| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
The efficiency, temperature distribution, and temperature at the tip of straight rectangular, growing and decaying moving exponential fins are investigated in this article. The influence of internal heat generation, surface and surrounding temperatures, convection-conduction, Peclet number and radiation-conduction is studied numerically on the efficiency, temperature profile, and temperature at the tip of the fin. Differential transform method is used to investigate the problem. It is revealed that thermal and thermo-geometric characteristics have a significant impact on the performance, temperature distribution, and temperature of the fin's tip.The results show that the temperature distribution of decaying exponential and rectangular fins is approximately 15 and 7% higher than growing exponential and rectangular fins respectively. It is estimated that the temperature distribution of the fin increases by approximately 6% when the porosity parameter is increased from 0.1 to 0.5. It is also observed that the decay exponential fin has better efficiency compared to growing exponential fin which offers significant advantages in mechanical engineering.
Citation: Zia Ud Din, Amir Ali, Zareen A. Khan, Gul Zaman. Heat transfer analysis: convective-radiative moving exponential porous fins with internal heat generation[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11491-11511. doi: 10.3934/mbe.2022535
[1] | Pengliang Xu, Xiaomin Tang . Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29(4): 2771-2789. doi: 10.3934/era.2021013 |
[2] | Yizheng Li, Dingguo Wang . Lie algebras with differential operators of any weights. Electronic Research Archive, 2023, 31(3): 1195-1211. doi: 10.3934/era.2023061 |
[3] | Wen Teng, Xiansheng Dai . Nonabelian embedding tensors on 3-Lie algebras and 3-Leibniz-Lie algebras. Electronic Research Archive, 2025, 33(3): 1367-1383. doi: 10.3934/era.2025063 |
[4] | Kailash C. Misra, Sutida Patlertsin, Suchada Pongprasert, Thitarie Rungratgasame . On derivations of Leibniz algebras. Electronic Research Archive, 2024, 32(7): 4715-4722. doi: 10.3934/era.2024214 |
[5] | Shanshan Liu, Abdenacer Makhlouf, Lina Song . The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras. Electronic Research Archive, 2022, 30(8): 2748-2773. doi: 10.3934/era.2022141 |
[6] | Hongliang Chang, Yin Chen, Runxuan Zhang . A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29(3): 2457-2473. doi: 10.3934/era.2020124 |
[7] | Margarida Camarinha . A natural 4th-order generalization of the geodesic problem. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157 |
[8] | Jinguo Jiang . Algebraic Schouten solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups. Electronic Research Archive, 2025, 33(1): 327-352. doi: 10.3934/era.2025017 |
[9] | Hongyan Guo . Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29(4): 2673-2685. doi: 10.3934/era.2021008 |
[10] | Ying Hou, Liangyun Chen, Keli Zheng . Super-bimodules and O-operators of Bihom-Jordan superalgebras. Electronic Research Archive, 2024, 32(10): 5717-5737. doi: 10.3934/era.2024264 |
The efficiency, temperature distribution, and temperature at the tip of straight rectangular, growing and decaying moving exponential fins are investigated in this article. The influence of internal heat generation, surface and surrounding temperatures, convection-conduction, Peclet number and radiation-conduction is studied numerically on the efficiency, temperature profile, and temperature at the tip of the fin. Differential transform method is used to investigate the problem. It is revealed that thermal and thermo-geometric characteristics have a significant impact on the performance, temperature distribution, and temperature of the fin's tip.The results show that the temperature distribution of decaying exponential and rectangular fins is approximately 15 and 7% higher than growing exponential and rectangular fins respectively. It is estimated that the temperature distribution of the fin increases by approximately 6% when the porosity parameter is increased from 0.1 to 0.5. It is also observed that the decay exponential fin has better efficiency compared to growing exponential fin which offers significant advantages in mechanical engineering.
The Schrödinger-Virasoro algebra is an infinite-dimensional Lie algebra that was introduced (see, e.g., [10]) in the context of non-equilibrium statistical physics. In [21], the author give a representation of the Schrödinger-Virasoro algebra by using vertex algebras, and introduced an extension of the Schrödinger-Virasoro algebra. To be precise, for
{Li,Hj,Ii|i∈Z,j∈ε+Z} |
and Lie brackets
[Lm,Ln]=(m−n)Lm+n,[Lm,Hn]=(12m−n)Hm+n,[Lm,In]=−nIm+n,[Hm,Hn]=(m−n)Im+n,[Hm,In]=[Im,In]=0. |
The Lie algebra
Post-Lie algebras were introduced around 2007 by B. Vallette [22], who found the structure in a purely operadic manner as the Koszul dual of a commutative trialgebra. Post-Lie algebras have arose the interest of a great many authors, see [4,5,12,13]. One of the most important problems in the study of post-Lie algebras is to find the post-Lie algebra structures on the (given) Lie algebras. In [13,18,20], the authors determined all post-Lie algebra structures on
In this paper, we shall study the graded post-Lie algebra structures on the Schrödinger-Virasoro algebra. We only study the twisted Schrödinger-Virasoro algebra
Throughout this paper, we denote by
The paper is organized as follows. In Section 2, we give general results on post-Lie algebras and some lemmas which will be used to our proof. In Section 3, we completely characterize the graded post-Lie algebra structures on Schrödinger-Virasoro algebra
We will give the essential definitions and results as follows.
Definition 2.1. A post-Lie algebra
[x,y]▹z=x▹(y▹z)−y▹(x▹z)−⟨x,y⟩▹z, | (1) |
x▹[y,z]=[x▹y,z]+[y,x▹z] | (2) |
for all
Suppose that
τ(x▹1y)=τ(x)▹2τ(y),∀x,y∈L. |
Remark 1. The left multiplications of the post-Lie algebra
Lemma 2.2. [15] Denote by
Der(S)=Inn(S)⊕CD1⊕CD2⊕CD3 |
where
D1(Ln)=0,D1(Hn)=Hn,D1(In)=2In,D2(Ln)=nIn,D2(Hn)=0,D2(In)=0,D3(Ln)=In,D3(Hn)=0,D3(In)=0. |
Since the Schrödinger-Virasoro algebra
Lm▹Ln=ϕ(m,n)Lm+n, | (3) |
Lm▹Hn=φ(m,n)Hm+n, | (4) |
Lm▹In=χ(m,n)Im+n, | (5) |
Hm▹Ln=ψ(m,n)Hm+n, | (6) |
Hm▹Hn=ξ(m,n)Im+n, | (7) |
Im▹Ln=θ(m,n)Im+n, | (8) |
Hm▹In=Im▹Hn=Im▹In=0, | (9) |
for all
We start with the crucial lemma.
Lemma 3.1. There exists a graded post-Lie algebra structure on
ϕ(m,n)=(m−n)f(m), | (10) |
φ(m,n)=(m2−n)f(m)+δm,0μ, | (11) |
χ(m,n)=−nf(m)+2δm,0μ, | (12) |
ψ(m,n)=−(n2−m)h(m), | (13) |
ξ(m,n)=(m−n)h(m), | (14) |
θ(m,n)=mg(m)+δm,0na, | (15) |
(m−n)(f(m+n)(1+f(m)+f(n))−f(n)f(m))=0, | (16) |
(m−n)δm+n,0μ(1+f(m)+f(n))=0, | (17) |
(m2−n)(h(m+n)(1+f(m)+h(n))−f(m)h(n))=0, | (18) |
nδm+n,0a(1+f(m)+g(n))=0, | (19) |
n(m+n)(g(m+n)(1+f(m)+g(n))−f(m)g(n)) =δn,0m2a(f(m)−g(m)), | (20) |
(m−n)δm+n,0a(1+h(m)+h(n))=0, | (21) |
(m−n)(g(m+n)(1+h(m)+h(n))−h(m)h(n))=0. | (22) |
Proof. Suppose that there exists a graded post-Lie algebra structure satisfying (3)-(9) on
x▹y=(adψ(x)+α(x)D1+β(x)D2+γ(x)D3)(y)=[ψ(x),y]+α(x)D1(y)+β(x)D2(y)+γ(x)D3(y) |
where
Lm▹Ln=[ψ(Lm),Ln]+β(Lm)nIn+γ(Lm)In=ϕ(m,n)Lm+n, | (23) |
Lm▹Hn=[ψ(Lm),Hn]+α(Lm)Hn=φ(m,n)Hm+n, | (24) |
Lm▹In=[ψ(Lm),In]+α(Lm)2In=χ(m,n)Im+n, | (25) |
Hm▹Ln=[ψ(Hm),Ln]+β(Hm)nIn+γ(Hm)In=ψ(m,n)Hm+n, | (26) |
Hm▹Hn=[ψ(Hm),Hn]+α(Hm)Hn=ξ(m,n)Im+n, | (27) |
Hm▹In=[ψ(Hm),In]+α(Hm)2In=0, | (28) |
Im▹Ln=[ψ(Im),Ln]+β(Im)nIn+γ(Im)In=θ(m,n)Im+n, | (29) |
Im▹Hn=[ψ(Im),Hn]+α(Im)Hn=0, | (30) |
Im▹In=[ψ(Im),In]+α(Im)2In=0. | (31) |
Let
ψ(Lm)=∑i∈Za(m)iLi+∑i∈Zb(m)iHi+∑i∈Zc(m)iIi,ψ(Hm)=∑i∈Zd(m)iLi+∑i∈Ze(m)iHi+∑i∈Zf(m)iIi,ψ(Im)=∑i∈Zg(m)iLi+∑i∈Zh(m)iHi+∑i∈Zx(m)iIi |
where
The "if'' part is a direct checking. The proof is completed.
Lemma 3.2. Let
g(n),h(n)∈{0,−1}for everyn≠0. | (32) |
Proof. By letting
Lemma 3.3. Let
g(Z)=h(Z)=0org(Z)=h(Z)=−1. |
Proof. Since
a(1+g(−1))=0. | (33) |
By letting
(m2−n)(h(m+n)(1+h(n))=0, | (34) |
n(m+n)(g(m+n)(1+g(n))=0, | (35) |
(m−n)(g(m+n)−h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. | (36) |
We now prove the following four claims:
Claim 1. If
By (34) with
Claim 2. If
By (34) with
Claim 3. If
By (35) with
Claim 4. If
By (35) with
Now we consider the values of
Case i. If
Case ii. If
Case iii. If
Case iv. If
Lemma 3.4. Let
(i)
(ii)
(iii)
Proof. By
h(m+n)(h(n)+1)=0 if m⩽1,m2−n≠0, | (37) |
g(m+n)(g(n)+1)=0 if m⩽1,n≠0,m+n≠0, | (38) |
g(m+n)(1+h(m)+h(n))=h(m)h(n) if m≠n. | (39) |
We first prove the following six claims:
Claim 1. If
By (37) with
Claim 2. If
By (37) with
Claim 3. If
By (37) with
Claim 4. If
By (37) with
Next, similar to Claims 1 and 3, we from (38) obtain the following claims.
Claim 5. If
Claim 6. If
Now we discuss the values of
Case i. When
By Claim 1 we have
Case ii. When
By Claim 2 we have
Case iii. When
By Claims 3 and 4 we have
It is easy to check that the values of
Lemma 3.5. Let
(i)
(ii)
(iii)
for some
(iv)
Proof. Take
h(0)(1+f(−n)+h(n))=f(−n)h(n), for all n≠0, | (40) |
a(1+f(−n)+g(n))=0, for all n≠0, | (41) |
a(1+h(−n)+h(n))=0, for all n≠0, | (42) |
g(0)(1+h(−n)+h(n))=h(−n)h(n), for all n≠0. | (43) |
Note that
h(n)(h(m+n)+1)=0 for all m>0,m2−n≠0; | (44) |
h(m+n)(h(n)+1)=0 for all m<0,m2−n≠0; | (45) |
g(n)(g(m+n)+1)=0 for all m>0,n≠0,m+n≠0; | (46) |
g(m+n)(g(n)+1)=0 for all m<0,n≠0,m+n≠0; | (47) |
g(m+n)(1+h(m)+h(n))=h(m)h(n) for all m≠n. | (48) |
For any
Claim 1. If
In fact, by (44) with
Claim 2. If
This proof is similar to Claim 1 by using (44) and (45). Also, similar to Claims 1 and 2, by (46) and (47) we can obtain the following two claims:
Claim 3. If
Claim 4. If
According to (32), by Claims 1 and 2,
(1)
(2)
(3)
(4)
In view of the above result, the next proof will be divided into the following cases.
Case i. When
By taking
Case ii. When
By taking
Case iii. When
By (48) we see that
Case iv. When
Note that
Lemma 3.6. Let
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
Proof. The proof of the "if" direction can be directly verified. We now prove the "only if" direction. In view of
| |
| |
| |
| |
| |
| |
| |
| |
|
When
When
When
Lemma 3.7. Let (P(ϕi,φi,χi,ψi,ξi,θi),▹i), i=1,2 be two algebras with the same linear space as S and equipped with C-bilinear products x▹iy such that
Lm▹iLn=ϕi(m,n)Lm+n,Lm▹iHn=φi(m,n)Hm+n,Lm▹iIn=χi(m,n)Im+n,Hm▹iLn=ψi(m,n)Hm+n,Hm▹iHn=ξi(m,n)Im+n,Im▹iLn=θi(m,n)Im+n,Hm▹iIn=Im▹iHn=Im▹iIn=0 |
for all m,n∈Z, where ϕi,φi,χi,ψi,ξi,θi, i=1,2 are complex-valued functions on Z×Z. Furthermore, let τ:P(ϕ1,φ1,χ1,ψ1,ξ1,θ1)→P(ϕ2,φ2,χ2,ψ2,ξ2,θ2) be a linear map determined by
τ(Lm)=−L−m,τ(Hm)=−H−m,τ(Im)=−I−m |
for all
{ϕ2(m,n)=−ϕ1(−m,−n);φ2(m,n)=−φ1(−m,−n);χ2(m,n)=−χ1(−m,−n);ψ2(m,n)=−ψ1(−m,−n);ξ2(m,n)=−ξ1(−m,−n);θ2(m,n)=−θ1(−m,−n). | (49) |
Proof. Clearly,
τ(Lm▹iLn)=−ϕi(m,n)L−(m+n),τ(Lm▹iHn)=−φi(m,n)H−(m+n),τ(Lm▹iIn)=−χi(m,n)I−(m+n),τ(Hm▹iLn)=−ψi(m,n)H−(m+n),τ(Hm▹iHn)=−ξi(m,n)I−(m+n),τ(Im▹iLn)=−θi(m,n)I−(m+n) |
for
The remainder is to prove that
τ(Lm▹1Ln)=−ϕ1(m,n)L−(m+n)=ϕ2(−m,−n)L−(m+n)=τ(Lm)▹2τ(Ln),τ(Lm▹1Hn)=−φ1(m,n)H−(m+n)=φ2(−m,−n)H−(m+n)=τ(Lm)▹2τ(Hn),τ(Lm▹1In)=−χ1(m,n)I−(m+n)=χ2(−m,−n)I−(m+n)=τ(Lm)▹2τ(In),τ(Hm▹1Ln)=−ψ1(m,n)H−(m+n)=ψ2(−m,−n)H−(m+n)=τ(Hm)▹2τ(Ln),τ(Hm▹1Hn)=−φ1(m,n)I−(m+n)=φ2(−m,−n)I−(m+n)=τ(Hm)▹2τ(Hn), |
τ(Im▹1Ln)=−θ1(m,n)I−(m+n)=ϕ2(−m,−n)I−(m+n)=τ(Im)▹2τ(Ln) |
and
Theorem 3.8. A graded post-Lie algebra structure on
where
Proof. Suppose that
Conversely, every type of the
Finally, by Lemma 3.7 with maps
The Rota-Baxter algebra was introduced by the mathematician Glen E. Baxter [2] in 1960 in his probability study, and was popularized mainly by the work of Rota [G. Rota1, G. Rota2] and his school. Recently, the Rota-Baxter algebra relation were introduced to solve certain analytic and combinatorial problem and then applied to many fields in mathematics and mathematical physics (see [6,7,19,23] and the references therein). Now let us recall the definition of Rota-Baxter operator.
Definition 4.1. Let
[R(x),R(y)]=R([R(x),y]+[x,R(y)])+λR([x,y]),∀x,y∈L. | (50) |
Note that if
In this section, we mainly consider the homogeneous Rota-Baxter operator
R(Lm)=f(m)Lm, R(Hm)=h(m)Hm, R(Im)=g(m)Im | (51) |
for all
Lemma 4.2. (see [1]) Let
Theorem 4.3. A homogeneous Rote-Baxrer operator
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
for all
Proof. In view of Lemma 4.2, if we define a new operation
Lm▹Ln=[R(Lm),Ln]=(m−n)f(m)Lm+n, | (52) |
Lm▹Hn=[R(Lm),Hn]=(m2−n)f(m)Hm+n, | (53) |
Lm▹In=[R(Lm),In]=−nf(m)Im+n, | (54) |
Hm▹Ln=[R(Hm),Ln]=−(n2−m)h(m)Hm+n, | (55) |
Hm▹Hn=[R(Hm),Hn]=(m−n)h(m)Im+n, | (56) |
Im▹Ln=[R(Im),Ln]=mg(m)Im+n | (57) |
and
A similar discussion to Lemma 3.1 gives
(m−n)(f(m+n)−f(n)f(m)+f(m)f(m+n)+f(n)f(m+n))=0,(m2−n)(h(m+n)−f(m)h(n)+f(m)h(m+n)+h(n)h(m+n))=0,n(m+n)(g(m+n)(1+f(m)+g(n))−f(m)g(n))=0,(m−n)(g(m+n)−h(m)h(n)+h(m)g(m+n)+h(n)g(m+n))=0. |
From this we conclude that Equations (10)-(22) hold with
The natural question is: how we can characterize the Rota-Baxter operators of weight zero on the Schrödinger-Virasoro
Definition 4.4. A pre-Lie algebra
(x▹y)▹z−x▹(y▹z)=(y▹x)▹z−y▹(x▹z),∀x,y,z∈A. | (58) |
As a parallel result of Lemma 4.2, one has the following conclusion.
Proposition 1. (see [8]) Let
Using a similar method on classification of Rota-Baxter operators of weight
We would like to express our sincere thanks to the anonymous referees for their careful reading and valuable comments towards the improvement of this article.
[1] |
M. Hatami, D. D. Ganji, M. Gorji-Bandpy, Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery, Energy Convers. Manage., 97 (2014), 26–41. https://doi.org/10.1016/j.enconman.2015.03.032 doi: 10.1016/j.enconman.2015.03.032
![]() |
[2] |
M. Ghazikhani, M. Hatami, B. Safari, The effect of alcoholic fuel additives on exergy parameters and emissions in a two-stroke gasoline engine, Arab. J. Sci. Eng., 39 (2014), 2117–2125. https://doi.org/10.1007/s13369-013-0738-3 doi: 10.1007/s13369-013-0738-3
![]() |
[3] |
M. Hatami, D. D. Ganji, Thermal performance of circular convective-radiative porous fins with different section shapes and materials, Energy Convers. Manage., 76 (2013), 185–193. https://doi.org/10.1016/j.enconman.2013.07.040 doi: 10.1016/j.enconman.2013.07.040
![]() |
[4] |
M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Transfer, 116 (2018), 346–351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091 doi: 10.1016/j.ijheatmasstransfer.2017.08.091
![]() |
[5] |
E. Cuce, P. M. Cuce, Homotopy perturbation method for temperature distribution, fin efficiency and fin effectiveness of convective straight fins with temperature-dependent thermal conductivity, J. Mech. Eng. Sci., 227 (2013), 1754–1760. https://doi.org/10.1177/0954406212469579 doi: 10.1177/0954406212469579
![]() |
[6] | A. Y. Cengel, Introduction to Thermodynamics and Heat Transfer, Second Edition, McGraw-Hill Companies, 2008. |
[7] |
S. A. Atouei, K. Hosseinzadeh, M. Hatamic, S. E. Ghasemid, S. A. R. Sahebi, D. D. Ganji, Heat transfer study on convective-radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods, Appl. Therm. Eng., 89 (2015), 299–305. https://doi.org/10.1016/j.applthermaleng.2015.05.084 doi: 10.1016/j.applthermaleng.2015.05.084
![]() |
[8] |
K. Hosseinzadeh, E. Montazer, M. B. Shafii, A. R. D. Ganji, Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles, J. Energy Storage, 34 (2021), 102177. https://doi.org/10.1016/j.est.2020.102177 doi: 10.1016/j.est.2020.102177
![]() |
[9] | M. Hatami, D. D. Ganji, Optimization of the longitudinal fins with different geometries for increasing the heat transfer, in ISER 10th International Conference, Kuala Lumpur, Malaysia, 2015. |
[10] |
M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Transfer, 116 (2018), 346–351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091 doi: 10.1016/j.ijheatmasstransfer.2017.08.091
![]() |
[11] |
B. Kundu, D. Bhanja, K. S. Lee, A model on the basis of analytics for computing maximum heat transfer in porous fins, Int. J. Heat Mass Transfer, 55 (2012), 7611–7622. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.069 doi: 10.1016/j.ijheatmasstransfer.2012.07.069
![]() |
[12] | Z. Din, A. Ali, S. Ullah, G. Zaman, Investigation of heat transfer from convective and radiative stretching/shrinking rectangular fins, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/1026698 |
[13] |
W. Ahmad, K. S. Syed, M. Ishaq, A. Hassan, Z. Iqbal, Numerical study of conjugate heat transfer in a double-pipe with exponential fins using DGFEM, Appl. Therm. Eng., 111 (2017), 1184–1201. https://doi.org/10.1016/j.applthermaleng.2016.09.171 doi: 10.1016/j.applthermaleng.2016.09.171
![]() |
[14] |
M. M. Rashidi, T. Hayat, T. Keimanesh, H. Yousefian, A study on heat transfer in a second-grade fluid through a porous medium with the modified differential transform method, Heat Transfer Asian Res., 42 (2013), 31–45. https://doi.org/10.1002/htj.21030 doi: 10.1002/htj.21030
![]() |
[15] | E. Erfani, M. M. Rashidi, A. B. Parsa. The modified differential transform method for solving off-centered stagnation flow toward a rotating disc, Int. J. Comput. Methods, 7 (2010), 655–670. https://doi.org/10.1142/S0219876210002404 |
[16] |
Y. Huang, X. Li, Exact and approximate solutions of convective-radiative fins with temperature-dependent thermal conductivity using integral equation method, Int. J. Heat Mass Transfer, 150 (2020), 119303. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119303 doi: 10.1016/j.ijheatmasstransfer.2019.119303
![]() |
[17] | M. M. Rashidi, E. Erfani, New analytical method for solving Burgers and nonlinear heat transfer equations and comparison with HAM, Comput. Phys. Commun., 180 (2009), 1539–1544. |
[18] |
S. Panda, A. Bhowmik, R. Das, R. Repaka, S. C. Martha, Application of Homotopy analysis method and inverse solution of a rectangular wet fin, Energy Convers. Manage., 80 (2014), 303–318. https://doi.org/10.1016/j.cpc.2009.04.009 doi: 10.1016/j.cpc.2009.04.009
![]() |
[19] |
R. K. Singla, R. Das, Application of decomposition method and inverse prediction of parameters in a moving fin, Energy Convers. Manage., 84 (2014), 268–281. https://doi.org/10.1016/j.enconman.2014.04.045 doi: 10.1016/j.enconman.2014.04.045
![]() |
[20] |
C. Y. Zhang, X. F. Li, Temperature distribution of conductive-convective-radiative fins with temperature-dependent thermal conductivity, Int. Comm. Heat Mass Transfer, 117 (2020), 104799. https://doi.org/10.1016/j.icheatmasstransfer.2020.104799 doi: 10.1016/j.icheatmasstransfer.2020.104799
![]() |
[21] |
S. W. Sun, X. F. Li, Exact solution of the nonlinear fin problem with exponentially temperature-dependent thermal conductivity and heat transfer coefficient, Pramana J. Phys., 94 (2020), 1–10. https://doi.org/10.1007/s12043-020-01971-4 doi: 10.1007/s12043-020-01971-4
![]() |
[22] |
A. K. Asl, S. Hossainpour, M. M. Rashidi, M. A. Sheremet, Z. Yang, Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure, Int. J. Heat Mass Transfer, 133 (2019), 729–744. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.156 doi: 10.1016/j.ijheatmasstransfer.2018.12.156
![]() |
[23] |
S. Maalej, A. Zayoud, I. Abdelaziz, I. Saad, M. C. Zaghdoudi, Thermal performance of finned heat pipe system for Central Processing Unit cooling, Energy Convers. Manage., 218 (2020), 112977. https://doi.org/10.1016/j.enconman.2020.112977 doi: 10.1016/j.enconman.2020.112977
![]() |
[24] |
A. A. Joneidi, D. D. Ganji, M. Babaelahi, Differential Transformation Method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity, Int. Commun. Heat Mass Transfer, 36 (2009), 757–762. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.020 doi: 10.1016/j.icheatmasstransfer.2009.03.020
![]() |
[25] |
C. H. Chiu, C. K. Chen, Applications of Adomian decomposition procedure to the analysis of convective radiative fins, J. Heat Transfer, 125 (2003), 312–316. https://doi.org/10.1115/1.1532012 doi: 10.1115/1.1532012
![]() |
[26] |
D. Lesnic, P. J. Heggs, A decomposition method for power-law fin-type problems, Int. Commun. Heat Mass Transfer, 31 (2004), 673–682. https://doi.org/10.1016/S0735-1933(04)00054-5 doi: 10.1016/S0735-1933(04)00054-5
![]() |
[27] |
R. Das, B. Kundu, Prediction of heat-generation and electromagnetic parameters from temperature response in porous fins, J. Thermophys. Heat Transfer, 35 (2021), 761–769. https://doi.org/10.2514/1.T6224 doi: 10.2514/1.T6224
![]() |
[28] |
R. Das, B. Kundu, Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information, Int. Commun. Heat Mass Transfer, 127 (2021), 105497. https://doi.org/10.1016/j.icheatmasstransfer.2021.105497 doi: 10.1016/j.icheatmasstransfer.2021.105497
![]() |
[29] |
D. Bhanja, B. Kundu, Thermal analysis of a constructal T-shaped porous fin with radiation effects, Int. J. Refrig., 31 (2011), 337–352. https://doi.org/10.1016/j.ijrefrig.2011.04.003 doi: 10.1016/j.ijrefrig.2011.04.003
![]() |
[30] |
B. Kundu, D. Bhanja, An analytical prediction for performance and optimum design analysis of porous fins, Int. J. Refrig., 31 (2011), 1483–1496. https://doi.org/10.1016/j.ijrefrig.2010.06.011 doi: 10.1016/j.ijrefrig.2010.06.011
![]() |
[31] |
R. Das, B. Kundu, Prediction of heat generation in a porous fin from surface temperature, J. Thermophys. Heat Transfer, 31 (2017), 781–790. https://doi.org/10.2514/1.T5098 doi: 10.2514/1.T5098
![]() |
[32] |
R. Das, Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin, Energy Convers. Manage., 87 (2014), 96–106. https://doi.org/10.1016/j.enconman.2014.06.096 doi: 10.1016/j.enconman.2014.06.096
![]() |
[33] | R. Das, D. K. Prasad. Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm, Swarm Evol. Comput., 23 (2015), 27–39. https://doi.org/10.1016/j.swevo.2015.03.001 |
[34] |
B. Kundu, S. J. Yook, An accurate approach for thermal analysis of porous longitudinal, spine and radial fins with all nonlinearity effects-analytical and unified assessment, Appl. Math. Comput., 402 (2021), 126124. https://doi.org/10.1016/j.amc.2021.126124 doi: 10.1016/j.amc.2021.126124
![]() |
[35] | G. A. Oguntala, R. A. Abd-Alhameed, G. M. Sobamowo, N. Eya, Effects of particles deposition on thermal performance of a convective-radiative heat sink porous fin of an electronic component, Therm. Sci. Eng. Prog., 6 (2018), 177–185. https://doi.org/10.1016/j.tsep.2017.10.019 |
[36] |
M. A. Vatanparast, S. Hossainpour, A. Keyhani-Asl, S. Forouzi, Numerical investigation of total entropy generation in a rectangular channel with staggered semi-porous fins, Int. Commun. Heat Mass Transfer, 111 (2020), 104446. https://doi.org/10.1016/j.icheatmasstransfer.2019.104446 doi: 10.1016/j.icheatmasstransfer.2019.104446
![]() |
[37] |
M. Turkyilmazoglu, Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties, Int. J. Therm. Sci., 55 (2012), 69–79. https://doi.org/10.1016/j.ijthermalsci.2011.12.019 doi: 10.1016/j.ijthermalsci.2011.12.019
![]() |
[38] |
Z. U. Din, A. Ali, G. Zaman, Entropy generation in moving exponential porous fins with natural convection, radiation and internal heat generation, Arch. Appl. Mech., 92 (2022), 933–944. https://doi.org/10.1007/s00419-021-02081-2 doi: 10.1007/s00419-021-02081-2
![]() |
[39] | Z. U. Din, A. Ali, M. D. la Sen, G. Zaman, Entropy generation from convective-radiative moving exponential porous fins with variable thermal conductivity and internal heat generations, Sci. Rep., 12 (2022), 1791. https://doi.org/10.1038/s41598-022-05507-1 |
[40] |
M. Hatami, A. Hasanpour, D. D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation, Energy Convers. Manage., 74 (2013), 9–16. https://doi.org/10.1016/j.enconman.2013.04.034 doi: 10.1016/j.enconman.2013.04.034
![]() |
[41] |
M. Hatami, D. D. Ganji, Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method, Energy Convers. Manage., 78 (2014), 347–358. https://doi.org/10.1016/j.enconman.2013.10.063 doi: 10.1016/j.enconman.2013.10.063
![]() |
[42] |
M. Turkyilmazoglu, Thermal performance of optimum exponential fin profiles subjected to a temperature jump, Int. J. Numer. Methods Heat Fluid Flow, 32 (2021), 1002–1011. https://doi.org/10.1108/HFF-02-2021-0132 doi: 10.1108/HFF-02-2021-0132
![]() |
[43] | A. R. A. Khaled, Thermal characterizations of exponential fin systems, Math. Probl. Eng., (2010), 765729. https://doi.org/10.1155/2010/765729 |
[44] |
M. F. Najafabadi, H. T. Rostami, K. Hosseinzadeh, D. D. Ganji, Thermal analysis of a moving fin using the radial basis function approximation, Heat Transfer, 50 (2021), 7553–7567. https://doi.org/10.1002/htj.22242 doi: 10.1002/htj.22242
![]() |
[45] |
S. Hosseinzadeh, K. Hosseinzadeh, A. Hasibi, D. D. Ganji, Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections, Case Stud. Therm. Eng., 30 (2022), 101757. https://doi.org/10.1016/j.csite.2022.101757 doi: 10.1016/j.csite.2022.101757
![]() |
[46] | M. A. E. Moghaddam, M. R. H. S. Abandani, K. Hosseinzadeh, M. B. Shafii, D. D. Ganji, Metal foam and fin implementation into a triple concentric tube heat exchanger over melting evolution, Theor. Appl. Mech. Lett., (2022), 100332. https://doi.org/10.1016/j.taml.2022.100332 |
[47] | B. Jalili, N. Aghaee, P. Jalili, D. D. Ganji, Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid, Case Stud. Therm., (2022), 102086. https://doi.org/10.1016/j.csite.2022.102086 |
[48] |
B. Jalili, S. Sadighi, P. Jalili, D. D. Ganji, Characteristics of ferrofluid flow over a stretching sheet with suction and injection, Case Stud. Therm., 14 (2019), 100470. https://doi.org/10.1016/j.csite.2022.102086 doi: 10.1016/j.csite.2022.102086
![]() |
[49] |
B. Jalili, S. Sadighi, P. Jalili, D. D. Ganji, Effect of magnetic and boundary parameters on flow characteristics analysis of micropolar ferrofluid through the shrinking sheet with effective thermal conductivity, Chin. J. Phys., 71 (2021), 136–150. https://doi.org/10.1016/j.cjph.2020.02.034 doi: 10.1016/j.cjph.2020.02.034
![]() |
[50] |
P. Jalili, D. D. Ganji, B. Jalili, D. D. Ganji, Evaluation of electro-osmotic flow in a nanochannel via semi-analytical method, Therm. Sci., 16 (2012), 1297–1302. http://DOI:10.2298/TSCI1205297J doi: 10.2298/TSCI1205297J
![]() |
[51] |
M. Turkyilmazoglu, Efficiency of heat and mass transfer in fully wet porous fins: exponential fins versus straight fins, Int. J. Refrig., 46 (2014), 158–164. https://doi.org/10.1016/j.ijrefrig.2014.04.011 doi: 10.1016/j.ijrefrig.2014.04.011
![]() |
[52] |
B. Kundu, K. S. Lee, Analytic solution for heat transfer of wet fins on account of all nonlinearity effects, Energy, 41 (2012), 354–367. https://doi.org/10.1016/j.energy.2012.03.004 doi: 10.1016/j.energy.2012.03.004
![]() |
[53] |
R. das, K. T. Ooi, Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement, Energy Convers. Manage., 66 (2013), 211–219. https://doi.org/10.1016/j.enconman.2012.10.019 doi: 10.1016/j.enconman.2012.10.019
![]() |
[54] |
M. Torabi A. Aziz, K. Zhang, A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities, Energies, 51 (2013), 243–256. https://doi.org/10.1016/j.energy.2012.11.052 doi: 10.1016/j.energy.2012.11.052
![]() |
1. | Zhongxian Huang, Biderivations of the extended Schrödinger-Virasoro Lie algebra, 2023, 8, 2473-6988, 28808, 10.3934/math.20231476 | |
2. | Ivan Kaygorodov, Abror Khudoyberdiyev, Zarina Shermatova, Transposed Poisson structures on not-finitely graded Witt-type algebras, 2025, 31, 1405-213X, 10.1007/s40590-024-00702-8 |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
| |
| |
| |
| |
| |
| |
| |
| |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| |||
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
| |||
| | | |
| | | |
| | | |
|
| |
| |
| |
| |
| |
| |
| |
| |
|