogonal function method for high-dimensional heat conduction equation [1]:

    {ut=k(2ux2+2uy2+2uz2),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=ϕ(x,y,z),u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (1.1)

    Where u(t,x,y,z) is the temperature field, ϕ(x,y,z) is a known function, k is the thermal diffusion efficiency, and a,b,c are constants that determine the size of the space.

    Heat conduction system is a very common and important system in engineering problems, such as the heat transfer process of objects, the cooling system of electronic components and so on [1,2,3,4]. Generally, heat conduction is a complicated process, so we can't get the analytical solution of heat conduction equation. Therefore, many scholars proposed various numerical algorithms for heat conduction equation [5,6,7,8]. Reproducing kernel method is also an effective numerical algorithm for solving boundary value problems including heat conduction equation [9,10,11,12,13,14]. Galerkin schemes and Green's function are also used to construct numerical algorithms for solving one-dimensional and two-dimensional heat conduction equations [15,16,17,18,19]. Alternating direction implicit (ADI) method can be very effective in solving high-dimensional heat conduction equations [20,21]. In addition, the novel local knot method and localized space time method are also used to solve convection-diffusion problems [22,23,24,25]. These methods play an important reference role in constructing new algorithms in this paper.

    Legendre orthogonal function system is an important function sequence in the field of numerical analysis. Because its general term is polynomial, Legendre orthogonal function system has many advantages in the calculation process. Scholars use Legendre orthogonal function system to construct numerical algorithm of differential equations [26,27,28].

    Based on the orthogonality of Legendre polynomials, we delicately construct a numerical algorithm that can be extended to high-dimensional heat conduction equation. The proposed algorithm has α-Order convergence, and our algorithm can achieve higher accuracy compared with other algorithms.

    The content of the paper is arranged like this: The properties of shifted Legendre polynomials, homogenization and spatial correlation are introduced in Section 2. In Section 3, we theoretically deduce the numerical algorithm methods of high-dimensional heat conduction equations. The convergence of the algorithm is proved in Section 4. Finally, three numerical examples and a brief summary are given at the end of this paper.

    In this section, the concept of shifted-Legendre polynomials and the space to solve Eq (1.1) are introduced. These knowledge will pave the way for describing the algorithm in this paper.

    The traditional Legendre polynomial is the orthogonal function system on [1,1]. Since the variables t,x,y,z to be analyzed for Eq (1.1) defined in different intervals, it is necessary to transform the Legendre polynomial on [c1,c2], c1,c2R, and the shifted-Legendre polynomials after translation transformation and expansion transformation by Eq (2.1).

    p0(x)=1,p1(x)=2(xc1)c2c11,pi+1(x)=2i+1i+1[2(xc1)c2c11]pi(x)ii+1pi1(x),i=1,2,. (2.1)

    Obviously, {pi(x)}i=0 is a system of orthogonal functions on L2[c1,c2], and

    c2c1pi(x)pj(x)dx={c2c12i+1,i=j,0,ij.

    Let Li(x)=2i+1c2c1pi(x). Based on the knowledge of ref. [29], we begin to discuss the algorithm in this paper.

    Lemma 2.1. [29] {Li(x)}i=0 is a orthonormal basis in L2[c1,c2].

    Considering that the problem studied in this paper has a nonhomogeneous boundary value condition, the problem (1.1) can be homogenized by making a transformation as follows.

    v(t,x,y,z)=u(t,x,y,z)ϕ(x,y,z).

    Here, homogenization is necessary because we can easily construct functional spaces that meet the homogenization boundary value conditions. This makes us only need to pay attention to the operator equation itself in the next research, without considering the interference caused by boundary value conditions.

    In this paper, in order to avoid the disadvantages of too many symbols, the homogeneous heat conduction system is still represented by u, the thermal diffusion efficiency k=1, and the homogeneous system of heat conduction equation is simplified as follows:

    {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (2.2)

    The solution space of Eq (2.2) is a high-dimensional space, which can be generated by some one-dimensional spaces. Therefore, this section first defines the following one-dimensional space.

    Remember AC represents the space of absolutely continuous functions.

    Definition 2.1. W1[0,1]={u(t)|uAC,u(0)=0,uL2[0,1]}, and

    u,vW1=10uvdt,u,vW1.

    Let c1=0,c2=1, so {Ti(t)}i=0 is the orthonormal basis in L2[0,1], where Ti(t)=Li(t), note Tn(t)=ni=0citi. And {JTn(t)}n=0 is the orthonormal basis of W1[0,1], where

    JTn(t)=ni=0citi+1i+1.

    Definition 2.2. W2[0,a]={u(x)|uAC,u(0)=u(a)=0,uL2[0,a]}, and

    u,vW2=a0uvdx,u,vW2.

    Similarly, {Pn(x)}n=0 is the orthonormal basis in L2[0,a], and denote Pn(x)=nj=0djxj, where djR.

    Let

    JPn(x)=nj=0djxj+2aj+1x(j+1)(j+2),

    obviously, {JPn(x)}n=0 is the orthonormal basis of W2[0,a].

    We start with solving one-dimensional heat conduction equation, and then extend the algorithm to high-dimensional heat conduction equations.

    {2ux2ut=f(x),t[0,1],x[0,a],u(0,x)=0,u(t,0)=u(t,a)=0. (3.1)

    Let D=[0,1]×[0,a], CC represents the space of completely continuous functions, and Nn represents a set of natural numbers not exceeding n.

    Definition 3.1. W(D)={u(t,x)|uxCC,(t,x)D,u(0,x)=0,u(t,0)=u(t,a)=0,3utx2L2(D)}, and

    u,vW(D)=D3utx23vtx2dσ.

    Theorem 3.1. W(D) is an inner product space.

    Proof. u(t,x)W(D), if u,uW(D)=0, means

    D[3u(t,x)tx2]2dσ=0,

    and it implies

    3u(t,x)tx2=t(2u(t,x)x2)=0.

    Combined with the conditions of W(D), we can get u=0.

    Obviously, W(D) satisfies other conditions of inner product space.

    Theorem 3.2. uW(D),v1(t)v2(x)W(D), then

    u(t,x),v1(t)v2(x)W(D)=u(t,x),v1(t)W1,v2(x)W2.
    Proof.u(t,x),v1(t)v2(x)W(D)=D3u(t,x)tx23[v1(t)v2(x)]tx2dσ=D2x2[u(t,x)t]v1(t)t2v2(x)x2dσ=a02x2u(t,x),v1(t)W12v2(x)x2dx=u(t,x),v1(t)W1,v2(x)W2.

    Corollary 3.1. u1(t)u2(x)W(D),v1(t)v2(x)W(D), then

    u1(t)u2(x),v1(t)v2(x)W(D)=u1(t),v1(t)W1u2(x),v2(x)W2.

    Let

    ρij(t,x)=JTi(t)JPj(x),i,jN.

    Theorem 3.3. {ρij(t,x)}i,j=0is an orthonormal basis inW(D).

    Proof. ρij(t,x),ρlm(t,x)W(D),i,j,l,mN,

    ρij(t,x),ρlm(t,x)W(D)=JTi(t)JPj(x),JTl(t)JPm(x)W(D)=JTi(t),JTl(t)W1JPj(x),JPm(x)W2.

    So

    ρij(t,x),ρlm(t,x)W(D)={1,i=l,j=m,0,others.

    In addition, uW(D), if u,ρijW(D)=0, means

    u(t,x),JTi(t)JPj(x)W(D)=u(t,x),JTi(t)W1,JPj(x)W2=0.

    Note that {JPj(x)}j=0 is the complete system of W2, so u(t,x),JTi(t)W1=0.

    Similarly, we can get u(t,x)=0.

    Let L:W(D)L2(D),

    Lu=2ux2ut.

    So, Eq (3.1) can be simplified as

    Lu=f. (3.2)

    Definition 3.2. ε>0, if uW(D) and

    ||Luf||2L(D)<ε, (3.3)

    then u is called the εbest approximate solution for Lu=f.

    Theorem 3.4. Any ε>0, there is NN, when n>N, then

    un(t,x)=ni=0nj=0ηijρij(t,x) (3.4)

    is the εbest approximate solution for Lu=f, where ηij satisfies

    ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D),dijR,i,jNn.

    Proof. According to the Theorem 3.3, if u satisfies Eq (3.2), then u(t,x)=i=0j=0ηijρij(t,x), where ηij is the Fourier coefficient of u.

    Note that L is a bounded operator [30], hence, any ε>0, there is NN, when n>N, then

    ||i=n+1j=n+1ηijρij||2W(D)<ε||L||2.

    So,

    ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D)||ni=0nj=0ηijLρijf||2L2(D)=||ni=0nj=0ηijLρijLu||2L2(D)=||i=n+1j=n+1ηijLρij||2L2(D)||L||2||i=n+1j=n+1ηijρij||2W(D)< ε.

    For obtain un(t,x), we need to find the coefficients ηij by solving Eq (3.5).

    min{ηij}ni,j=0J=Lunf2L2(D) (3.5)

    In addition,

    J=Lunf2L2(D)=Lunf,LunfL2(D)=Lun,LunL2(D)2Lun,fL2(D)+f,fL2(D)=ni=0nj=0nl=0nm=0ηijηlmLρij,LρlmL2(D)2ni=0nj=0ηijLρij,fL2(D)+f,fL2(D).

    So,

    Jηij=2nl=0nm=0ηlmLρij,LρlmL2(D)2ηijLρij,fL2(D),i,jNn

    and the equations Jηij=0,i,jNn can be simplified to

    Aη=B, (3.6)

    where

    A=(Lρij,LρlmL2(D))N×N,N=(n+1)2,η=(ηij)N×1,B=(Lρij,fL2(D))N×1.

    Theorem 3.5. Aη=B has a unique solution.

    Proof. It can be proved that A is nonsingular. Let η satisfy Aη=0, that is,

    ni=0nj=0Lρij,LρlmL2(D)ηij=0,l,mNn.

    So, we can get the following equations:

    ni=0nj=0ηijLρij,ηlmLρlmL2(D)=0,l,mNn.

    By adding the above (n+1)2 equations, we can get

    ni=0nj=0ηijLρij,nl=0nm=0ηlmLρlmL2(D)=ni=0nj=0ηijLρij2L2(D)=0.

    So,

    ni=0nj=0ηijLρij=0.

    Note that L is reversible. Therefore, ηij=0,i,jNn.

    According to Theorem 3.5, un(t,x) can be obtained by substituting η=A1B into un=ni=0nj=0ηijρij(t,x).

    {2ux2+2uy2ut=f(x,y),t[0,1],x[0,a],y[0,b],u(0,x,y)=0,u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0. (3.7)

    Similar to definition 2.2, we can give the definition of linear space W3[0,b] as follows:

    W3[0,b]={u(y)|uAC,y[0,b],u(0)=u(b)=0,uL2[0,b]}.

    Similarly, let {Qn(y)}n=0 is the orthonormal basis in L2[0,b], and denote Qn(y)=nk=0qkyk.

    Let

    JQn(y)=nk=0qkyk+2bk+1y(k+1)(k+2),

    it is easy to prove that {JQn(y)}n=0 is the orthonormal basis of W3[0,b].

    Let Ω=[0,1]×[0,a]×[0,b]. Now we define a three-dimensional space.

    Definition 3.3 W(Ω)={u(t,x,y)|2uxyCC,(t,x,y)Ω,u(0,x,y)=0, u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0,5utx2y2L2(Ω)}, and

    u,vW(Ω)=Ω5utx2y25vtx2y2dΩ,u,vW(Ω).

    Similarly, we give the following theorem without proof.

    Theorem 3.6. {ρijk(t,x,y)}i,j,k=0is an orthonormal basis ofW(Ω), where

    ρijk(t,x,y)=JTi(t)JPj(x)JQk(y),i,j,kNn.

    Therefore, we can get un as

    un(t,x,y)=ni=0nj=0nk=0ηijkρijk(t,x,y), (3.8)

    according to the theory in Section 3.1, we can find all ηijk,i,j,kNn.

    {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (3.9)

    By Lemma 2.1, note that the orthonormal basis of L2[0,c] is {Rn(z)}n=0, and denote Rn(z)=nm=0rmzm, where rm is the coefficient of polynomial Rn(z).

    We can further obtain the orthonormal basis JRn(z)=nm=0rmzm+2cm+1z(m+1)(m+2) of W4[0,c], where

    JRn(z)=nm=0rmzm+2cm+1z(m+1)(m+2),

    and

    W4[0,c]={u(z)|uAC,z[0,c],u(0)=u(c)=0,uL2[0,c]}.

    Let G=[0,1]×[0,a]×[0,b]×[0,c]. Now we define a four-dimensional space.

    Definition 3.4. W(G)={u(t,x,y,z)|3uxyzCC,(t,x,y,z)G,u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0, u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0,7utx2y2z2L2(G)}, and

    u,vW(G)=

    where dG = dtdxdydz.

    Similarly, we give the following theorem without proof.

    Theorem 3.7. , where

    Therefore, we can get as

    (3.10)

    according to the theory in Section 3.1, we can find all

    Suppose is the exact solution of Eq (3.5). Let is the projection of in .

    Theorem 4.1. Suppose , and , then, the error estimate of is

    where is a constant,

    Proof. According to the lemma in ref. [29], it follows that

    where represents the projection of on variable in , and represents the norm of with respect to variable in .

    By integrating both sides of the above formula with respect to , we can get

    Moreover,

    According to the knowledge in Section 3,

    where .

    Therefore,

    Similarly,

    In conclusion,

    Theorem 4.2. Suppose , is the best approximate solution of Eq (3.2), and , then,

    where is a constant,

    Proof. According to Theorem 3.4 and Theorem 4.1, the following formula holds.

    So, the approximate solution has convergence order, and the convergence rate is related to , where represents the number of bases, and the convergence order can calculate as follows.

    (4.1)

    Where represents the number of orthonormal base elements.

    Here, three examples are compared with other algorithms. represents the number of orthonormal base elements. For example, , which means that we use the orthonormal system of for approximate calculation, that is, we take the orthonormal system and to construct the best approximate solution.

    Example 5.1. Consider the following one-demensional heat conduction system [7,20]

    The exact solution of Ex. 5.1 is .

    In Table 1, is calculated according to Eq (4.2). The errors in Tables 1 and 2 show that the proposed algorithm is very effective. In Figures 1 and 2, the blue surface represents the surface of the real solution, and the yellow surface represents the surface of . With the increase of , the errors between the two surfaces will be smaller.

    Table 1.  for Ex. 5.1.
    HOC-ADI Method [20] FVM [7] Present method C.R.
    44 6.12E-3 4.92E-2 9.892E-3
    66 1.68E-3 2.05E-2 4.319E-4 3.8613
    88 7.69E-4 1.27E-2 9.758E-6 6.5873
    1010 4.40E-4 9.20E-3 1.577E-7 9.2432

     | Show Table
    DownLoad: CSV
    Table 2.  for Ex. 5.1 ().
    1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8
    2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8

     | Show Table
    DownLoad: CSV
    Figure 1.  in Example 5.1().
    Figure 2.  in Example 5.1().

    Example 5.2. Consider the following two-demensional heat conduction system [20,21]

    The exact solution of Ex. 5.2 is .

    Example 5.2 is a two-dimensional heat conduction equation. Table 3 shows the errors comparison with other algorithms. Table 4 lists the errors variation law in the axis direction. Figures 3 and 4 show the convergence effect of the scheme more vividly.

    Table 3.  The absolute errors for Ex. 5.2 ().
    CCD-ADI Method [21] RHOC-ADI Method [20] Present method C.R.
    444 8.820E-3 3.225E-2 5.986E-3
    888 6.787E-5 1.969E-3 3.126E-5 2.52704

     | Show Table
    DownLoad: CSV
    Table 4.  The absolute errors for Ex. 5.2 ().
    7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6
    1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    2.421E-5 6.347E-5 7.839E-5 6.347E-5 2.421E-5
    1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6

     | Show Table
    DownLoad: CSV
    Figure 3.  in Example 5.2().
    Figure 4.  in Example 5.2().

    Example 5.3. Consider the three-demensional problem as following:

    The exact solution of Ex. 5.3 is .

    Example 5.3 is a three-dimensional heat conduction equation, this kind of heat conduction system is also the most common case in the industrial field. Table 5 lists the approximation degree between the best approximate solution and the real solution when the boundary time .

    Table 5.  The absolute errors for Ex. 5.3 ().
    1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3
    2.893E-3 7.350E-3 8.820E-3 7.350E-3 2.893E-3
    3.482E-3 8.838E-3 1.059E-2 8.838E-3 3.482E-3
    2.893E-3 7.350E-3 8.820E-3 7.735E-3 2.893E-3
    1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3

     | Show Table
    DownLoad: CSV

    The Shifted-Legendre orthonormal scheme is applied to high-dimensional heat conduction equations. The algorithm proposed in this paper has some advantages. On the one hand, the algorithm is evolved from the algorithm for solving one-dimensional heat conduction equation, which is easy to be understood and expanded. On the other hand, the standard orthogonal basis proposed in this paper is a polynomial structure, which has the characteristics of convergence order.

    This work has been supported by three research projects (2019KTSCX217, 2020WQNCX097, ZH22017003200026PWC).

    The authors declare no conflict of interest.



    [1] O. F. Abioye, M. A. Dulebenets, M. Kavoosi, J. Pasha, O. Theophilus, Vessel schedule recovery in liner shipping: Modeling alternative recovery options, IEEE Trans. Intell. Transp. Syst., 22 (2021), 6420–6434. https://doi.org/10.1109/TITS.2020.2992120 doi: 10.1109/TITS.2020.2992120
    [2] S. Baştuğ, H. Haralambides, S. Esmer, E. Eminoğlu, Port competitiveness: Do container terminal operators and liner shipping companies see eye to eye?, Mar. Policy., 135 (2022), 104866. https://doi.org/10.1016/j.marpol.2021.104866 doi: 10.1016/j.marpol.2021.104866
    [3] M. A. Dulebenets, Multi-objective collaborative agreements amongst shipping lines and marine terminal operators for sustainable and environmental-friendly ship schedule design, J. Clean. Prod., 342 (2022), 130897. https://doi.org/10.1016/j.jclepro.2022.130897 doi: 10.1016/j.jclepro.2022.130897
    [4] Z. Elmi, P. Singh, V. K. Meriga, K. Goniewicz, M. Borowska-Stefańska, S. Wiśniewski, M. A. Dulebenets, Uncertainties in liner shipping and ship schedule recovery: A state-of-the-art review, J. Mar. Sci. Eng., 10 (2022), 563. https://doi.org/10.3390/jmse10050563 doi: 10.3390/jmse10050563
    [5] K. Wang, S. Wang, L. Zhen, X. Qu, Cruise service planning considering berth availability and decreasing marginal profit, Transp. Res. Part B Methodol., 95 (2017), 1–18. https://doi.org/10.1016/j.trb.2016.10.020 doi: 10.1016/j.trb.2016.10.020
    [6] L. Zhen, Y. Hu, S. Wang, G. Laporte, Y. Wu, Fleet deployment and demand fulfillment for container shipping liners, Transp. Res. Part B Methodol., 120 (2019), 15–32. https://doi.org/10.1016/j.trb.2018.11.011 doi: 10.1016/j.trb.2018.11.011
    [7] L. Zhen, Q. Sun, W. Zhang, K. Wang, W. Yi, Column generation for low carbon berth allocation under uncertainty, J. Oper. Res. Soc., 72 (2021), 2225–2240. https://doi.org/10.1080/01605682.2020.1776168 doi: 10.1080/01605682.2020.1776168
    [8] L. Wu, Y. Adulyasak, J. F. Cordeau, S. Wang, Vessel service planning in seaports, Oper. Res., 70 (2022), 2032–2053. https://doi.org/10.1287/opre.2021.2228 doi: 10.1287/opre.2021.2228
    [9] S. Wang, L. Zhen, D. Zhuge, Dynamic programming algorithms for selection of waste disposal ports in cruise shipping, Transp. Res. Part B Methodol., 108 (2018), 235–248. https://doi.org/10.1016/j.trb.2017.12.016 doi: 10.1016/j.trb.2017.12.016
    [10] L. Zhen, Y. Wu, S. Wang, G. Laporte, Green technology adoption for fleet deployment in a shipping network, Transp. Res. Part B Methodol., 139 (2020), 388–410. https://doi.org/10.1016/j.trb.2020.06.004 doi: 10.1016/j.trb.2020.06.004
    [11] W. Yi, L. Zhen, Y. Jin, Stackelberg game analysis of government subsidy on sustainable off-site construction and low-carbon logistics, Clean. Logist. Supply Chain., 2 (2021), 100013. https://doi.org/10.1016/j.clscn.2021.100013 doi: 10.1016/j.clscn.2021.100013
    [12] W. Yi, S. Wu, L. Zhen, G. Chawynski, Bi-level programming subsidy design for promoting sustainable prefabricated product logistics, Clean. Logist. Supply Chain., 1 (2021), 100005. https://doi.org/10.1016/j.clscn.2021.100005 doi: 10.1016/j.clscn.2021.100005
    [13] S. Wang, D. Zhuge, L. Zhen, C. Y. Lee, Liner shipping service planning under sulfur emission Regulations, Transp. Sci., 55 (2021), 491–509. https://doi.org/10.1287/trsc.2020.1010 doi: 10.1287/trsc.2020.1010
    [14] Paris MoU, Organization of Paris MoU, 2019. Available form: https://www.parismou.org/about-us/organisation
    [15] Tokyo MoU, Information Sheet of the New Inspection Regime (NIR), 2014. Available from: http://www.tokyo-mou.org/doc/NIR-information%20sheet-r.pdf
    [16] European Commission, Ex-post evaluation of Directive 2009/16/EC on Port State Control: Final Report, 2018. Available from: https://data.europa.eu/doi/10.2832/154686
    [17] R. Yan, S. Wang, Ship inspection by port state control—review of current research, Smart Transp. Syst., (2019), 233–241. https://doi.org/10.1007/978-981-13-8683-1_24 doi: 10.1007/978-981-13-8683-1_24
    [18] P. Cariou, M. Q. Mejia, F. C. Wolff, An econometric analysis of deficiencies noted in port state control inspections, Marit. Policy Manag., 34 (2007), 243–258. https://doi.org/10.1080/03088830701343047 doi: 10.1080/03088830701343047
    [19] P. Cariou, M. Q. Mejia, F. C. Wolff, Evidence on target factors used for port state control inspections, Mar. Policy., 33 (2009), 847–859. https://doi.org/10.1016/j.marpol.2009.03.004 doi: 10.1016/j.marpol.2009.03.004
    [20] M. C. Tsou, Big data analysis of port state control ship detention database, J. Mar. Eng. Technol., 18 (2019), 113–121. https://doi.org/10.1080/20464177.2018.1505029 doi: 10.1080/20464177.2018.1505029
    [21] S. Knapp, P. H. Franses, A global view on port state control: Econometric analysis of the differences across port state control regimes, Marit. Policy Manag., 34 (2007), 453–482. https://doi.org/10.1080/03088830701585217 doi: 10.1080/03088830701585217
    [22] F. J. Ravira, F. Piniella, Evaluating the impact of PSC inspectors' professional profile: A case study of the Spanish Maritime Administration, WMU J. Marit. Aff., 15 (2016), 221–236. https://doi.org/10.1007/s13437-015-0096-y doi: 10.1007/s13437-015-0096-y
    [23] A. Graziano, P. Cariou, F. C. Wolff, M. Q. Mejia, J. U. Schröder-Hinrichs, Port state control inspections in the European Union: Do inspector's number and background matter?, Mar. Policy., 88 (2018), 230–241. https://doi.org/10.1016/j.marpol.2017.11.031 doi: 10.1016/j.marpol.2017.11.031
    [24] R. F. Xu, Q. Lu, W. J. Li, K. X. Li, H. S. Zheng, A risk assessment system for improving port state control inspection, in: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, (2007), 818–823. https://doi.org/10.1109/ICMLC.2007.4370255
    [25] Z. Yang, Z. Yang, J. Yin, Z. Qu, A risk-based game model for rational inspections in port state control, Transp. Res. Part E Logist. Transp. Rev., 118 (2018), 477–495. https://doi.org/10.1016/j.tre.2018.08.001 doi: 10.1016/j.tre.2018.08.001
    [26] S. Wang, R. Yan, X. Qu, Development of a non-parametric classifier: Effective identification, algorithm, and applications in port state control for maritime transportation, Transp. Res. Part B Methodol., 128 (2019), 129–157. https://doi.org/10.1016/j.trb.2019.07.017 doi: 10.1016/j.trb.2019.07.017
    [27] D. Dinis, A. P. Teixeira, C. Guedes Soares, Probabilistic approach for characterising the static risk of ships using Bayesian networks, Reliab. Eng. Syst. Saf., 203 (2020), 107073. https://doi.org/10.1016/j.ress.2020.107073 doi: 10.1016/j.ress.2020.107073
    [28] R. Yan, S. Wang, C. Peng, An artificial intelligence model considering data imbalance for ship selection in port state control based on detention probabilities, J. Comput. Sci., 48 (2021), 101257. https://doi.org/10.1016/j.jocs.2020.101257 doi: 10.1016/j.jocs.2020.101257
    [29] R. Yan, S. Wang, Ship detention prediction using anomaly detection in port state control: model and explanation, Electron. Res. Arch., 30 (2022), 3679–3691. https://doi.org/10.3934/era.2022188 doi: 10.3934/era.2022188
    [30] E. H. Simpson, The interpretation of interaction in contingency tables, J. R. Stat. Soc. Ser. B Methodol., 13 (1951), 238–241. https://doi.org/10.1111/j.2517-6161.1951.tb00088.x doi: 10.1111/j.2517-6161.1951.tb00088.x
    [31] C. R. Blyth, On Simpson's paradox and the sure-thing principle, J. Am. Stat. Assoc., 67 (1972), 364–366. https://doi.org/10.1080/01621459.1972.10482387 doi: 10.1080/01621459.1972.10482387
    [32] J. Zidek, Maximal Simpson-disaggregations of 2 × 2 tables, Biometrika., 71 (1984), 187–190. https://doi.org/10.2307/2336411 doi: 10.2307/2336411
    [33] Y. Bishop, S. Fienberg, P. Holland, R. Light, F. Mosteller, Discrete multivariate analysis: Theory and practice, Appl. Psychol. Meas., 1 (1977). https://doi.org/10.1177/014662167700100218 doi: 10.1177/014662167700100218
    [34] M. G. Pavlides, M. D. Perlman, How likely is Simpson's paradox?, Am. Stat., 63 (2009), 226–233. https://www.jstor.org/stable/25652271
    [35] S. Sunder, Simpson's reversal paradox and cost allocation, J. Account. Res., 21 (1983), 222–233. https://doi.org/10.2307/2490944 doi: 10.2307/2490944
    [36] A. Mehrez, J. R. Brown, M. Khouja, Aggregate efficiency measures and Simpson's Paradox, Contemp. Account. Res., 9 (1992), 329–342. https://doi.org/10.1111/j.1911-3846.1992.tb00884.x doi: 10.1111/j.1911-3846.1992.tb00884.x
    [37] S. P. Curley, G. J. Browne, Normative and descriptive analyses of Simpson's paradox in decision making, Organ. Behav. Hum. Decis. Process., 84 (2001), 308–333. https://doi.org/10.1006/obhd.2000.2928 doi: 10.1006/obhd.2000.2928
    [38] N. D. Melumad, A. Ziv, Reduced quality and an unlevel playing field could make consumers happier, Manag. Sci., 50 (2004), 1646–1659. https://doi.org/10.1287/mnsc.1040.0277 doi: 10.1287/mnsc.1040.0277
    [39] W. Zhu, J. Wu, T. Fu, J. Wang, J. Zhang, Q. Shangguan, Dynamic prediction of traffic incident duration on urban expressways: a deep learning approach based on LSTM and MLP, J. Intell. Connect. Veh., 4 (2021), 80–91. https://doi.org/10.1108/JICV-03-2021-0004 doi: 10.1108/JICV-03-2021-0004
    [40] N. Lyu, Y. Wang, C. Wu, L. Peng, A. F. Thomas, Using naturalistic driving data to identify driving style based on longitudinal driving operation conditions, J. Intell. Connect. Veh., 5 (2022), 17–35. https://doi.org/10.1108/JICV-07-2021-0008 doi: 10.1108/JICV-07-2021-0008
    [41] H. Zhao, C. Zhang, An online-learning-based evolutionary many-objective algorithm, Inf. Sci., 509 (2020), 1–21. https://doi.org/10.1016/j.ins.2019.08.069 doi: 10.1016/j.ins.2019.08.069
    [42] S. Wang, R. Yan, A global method from predictive to prescriptive analytics considering prediction error for "Predict, then optimize" with an example of low-carbon logistics, Clean. Logist. Supply Chain., 4 (2022), 100062. https://doi.org/10.1016/j.clscn.2022.100062 doi: 10.1016/j.clscn.2022.100062
    [43] R. Yan, S. Wang, Integrating prediction with optimization: Models and applications in transportation management, Multimodal Transp., 1 (2022), 100018. https://doi.org/10.1016/j.multra.2022.100018 doi: 10.1016/j.multra.2022.100018
    [44] S. Wang, X. Tian, R. Yan, Y. Liu, A deficiency of prescriptive analytics—No perfect predicted value or predicted distribution exists, Electron. Res. Arch., 30 (2022), 3586–3594. https://doi.org/10.3934/era.2022183 doi: 10.3934/era.2022183
    [45] M. A. Dulebenets, R. Moses, E. E. Ozguven, A. Vanli, Minimizing carbon dioxide emissions due to container handling at marine container terminals via hybrid evolutionary algorithms, IEEE Access., 5 (2017), 8131–8147. https://doi.org/10.1109/ACCESS.2017.2693030 doi: 10.1109/ACCESS.2017.2693030
    [46] M. Dulebenets, A diploid evolutionary algorithm for sustainable truck scheduling at a cross-docking facility, Sustainability., 10 (2018), 1333. https://doi.org/10.3390/su10051333 doi: 10.3390/su10051333
    [47] J. Pasha, A. L. Nwodu, A. M. Fathollahi-Fard, G. Tian, Z. Li, H. Wang, et al., Exact and metaheuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective settings, Adv. Eng. Inform., 52 (2022), 101623. https://doi.org/10.1016/j.aei.2022.101623 doi: 10.1016/j.aei.2022.101623
    [48] M. Kavoosi, M. A. Dulebenets, O. F. Abioye, J. Pasha, H. Wang, H. Chi, An augmented self-adaptive parameter control in evolutionary computation: A case study for the berth scheduling problem, Adv. Eng. Inf., 42 (2019), 100972. https://doi.org/10.1016/j.aei.2019.100972 doi: 10.1016/j.aei.2019.100972
    [49] M. Rabbani, N. Oladzad-Abbasabady, N. Akbarian-Saravi, Ambulance routing in disaster response considering variable patient condition: NSGA-Ⅱ and MOPSO algorithms, J. Ind. Manag. Optim., 18 (2022), 1035. https://doi.org/10.3934/jimo.2021007 doi: 10.3934/jimo.2021007
  • This article has been cited by:

    1. Yahong Wang, Wenmin Wang, Cheng Yu, Hongbo Sun, Ruimin Zhang, Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN, 2024, 8, 2504-3110, 91, 10.3390/fractalfract8020091
    2. Shiyv Wang, Xueqin Lv, Songyan He, The reproducing kernel method for nonlinear fourth-order BVPs, 2023, 8, 2473-6988, 25371, 10.3934/math.20231294
    3. Yingchao Zhang, Yuntao Jia, Yingzhen Lin, A new multiscale algorithm for solving the heat conduction equation, 2023, 77, 11100168, 283, 10.1016/j.aej.2023.06.066
    4. Safia Malik, Syeda Tehmina Ejaz, Shahram Rezapour, Mustafa Inc, Ghulam Mustafa, Innovative numerical method for solving heat conduction using subdivision collocation, 2025, 1598-5865, 10.1007/s12190-025-02429-9
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2139) PDF downloads(94) Cited by(5)

Figures and Tables

Figures(7)  /  Tables(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog