Processing math: 100%
Research article

Heat transfer analysis: convective-radiative moving exponential porous fins with internal heat generation


  • Received: 25 June 2022 Revised: 27 July 2022 Accepted: 07 August 2022 Published: 11 August 2022
  • The efficiency, temperature distribution, and temperature at the tip of straight rectangular, growing and decaying moving exponential fins are investigated in this article. The influence of internal heat generation, surface and surrounding temperatures, convection-conduction, Peclet number and radiation-conduction is studied numerically on the efficiency, temperature profile, and temperature at the tip of the fin. Differential transform method is used to investigate the problem. It is revealed that thermal and thermo-geometric characteristics have a significant impact on the performance, temperature distribution, and temperature of the fin's tip.The results show that the temperature distribution of decaying exponential and rectangular fins is approximately 15 and 7% higher than growing exponential and rectangular fins respectively. It is estimated that the temperature distribution of the fin increases by approximately 6% when the porosity parameter is increased from 0.1 to 0.5. It is also observed that the decay exponential fin has better efficiency compared to growing exponential fin which offers significant advantages in mechanical engineering.

    Citation: Zia Ud Din, Amir Ali, Zareen A. Khan, Gul Zaman. Heat transfer analysis: convective-radiative moving exponential porous fins with internal heat generation[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11491-11511. doi: 10.3934/mbe.2022535

    Related Papers:

    [1] Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013
    [2] Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061
    [3] Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063
    [4] Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214
    [5] Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141
    [6] Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124
    [7] Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157
    [8] Jinguo Jiang . Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017
    [9] Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008
    [10] Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and O-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264
  • The efficiency, temperature distribution, and temperature at the tip of straight rectangular, growing and decaying moving exponential fins are investigated in this article. The influence of internal heat generation, surface and surrounding temperatures, convection-conduction, Peclet number and radiation-conduction is studied numerically on the efficiency, temperature profile, and temperature at the tip of the fin. Differential transform method is used to investigate the problem. It is revealed that thermal and thermo-geometric characteristics have a significant impact on the performance, temperature distribution, and temperature of the fin's tip.The results show that the temperature distribution of decaying exponential and rectangular fins is approximately 15 and 7% higher than growing exponential and rectangular fins respectively. It is estimated that the temperature distribution of the fin increases by approximately 6% when the porosity parameter is increased from 0.1 to 0.5. It is also observed that the decay exponential fin has better efficiency compared to growing exponential fin which offers significant advantages in mechanical engineering.



    The Schrödinger-Virasoro algebra is an infinite-dimensional Lie algebra that was introduced (see, e.g., [10]) in the context of non-equilibrium statistical physics. In [21], the author give a representation of the Schrödinger-Virasoro algebra by using vertex algebras, and introduced an extension of the Schrödinger-Virasoro algebra. To be precise, for ε{0,12}, the Schrödinger-Virasoro algebra SV(ε) is a Lie algebra with the C basis

    {Li,Hj,Ii|iZ,jε+Z}

    and Lie brackets

    [Lm,Ln]=(mn)Lm+n,[Lm,Hn]=(12mn)Hm+n,[Lm,In]=nIm+n,[Hm,Hn]=(mn)Im+n,[Hm,In]=[Im,In]=0.

    The Lie algebra SV(12) is called the original Schrödinger-Virasoro algebra, and SV(0) is called the twisted Schrödinger-Virasoro algebra. Recently, the theory of the structure and representations of both original and twisted Schrödinger-Virasoro algebra has been investigated in a series of studies. For instance, the Lie bialgebra structures, (bi)derivations, automorphisms, 2-cocycles, vertex algebra representations and Whittaker modules were investigated in [9,11,14,15,21].

    Post-Lie algebras were introduced around 2007 by B. Vallette [22], who found the structure in a purely operadic manner as the Koszul dual of a commutative trialgebra. Post-Lie algebras have arose the interest of a great many authors, see [4,5,12,13]. One of the most important problems in the study of post-Lie algebras is to find the post-Lie algebra structures on the (given) Lie algebras. In [13,18,20], the authors determined all post-Lie algebra structures on sl(2,C) of special linear Lie algebra of order 2, the Witt algebra and the W-algebra W(2,2) respectively.

    In this paper, we shall study the graded post-Lie algebra structures on the Schrödinger-Virasoro algebra. We only study the twisted Schrödinger-Virasoro algebra SV(0), the case for the original Schrödinger-Virasoro algebra SV(12) is similar. For convenience we denote S=SV(0). It should be noted that the commutative post-Lie algebra structures on S already are given by [11], we will consider the general case.

    Throughout this paper, we denote by Z the set of all integers. For a subset S of Z and a fixed integer k, denote S=S{0}, S>k={tS|t>k}, S<k={tS|t<k}, Sk={tS|tk} and Sk={tS|tk}. We assume that the field in this paper always is the complex number field C.

    The paper is organized as follows. In Section 2, we give general results on post-Lie algebras and some lemmas which will be used to our proof. In Section 3, we completely characterize the graded post-Lie algebra structures on Schrödinger-Virasoro algebra S. In Section 4, by using the post-Lie algebra structures we characterize the forms of the homogeneous Rota-Baxter operator on S.

    We will give the essential definitions and results as follows.

    Definition 2.1. A post-Lie algebra (V,,[,]) is a vector space V over a field k equipped with two k-bilinear products xy and [x,y] satisfying that (V,[,]) is a Lie algebra and

    [x,y]z=x(yz)y(xz)x,yz, (1)
    x[y,z]=[xy,z]+[y,xz] (2)

    for all x,yV, where x,y=xyyx. We also say that (V,,[,]) is a post-Lie algebra structure on the Lie algebra (V,[,]). If a post-Lie algebra (V,,[,]) satisfies xy=yx for all x,yV, then it is called a commutative post-Lie algebra.

    Suppose that (L,[,]) is a Lie algebra. Two post-Lie algebras (L,[,],1) and (L,[,],2) on the Lie algebra L are called to the isomorphic if there is an automorphism τ of the Lie algebra (L,[,]) satisfies

    τ(x1y)=τ(x)2τ(y),x,yL.

    Remark 1. The left multiplications of the post-Lie algebra (V,[,],) are denoted by L, i.e., we have L(x)(y)=xy for all x,yV. By (2), we see that all operator L(x) are Lie algebra derivations of the Lie algebra (V, [, ]).

    Lemma 2.2. [15] Denote by Der(S) and by Inn(S) the space of derivations and the space of inner derivations of S respectively. Then

    Der(S)=Inn(S)CD1CD2CD3

    where D1,D2,D3 are outer derivations defined by

    D1(Ln)=0,D1(Hn)=Hn,D1(In)=2In,D2(Ln)=nIn,D2(Hn)=0,D2(In)=0,D3(Ln)=In,D3(Hn)=0,D3(In)=0.

    Since the Schrödinger-Virasoro algebra S is graded, we suppose that the post-Lie algebra structure on the Schrödinger-Virasoro algebra S to be graded. Namely, we mainly consider the post-Lie algebra structure on Schrödinger-Virasoro algebra S which satisfies

    LmLn=ϕ(m,n)Lm+n, (3)
    LmHn=φ(m,n)Hm+n, (4)
    LmIn=χ(m,n)Im+n, (5)
    HmLn=ψ(m,n)Hm+n, (6)
    HmHn=ξ(m,n)Im+n, (7)
    ImLn=θ(m,n)Im+n, (8)
    HmIn=ImHn=ImIn=0, (9)

    for all m,nZ, where ϕ, φ, χ, ψ, ξ, θ are complex-valued functions on Z×Z.

    We start with the crucial lemma.

    Lemma 3.1. There exists a graded post-Lie algebra structure on S satisfying (3)-(9) if and only if there are complex-valued functions f,g,h on Z and complex numbers a,μ such that

    ϕ(m,n)=(mn)f(m), (10)
    φ(m,n)=(m2n)f(m)+δm,0μ, (11)
    χ(m,n)=nf(m)+2δm,0μ, (12)
    ψ(m,n)=(n2m)h(m), (13)
    ξ(m,n)=(mn)h(m), (14)
    θ(m,n)=mg(m)+δm,0na, (15)
    (mn)(f(m+n)(1+f(m)+f(n))f(n)f(m))=0, (16)
    (mn)δm+n,0μ(1+f(m)+f(n))=0, (17)
    (m2n)(h(m+n)(1+f(m)+h(n))f(m)h(n))=0, (18)
    nδm+n,0a(1+f(m)+g(n))=0, (19)
    n(m+n)(g(m+n)(1+f(m)+g(n))f(m)g(n))    =δn,0m2a(f(m)g(m)), (20)
    (mn)δm+n,0a(1+h(m)+h(n))=0, (21)
    (mn)(g(m+n)(1+h(m)+h(n))h(m)h(n))=0. (22)

    Proof. Suppose that there exists a graded post-Lie algebra structure satisfying (3)-(9) on S. By Remark 1, L(x) is a derivation of S. It follows by Lemma 2.2 that there are a linear map ψ from S into itself and linear functions α,β,γ on S such that

    xy=(adψ(x)+α(x)D1+β(x)D2+γ(x)D3)(y)=[ψ(x),y]+α(x)D1(y)+β(x)D2(y)+γ(x)D3(y)

    where Di,i=1,2,3 are given by Lemma 2.2. This, together with (3)-(9), gives that

    LmLn=[ψ(Lm),Ln]+β(Lm)nIn+γ(Lm)In=ϕ(m,n)Lm+n, (23)
    LmHn=[ψ(Lm),Hn]+α(Lm)Hn=φ(m,n)Hm+n, (24)
    LmIn=[ψ(Lm),In]+α(Lm)2In=χ(m,n)Im+n, (25)
    HmLn=[ψ(Hm),Ln]+β(Hm)nIn+γ(Hm)In=ψ(m,n)Hm+n, (26)
    HmHn=[ψ(Hm),Hn]+α(Hm)Hn=ξ(m,n)Im+n, (27)
    HmIn=[ψ(Hm),In]+α(Hm)2In=0, (28)
    ImLn=[ψ(Im),Ln]+β(Im)nIn+γ(Im)In=θ(m,n)Im+n, (29)
    ImHn=[ψ(Im),Hn]+α(Im)Hn=0, (30)
    ImIn=[ψ(Im),In]+α(Im)2In=0. (31)

    Let

    ψ(Lm)=iZa(m)iLi+iZb(m)iHi+iZc(m)iIi,ψ(Hm)=iZd(m)iLi+iZe(m)iHi+iZf(m)iIi,ψ(Im)=iZg(m)iLi+iZh(m)iHi+iZx(m)iIi

    where a(m)i,b(m)i,c(m)i,d(m)i,e(m)i,f(m)i,g(m)i,h(m)i,x(m)iC for all iZ. Then by (23)-(31), similar to the proof of [18], we obtain that (10)-(22) hold.

    The "if'' part is a direct checking. The proof is completed.

    Lemma 3.2. Let f,g,h be complex-valued functions on Z and μ,aC satisfying (18) and (20). Then we have

    g(n),h(n){0,1}for everyn0. (32)

    Proof. By letting m=0 in (18) and (20), respectively, we have nh(n)(1+h(n))=0 and n2g(n)(1+g(n))=0. This implies (32).

    Lemma 3.3. Let f,g,h be complex-valued functions on Z and μ,a be complex numbers satisfying (17)-(22). If f(Z)=0, then we have μ=a=0 and

    g(Z)=h(Z)=0org(Z)=h(Z)=1.

    Proof. Since f(Z)=0, we take m=n=1 in (17) and (19) we have μ=0 and

    a(1+g(1))=0. (33)

    By letting n=0 and m=1 in (20) we deduce that ag(1)=0. This, together with (33), implies a=0. As μ=a=0, so Equations (18), (20) and (22) become to

    (m2n)(h(m+n)(1+h(n))=0, (34)
    n(m+n)(g(m+n)(1+g(n))=0, (35)
    (mn)(g(m+n)h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. (36)

    We now prove the following four claims:

    Claim 1. If h(1)=0, then h(Z)=0.

    By (34) with n=1 we see that h(m+1)=0 for all m2. It follows that h(Z{3})=0. Since h(2)=0, by taking n=2,m=1 in (34) we have 32h(3)=0, which implies h(3)=0. We obtain h(Z)=0.

    Claim 2. If h(1)=1, then h(Z)=1.

    By (34) with m+n=1 we see that h(n)=1 for all nZ with 13n20. This means that h(Z)=1.

    Claim 3. If g(1)=0, then g(Z)=0.

    By (35) with n=1 we see that g(m+1)=0 for all m1. It follows that g(Z)=0.

    Claim 4. If g(1)=1, then g(Z)=1.

    By (35) with m+n=1 we see that g(n)=1 for all n0. This means that g(Z)=1.

    Now we consider the values of h(1) and g(1) according to (32).

    Case i. If h(1)=g(1)=0, then by Claims 1 and 3 we have h(Z)=0 and g(Z)=0. According to (36) with n=1 and m=1 we know g(0)=0. This means that g(Z)=0.

    Case ii. If h(1)=g(1)=1, then by Claims 2 and 4 we have h(Z)=1 and g(Z)=1. According to (36) with n=1 and m=1 we see that 1+g(0)=0 and so that g(0)=1. This implies g(Z)=1.

    Case iii. If h(1)=0, g(1)=1, then we will get a contradiction. In fact, by Claims 1 and 4, we have h(Z)=0 and g(Z)=1. From (36) with m=2,n=1 we see that g(1)=0 which contradicts g(1)=1.

    Case iv. If h(1)=1, g(1)=0, then we will also get a contradiction. In fact, by Claims 2 and 3, we have h(Z)=1 and g(Z)=0. From (36) with with m=2, n=1 we see that g(1)=1 which contradicts g(1)=0. The proof is completed.

    Lemma 3.4. Let f,g,h be complex-valued functions on Z and μ,a be complex numbers satisfying (17)-(22). If f(Z2)=1,f(Z1)=0, then μ=a=0 and g, h must satisfy one of the following forms:

    (i) g(Z)=h(Z)=0;

    (ii) g(Z)=h(Z)=1;

    (iii) h(Z0)=0, h(Z1)=1 and

    g(Z1)=0, g(Z1)=1, g(0)=ˆλ for some ˆλC.

    Proof. By f(Z2)=1,f(Z1)=0, similar to the proof of Lemma 3.3, we know μ=a=0. From this, we have by (18), (20) and (22) that

    h(m+n)(h(n)+1)=0 if m1,m2n0, (37)
    g(m+n)(g(n)+1)=0 if m1,n0,m+n0, (38)
    g(m+n)(1+h(m)+h(n))=h(m)h(n) if mn. (39)

    We first prove the following six claims:

    Claim 1. If h(1)=0, then h(Z)=0.

    By (37) with n=1 we see that h(m+1)=0 for all m210 with m1. Hence, we deduce that h(Z2)=0. Note that h(2)=0, by (37) with n=2 we see that h(m+2)=0 for all m220 with m1. We now have h(Z3)=0. If we repeat this process, we see that h(Zk)=0 for all k=1,2,3,. Note that k1(Zk)=Z, so one has h(Z)=0.

    Claim 2. If h(1)=1, then h(Z)=1.

    By (37) with m+n=1 we see that h(n)=h(1m)=1 for all 3m2+10 with m1. This deduces that h(Z2)=1. Note that h(2)=1, by (37) with m+n=2 we see that h(m2)=1 for all 3m2+20 with m1. Thus, h(Z3)=1. If we repeat this process, we see that h(Zk)=1 for all k=1,2,3,. Note that k1(Zk)=Z, so one has h(Z)=1.

    Claim 3. If h(1)=1, then h(Z1)=1.

    By (37) with m+n=1 we see that h(n)=h(1m)=1 for all 3m210 with m1. This implies h(Z1)=1.

    Claim 4. If h(1)=0, then h(Z0)=0.

    By (37) with n=1 we see that h(m1)=0 for all m2 with m1. It follows that h(Z0{3})=0. Let m=1,n=2 in (37), from m2n we have h(3)=0. Therefore, we get h(Z0)=0.

    Next, similar to Claims 1 and 3, we from (38) obtain the following claims.

    Claim 5. If g(1)=0, then g(Z)=0.

    Claim 6. If g(1)=1, then g(Z1)=1.

    Now we discuss the values of h(1) and h(1). By (32), h(1),h(1){1,0}.

    Case i. When h(1)=0.

    By Claim 1 we have h(Z)=0. According to (39), one has g(m+n)=0 for any m,nZ with mn. This implies g(Z)=0.

    Case ii. When h(1)=1.

    By Claim 2 we have h(Z)=1. According to (39), one has g(m+n)=1 for any m,nZ with mn. This implies g(Z)=1.

    Case iii. When h(1)=1 and h(1)=0.

    By Claims 3 and 4 we have h(Z0)=0 and h(Z1)=1. This, together with (39), yields g(m+n)=0 for any m,nZ with m,n0 and mn, and g(m+n)=1 for any m,nZ with m,n1 and mn. Consequently, we obtain g(Z1)=0 and g(Z3)=1. By (32), g(1){1,0}. If g(1)=0, then Claim 5 tells us that g(Z)=0 which contracts g(Z3)=1. Therefore, we have g(1)=1. From this with Claim 6 we have g(Z1)=1. Let g(0)=ˆλ for some ˆλC.

    It is easy to check that the values of g given in Cases i-iii above are consistent with (38). They give the conclusions (i), (ii) and (iii) respectively. The proof is completed.

    Lemma 3.5. Let f,g,h be complex-valued functions on Z and μ,a be complex numbers satisfying (17)-(22). If f(Z>0)=1,f(Z<0)=0 and f(0)=c for some cC, then there are λ,ˆτC such that μ,a, g, h must be one of the following forms:

    (i) a=0, μC and g(Z)=h(Z)=0;

    (ii) a=0, μC and g(Z)=h(Z)=1;

    (iii) μC, h(Z>0)=1, h(Z<0)=0, h(0)=λ and g(Zk)=1, g(Zk1)=0

    for some k{2,1,1,2,3}, g(0)=ˆτ and a=0 when k1;

    (iv) a=0, μC and h(Zt)=1, h(Zt1)=0 for some tZ{0,1} and

    g(Zs)=1, g(Zs1)=0 for some s{2t2,2t1,2t,2t+1,2t+2}.

    Proof. Take m=n0 in (18)-(22), one has

    h(0)(1+f(n)+h(n))=f(n)h(n), for all n0, (40)
    a(1+f(n)+g(n))=0, for all n0, (41)
    a(1+h(n)+h(n))=0, for all n0, (42)
    g(0)(1+h(n)+h(n))=h(n)h(n), for all n0. (43)

    Note that f(Z>0)=1,f(Z<0)=0 and f(0)=c for some cC. It is follows by (18), (20) and (22) that

    h(n)(h(m+n)+1)=0 for all m>0,m2n0; (44)
    h(m+n)(h(n)+1)=0 for all m<0,m2n0; (45)
    g(n)(g(m+n)+1)=0 for all m>0,n0,m+n0; (46)
    g(m+n)(g(n)+1)=0 for all m<0,n0,m+n0; (47)
    g(m+n)(1+h(m)+h(n))=h(m)h(n) for all mn. (48)

    For any tZ, we first prove some claims as follows.

    Claim 1. If h(t)=0, then h(Zt)=0.

    In fact, by (44) with n=tm we deduce h(tm)=0 for all m>0 with m23t. This implies h(Zt{13t})=0. On the other hand, by (45) with n=t we see that h(m+t)=0 for all m<0 with m2t. This gives that h(Zt{3t})=0. Clearly, 3t13t since t0. Thereby, we obtain h(Zt)=0.

    Claim 2. If h(t)=1, then h(Zt)=1.

    This proof is similar to Claim 1 by using (44) and (45). Also, similar to Claims 1 and 2, by (46) and (47) we can obtain the following two claims:

    Claim 3. If g(t)=0, then g(Zt)=0.

    Claim 4. If g(t)=1, then g(Zt)=1.

    According to (32), by Claims 1 and 2, h must be one of the following forms:

    (1) h(Z)=0;

    (2) h(Z)=1;

    (3) h(Z>0)=1, h(Z<0)=0 and h(0)=λ for some λC;

    (4) h(Zt)=1, h(Zt1)=0 for some tZ{0,1}.

    In view of the above result, the next proof will be divided into the following cases.

    Case i. When h(Z)=0.

    By taking n=1 in (40), one has h(0)=0. Hence we see that h(Z)=0. This together with (48) yields g(Z)=0. In addition, we have by (43) that a=0.

    Case ii. When h(Z)=1.

    By taking n=1 in (40), one has h(0)=1. Hence we see that h(Z)=1. This together with (48) yields g(Z)=1. In addition, by (43) we get a=0.

    Case iii. When h(Z>0)=1, h(Z<0)=0 and h(0)=λ for some λC.

    By (48) we see that g(m+n)=1 for any m,nZ with m,n>0 and mn, and g(m+n)=0 for any m,nZ with m,n<0 and mn. Consequently, we obtain g(Z3)=0 and g(Z3)=1. By (32), g(i){1,0} for i{2,1,1,2}. In view of Claims 3 and 4, we can assume that g(k)=1 and g(k1)=0 for some k{2,1,1,2,3}. In all, by Claims 3 and 4 we get g(Zk)=1 and g(Zk1)=0. Next, if k{1,2} then by taking n=k in (41) we have a=0; and if k{2,3} then by taking n=k1 in (41) we also have a=0. But a can be arbitrary if k=1.

    Case iv. When h(Zt)=1, h(Zt1)=0 for some tZ{0,1}.

    Note that t2 or t1, then by taking n=1 in (42) we have a=0. Next, by(48) we see that g(m+n)=1 for any m,nZ with m,nt and mn, and g(m+n)=0 for any m,nZ with m,nt1 and mn. Consequently, we obtain g(Z2t3)=0 and g(Z2t+1)=1. By (32), g(i){1,0} for i{2t2,2t1,2t,2t+1}. In view of Claims 3 and 4, we can assume that g(s)=1 and g(s1)=0 for some s{2t2,2t1,2t,2t+1,2t+2}. Note that 0{2t2,2t1,2t,2t+1} since t0,1, by Claims 3 and 4 we get g(Zs)=1 and g(Zs1)=0. The proof is completed.

    Lemma 3.6. Let f,g,h be complex-valued functions on Z and μ,a be complex numbers. Then (17)-(22) hold if and only if f,g,h,a,μ meet one of the situations listed in Table 2.

    Table 2.  Values of f,g,h satisfying (16)-(22), where a,μC, k{2,1,1,2,3}, tZ{0,1} and s{2t2,2t1,2t,2t+1,2t+2}.
    Cases f(n) from Table 1 a, μ h(n),g(n)
    WP11 P1 a=μ=0 h(Z)=g(Z)=0
    WP12 P1 a=μ=0 h(Z)=g(Z)=1
    WP21 P2 a=μ=0 h(Z)=g(Z)=0
    WP22 P2 a=μ=0 h(Z)=g(Z)=1
    WPc31,μ Pc3 a=0 and μ h(Z)=g(Z)=0
    WPc32,μ Pc3 a=0 and μ h(Z)=g(Z)=1
    WPc3,k3,μ Pc3 a=0 and μ h(Z>0)=1, h(Z<0)=0 and
    g(Zk)=1, g(Zk1)=0
    WPc3,k=14,a,μ Pc3 a and μ h(Z>0)=1, h(Z<0)=0 and
    g(Z>0)=1, g(Z<0)=0
    WPc3,s,t5,μ Pc3 a=0 and μ h(Zt)=1, h(Zt1)=0 and
    g(Zs)=1, g(Zs1)=0
    WPc41,μ Pc4 a=0 and μ h(Z)=g(Z)=0
    WPc42,μ Pc4 a=0 and μ h(Z)=g(Z)=1
    WPc4,k3,μ Pc4 a=0 and μ h(Z>0)=0, h(Z<0)=1 and
    g(Zk)=0, g(Zk1)=1
    WPc4,k=14,a,μ Pc4 a and μ h(Z>0)=0, h(Z<0)=1 and
    g(Z>0)=0, g(Z<0)=1
    WPc4,s,t5,μ Pc4 a=0 and μ h(Zt)=0, h(Zt1)=1 and
    g(Zs)=0, g(Zs1)=1
    WP51 P5 a=μ=0 h(Z)=g(Z)=0
    WP52 P5 a=μ=0 h(Z)=g(Z)=1
    WP53 P5 a=μ=0 h(Z0)=0, h(Z1)=1 and
    g(Z1)=0, g(Z1)=1
    WP61 P6 a=μ=0 h(Z)=g(Z)=0
    WP62 P6 a=μ=0 h(Z)=g(Z)=1
    WP63 P6 a=μ=0 h(Z0)=1, h(Z1)=0 and
    g(Z1)=1, g(Z1)=0
    WP71 P7 a=μ=0 h(Z)=g(Z)=0
    WP72 P7 a=μ=0 h(Z)=g(Z)=1
    WP73 P7 a=μ=0 h(Z0)=1, h(Z1)=0 and
    g(Z1)=1, g(Z1)=0
    WP81 P8 a=μ=0 h(Z)=g(Z)=0
    WP82 P8 a=μ=0 h(Z)=g(Z)=1
    WP83 P8 a=μ=0 h(Z0)=0, h(Z1)=1 and
    g(Z1)=0, g(Z1)=1

     | Show Table
    DownLoad: CSV

    Proof. The proof of the "if" direction can be directly verified. We now prove the "only if" direction. In view of f satisfying (16), by Theorem 2.4 of [10] we know that f is determined by Table 1.

    Table 1.  Values of f satisfying (16), where cC.
    Cases f(n)
    P1 f(Z)=0
    P2 f(Z)=1
    Pc3 f(Z>0)=1,f(Z<0)=0andf(0)=c
    Pc4 f(Z>0)=0,f(Z<0)=1andf(0)=c
    P5 f(Z2)=1andf(Z1)=0
    P6 f(Z2)=0andf(Z1)=1
    P7 f(Z1)=0andf(Z2)=1
    P8 f(Z1)=1andf(Z2)=0

     | Show Table
    DownLoad: CSV

    When f takes the form of Case P1 in Table 1, by the results of Lemma 3.3, we see that μ,a,g,h must satisfy the condition of Cases WP11 and WP12 in Table 2. From Lemma 3.3, Cases WP11,i=1,2 is easy to say. In the same way, when f takes the form of Case P2 in Table 1, then we obtain the forms of Cases WP21 and WP22 in Table 2.

    When f takes the form of Case Pc3 in Table 1, by the results of Lemma 3.5, we see that μ,a,g,h must satisfy the one condition of Cases WPc3i,μ,i=1,2, WPc3,k3,μ, WPc3,k=14,a,μ and WPc3,s,t5,μ in Table 2. From Lemma 3.5, the results of Cases WPc3i,μ,i=1,2 are easily obtained; and Case WPc3,k3,μ satisfies μC, h(Z>0)=1, h(Z<0)=0, h(0)=λ and g(Zk)=1, g(Zk1)=0, for some k{2,1,1,2,3}, g(0)=ˆτ with a=0 when k1 and a is arbitrary if k=1; Case WPc3,k=14,a,μ satisfies μC, h(Z>0)=1, h(Z<0)=0, h(0)=λ and g(Z>0)=1, g(Z<0)=0 for some k=1, g(0)=ˆτ; Case WPc3,s,t5,μ satisfies a=0, μC and h(Zt)=1, h(Zt1)=0 for some tZ{0,1} and g(Zs)=1, g(Zs1)=0 for some s{2t2,2t1,2t,2t+1,2t+2}. In the same way, when f takes the form of Case Pc4 in Table 1, then we obtain the results of Cases WPc4i,μ,i=1,2, WPc4,k3,μ, WPc4,k=14,a,μ and WPc4,s,t5,μ in Table 2, respectively.

    When f takes the form of Case P5 in Table 1, by the results of Lemma 3.4, we see that μ,a,g,h must satisfy the condition of Cases WP5i,i=1,2,3 in Table 2. From Lemma 3.4, the results of Cases WP5i,i=1,2, are easily obtained; and for Case WP53, we get h(Z0)=0, h(Z1)=1 and g(Z1)=0, g(Z1)=1, g(0)=ˆλ for some ˆλC. Similarly, when f takes the form of Case Pk,k=6,7,8 in Table 1, then we obtain the forms of Cases WPki, i=1,2,3, k=6,7,8 in Table 2. The proof is completed.

    Lemma 3.7. Let (P(ϕi,φi,χi,ψi,ξi,θi),i), i=1,2 be two algebras with the same linear space as S and equipped with C-bilinear products xiy such that

    LmiLn=ϕi(m,n)Lm+n,LmiHn=φi(m,n)Hm+n,LmiIn=χi(m,n)Im+n,HmiLn=ψi(m,n)Hm+n,HmiHn=ξi(m,n)Im+n,ImiLn=θi(m,n)Im+n,HmiIn=ImiHn=ImiIn=0

    for all m,nZ, where ϕi,φi,χi,ψi,ξi,θi, i=1,2 are complex-valued functions on Z×Z. Furthermore, let τ:P(ϕ1,φ1,χ1,ψ1,ξ1,θ1)P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) be a linear map determined by

    τ(Lm)=Lm,τ(Hm)=Hm,τ(Im)=Im

    for all mZ. In addition, suppose that (P(ϕ1,φ1,χ1,ψ1,ξ1,θ1),[,],1) is a post-Lie algebra. Then (P(ϕ2,φ2,χ2,ψ2,ξ2,θ2),[,],,2) is a post-Lie algebra and τ is an isomorphism on post-Lie algebras if and only if

    {ϕ2(m,n)=ϕ1(m,n);φ2(m,n)=φ1(m,n);χ2(m,n)=χ1(m,n);ψ2(m,n)=ψ1(m,n);ξ2(m,n)=ξ1(m,n);θ2(m,n)=θ1(m,n). (49)

    Proof. Clearly, τ is a Lie automorphism of S. Suppose (P(ϕ2,φ2,χ2,ψ2,ξ2,θ2),[,],2) is a post-Lie algebra and τ:P(ϕ1,φ1,χ1,ψ1,ξ1,θ1)P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) is a post-Lie isomorphism. Then we have

    τ(LmiLn)=ϕi(m,n)L(m+n),τ(LmiHn)=φi(m,n)H(m+n),τ(LmiIn)=χi(m,n)I(m+n),τ(HmiLn)=ψi(m,n)H(m+n),τ(HmiHn)=ξi(m,n)I(m+n),τ(ImiLn)=θi(m,n)I(m+n)

    for i=1,2. This tell us that that (49) holds. Conversely, we first suppose that (49) hold. Then, by using Lemma 3.1 and (ϕ1,φ1,χ1,ψ1,ξ1,θ1,[,],1) is a post-Lie algebra, we know that there are complex-valued functions f1,g1,h1 on Z and complex numbers a1,μ1 satisfying (10)-(22) with replacing (ϕ,φ,χ,ψ,ξ,θ,f,g,h,μ,a) by (ϕ1,φ1,χ1,ψ1,ξ1,θ1,f1,g1,h1,μ1,a1). Next, let f2(m)=f1(m), g2(m)=g1(m), h2(m)=h1(m), μ2=μ1 and a2=a1, then we see that (10)-(22) hold with replacing (ϕ,φ,χ,ψ,ξ,θ,f,g,h,μ,a) by (ϕ2,φ2,χ2,ψ2,ξ2,θ2,f1,g1,h1,μ1,a1). By Lemma 3.1, P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) is a post-Lie algebra.

    The remainder is to prove that τ is an isomorphism between post-Lie algebra. But one has

    τ(Lm1Ln)=ϕ1(m,n)L(m+n)=ϕ2(m,n)L(m+n)=τ(Lm)2τ(Ln),τ(Lm1Hn)=φ1(m,n)H(m+n)=φ2(m,n)H(m+n)=τ(Lm)2τ(Hn),τ(Lm1In)=χ1(m,n)I(m+n)=χ2(m,n)I(m+n)=τ(Lm)2τ(In),τ(Hm1Ln)=ψ1(m,n)H(m+n)=ψ2(m,n)H(m+n)=τ(Hm)2τ(Ln),τ(Hm1Hn)=φ1(m,n)I(m+n)=φ2(m,n)I(m+n)=τ(Hm)2τ(Hn),
    τ(Im1Ln)=θ1(m,n)I(m+n)=ϕ2(m,n)I(m+n)=τ(Im)2τ(Ln)

    and τ(Hm1In)=τ(Hm)2τ(In)=0, τ(Im1Hn)=τ(Im)2τ(Hn) = 0, τ(Im1In)=τ(Im)2τ(In) = 0. The proof is completed.

    Theorem 3.8. A graded post-Lie algebra structure on S satisfying (3)-(9) must be one of the following types, for all m,nZ (in every case ImHn=HmIn=ImIn=0),

    (WP11): LmP11Ln=0, LmP11Hn=0, LmP11In=0, HmP11Ln=0, HmP11Hn=0, ImP11Ln=0;

    (WP12): LmP12Ln=0, LmP12Hn=0, LmP12In=0, HmP12Ln=(n2m)Hm+n, HmP12Hn=(nm)Im+n, ImP12Ln=mIm+n;

    (WP21): LmP21Ln=(nm)Lm+n, LmP21Hn=(nm2)Hm+n, LmP21In=nIm+n, HmP21Ln=0, HmP21Hn=0, ImP21Ln=0;

    (WP22): LmP22Ln=(nm)Lm+n, LmP22Hn=(nm2)Hm+n, LmP22In=nIm+n, HmP22Ln=(n2m)Hm+n, HmP22Hn=(nm)Im+n, ImP22Ln=mIm+n;

    (WPc3,s,k,ti,a,μ,λ): i=1,2,3,4,5

    LmPc3iLn={(nm)Lm+n,m>0,ncLn,m=0,0,m<0;

    LmPc3iHn={(nm2)Hm+n,m>0,(nc+μ)Hn,m=0,0,m<0;

    LmPc3iIn={nIm+n,m>0,(nc+2μ)In,m=0,0,m<0;

      HmPc3iLn=δi,2(n2m)Hm+n

         +(δi,3+δi,4){(n2m)Hm+n,m>0,n2λHn,m=0,0,m<0;

         +δi,5{(n2m)Hm+n,mt,0,mt1;

      HmPc3iHn=δi,2(nm)Im+n

         +(δi,3+δi,4){(nm)Im+n,m>0,nλIn,m=0,0,m<0;

         +δi,5{(nm)Im+n,mt,0,mt1;

      ImPc3iLn=δi,2(m)Im+n

         +δi,3{mIm+n,mk,0,mk1;

         +δi,4{mIm+n,m>0,naIn,m=0,0,m<0;

         +δi,5{mIm+n,ms,0,ms1;

    (WPc4,s,k,ti,a,μ,λ): i=1,2,3,4,5

           LmPc4iLn={(nm)Lm+n,m<0,ncLn,m=0,0,m>0;

           LmPc4iHn={(nm2)Hm+n,m<0,(nc+μ)Hn,m=0,0,m>0;

          LmPc4iIn={nIm+n,m<0,(nc+2μ)In,m=0,0,m>0;

    HmPc4iLn=δi,2(n2m)Hn+m

         +(δi,3+δi,4){0,m>0,n2λHn,m=0,(n2m)Hm+n,m<0;

         +δi,5{0,mt,(n2m)Hm+n,mt1;

    HmPc4iHn=δi,2(nm)In+m

         +(δi,3+δi,4){0,m>0,nλIn,m=0,(nm)Im+n,m<0;

         +δi,5{0,mt,(nm)Im+n,mt1;

    ImPc4iLn=δi,2(m)In+m

         +δi,3{0,mk,mIm+n,mk1;

         +δi,4{0,m>0,naIn,m=0,mIm+n,m<0;

         +δi,5{0,ms,mIm+n,ms1;

    (WP5i): i=1,2,3,

           LmP5iLn={(nm)Lm+n,m2,0,m1;

           LmP5iHn={(nm2)Lm+n,m2,0,m1;

          LmP5iIn={nIm+n,m2,0,m1;

    HmP5iLn=δi,2(n2m)Hm+n

         +δi,3{0,m0,(n2m)Hm+n,m1;

    HmP5iHn=δi,2(nm)Im+n

         +δi,3{0,m0,(nm)Im+n,m1;

    ImP5iLn=δi,2(m)Im+n

         +δi,3{0,m0,mIm+n,m1;

    (WP6i): i=1,2,3,

           LmP6iLn={(nm)Lm+n,m1,0,m2;

           LmP6iHn={(nm2)Hm+n,m1,0,m2;

          LmP6iIn={nIm+n,m1,0,m2;

    HmP6iLn=δi,2(n2m)Hm+n

         +δi,3{(n2m)Hm+n,m0,0,m1;

    HmP6iHn=δi,2(nm)Im+n

         +δi,3{(nm)Im+n,m0,0,m1;

    ImP6iLn=δi,2(m)Im+n

         +δi,3{mIm+n,m1,0,m0;

    (WP7i): i=1,2,3,

           LmP7iLn={(nm)Lm+n,m2,0,m1;

           LmP7iHn={(nm2)Hm+n,m2,0,m1;

          LmP7iIn={nIm+n,m2,0,m1;

    HmP7iLn=δi,2(n2m)Hm+n

         +δi,3{(n2m)Hm+n,m0,0,m1;

    HmP7iHn=δi,2(nm)Im+n

         +δi,3{(nm)Im+n,m0,0,m1;

    ImP7iLn=δi,2(m)Im+n

         +δi,3{mIm+n,m1,0,m0;

    (WP8i): i=1,2,3,

           LmP8iLn={(nm)Lm+n,m1,0,m2;

           LmP8iHn={(nm2)Hm+n,m1,0,m2;

           LmP8iIn={nIm+n,m1,0,m2;

    HmP8iLn=δi,2(n2m)Hm+n

         +δi,3{0,m0,(n2m)Hm+n,m1

    HmP8iHn=δi,2(nm)Im+n

         +δi,3{0,m0,(nm)Im+n,m1

    ImP8iLn=δi,2(m)Im+n

         +δi,3{0,m0,mIm+n,m1

    where c,a,μ,λC, k{2,1,1,2,3}, tZ{0,1} and s{2t2,2t1,2t,2t+1,2t+2}. Conversely, the above types are all the graded post-Lie algebra structures satisfying (3)-(9) on S. Furthermore, the post-Lie algebras WPc3,s,k,ti,a,μ,λ, WP5j and WP6j are isomorphic to the post-Lie algebras WPc4,s,k,ti,a,μ,λ, WP7j and WP8j, i=1,2,3,4,5 and j=1,2,3 respectively, and other post-Lie algebras are not mutually isomorphic.

    Proof. Suppose that (S,[,],) is a class of post-Lie algebra structures satisfying (3)-(9) on the Schrödinger-Virasoro algebra S. By Lemma 3.3-3.5, there are complex-valued functions f, g, h on Z and complex numbers μ,a such that one of 26 cases in Table 2 holds. From this with Lemma 3.1, we obtain 26 classes of graded post-Lie algebra structures on S. We claim that h(0)=λ and g(0)=ˆτ in WPcj,s,k,ti,a,μ,λ,j=3,4 and i=1,2,3,4,5 and g(0)=ˆλ in WPji, j=5,6,7,8 and i=1,2,3. We claim that g(0)=ˆλ and g(0)=ˆτ will not appear in every structures, when m=0, for example, in Case WP5i, i=1,2,3, then ImP53Ln=0ˆλI0+n=0, one has ImP53Ln=0 for m0, and in Case WPc3,s,k,ti,a,μ,λ, i=1,2,3,4,5, then HmP33,λLn=(n20)λH0+n=0, one has HmP33,λLn=n2λHn for m=0. Hence we can obtain 26 classes of graded post-Lie algebra structures on S listed in the theorem.

    Conversely, every type of the 26 cases means that there are complex-valued functions f and g, h on Z and complex numbers a,μ such that (10)-(15) hold and, the Equations (16)-(22) are easily verified. Thus, by Lemma 3.1 we see that they are the all graded post-Lie algebra structures satisfying (3)-(9) on the Schrödinger-Virasoro algebra S.

    Finally, by Lemma 3.7 with maps LmLm, HmHm, ImIm we know that the post-Lie algebras WPc3,s,k,ti,a,μ,λ, WP5j and WP6j are isomorphic to the post-Lie algebras WPc4,s,k,ti,a,μ,λ, WP7j and WP8j, i=1,2,3,4,5 and j=1,2,3 respectively. Clearly, the other post-Lie algebras are not mutually isomorphic. The proof is completed.

    The Rota-Baxter algebra was introduced by the mathematician Glen E. Baxter [2] in 1960 in his probability study, and was popularized mainly by the work of Rota [G. Rota1, G. Rota2] and his school. Recently, the Rota-Baxter algebra relation were introduced to solve certain analytic and combinatorial problem and then applied to many fields in mathematics and mathematical physics (see [6,7,19,23] and the references therein). Now let us recall the definition of Rota-Baxter operator.

    Definition 4.1. Let L be a complex Lie algebra. A Rota-Baxter operator of weight λC is a liner map R:LL satisfying

    [R(x),R(y)]=R([R(x),y]+[x,R(y)])+λR([x,y]),x,yL. (50)

    Note that if R is a Rota-Baxter operator of weight λ0, then λ1R is a Rota-Baxter operator of weight 1. Therefore, one only needs to consider Rota-Baxter operators of weight 0 and 1.

    In this section, we mainly consider the homogeneous Rota-Baxter operator R of weight 1 on the Schrödinger-Virasoro S given by

    R(Lm)=f(m)Lm,   R(Hm)=h(m)Hm,   R(Im)=g(m)Im (51)

    for all mZ, where f,g,h are complex-valued functions on Z.

    Lemma 4.2. (see [1]) Let (L,[,]) be a Lie algebra and R:LL a Rota-Baxter operator of weight 1. Define a new operation xy=[R(x),y] on L. Then (L,[,],) is a post-Lie algebra.

    Theorem 4.3. A homogeneous Rote-Baxrer operator R of weight 1 satisfying (51) on the Schrödinger-Virasoro S must be one of the following types

    (RP11): R(Lm)=0,R(Hn)=0,R(In)=0;

    (RP12): R(Lm)=0,R(Hn)=Hn,R(In)=In;

    (RP21): R(Lm)=Lm,R(Hn)=0,R(In)=0;

    (RP22): R(Lm)=Lm,R(Hn)=Hn,R(In)=In;

    (RPc31): R(Lm)={Lm,  m>0,cL0,  m=0,0,m<0; R(Hn)=0, R(In)=0;

    (RPc32): R(Lm)={Lm,  m>0,cL0,  m=0,0,m<0; R(Hn)=Hn, R(In)=In;

    (RPc3,k3,ˆτ,λ): R(Lm)={Lm,  m>0,cL0,  m=0,0,m<0; R(Hn)={Hn,  n>0,λH0,  n=0,0,n<0;

    R(In)={In,  nk,ˆτI0,  n=0,0,nk1;

    (RPc3,s,t5): R(Lm)={Lm,  m>0,cL0,  m=0,0,m<0; R(Hn)={Hn,  nt,0,  nt1;

    R(In)={In,  ns,0,  ns1;

    (RPc41): R(Lm)={Lm,  m<0,cL0,  m=0,0,m>0; R(Hn)=0, R(In)=0;

    (RPc42): R(Lm)={Lm,  m<0,cL0,  m=0,0,m>0; R(Hn)=Hn, R(In)=In;

    (RPc4,k3,ˆτ,λ): R(Lm)={Lm,  m<0,cL0,  m=0,0,m>0; R(Hn)={0,  n>0,λH0,  n=0,Hn,  n<0;

    R(In)={0,  nk,ˆτI0,  n=0,In,  nk1;

    (RPc4,s,t5): R(Lm)={Lm,  m>0,cL0,  m=0,0,m<0; R(Hn)={0,  nt,Hn,  nt1;

    R(In)={0,  ns,In,  ns1;

    (RP51): R(Lm)={Lm,  m2,0,  m1; R(Hn)=0, R(In)=0;

    (RP52): R(Lm)={Lm,  m2,0,  m1; R(Hn)=Hn, R(In)=In;

    (RP53,ˆλ): R(Lm)={Lm,  m2,0,  m1; R(Hn)={0,  n0,Hn,  n1;

    R(In)={0,  n1,ˆλI0,  n=0,In,  n1;

    (RP61): R(Lm)={Lm,m1,0,  m2; R(Hn)=0, R(In)=0;

    (RP62): R(Lm)={Lm,m1,0,  m2; R(Hn)=Hn, R(In)=In;

    (RP63,ˆλ): R(Lm)={Lm,m1,0,  m2; R(Hn)={Hn,n0,0,  n1;

    R(In)={In,n1,ˆλI0,  n=0,0,  n1;

    (RP71): R(Lm)={Lm,m2,0,  m1; R(Hn)=0, R(In)=0;

    (RP72): R(Lm)={Lm,m2,0,  m1; R(Hn)=Hn, R(In)=In;

    (RP73,ˆλ): R(Lm)={Lm,m2,0,  m1; R(Hn)={0,  n1,Hn,  n0;

    R(In)={0,n1,ˆλI0,  n=0,In,  n1;

    (RP81): R(Lm)={Lm,m1,0,  m2; R(Hn)=0, R(In)=0;

    (RP82): R(Lm)={Lm,m1,0,  m2, R(Hn)=Hn, R(In)=In;

    (RP83,ˆλ): R(Lm)={Lm,m1,0,  m2, R(Hn)={Hn,n1,0,  n0;

    R(In)={In,n1,ˆλI0,  n=0,0,  n1

    for all m,nZ, where c,λ,ˆλ,ˆτC, k{2,1,1,2,3} with k1, tZ{0,1} and s{2t2,2t1,2t,2t+1,2t+2}.

    Proof. In view of Lemma 4.2, if we define a new operation xy=[R(x),y] on S, then (S,[,],) is a post-Lie algebra. By (51), we have

    LmLn=[R(Lm),Ln]=(mn)f(m)Lm+n, (52)
    LmHn=[R(Lm),Hn]=(m2n)f(m)Hm+n, (53)
    LmIn=[R(Lm),In]=nf(m)Im+n, (54)
    HmLn=[R(Hm),Ln]=(n2m)h(m)Hm+n, (55)
    HmHn=[R(Hm),Hn]=(mn)h(m)Im+n, (56)
    ImLn=[R(Im),Ln]=mg(m)Im+n (57)

    and ImHn=[R(Im),Hn]=HmIn=[R(Hm),In]=ImIn=[R(Im),In]=0 for all m,nZ. This means that (S,[,],) is a graded post-Lie algebras structure satisfying (3)-(9) with ϕ(m,n)=(mn)f(m), φ(m,n)=(m2n)f(m), χ(m,n)=nf(m), ψ(m,n)=(n2m)h(m), ξ(m,n)=(mn)h(m) and θ(m,n)=mg(m).

    A similar discussion to Lemma 3.1 gives

    (mn)(f(m+n)f(n)f(m)+f(m)f(m+n)+f(n)f(m+n))=0,(m2n)(h(m+n)f(m)h(n)+f(m)h(m+n)+h(n)h(m+n))=0,n(m+n)(g(m+n)(1+f(m)+g(n))f(m)g(n))=0,(mn)(g(m+n)h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0.

    From this we conclude that Equations (10)-(22) hold with a=μ=0. In the same way of Lemma 3.6, we see that f,g,h must satisfy Table 2 with a=μ=0. This excludes Cases WPc3,k=14,a,μ and WPc4,k=14,a,μ. Thus, f, g, h must be of the 24 cases listed in Table 2 with a=μ=0, which can yield the 24 forms of R one by one. It is easy to verify that every form of R listed in the above is a Rota-Baxter operator of weight 1 satisfying (51). The proof is completed.

    The natural question is: how we can characterize the Rota-Baxter operators of weight zero on the Schrödinger-Virasoro S? This is related to the so called pre-Lie algebra which is a class of Lie-admissible algebras whose commutators are Lie algebras. Pre-Lie algebras appeared in many fields in mathematics and physics under different names like left-symmetric algebras, Vinberg algebras and quasi-associative algebras (see the survey article [3] and the references therein). Now we recall the definition of pre-Lie algebra as follows.

    Definition 4.4. A pre-Lie algebra A is a vector space A with a bilinear product satisfying

    (xy)zx(yz)=(yx)zy(xz),x,y,zA. (58)

    As a parallel result of Lemma 4.2, one has the following conclusion.

    Proposition 1. (see [8]) Let (L,[,]) be a Lie algebra with a Rota-Baxter operator R of weight 0 on it. Define a new operation xy=[R(x),y] for any x,yL. Then (L,) is a pre-Lie algebra.

    Using a similar method on classification of Rota-Baxter operators of weight 1 in the above subsection, by Proposition 1 we can get the forms of Rota-Baxter operators of weight zero when the corresponding structure of pre-Lie algebra are known. For example, consider the homogeneous Rota-Baxter operator R of weight zero on the Schrödinger-Virasoro algebra S satisfying (51). According to Proposition 1, if we define a new operation xy=[R(x),y] on S, then (S,) is a pre-Lie algebra. By (51), we have Equations (52)-(57) hold. At this point we can apply the relevant results on pre-Lie algebra satisfying (52)-(57). But the classification of graded pre-Lie algebra structures on S is also an unsolved problem, as far as we know. In fact, we can direct characterize the Rota-Baxter operators of weight zero on the Schrödinger-Virasoro S satisfying (51) following the approach of [6]. Due to limited space, it will not be discussed here.

    We would like to express our sincere thanks to the anonymous referees for their careful reading and valuable comments towards the improvement of this article.



    [1] M. Hatami, D. D. Ganji, M. Gorji-Bandpy, Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery, Energy Convers. Manage., 97 (2014), 26–41. https://doi.org/10.1016/j.enconman.2015.03.032 doi: 10.1016/j.enconman.2015.03.032
    [2] M. Ghazikhani, M. Hatami, B. Safari, The effect of alcoholic fuel additives on exergy parameters and emissions in a two-stroke gasoline engine, Arab. J. Sci. Eng., 39 (2014), 2117–2125. https://doi.org/10.1007/s13369-013-0738-3 doi: 10.1007/s13369-013-0738-3
    [3] M. Hatami, D. D. Ganji, Thermal performance of circular convective-radiative porous fins with different section shapes and materials, Energy Convers. Manage., 76 (2013), 185–193. https://doi.org/10.1016/j.enconman.2013.07.040 doi: 10.1016/j.enconman.2013.07.040
    [4] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Transfer, 116 (2018), 346–351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091 doi: 10.1016/j.ijheatmasstransfer.2017.08.091
    [5] E. Cuce, P. M. Cuce, Homotopy perturbation method for temperature distribution, fin efficiency and fin effectiveness of convective straight fins with temperature-dependent thermal conductivity, J. Mech. Eng. Sci., 227 (2013), 1754–1760. https://doi.org/10.1177/0954406212469579 doi: 10.1177/0954406212469579
    [6] A. Y. Cengel, Introduction to Thermodynamics and Heat Transfer, Second Edition, McGraw-Hill Companies, 2008.
    [7] S. A. Atouei, K. Hosseinzadeh, M. Hatamic, S. E. Ghasemid, S. A. R. Sahebi, D. D. Ganji, Heat transfer study on convective-radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods, Appl. Therm. Eng., 89 (2015), 299–305. https://doi.org/10.1016/j.applthermaleng.2015.05.084 doi: 10.1016/j.applthermaleng.2015.05.084
    [8] K. Hosseinzadeh, E. Montazer, M. B. Shafii, A. R. D. Ganji, Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles, J. Energy Storage, 34 (2021), 102177. https://doi.org/10.1016/j.est.2020.102177 doi: 10.1016/j.est.2020.102177
    [9] M. Hatami, D. D. Ganji, Optimization of the longitudinal fins with different geometries for increasing the heat transfer, in ISER 10th International Conference, Kuala Lumpur, Malaysia, 2015.
    [10] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Transfer, 116 (2018), 346–351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091 doi: 10.1016/j.ijheatmasstransfer.2017.08.091
    [11] B. Kundu, D. Bhanja, K. S. Lee, A model on the basis of analytics for computing maximum heat transfer in porous fins, Int. J. Heat Mass Transfer, 55 (2012), 7611–7622. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.069 doi: 10.1016/j.ijheatmasstransfer.2012.07.069
    [12] Z. Din, A. Ali, S. Ullah, G. Zaman, Investigation of heat transfer from convective and radiative stretching/shrinking rectangular fins, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/1026698
    [13] W. Ahmad, K. S. Syed, M. Ishaq, A. Hassan, Z. Iqbal, Numerical study of conjugate heat transfer in a double-pipe with exponential fins using DGFEM, Appl. Therm. Eng., 111 (2017), 1184–1201. https://doi.org/10.1016/j.applthermaleng.2016.09.171 doi: 10.1016/j.applthermaleng.2016.09.171
    [14] M. M. Rashidi, T. Hayat, T. Keimanesh, H. Yousefian, A study on heat transfer in a second-grade fluid through a porous medium with the modified differential transform method, Heat Transfer Asian Res., 42 (2013), 31–45. https://doi.org/10.1002/htj.21030 doi: 10.1002/htj.21030
    [15] E. Erfani, M. M. Rashidi, A. B. Parsa. The modified differential transform method for solving off-centered stagnation flow toward a rotating disc, Int. J. Comput. Methods, 7 (2010), 655–670. https://doi.org/10.1142/S0219876210002404
    [16] Y. Huang, X. Li, Exact and approximate solutions of convective-radiative fins with temperature-dependent thermal conductivity using integral equation method, Int. J. Heat Mass Transfer, 150 (2020), 119303. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119303 doi: 10.1016/j.ijheatmasstransfer.2019.119303
    [17] M. M. Rashidi, E. Erfani, New analytical method for solving Burgers and nonlinear heat transfer equations and comparison with HAM, Comput. Phys. Commun., 180 (2009), 1539–1544.
    [18] S. Panda, A. Bhowmik, R. Das, R. Repaka, S. C. Martha, Application of Homotopy analysis method and inverse solution of a rectangular wet fin, Energy Convers. Manage., 80 (2014), 303–318. https://doi.org/10.1016/j.cpc.2009.04.009 doi: 10.1016/j.cpc.2009.04.009
    [19] R. K. Singla, R. Das, Application of decomposition method and inverse prediction of parameters in a moving fin, Energy Convers. Manage., 84 (2014), 268–281. https://doi.org/10.1016/j.enconman.2014.04.045 doi: 10.1016/j.enconman.2014.04.045
    [20] C. Y. Zhang, X. F. Li, Temperature distribution of conductive-convective-radiative fins with temperature-dependent thermal conductivity, Int. Comm. Heat Mass Transfer, 117 (2020), 104799. https://doi.org/10.1016/j.icheatmasstransfer.2020.104799 doi: 10.1016/j.icheatmasstransfer.2020.104799
    [21] S. W. Sun, X. F. Li, Exact solution of the nonlinear fin problem with exponentially temperature-dependent thermal conductivity and heat transfer coefficient, Pramana J. Phys., 94 (2020), 1–10. https://doi.org/10.1007/s12043-020-01971-4 doi: 10.1007/s12043-020-01971-4
    [22] A. K. Asl, S. Hossainpour, M. M. Rashidi, M. A. Sheremet, Z. Yang, Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure, Int. J. Heat Mass Transfer, 133 (2019), 729–744. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.156 doi: 10.1016/j.ijheatmasstransfer.2018.12.156
    [23] S. Maalej, A. Zayoud, I. Abdelaziz, I. Saad, M. C. Zaghdoudi, Thermal performance of finned heat pipe system for Central Processing Unit cooling, Energy Convers. Manage., 218 (2020), 112977. https://doi.org/10.1016/j.enconman.2020.112977 doi: 10.1016/j.enconman.2020.112977
    [24] A. A. Joneidi, D. D. Ganji, M. Babaelahi, Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity, Int. Commun. Heat Mass Transfer, 36 (2009), 757–762. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.020 doi: 10.1016/j.icheatmasstransfer.2009.03.020
    [25] C. H. Chiu, C. K. Chen, Applications of Adomian decomposition procedure to the analysis of convective radiative fins, J. Heat Transfer, 125 (2003), 312–316. https://doi.org/10.1115/1.1532012 doi: 10.1115/1.1532012
    [26] D. Lesnic, P. J. Heggs, A decomposition method for power-law fin-type problems, Int. Commun. Heat Mass Transfer, 31 (2004), 673–682. https://doi.org/10.1016/S0735-1933(04)00054-5 doi: 10.1016/S0735-1933(04)00054-5
    [27] R. Das, B. Kundu, Prediction of heat-generation and electromagnetic parameters from temperature response in porous fins, J. Thermophys. Heat Transfer, 35 (2021), 761–769. https://doi.org/10.2514/1.T6224 doi: 10.2514/1.T6224
    [28] R. Das, B. Kundu, Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information, Int. Commun. Heat Mass Transfer, 127 (2021), 105497. https://doi.org/10.1016/j.icheatmasstransfer.2021.105497 doi: 10.1016/j.icheatmasstransfer.2021.105497
    [29] D. Bhanja, B. Kundu, Thermal analysis of a constructal T-shaped porous fin with radiation effects, Int. J. Refrig., 31 (2011), 337–352. https://doi.org/10.1016/j.ijrefrig.2011.04.003 doi: 10.1016/j.ijrefrig.2011.04.003
    [30] B. Kundu, D. Bhanja, An analytical prediction for performance and optimum design analysis of porous fins, Int. J. Refrig., 31 (2011), 1483–1496. https://doi.org/10.1016/j.ijrefrig.2010.06.011 doi: 10.1016/j.ijrefrig.2010.06.011
    [31] R. Das, B. Kundu, Prediction of heat generation in a porous fin from surface temperature, J. Thermophys. Heat Transfer, 31 (2017), 781–790. https://doi.org/10.2514/1.T5098 doi: 10.2514/1.T5098
    [32] R. Das, Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin, Energy Convers. Manage., 87 (2014), 96–106. https://doi.org/10.1016/j.enconman.2014.06.096 doi: 10.1016/j.enconman.2014.06.096
    [33] R. Das, D. K. Prasad. Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm, Swarm Evol. Comput., 23 (2015), 27–39. https://doi.org/10.1016/j.swevo.2015.03.001
    [34] B. Kundu, S. J. Yook, An accurate approach for thermal analysis of porous longitudinal, spine and radial fins with all nonlinearity effects-analytical and unified assessment, Appl. Math. Comput., 402 (2021), 126124. https://doi.org/10.1016/j.amc.2021.126124 doi: 10.1016/j.amc.2021.126124
    [35] G. A. Oguntala, R. A. Abd-Alhameed, G. M. Sobamowo, N. Eya, Effects of particles deposition on thermal performance of a convective-radiative heat sink porous fin of an electronic component, Therm. Sci. Eng. Prog., 6 (2018), 177–185. https://doi.org/10.1016/j.tsep.2017.10.019
    [36] M. A. Vatanparast, S. Hossainpour, A. Keyhani-Asl, S. Forouzi, Numerical investigation of total entropy generation in a rectangular channel with staggered semi-porous fins, Int. Commun. Heat Mass Transfer, 111 (2020), 104446. https://doi.org/10.1016/j.icheatmasstransfer.2019.104446 doi: 10.1016/j.icheatmasstransfer.2019.104446
    [37] M. Turkyilmazoglu, Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties, Int. J. Therm. Sci., 55 (2012), 69–79. https://doi.org/10.1016/j.ijthermalsci.2011.12.019 doi: 10.1016/j.ijthermalsci.2011.12.019
    [38] Z. U. Din, A. Ali, G. Zaman, Entropy generation in moving exponential porous fins with natural convection, radiation and internal heat generation, Arch. Appl. Mech., 92 (2022), 933–944. https://doi.org/10.1007/s00419-021-02081-2 doi: 10.1007/s00419-021-02081-2
    [39] Z. U. Din, A. Ali, M. D. la Sen, G. Zaman, Entropy generation from convective-radiative moving exponential porous fins with variable thermal conductivity and internal heat generations, Sci. Rep., 12 (2022), 1791. https://doi.org/10.1038/s41598-022-05507-1
    [40] M. Hatami, A. Hasanpour, D. D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation, Energy Convers. Manage., 74 (2013), 9–16. https://doi.org/10.1016/j.enconman.2013.04.034 doi: 10.1016/j.enconman.2013.04.034
    [41] M. Hatami, D. D. Ganji, Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method, Energy Convers. Manage., 78 (2014), 347–358. https://doi.org/10.1016/j.enconman.2013.10.063 doi: 10.1016/j.enconman.2013.10.063
    [42] M. Turkyilmazoglu, Thermal performance of optimum exponential fin profiles subjected to a temperature jump, Int. J. Numer. Methods Heat Fluid Flow, 32 (2021), 1002–1011. https://doi.org/10.1108/HFF-02-2021-0132 doi: 10.1108/HFF-02-2021-0132
    [43] A. R. A. Khaled, Thermal characterizations of exponential fin systems, Math. Probl. Eng., (2010), 765729. https://doi.org/10.1155/2010/765729
    [44] M. F. Najafabadi, H. T. Rostami, K. Hosseinzadeh, D. D. Ganji, Thermal analysis of a moving fin using the radial basis function approximation, Heat Transfer, 50 (2021), 7553–7567. https://doi.org/10.1002/htj.22242 doi: 10.1002/htj.22242
    [45] S. Hosseinzadeh, K. Hosseinzadeh, A. Hasibi, D. D. Ganji, Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections, Case Stud. Therm. Eng., 30 (2022), 101757. https://doi.org/10.1016/j.csite.2022.101757 doi: 10.1016/j.csite.2022.101757
    [46] M. A. E. Moghaddam, M. R. H. S. Abandani, K. Hosseinzadeh, M. B. Shafii, D. D. Ganji, Metal foam and fin implementation into a triple concentric tube heat exchanger over melting evolution, Theor. Appl. Mech. Lett., (2022), 100332. https://doi.org/10.1016/j.taml.2022.100332
    [47] B. Jalili, N. Aghaee, P. Jalili, D. D. Ganji, Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid, Case Stud. Therm., (2022), 102086. https://doi.org/10.1016/j.csite.2022.102086
    [48] B. Jalili, S. Sadighi, P. Jalili, D. D. Ganji, Characteristics of ferrofluid flow over a stretching sheet with suction and injection, Case Stud. Therm., 14 (2019), 100470. https://doi.org/10.1016/j.csite.2022.102086 doi: 10.1016/j.csite.2022.102086
    [49] B. Jalili, S. Sadighi, P. Jalili, D. D. Ganji, Effect of magnetic and boundary parameters on flow characteristics analysis of micropolar ferrofluid through the shrinking sheet with effective thermal conductivity, Chin. J. Phys., 71 (2021), 136–150. https://doi.org/10.1016/j.cjph.2020.02.034 doi: 10.1016/j.cjph.2020.02.034
    [50] P. Jalili, D. D. Ganji, B. Jalili, D. D. Ganji, Evaluation of electro-osmotic flow in a nanochannel via semi-analytical method, Therm. Sci., 16 (2012), 1297–1302. http://DOI:10.2298/TSCI1205297J doi: 10.2298/TSCI1205297J
    [51] M. Turkyilmazoglu, Efficiency of heat and mass transfer in fully wet porous fins: exponential fins versus straight fins, Int. J. Refrig., 46 (2014), 158–164. https://doi.org/10.1016/j.ijrefrig.2014.04.011 doi: 10.1016/j.ijrefrig.2014.04.011
    [52] B. Kundu, K. S. Lee, Analytic solution for heat transfer of wet fins on account of all nonlinearity effects, Energy, 41 (2012), 354–367. https://doi.org/10.1016/j.energy.2012.03.004 doi: 10.1016/j.energy.2012.03.004
    [53] R. das, K. T. Ooi, Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement, Energy Convers. Manage., 66 (2013), 211–219. https://doi.org/10.1016/j.enconman.2012.10.019 doi: 10.1016/j.enconman.2012.10.019
    [54] M. Torabi A. Aziz, K. Zhang, A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities, Energies, 51 (2013), 243–256. https://doi.org/10.1016/j.energy.2012.11.052 doi: 10.1016/j.energy.2012.11.052
  • This article has been cited by:

    1. Zhongxian Huang, Biderivations of the extended Schrödinger-Virasoro Lie algebra, 2023, 8, 2473-6988, 28808, 10.3934/math.20231476
    2. Ivan Kaygorodov, Abror Khudoyberdiyev, Zarina Shermatova, Transposed Poisson structures on not-finitely graded Witt-type algebras, 2025, 31, 1405-213X, 10.1007/s40590-024-00702-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2285) PDF downloads(64) Cited by(12)

Figures and Tables

Figures(11)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog