New results relating to the maximum and minimum degree spectral radii of generalized splitting and shadow graphs have been constructed on the basis of any regular graph, referred as base graph. In particular, we establish the relations of extreme degree spectral radii of generalized splitting and shadow graphs of any regular graph.
Citation: Xiujun Zhang, Ahmad Bilal, M. Mobeen Munir, Hafiz Mutte ur Rehman. Maximum degree and minimum degree spectral radii of some graph operations[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10108-10121. doi: 10.3934/mbe.2022473
[1] | Mashael Maashi, Mohammed Abdullah Al-Hagery, Mohammed Rizwanullah, Azza Elneil Osman . Deep convolutional neural network-based Leveraging Lion Swarm Optimizer for gesture recognition and classification. AIMS Mathematics, 2024, 9(4): 9380-9393. doi: 10.3934/math.2024457 |
[2] | Simone Fiori . Coordinate-free Lie-group-based modeling and simulation of a submersible vehicle. AIMS Mathematics, 2024, 9(4): 10157-10184. doi: 10.3934/math.2024497 |
[3] | Youseef Alotaibi, Veera Ankalu. Vuyyuru . Electroencephalogram based face emotion recognition using multimodal fusion and 1-D convolution neural network (ID-CNN) classifier. AIMS Mathematics, 2023, 8(10): 22984-23002. doi: 10.3934/math.20231169 |
[4] | Nouf Almutiben, Ryad Ghanam, G. Thompson, Edward L. Boone . Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center. AIMS Mathematics, 2024, 9(6): 14504-14524. doi: 10.3934/math.2024705 |
[5] | Baiying He, Siyu Gao . The nonisospectral integrable hierarchies of three generalized Lie algebras. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329 |
[6] | David Delphenich . The role of pseudo-hypersurfaces in non-holonomic motion. AIMS Mathematics, 2020, 5(5): 4793-4829. doi: 10.3934/math.2020307 |
[7] | Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327 |
[8] | Tamilvizhi Thanarajan, Youseef Alotaibi, Surendran Rajendran, Krishnaraj Nagappan . Improved wolf swarm optimization with deep-learning-based movement analysis and self-regulated human activity recognition. AIMS Mathematics, 2023, 8(5): 12520-12539. doi: 10.3934/math.2023629 |
[9] | He Yuan, Zhuo Liu . Lie n-centralizers of generalized matrix algebras. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747 |
[10] | Guangyu An, Xueli Zhang, Jun He, Wenhua Qian . Characterizations of local Lie derivations on von Neumann algebras. AIMS Mathematics, 2022, 7(5): 7519-7527. doi: 10.3934/math.2022422 |
New results relating to the maximum and minimum degree spectral radii of generalized splitting and shadow graphs have been constructed on the basis of any regular graph, referred as base graph. In particular, we establish the relations of extreme degree spectral radii of generalized splitting and shadow graphs of any regular graph.
In this paper we compare quenched stochastic two-scale convergence [38] with the notion of stochastic unfolding [30,19], which is equivalent to stochastic two-scale convergence in the mean [6]. In particular, we introduce the concept of stochastic two-scale Young measures to relate quenched stochastic two-scale limits with the mean limit and discuss examples of convex homogenization problems that can be treated with two-scale convergence in the mean, but not conveniently in the quenched setting of two-scale convergence.
Two-scale convergence has been introduced in [32,1,25] for homogenization problems (partial differential equations or variational problems) with periodic coefficients. The essence of two-scale convergence is that the two-scale limit of an oscillatory sequence captures oscillations that emerge along the sequence and that are to leading order periodic on a definite microscale, typically denoted by
In this paper we are interested in stochastic homogenization, i.e. problems with random coefficients with a stationary distribution. The first stochastic homogenization result has been obtained by Papanicolaou and Varadhan in [33] (and independently by Kozlov [23]) for linear, elliptic equations with stationary and ergodic random coefficients on
Eωε(u)=∫QV(τxεω,∇u(x))−f(x)u(x)dx |
where
Ehom(u)=∫QVhom(∇u(x))−f(x)u(x)dx, |
where
● In the mean setting, minimizers
● In the quenched setting, one studies the limiting behavior of a minimizer
Similarly, two variants of stochastic two-scale convergence have been introduced as generalizations of periodic two-scale convergence (for the sake of brevity, we restrict the following review to the Hilbert-space case
● In [6,2] the mean variant has been introduced as follows: We say that a sequence of random fields
limε→0∫Ω×Quε(ω,x)φ(τxεω,x)dP(ω)dx=∫Ω×Qu(ω,x)φ(ω,x)dP(ω)dx, | (1) |
for all admissible test functions
● More recently, Zhikov and Pyatnitskii introduced in [38] a quenched variant: We say that a sequence
limε→0∫Quε(x)φ(τxεω0,x)dx=∫Ω×Qu(ω,x)φ(ω,x)dP(ω)dx, |
for all admissible test functions
Similarly to the periodic case, stochastic two-scale convergence in the mean can be rephrased with help of a transformation operator, see [34,19,30], where the stochastic unfolding operator
Tεu(ω,x)=u(τ−xεω,x), | (2) |
has been introduced. As in the periodic case, it is a linear isometry and it turns out that for a bounded sequence
In the present paper we compare the different notions of stochastic two-scale convergence. Although the mean and quenched notion of two-scale convergence look quite similar, it is non-trivial to relate both. As a main result, we introduce stochastic two-scale Young measures as a tool to compare quenched and mean limits, see Theorem 3.12. The construction invokes a metric characterization of quenched stochastic two-scale convergence, which is a tool of independent interest, see Lemma 3.6. As an application we demonstrate how to lift a mean two-scale homogenization result to a quenched statement, see Section 4.3. Moreover, we present two examples that can only be conveniently treated with the mean notion of two-scale convergence. In the first example, see Section 4.1, the assumption of ergodicity is dropped (as it is natural in the context of periodic representative volume approximation schemes). In the second example we consider a model that invokes a mean field interaction in form of a variance-type regularization of a convex integral functional with degenerate growth, see Section 4.2.
Structure of the paper. In the following section we present the standard setting for stochastic homogenization. In Section 3 we provide the main properties of the stochastic unfolding method, present the most important facts about quenched two-scale convergence and present our results about Young measures. In Section 4 we present examples of stochastic homogenization and applications of the methods developed in this paper.
In the following we briefly recall the standard setting for stochastic homogenization. Throughout the entire paper we assume the following:
Assumption 2.1. Let
(i)(Group property).
(ii)(Measure preservation).
(iii)(Measurability).
We write
Lemma 2.2 (Stationary extension). Let
‖Sφ‖Lp(Ω×Q)=|Q|1p‖φ‖Lp(Ω). |
We say
every shift invariant A∈F (i.e. τxA=A for all x∈Rd) satisfies P(A)∈{0,1}. |
In this case the celebrated Birkhoff's ergodic theorem applies, which we recall in the following form:
Theorem 2.3(Birkhoff's ergodic Theorem [12,Theorem 10.2.II]). Let
limε→0∫QSφ(ω,xε)dx=|Q|⟨φ⟩. | (3) |
Furthermore, if
Stochastic gradient. For
Diφ=limh→0Uheiφ−φh, |
which we refer to as stochastic derivative.
Lppot(Ω):=¯R(D)⊂Lp(Ω)d | (4) |
the closure of the range of
Lpinv(Ω)={φ∈Lp(Ω):Uxφ=φfor all x∈Rd}, |
and denote by
⟨⋅⟩ is ergodic ⇔ Lpinv(Ω)≃R ⇔ Pinvf=⟨f⟩. |
Random fields. We introduce function spaces for functions defined on
Xa⊗Y:={n∑i=1φiηi:φi∈X,ηi∈Y,n∈N} |
in
Xa⊗Y:={n∑i=1φiηi:φi∈X,ηi∈Y,n∈N} |
in
In the following we first discuss two notions of stochastic two-scale convergence and their connection through Young measures. In particular, Section 3.1 is devoted to the introduction of the stochastic unfolding operator and its most important properties. In Section 3.2 we discuss quenched two-scale convergence and its properties. Section 3.3 presents the results about Young measures.
In the following we briefly introduce the stochastic unfolding operator and provide its main properties, for the proofs and detailed studies we refer to [19,30,31,34].
Lemma 3.1([19,Lemma 3.1]). Let
Tε:Lp(Ω×Q)→Lp(Ω×Q) |
such that
∀u∈Lp(Ω)a⊗Lp(Q):(Tεu)(ω,x)=u(τ−xεω,x)a.e.inΩ×Q. |
Moreover, its adjoint is the unique linear isometric isomorphism
Definition 3.2 (Unfolding and two-scale convergence in the mean). The operator
Tεuε→u weakly (strongly) in Lp(Ω×Q). |
In this case we write
Remark 1 (Equivalence to stochastic two-scale convergence in the mean). Stochastic two-scale convergence in the mean was introduced in [6]. In particular, it is said that a sequence of random fields
limε→0⟨∫Quε(ω,x)φ(τxεω,x)dx⟩=⟨∫Qu(ω,x)φ(ω,x)dx⟩, | (5) |
for any
⟨∫Quε(T∗εφ)dx⟩=⟨∫Q(Tεuε)φdx⟩, | (6) |
which proves the equivalence.
We summarize some of the main properties:
Proposition 1 (Main properties). Let
(i)(Compactness, [19,Lemma 3.4].) If
(ii)(Limits of gradients, [19,Proposition 3.7]) Let
uε2⇀uinLp(Ω×Q),∇uε2⇀∇u+χinLp(Ω×Q)d. | (7) |
If, additionally,
(iii)(Recovery sequences, [19,Lemma 4.3]) Let
uε2→u,∇uε2→∇u+χinLp(Ω×Q). |
If additionally
In this section, we recall the concept of quenched stochastic two-scale convergence (see [38,16]). The notion of quenched stochastic two-scale convergence is based on the individual ergodic theorem, see Theorem 2.3. We thus assume throughout this section that
⟨⋅⟩isergodic. |
Moreover, throughout this section we fix exponents
●
●
We denote by
A:={φ(ω,x)=φΩ(ω)φQ(x):φΩ∈DΩ,φQ∈DQ} |
the set of simple tensor products (a countable set), and by
D0:={m∑j=1λjφj:m∈N,λ1,…,λm∈Q,φ1,…,φm∈A}. |
We finally set
D:=spanA=spanD0and¯D:=span(DQ) |
(the span of
Ω0the set of admissible realizations; |
it is a set of full measure determined by the following lemma:
Lemma 3.3. There exists a measurable set
lim supε→0‖(T∗εφ)(ω0,⋅)‖Lr(Q)≤‖φ‖Brandlimε→0∫QT∗ε(φφ′)(ω0,x)dx=⟨∫Q(φφ′)(ω0,x)dx⟩. |
Proof. This is a simple consequence of Theorem 2.3 and the fact that
For the rest of the section
The idea of quenched stochastic two-scale convergence is similar to periodic two-scale convergence: We associate with a bounded sequence
Definition 3.4 (quenched two-scale limit, cf. [38,17]). Let
limε→0∫Quε(x)(T∗εφ)(ω0,x)dx=∫Ω∫Qu(x,ω)φ(ω,x)dxdP(ω). | (8) |
Lemma 3.5 (Compactness). Let
‖u‖Bp≤lim infε→0‖uε‖Lp(Q), | (9) |
and
(For the proof see Section 3.2.1).
For our purpose it is convenient to have a metric characterization of two-scale convergence.
Lemma 3.6 (Metric characterization). (i)Let
d(U,V;Lin(D)):=∑j∈N2−j|U(φj)−V(φj)||U(φj)−V(φj)|+1 |
is complete and separable.
(ii)Let
Jω0ε:Lp(Q)→Lin(D),(Jω0εu)(φ):=∫Qu(x)(T∗εφ)(ω0,x)dx,J0:Bp→Lin(D),(J0u)(φ):=⟨∫Quφ⟩. |
Then for any bounded sequence
(For the proof see Section 3.2.1).
Remark 2. Convergence in the metric space
Lemma 3.7 (Strong convergence implies quenched two-scale convergence). Let
(For the proof see Section 3.2.1).
Definition 3.8 (set of quenched two-scale cluster points). For a bounded sequence
We conclude this section with two elementary results on quenched stochastic two-scale convergence:
Lemma 3.9 (Approximation of two-scale limits). Let
(For the proof see Section 3.2.1).
Similar to the slightly different setting in [17] one can prove the following result:
Lemma 3.10 (Two-scale limits of gradients). Let
uε2⇀ω0uand∇uε2⇀ω0∇u+χasε→0. |
Proof of Lemma 3.5. Set
Uε(φ):=∫Quε(x)(T∗εφ)(ω0,x)dx. |
Note that for all
lim supε→0|uε(φ)|≤lim supε→0‖uε‖Lp(Q)‖T∗εφ(ω0,⋅)‖Lq(Q)≤C0‖φ‖Bq. | (10) |
Since
‖u‖Bp=‖U‖(Bq)∗≤C0=lim infε→0‖uε‖Lp(Q). |
Since
∫Quε(x)φQ(x)dx=uε(1ΩφQ)→U(1ΩφQ)=⟨∫Qu(ω,x)φQ(x)dx⟩=∫Q⟨u(x)⟩φQ(x)dx. |
Since
Proof of Lemma 3.6. We use the following notation in this proof
(i) Argument for completeness: If
Argument for separability: Consider the (injective) map
(ii) Let
Proof of Lemma 3.7. This follows from Hölder's inequality and Lemma 3.3, which imply for all
limsupε→0∫Q|(uε(x)−u(x))T∗εφ(ω0,x)|dx≤limsupε→0(‖uε−u‖Lp(Q)(∫Q|T∗εφ(ω0,x)|qdx)1q)=0. |
Proof of Lemma 3.9. Since
∫Qvδ,εT∗εφ(ω0,x)=∫QT∗ε(vδφ)(ω0,x)→⟨∫Qvδφ⟩. |
By appealing to the metric characterization, we can rephrase the last convergence statement as
d(Jω0εvδ,ε,J0u;Lin(D))≤d(Jω0εvδ,ε,J0vδ;Lin(D))+d(J0vδ,J0u;Lin(D)). |
The second term is bounded by
In this section we establish a relation between quenched two-scale convergence and two-scale convergence in the mean (in the sense of Definition 3.2). The relation is established by Young measures: We show that any bounded sequence
⟨⋅⟩ is ergodic. |
Also, throughout this section we fix exponents
Definition 3.11. We say
\omega\mapsto\nu_{\omega}(B)\quad\mbox{is }\mbox{measurable for all }B\in {\mathcal{B}}( {\mathscr{B}}^p), |
where
Theorem 3.12. Let
\nu_{\omega_0}\;\mathit{\mbox{is concentrated on}}\;{\mathscr{C\!P}}\left(\omega_0,\big(u_{ \varepsilon}(\omega_0,\cdot)\big)\right), |
and
\liminf\limits_{ \varepsilon\to0}\Vert u_{ \varepsilon}\Vert_{ {\mathscr{B}}^p}^{p}\geq \int_{\Omega}\left(\int_{ {\mathscr{B}}^p}\left\Vert v\right\Vert _{ {\mathscr{B}}^p}^{p}\,d\nu_{\omega}(v)\right)\,dP(\omega). |
Moreover, we have
u_{ \varepsilon} {\stackrel{2}{\rightharpoonup}} u\qquad{{where}}\;u: = \int_{\Omega}\int_{ {\mathscr{B}}^p}v\, d\nu_{\omega}(v)dP(\omega). |
Finally, if there exists
u_{ \varepsilon}(\omega){\stackrel{2}{\rightharpoonup}_{{\omega}}}\hat u(\omega)\qquad{{for\; P -a.a.\; \omega\in\Omega }}. |
(For the proof see Section 3.3.1).
In the opposite direction we observe that quenched two-scale convergence implies two-scale convergence in the mean in the following sense:
Lemma 3.13. Consider a family
(i)There exists
(ii)There exists a sequence
(iii)There exists a bounded sequence
Then
(For the proof see Section 3.3.1).
To compare homogenization of convex integral functionals w.r.t. stochastic two-scale convergence in the mean and in the quenched sense, we appeal to the following result:
Lemma 3.14. Let
\begin{array}{*{20}{c}} {\mathop {\lim \inf }\limits_{\varepsilon \to 0} \int_\Omega {\int_Q h } ({\tau _{\frac{x}{\varepsilon }}}\omega ,x,{u_\varepsilon }(\omega ,x)){\kern 1pt} dx{\kern 1pt} dP(\omega )}\\ { \ge \int_\Omega {\int_{{{\mathscr B}^p}} {\left( {\int_\Omega {\int_Q h } (\tilde \omega ,x,v(\tilde \omega ,x)){\kern 1pt} dx{\kern 1pt} dP(\tilde \omega )} \right)} } {\kern 1pt} d{\nu _\omega }(v){\kern 1pt} dP(\omega ).} \end{array} | (11) |
(For the proof see Section 3.3.1).
Remark 3. In [18,Lemma 5.1] it is shown that
\begin{equation} u_{ \varepsilon}{\stackrel{2}{\rightharpoonup}_{{\omega_0}}}u\quad\Rightarrow \quad \liminf\limits_{ \varepsilon\to0}\int_{Q}h(\tau_{\frac{x}{ \varepsilon}}\omega_0,x,u_{ \varepsilon}(x))dx\geq\int_{\Omega}\int_{Q}h(\omega,x,u(\omega,x))\,dx\,dP(\omega). \end{equation} | (12) |
We first recall some notions and results of Balder's theory for Young measures [4]. Throughout this section
Definition 3.15. ● We say a function
● A function
● A sequence
● A Young measure in
Theorem 3.16.([4,Theorem I]). Let
\begin{equation} \liminf\limits_{ \varepsilon\to0}\int_{\Omega}h(\omega,s_{ \varepsilon}(\omega))\,dP(\omega)\geq\int_{\Omega}\int_{ {\mathscr M}}h(\omega,\xi) d\mu_{\omega}(\xi)dP(\omega)\,, \end{equation} | (13) |
provided that the negative part
In order to apply the above theorem we require an appropriate metric space in which two-scale convergent sequences and their limits embed:
Lemma 3.17. (i)>We denote by
\begin{equation*} d((U_1, \varepsilon_1,r_1),(U_2, \varepsilon_2,r_2); {\mathscr M}): = d(U_1,U_2;{\mbox{Lin}}( {\mathscr D}))+| \varepsilon_1- \varepsilon_2|+|r_1-r_2| \end{equation*} |
is a complete, separable metric space.
(ii)For
\begin{equation} U = \begin{cases} J^{\omega_0}_ \varepsilon u&\;\mathit{\text{for some}}\;u\in L^p(Q)\;\mathit{\text{with}}\;\|u\|_{L^p(Q)}\leq r\;\mathit{\text{in the case}}\; \varepsilon > 0,\\ J_0 u&\;\mathit{\text{for some}}\;u\in {\mathscr{B}}^p\;\mathit{\text{with}}\;\|u\|_{ {\mathscr{B}}^p}\leq r\;\mathit{\text{in the case}}\; \varepsilon = 0. \end{cases} \end{equation} | (14) |
Then
(iii)Let
\begin{equation} \begin{cases} \|u\|_{L^p(Q)} = \sup\limits_{\varphi\in\overline{ {\mathscr D}},\ \|\varphi\|_{ {\mathscr{B}}^q}\leq 1}|U(\varphi)|&\;\mathit{\text{if}}\; \varepsilon > 0,\\ \|u\|_{ {\mathscr{B}}^p} = \sup\limits_{\varphi\in {\mathscr D},\ \|\varphi\|_{ {\mathscr{B}}^q}\leq 1}|U(\varphi)|&\;\mathit{\text{if}}\; \varepsilon = 0. \end{cases} \end{equation} | (15) |
(iv)For
\begin{equation*} \|(U, \varepsilon,r)\|_{\omega_0}: = \begin{cases} \big(\sup\limits_{\varphi\in\overline{ {\mathscr D}},\ \|\varphi\|_{ {\mathscr{B}}^q}\leq 1}|U(\varphi)|^p+ \varepsilon+r^p\big)^{\frac{1}{p}}&\;\mathit{\text{if}}\;(U, \varepsilon,r)\in {\mathscr M}^{\omega_0},\, \varepsilon > 0,\\ \big(\sup\limits_{\varphi\in {\mathscr D},\ \|\varphi\|_{ {\mathscr{B}}^q}\leq 1}|U(\varphi)|^p+r^p\big)^\frac1p&\;\mathit{\text{if}}\;(U, \varepsilon,r)\in {\mathscr M}^{\omega_0},\, \varepsilon = 0,\\ \end{cases} \end{equation*} |
is lower semicontinuous on
(v)For all
(vi)For all
(vii)Let
Proof.(i)This is a direct consequence of Lemma 3.6 (i) and the fact that the product of complete, separable metric spaces remains complete and separable.
(ii)Let
Case 1:
W.l.o.g. we may assume that
\begin{equation} \|u_0\|_{L^p(Q)}\leq \liminf\limits_{k}\|u_k\|_{L^p(Q)}\leq \lim\limits_k r_k = r_0. \end{equation} | (16) |
Moreover,
\begin{align*} U_k(\varphi_\Omega\varphi_Q)& = \int_Q u_k(x)\varphi_Q(x)\varphi_\Omega(\tau_{\frac{x}{ \varepsilon_k}}\omega_0)\,dx\\ &\to \int_Q u_0(x)\varphi_Q(x)\varphi_\Omega(\tau_{\frac{x}{ \varepsilon_0}}\omega_0)\,dx = J^{\omega_0}_{ \varepsilon_0}(\varphi_\Omega\varphi_Q) \end{align*} |
and thus (by linearity)
Case 2:
In this case there exist a bounded sequence
\begin{equation} \|u_0\|_{ {\mathscr{B}}^p}\leq \liminf\limits_{k}\|u_{ \varepsilon_k}\|_{ {\mathscr{B}}^p}\leq r_0. \end{equation} | (17) |
This implies that
Case 3:
There exists a bounded sequence
\begin{equation} \|u_0\|_{ {\mathscr{B}}^p}\leq \liminf\limits_{k}\|u_k\|_{L^p(Q)}\leq r_0. \end{equation} | (18) |
Furthermore, Lemma 3.6 implies that
(iii)We first argue that the representation (14) of
To see (15) let
\begin{equation*} \begin{cases} \|u\|_{L^p(Q)} = \sup\limits_{\varphi\in\overline{ {\mathscr D}},\ \|\varphi\|_{ {\mathscr{B}}^q}\leq 1}|\int_Qu\varphi\,dx\,dP| = \sup\limits_{\varphi\in\overline{ {\mathscr D}},\ \|\varphi\|_{ {\mathscr{B}}^q}\leq 1}|U(\varphi)|&\text{if } \varepsilon > 0,\\ \|u\|_{ {\mathscr{B}}^p} = \sup\limits_{\varphi\in {\mathscr D},\ \|\varphi\|_{ {\mathscr{B}}^q}\leq 1}|\int_{\Omega}\int_{Q}u\varphi\,dx\,dP| = \sup\limits_{\varphi\in {\mathscr D},\ \|\varphi\|_{ {\mathscr{B}}^q}\leq 1}|U(\varphi)|&\text{if } \varepsilon = 0. \end{cases} \end{equation*} |
(iv)Let
(v)This follows from the definition and duality argument (15).
(vi)Let
● Case 1:
● Case 2:
● Case 3:
In all of these cases we deduce that
(vii)This is a direct consequence of (ii) – (vi), and Lemma 3.6.
Now we are in position to prove Theorem 3.12
Proof of Theorem 3.12. Let
Step 1. (Identification of
\begin{equation*} s_{ \varepsilon}(\omega): = \begin{cases} \big(J^{\omega}_{ \varepsilon} u_{ \varepsilon}(\omega,\cdot), \varepsilon,\|u_{ \varepsilon}(\omega,\cdot)\|_{L^p(Q)}\big)&\text{if }\omega\in\Omega_0\\ (0,0,0)&\text{else.} \end{cases} \end{equation*} |
We claim that
\begin{equation*} h(\omega,(U, \varepsilon,r)): = \begin{cases} \|(U, \varepsilon,r)\|_{\omega}^p&\text{if }\omega\in\Omega_0\text{ and }(U, \varepsilon,r)\in {\mathscr M}^{\omega},\\ +\infty&\text{else.} \end{cases} \end{equation*} |
From Lemma 3.17 (iv) and (vi) we deduce that
\begin{equation*} \int_\Omega h(\omega,s_{ \varepsilon}(\omega))\,dP(\omega) = 2\|u_{ \varepsilon}\|^p_{ {\mathscr{B}}^p}+ \varepsilon. \end{equation*} |
We conclude that
Step 2. (Compactness and definition of
\begin{equation*} \int_{\mbox{Lin}( {\mathscr D})}f(\xi)\,d\mu_{1,\omega}(\xi) = \int_{ {\mathscr M}}f(\xi_1)\,d\mu_\omega(\xi), \end{equation*} |
for all
Step 3. (Lower semicontinuity estimate). Note that
\begin{equation*} h(\omega,(U, \varepsilon,r)): = \begin{cases} \sup_{\varphi\in\overline {\mathscr D},\,\|\varphi\|_{ {\mathscr{B}}^q}\leq 1}|U(\varphi)|^p&\text{if }\omega\in\Omega_0\text{ and }(U, \varepsilon,r)\in {\mathscr M}^{\omega}, \varepsilon > 0,\\ \sup_{\varphi\in {\mathscr D},\,\|\varphi\|_{ {\mathscr{B}}^q}\leq 1}|U(\varphi)|^p&\text{if }\omega\in\Omega_0\text{ and }(U, \varepsilon,r)\in {\mathscr M}^{\omega}, \varepsilon = 0,\\ +\infty&\text{else.} \end{cases} \end{equation*} |
defines a normal integrand, as can be seen as in the proof of Lemma 3.17. Thus Theorem 3.16 implies that
\begin{equation*} \liminf\limits_{ \varepsilon\to 0}\int_\Omega h(\omega,s_{ \varepsilon}(\omega))\,dP(\omega)\geq \int_\Omega\int_{ {\mathscr M}}h(\omega,\xi)\,d\mu_\omega(\xi)dP(\omega). \end{equation*} |
In view of Lemma 3.17 we have
Step 4. (Identification of the two-scale limit in the mean). Let
\begin{equation*} h(\omega,(U, \varepsilon,r)): = \begin{cases} U(\varphi)&\text{if }\omega\in\Omega_0,\,(U, \varepsilon,r)\in {\mathscr M}^\omega,\\ +\infty&\text{else.} \end{cases} \end{equation*} |
defines a normal integrand. Since
\begin{eqnarray*} \lim\limits_{ \varepsilon\to 0}\int_\Omega\int_Qu_{ \varepsilon}(\omega,x)( \mathcal{T}_{\varepsilon}^*\varphi)(\omega,x)\,dx\,dP(\omega)& = & \lim\limits_{ \varepsilon\to 0}\int_\Omega h(\omega,s_{ \varepsilon}(\omega))\,dP(\omega)\\ & = &\int_\Omega\int_{ {\mathscr{B}}^p}h(\omega,v)\,d\nu_\omega(v)\,dP(\omega)\\ & = &\int_\Omega\int_{ {\mathscr{B}}^p}\langle {{\int_Qv\varphi}} \rangle\,d\nu_\omega(v)\,dP(\omega). \end{eqnarray*} |
Set
\begin{eqnarray*} \lim\limits_{ \varepsilon\to 0}\int_\Omega\int_Qu_{ \varepsilon}(\omega,x)( \mathcal{T}_{\varepsilon}^*\varphi)(\omega,x)\,dx\,dP(\omega)& = & \langle {{\int_Qu\varphi}} \rangle. \end{eqnarray*} |
Since
Step 5. Recovery of quenched two-scale convergence. Suppose that
\begin{equation*} h(\omega,(U, \varepsilon,r)): = -d(U,J_0\tilde u(\omega);\mbox{Lin}( {\mathscr D})) \end{equation*} |
is a normal integrand and
\begin{eqnarray*} &&\limsup\limits_{ \varepsilon\to 0}\int_{\Omega} d(J^\omega_{ \varepsilon} u_{ \varepsilon}(\omega,\cdot),J_0\tilde u(\omega);\mbox{Lin}( {\mathscr D}))\,dP(\omega)\\ & = &-\liminf\limits_{ \varepsilon\to 0}\int_\Omega h(\omega,s_{ \varepsilon}(\omega))\,dP(\omega)\\ &\leq&-\int_\Omega\int_{ {\mathscr{B}}^p}h(\omega,J_0v)\,d\nu_\omega(v)\,dP(\omega) = -\int_\Omega h(\omega,J_0\tilde u(\omega))\,dP(\omega) = 0. \end{eqnarray*} |
Thus, there exists a subsequence (not relabeled) such that
Proof of Lemma 3.14. Step 1. Representation of the functional by a lower semicontinuous integrand on
For all
\begin{equation*} \overline h(\omega_0,s): = \begin{cases} \int_Qh(\tau_{\frac{x}{ \varepsilon}}\omega,x,(\pi^{\omega_0}s)(x))\,dx&\text{if }s = (U, \varepsilon,s)\text{ with } \varepsilon > 0,\\ \int_\Omega\int_Qh(\omega,x,(\pi^{\omega_0}s)(x))\,dx\,dP(\omega)&\text{if }s = (U, \varepsilon,s)\text{ with } \varepsilon = 0. \end{cases} \end{equation*} |
We extend
\begin{equation*} \overline h(\omega_0,s_k) = \int_Q h(\tau_{\frac{x}{ \varepsilon_k}}\omega_0,u_k(\omega_0,x))\,dx, \end{equation*} |
and
\begin{equation*} \overline h(\omega_0,s_0) = \int_{\Omega}\int_Q h(\omega,x,u_0(\omega,x))\,dx\,dP(\omega). \end{equation*} |
Since
Step 2. Conclusion. As in Step 1 of the proof of Theorem 3.12 we may associate with the sequence
\begin{align*} \liminf\limits_{ \varepsilon\to 0}\int_\Omega\int_Q &h(\tau_{\frac{x}{ \varepsilon}}\omega_0,u_{ \varepsilon}(\omega_0,x))\,dx\,dP(\omega)\\ & = \liminf\limits_{ \varepsilon\to 0}\int_\Omega\overline h(\omega,s_{ \varepsilon}(\omega))\,dP(\omega)\\ &\geq\int_\Omega\int_{ {\mathscr M}}\overline h(\omega,\xi)\,d\mu_\omega(\xi)\,dP(\omega)\\ & = \int_\Omega\int_{ {\mathscr{B}}^p}\Big(\int_\Omega\int_Qh( \tilde{\omega},x,v( \tilde{\omega},x))\,dx\,dP( \tilde{\omega})\Big)\,d\nu_\omega(v)\,dP(\omega). \end{align*} |
Proof of Lemma 3.13. By (ii) and (iii) the sequence
In this section we revisit a standard model example of stochastic homogenization of integral functionals from the viewpoint of stochastic two-scale convergence and unfolding. In particular, we discuss two examples of convex homogenization problems that can be treated with stochastic two-scale convergence in the mean, but not with the quenched variant. In the first example in Section 4.1 the randomness is nonergodic and thus quenched two-scale convergence does not apply. In the second example, in Section 4.2, we consider a variance-regularization to treat a convex minimization problem with degenerate growth conditions. In these two examples we also demonstrate the simplicity of using the stochastic unfolding operator. Furthermore, in Section 4.3 we use the results of Section 3.3 to further reveal the structure of the previously obtained limits in the classical ergodic case with non-degenerate growth with help of Young measures. In particular, we show how to lift mean homogenization results to quenched statements.
In this section we consider a nonergodic stationary medium. Such random ensembles arise naturally, e.g., in the context of periodic representative volume element (RVE) approximations, see [13]. For example, we may consider a family of i.i.d. random variables
\begin{equation*} \omega: \mathbb{R}^d \to \mathbb{R}, \quad \omega(x) = \sum\limits_{i\in \mathbb{Z}^d} \mathbf{1}_{i+y+\Box}(x)\overline{\omega}(\lfloor x \rfloor), \end{equation*} |
where
In this section we consider the following situation. Let
(A1)
(A2)
(A3)There exists
\begin{equation*} \frac{1}{C}|F|^p-C\leq V(\omega, x, F) \leq C(|F|^p+1) \end{equation*} |
for a.a.
We consider the functional
\begin{equation} \mathcal{E}_{\varepsilon}: L^p(\Omega)\otimes W^{1,p}_0(Q)\rightarrow \mathbb{R}^{{}},\quad \mathcal{E}_{\varepsilon}(u) = \langle {{\int_Q V(\tau_{\frac{x}{\varepsilon}}\omega, x,\nabla u(\omega,x))dx}} \rangle. \end{equation} | (19) |
Under assumptions (A1)-(A3), in the limit
\begin{align} \begin{split} & \mathcal{E}_0:\left({{L^p_{{ {\mathrm{inv}}}}(\Omega)\otimes W^{1,p}_0(Q)}}\right) \times \left({{L^p_{ {\mathrm{pot}}}(\Omega)\otimes L^p(Q)}}\right) \to \mathbb{R},\\ & \mathcal{E}_0(u,\chi) = \langle {{\int_Q V(\omega, x, \nabla u(\omega,x)+ \chi(\omega,x)) dx}} \rangle. \end{split} \end{align} | (20) |
Theorem 4.1 (Two-scale homogenization). Let
(i)(Compactness and liminf inequality.) Let
\begin{align} & u_{ \varepsilon} \overset{2}{\rightharpoonup} u \;{{in}}\;L^p(\Omega \times Q), \quad \nabla u_{ \varepsilon} \overset{2}{\rightharpoonup} \nabla u+\chi \;{{in}}\; L^p(\Omega \times Q), \end{align} | (21) |
\begin{align} & \liminf\limits_{\varepsilon\to 0}\mathcal{E}_{ \varepsilon}(u_{ \varepsilon})\geq \mathcal{E}_0(u,\chi). \end{align} | (22) |
(ii)(Limsup inequality.) Let
\begin{align} & u_{ \varepsilon} \overset{2}{\rightarrow } u \;{{in}}\; L^p(\Omega \times Q), \quad \nabla u_{ \varepsilon} \overset{2}{\rightarrow } \nabla u+\chi \;{{in}}\; L^p(\Omega \times Q), \end{align} | (23) |
\begin{align} & \limsup\limits_{\varepsilon\rightarrow 0}\mathcal{E}_{\varepsilon}(u_{ \varepsilon}) \leq \mathcal{E}_0(u,\chi). \end{align} | (24) |
Proof of Theorem 4.1. (i) The Poincaré inequality and (A3) imply that
\begin{equation} \langle {{\int_{Q} V(\tau_{\frac{x}{\varepsilon}}\omega,x,v(\omega,x))}} \rangle = \langle {{\int_{Q} V(\omega,x, \mathcal{T}_{\varepsilon} v(\omega,x))}} \rangle \quad \text{for any }v \in L^p(\Omega\times Q), \end{equation} | (25) |
and thus using the convexity of
\begin{equation*} \liminf\limits_{\varepsilon\to 0} \mathcal{E}_{ \varepsilon}(u_{ \varepsilon}) = \liminf\limits_{\varepsilon\to 0} \langle {{\int_{Q}V(\omega,x, \mathcal{T}_{\varepsilon} \nabla u_{ \varepsilon})}} \rangle\geq \mathcal{E}_0(u,\chi). \end{equation*} |
(ii) The existence of a sequence
\begin{equation*} \lim\limits_{\varepsilon\to 0}\mathcal{E}_{\varepsilon}(u_{ \varepsilon}) = \lim\limits_{\varepsilon\to 0} \langle {{\int_{Q}V(\omega,x, \mathcal{T}_{\varepsilon} \nabla u_{ \varepsilon})}} \rangle = \mathcal{E}_{0}(u,\chi). \end{equation*} |
This concludes the claim, in particular, we even show a stronger result stating convergence of the energy.
Remark 4 (Convergence of minimizers). We consider the setting of Theorem 4.1. Let
\begin{equation*} \mathcal{I}_{\varepsilon}:L^p(\Omega)\otimes W^{1,p}_0(Q)\to \mathbb{R}, \quad \mathcal{I}_{\varepsilon}(u) = {\mathcal{E}}_{ \varepsilon}(u) - \langle {{\int_{Q}u_{ \varepsilon} f_{ \varepsilon} dx}} \rangle, \end{equation*} |
where
\begin{equation*} \lim\limits_{ \varepsilon\to 0}\min\mathcal{I}_{ \varepsilon} = \lim\limits_{ \varepsilon\to 0}\mathcal{I}_{ \varepsilon}(u_{ \varepsilon}) = \mathcal{I}_0(u,\chi) = \min\mathcal{I}_0, \end{equation*} |
where
Remark 5 (Uniqueness). If
In this section we consider homogenization of convex functionals with degenerate growth. More precisely, we consider an integrand
(A3')There exists
\begin{equation} \langle {{\lambda^{-\frac{1}{p-1}}}} \rangle^{p-1} < C \end{equation} | (26) |
and
\begin{equation*} \lambda(\omega)|F|^p-C\leq V(\omega, x, F) \leq C(\lambda(\omega)|F|^p+1) \end{equation*} |
for a.a.
Moreover, we assume that
\begin{equation*} \mathcal{E}_{\varepsilon}:L^1(\Omega \times Q) \to \mathbb{R}\cup\left\lbrace {{\infty}} \right\rbrace, \qquad \mathcal{E}_{\varepsilon}(u) = \langle {{\int_{Q} V(\tau_{\frac{x}{\varepsilon}}\omega, x, \nabla u) dx}} \rangle, \end{equation*} |
for
\begin{equation*} \|u\|_{\lambda_{\varepsilon}} : = \langle {{\int_{Q}\lambda(\tau_{\frac{x}{\varepsilon}}\omega) |\nabla u|^p dx}} \rangle^{\frac{1}{p}}. \end{equation*} |
Recently, in [29,20,21] it shown that
\begin{equation*} \mathcal E_{\hom}: L^1(Q)\to \mathbb{R}\cup \left\lbrace {{\infty}} \right\rbrace,\qquad \mathcal E_{\hom}(u): = \int_Q V_{\hom}(x,\nabla u(x))\,dx, \end{equation*} |
for
\begin{align} V_{\hom}(x,F) = \inf\limits_{\chi\in L^p_{ {\mathrm{pot}}}(\Omega)}\langle {{V(\omega, x,F+\chi(\omega))}} \rangle, \end{align} | (27) |
for
\begin{equation} \frac{1}{C'} |F|^p - C' \leq V_{\mathrm{hom}}(x,F) \leq C'\left({{|F|^p+1}}\right). \end{equation} | (28) |
One of the difficulties in the proof of the homogenization result for
\begin{equation*} V_{\hom,\delta}(x,F) = \inf\limits_{\chi\in L^p_{ {\mathrm{pot}}}(\Omega)}\langle {{V(\omega, x,F+\chi(\omega))+\delta|\chi(\omega)|^p}} \rangle. \end{equation*} |
It is simple to show that the infimum on the right-hand side is attained by a unique minimizer. We also consider the corresponding regularized homogenized integral functional
\begin{equation*} \mathcal E_{\hom,\delta}:L^1(Q)\to \mathbb{R}\cup \left\lbrace {{\infty}} \right\rbrace,\qquad \mathcal E_{\hom,\delta}(u): = \int_QV_{\hom,\delta}(\nabla u)\,dx, \end{equation*} |
for
Lemma 4.2. Let
\begin{equation} \lim\limits_{\delta\to 0} V_{\hom,\delta}(x,F) = V_{\hom}(x,F). \end{equation} | (29) |
Moreover,
(i)If
\begin{equation*} \liminf\limits_{\delta \to 0}\mathcal{E}_{\mathrm{hom},\delta}(u_{\delta}) \geq \mathcal{E}_{\mathrm{hom}}(u). \end{equation*} |
(ii)For any
\begin{equation*} u_{\delta} \to u \quad \;\mathit{\text{strongly in}}\;L^1(Q), \quad \mathcal{E}_{\mathrm{hom},\delta}(u_{\delta})\to \mathcal{E}_{\mathrm{hom}}(u). \end{equation*} |
Proof. Let
\begin{equation*} \langle {{V(\omega, x, F+ \chi_{\eta})}} \rangle \leq V_{\hom}(x,F) + \eta. \end{equation*} |
We have
\begin{equation*} V_{\hom,\delta}(x,F)\leq \langle {{V(\omega, x, F+ \chi_{\eta})+ \delta |\chi_{\eta}|^p}} \rangle \leq V_{\hom}(x,F)+ \eta + \delta \langle {{|\chi_{\eta}|^p}} \rangle. \end{equation*} |
Letting first
We further consider a sequence
\begin{equation*} \liminf\limits_{\delta \to 0}\mathcal{E}_{\hom, \delta}(u_{\delta})\geq \liminf\limits_{\delta \to 0}\mathcal{E}_{\hom}(u_{\delta}) \geq \mathcal{E}_{\hom}(u). \end{equation*} |
The first inequality follows by (29) and the second is a consequence of the fact that
If
\begin{equation*} \lim\limits_{\delta\to 0}\mathcal{E}_{\hom, \delta}(u) = \mathcal{E}_{\hom}(u). \end{equation*} |
This means that (ii) holds.
In the following we introduce a variance regularization of the original functional
\begin{equation} \mathcal{E}_{\varepsilon,\delta}(u) = \langle {{\int_Q V(\tau_{\frac{x}{\varepsilon}}\omega, x,\nabla u(x))+\delta|\nabla u(x)-\langle {{\nabla u( x)}} \rangle|^pdx}} \rangle, \end{equation} | (30) |
for
Lemma 4.3. Let
\begin{equation*} \langle {{\int_Q|\nabla u|}} \rangle^p+\delta\langle {{\int_Q|\nabla u|^p}} \rangle\leq C\big(\mathcal E_{\varepsilon,\delta}(u)+1\big). \end{equation*} |
Proof. By Jensen's and Hölder's inequalities we have
\begin{equation*} \langle {{\int_Q|\nabla u|dx}} \rangle^p \leq |Q|^{p-1}\int_Q\langle {{|\nabla u|}} \rangle^p\leq|Q|^{p-1}\langle {{{\lambda_{\varepsilon}^{-\frac{1}{p-1}}}}} \rangle^{p-1}\,\langle {{\int_Q\lambda_{\varepsilon}|\nabla u|^p}} \rangle, \end{equation*} |
where we use the notation
\begin{equation*} \langle {{\int_Q|\nabla u|dx}} \rangle^p \leq C(Q,p)\left({{\mathcal{E}_{\varepsilon,\delta}(u) + 1}}\right). \end{equation*} |
In the end, using the variance-regularization we obtain
\begin{eqnarray*} 2^{-p}\langle {{\int_Q|\nabla u|^p}} \rangle&\leq&\langle {{\int_Q|\nabla u-\langle {{\nabla u}} \rangle|^p}} \rangle+\int_Q\langle {{|\nabla u|}} \rangle^p\\ &\leq& \frac{C}{\delta}\left({{\mathcal E_{\varepsilon,\delta}(u)+1}}\right)+C\big(\mathcal E_{\varepsilon,\delta}(u)+1\big). \end{eqnarray*} |
This concludes the proof.
The regularization on the
Lemma 4.4. Let
(i)If
\begin{equation*} \liminf\limits_{\delta \to 0}\mathcal{E}_{\varepsilon, \delta}(u_{\delta}) \geq \mathcal{E}_{\varepsilon}(u). \end{equation*} |
(ii)For any
\begin{equation*} u_{\delta} \to u \quad {{strongly\;in}}\;L^1(\Omega \times Q), \quad \mathcal{E}_{\varepsilon,\delta}(u_{\delta})\to \mathcal{E}_{\varepsilon}(u). \end{equation*} |
Proof. (i) Let
\begin{equation*} \langle {{\int_{Q}\nabla u_{\delta} \eta dx}} \rangle = \langle {{\int_{Q}\lambda_{\varepsilon}^{\frac{1}{p}}\nabla u_{\delta} \lambda_{\varepsilon}^{-\frac{1}{p}}\eta dx}} \rangle\to \langle {{\int_{Q}\psi \lambda_{\varepsilon}^{-\frac{1}{p}}\eta dx}} \rangle \quad \text{as }\varepsilon \to 0. \end{equation*} |
This means that
\begin{equation*} \liminf\limits_{\delta \to 0}\mathcal{E}_{\varepsilon, \delta}(u_{\delta}) \geq \liminf\limits_{\delta \to 0} \mathcal{E}_{\varepsilon}(u_{\delta}) \geq \mathcal{E}_{\varepsilon}(u). \end{equation*} |
(ii) For an arbitrary
\begin{equation*} u_{\eta} \to u \quad \text{strongly in }L^1(\Omega)\otimes W^{1,1}_0(Q), \quad \langle {{\int_{Q}\lambda_{\varepsilon} |\nabla u_{\eta}-\nabla u|^p dx}} \rangle \to 0. \end{equation*} |
Using this and the dominated convergence theorem, we conclude that
\begin{equation*} \lim\limits_{\eta \to 0}\mathcal{E}_{\varepsilon}(u_{\eta}) = \mathcal{E}_{\varepsilon}(u). \end{equation*} |
This in turn yields
\begin{equation*} \limsup\limits_{\eta\to 0} \limsup\limits_{\delta\to 0} |\mathcal{E}_{\varepsilon, \delta}(u_{\eta})- \mathcal{E}_{\varepsilon}(u)| = 0. \end{equation*} |
We extract a diagonal sequence
The homogenization of the regularized functional
Theorem 4.5. Let
(i)Let
\begin{equation*} u_{ \varepsilon} \overset{2}{\rightharpoonup} u \;\mathit{\text{in}}\; L^p(\Omega \times Q), \quad \nabla u_{ \varepsilon} \overset{2}{\rightharpoonup} \nabla u+\chi \;\mathit{\text{in}}\; L^p(\Omega \times Q). \end{equation*} |
(ii)If
\begin{equation*} \liminf\limits_{\varepsilon\to 0}\mathcal{E}_{\varepsilon, \delta}(u_{ \varepsilon}) \geq \mathcal{E}_{\hom,\delta}(u). \end{equation*} |
(iii)For any
\begin{equation*} \mathcal{T}_{\varepsilon} u_{ \varepsilon} \to u \quad \;\mathit{\text{strongly in}}\;L^1(\Omega\times Q), \quad \mathcal{E}_{\varepsilon,\delta}(u_{ \varepsilon})\to \mathcal{E}_{\hom, \delta}(u). \end{equation*} |
Proof. (i) The statement follows analogously to the proof of Theorem 4.1 (i).
(ii) Let
\begin{equation*} \liminf\limits_{\varepsilon\to 0}\mathcal{E}_{\varepsilon,\delta}(u_{\varepsilon}) \geq \mathcal{E}_{\hom, \delta}(u). \end{equation*} |
(ii) This part is analogous to Theorem 4.1 and Remark 5.
The results of Lemmas (4.2) and (4.4), Theorem (4.5) and [29, 20,21] can be summarized in the following commutative diagram:
\begin{equation*} \begin{array}{ccc} \qquad\quad \mathcal E_{\varepsilon,\delta} & \stackrel{(\delta \to 0)}{\to}& \mathcal E_{\varepsilon}\qquad \quad \\ {(\varepsilon \to 0)}{8pt} \downarrow & &\downarrow {(\varepsilon \to 0)}{8pt}\\ \qquad\quad \mathcal E_{\hom,\delta}&\stackrel{(\delta \to 0)}{\to}&\mathcal E_{\hom}\qquad \quad \end{array} \end{equation*} |
The arrows denote Mosco convergence in the corresponding convergence regimes.
In this section we demonstrate how to lift homogenization results w.r.t. two-scale convergence in the mean to quenched statements at the example of Section 4.1. Throughout this section we assume that
\begin{equation*} {\mathcal{E}}^{\omega}_{ \varepsilon}(u): = \int_{Q}V\left(\tau_{\frac{x}{ \varepsilon}}\omega, x,\nabla u(x)\right)\,dx, \end{equation*} |
with
Before presenting the main result of this section, we remark that in the ergodic case, the limit functional (20) reduces to a single-scale energy
\begin{equation*} \mathcal{E}_{\hom}: W^{1,p}_0(Q) \rightarrow \mathbb{R}^{{}}, \quad \mathcal{E}_{\hom}(u) = \int_Q V_{\hom}(x,\nabla u(x))dx, \end{equation*} |
where the homogenized integrand
\begin{align} V_{\hom}(x,F) = \inf\limits_{\chi\in L^p_{ {\mathrm{pot}}}(\Omega)}\langle {{V(\omega, x,F+\chi(\omega))}} \rangle. \end{align} | (31) |
In particular, we may obtain an analogous statement to Theorem 4.1 where we replace
Theorem 4.6. Let
\begin{gather*} u_{ \varepsilon}(\omega,\cdot) \rightharpoonup u\;{{weakly\;in}}\;W^{1,p}(Q),\qquad u_{ \varepsilon}(\omega,\cdot){\stackrel{2}{\rightharpoonup}_{{\omega}}}u,\qquad\nabla u_{ \varepsilon}(\omega,\cdot){\stackrel{2}{\rightharpoonup}_{{\omega}}}\nabla u+\chi,\\ \;{{and}}\;\min {\mathcal{E}}^\omega_ \varepsilon = {\mathcal{E}}^\omega_ \varepsilon(u_{ \varepsilon}(\omega,\cdot))\to {\mathcal{E}}_0(u,\chi) = \min {\mathcal{E}}_0. \end{gather*} |
Remark 6 (Identification of quenched two-scale cluster points). If we combine Theorem 4.6 with the identification of the support of the Young measure in Theorem 3.12 we conclude the following: There exists a subsequence such that
In the proof of Theorem 4.6 we combine homogenization in the mean in form of Theorem 4.1, the connection to quenched two-scale limits via Young measures in form of Theorem 3.12, and a recent result described in Remark 3 by Nesenenko and the first author.
Proof of Theorem 4.6. Step 1. (Identification of the support of
Since
\begin{equation} \lim\limits_{ \varepsilon\to 0}\min {\mathcal{E}}_{ \varepsilon} = \lim\limits_{ \varepsilon\to 0} {\mathcal{E}}_{ \varepsilon}(u_{ \varepsilon}) = {\mathcal{E}}_0(u,\chi) = \min {\mathcal{E}}_0. \end{equation} | (32) |
In particular, the sequence
\begin{equation*} \lim\limits_{ \varepsilon\to 0} {\mathcal{E}}_ \varepsilon(u_{ \varepsilon})\geq \int_\Omega\int_{ {\mathscr{B}}}\Big(\int_\Omega\int_Q V( \tilde{\omega},x,\xi_2)\,dx\,dP( \tilde{\omega})\Big)\,\nu_\omega(d\xi)\,dP(\omega). \end{equation*} |
In view of (32) and the fact that
\begin{equation*} \min {\mathcal{E}}_0\geq \int_\Omega\int_{ {\mathscr{B}}_0} {\mathcal{E}}_0(\xi_1,\xi_2-\nabla\xi_1)\,\nu_\omega(d\xi)\,dP(\omega)\geq \min {\mathcal{E}}_0\int_\Omega\int_{ {\mathscr{B}}_0}\nu_\omega(d\xi)dP(\omega). \end{equation*} |
Since
Step 2. (The strictly convex case).
The uniqueness of
\begin{equation*} \liminf\limits_{ \varepsilon\to 0} {\mathcal{E}}^\omega_ \varepsilon(u_{ \varepsilon}(\omega,\cdot))\geq {\mathcal{E}}_0(u,\chi) = \min {\mathcal{E}}_0. \end{equation*} |
On the other hand, since
\begin{equation*} \lim\limits_{ \varepsilon\to 0}\min {\mathcal{E}}^\omega_ \varepsilon = \lim\limits_{ \varepsilon\to 0} {\mathcal{E}}^\omega_ \varepsilon(u_{ \varepsilon}(\omega,\cdot)) = {\mathcal{E}}_0(u,\chi) = \min {\mathcal{E}}_0. \end{equation*} |
The authors thank Alexander Mielke for fruitful discussions and valuable comments. MH has been funded by Deutsche Forschungsgemeinschaft (DFG) through grant CRC 1114 "Scaling Cascades in Complex Systems", Project C05 "Effective models for materials and interfaces with multiple scales". SN and MV acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 405009441.
[1] | I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz, 103 (1978), 1-22. https://doi.org/10.1002/9783527627981 |
[2] | D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs Theory and Applications, Academic Press, 1982. |
[3] |
D. Cvetkovic, P. Rowlinson, The largest eigenvalue of a graph, Linear Multilinear Algebra, 28 (1990), 3-33. https://doi.org/10.1080/03081089008818026 doi: 10.1080/03081089008818026
![]() |
[4] |
Y. Hong, Upper bounds of the spectral radius of graphs in terms of genus, J. Combin. Theory Ser., 74 (1998), 153-159. https://doi.org/10.1006/jctb.1998.1837 doi: 10.1006/jctb.1998.1837
![]() |
[5] |
R. A. Brualdi, E. S. Solheid, On the spectral radius of complementary acyclic matrices of zeros and ones, SIAM J. Algebraic Discrete Methods, 7 (1986), 265-272. https://doi.org/10.1137/0607030 doi: 10.1137/0607030
![]() |
[6] |
M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl., 432 (2010), 2170-2173. https://doi.org/10.1016/j.laa.2009.01.005 doi: 10.1016/j.laa.2009.01.005
![]() |
[7] |
M. Lu, H. Liu, F. Tian, Spectral radius and Hamiltonian graphs, Linear Algebra Appl., 437 (2012), 1670-1674. https://doi.org/10.1016/j.laa.2012.05.021 doi: 10.1016/j.laa.2012.05.021
![]() |
[8] |
V. Nikiforov, More spectral bounds on the clique and independence numbers, J. Combin. Theory Ser., 99 (2009), 819-826. https://doi.org/10.1016/j.jctb.2009.01.003 doi: 10.1016/j.jctb.2009.01.003
![]() |
[9] |
V. Nikiforov, The spectral radius of graphs without paths and cycles of specified length, Linear Algebra Appl., 432 (2010), 2243-2256. https://doi.org/10.1016/j.laa.2009.05.023 doi: 10.1016/j.laa.2009.05.023
![]() |
[10] |
W. Yuan, B. Wang, M. Zhai, On the spectral radii of graphs without given cycles, Electron. J. Linear Algebra, 23 (2012), 599-606. https://doi.org/10.13001/1081-3810.1544 doi: 10.13001/1081-3810.1544
![]() |
[11] |
M. Zhai, B. Wang, Proof of a conjecture on the spectral radius of C4-free graphs, Linear Algebra Appl., 437 (2012), 1641-1647. https://doi.org/10.1016/j.laa.2012.05.006 doi: 10.1016/j.laa.2012.05.006
![]() |
[12] |
S. Butler, F. Chung, Small spectral gap in the combinatorial Laplacian implies Hamiltonian, Ann. Comb., 13 (2010), 403-412. https://doi.org/10.1007/s00026-009-0039-4 doi: 10.1007/s00026-009-0039-4
![]() |
[13] |
J. V. Heuvel, Hamilton cycles and eigenvalues of graphs, Linear Algebra Appl., 228 (1995), 723-730. https://doi.org/10.1016/0024-3795(95)00254-O doi: 10.1016/0024-3795(95)00254-O
![]() |
[14] |
M. Krivelevich, B. Sudakov, Sparse pseudo-random graphs are Hamiltonian, J. Graph Theory, 42 (2003), 17-33. https://doi.org/10.1002/jgt.10065 doi: 10.1002/jgt.10065
![]() |
[15] |
B. Mohar, A domain monotonicity theorem for graphs and hamiltonicity, Discrete Appl. Math., 36 (1992), 169-177. https://doi.org/10.1016/0166-218X(92)90230-8 doi: 10.1016/0166-218X(92)90230-8
![]() |
[16] |
B. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl., 432 (2010), 566-570. https://doi.org/10.1016/j.laa.2009.09.004 doi: 10.1016/j.laa.2009.09.004
![]() |
[17] | R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991. https://doi.org/10.1017/CBO9780511840371 |
[18] | F. R. Gantmacher, The Theory of Matrices, Chelsea, 1959. |
[19] | R. Balakrishnan, The energy of a graph, Lin. Algebra Appl., 387 (2004), 287-295. https://doi.org/10.1016/j.laa.2004.02.038 |
[20] |
R. B. Bapat, S. Pati, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc., 1 (2004), 129-132. https://doi.org/10.2298/AADM0801118P doi: 10.2298/AADM0801118P
![]() |
[21] |
S. Pirzada, S. Gutman, Energy of a graph is never the square root of an odd integer, Appl. Anal. Discr. Math., 2 (2008), 118-121. https://doi.org/10.2298/AADM0801118P doi: 10.2298/AADM0801118P
![]() |
[22] | O. Jones, Spectra of simple graphs, Whitman College, 13 (2013), 1-20. |
[23] | S. Meenaksh, S. Lavanya, A Survey on Energy of Graphs, Ann. Pure Appl. Math., 8 (2014), 183-191. |
[24] |
V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl., 326 (2007), 1472-1475. https://doi.org/10.1016/j.jmaa.2006.03.072 doi: 10.1016/j.jmaa.2006.03.072
![]() |
[25] | K. Samir, Vaidya, M. P. Kalpesh, Some new results on energy of graphs, MATCH Common. Math Comput. Chem, 77 (2017), 589-594. |
[26] |
K. Samir, Vaidya, M. P. Kalpesh, On energy m-splitting and m-shadow graphs, Far East J. Of Math. Sci., 102 (2017), 1571-1578. https://doi.org/10.17654/MS102081571 doi: 10.17654/MS102081571
![]() |
[27] |
J. B. Liu, M. Munir, A. Yousaf, A. Naseem, K. Ayub, Distance and adjacency energies of multi-level wheel networks, Mathematics, 7 (2019), 43. https://doi.org/10.3390/math7010043 doi: 10.3390/math7010043
![]() |
[28] |
Z. Q. Chu, M. Munir, A. Yousaf, M. I. Qureshi, J, B. Liu, Laplacian and signless laplacian spectra and energies of multi-step wheels, Math. Biosci. Eng., 17 (2020), 3649-3659. https://doi.org/10.3934/mbe.2020206 doi: 10.3934/mbe.2020206
![]() |
[29] |
J. B. Liu, X. F. Pan, F. T. Hu, F. HuF, On Asymptotic Laplacian-energy-like invariant of lattices, Appl. Math. Comput., 253 (2015), 205-214. https://doi.org/10.1016/j.amc.2014.12.035 doi: 10.1016/j.amc.2014.12.035
![]() |
[30] | S. M. Hosamani, H. S. Ramane, On degree sum energy of a graph, Eur. J. Pure Appl. Math., 9 (2016), 340-345. |
[31] | B. Basavanagoud, E. Chitra, On degree square sum energy of graphs, Int. J. Math. Its Appl., 6 (2018), 193-205. |
[32] | N. J. Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun. Math. Comput. Chem., 79 (2018), 371-386. |
[33] | I. Gutman, B. Furtula, On graph energies and their application, Bulletin (Acadmie Serbe Des Sciences Et Des Arts. Classe Des Sciences Mathmatiques Et Naturelles. SciencesMath matiques), 44 (2019), 29-45. |
[34] | X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-4220-2 |
[35] | R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer, 2000. https://doi.org/10.1007/978-1-4419-8505-7 |
[36] | R. J. Wilson, Introduction to Graph Theory, Oliver and Boyd, 1972. |
[37] | J. J. Sylvester, Chemistry and algebra, Nature, 17 (1877), 284. https://doi.org/10.1038/017284a0 |
[38] |
A. T. Balaban, Applications of graph theory in chemistry, J. Chem. Inf. Comput. Sci., 25 (1985), 334-343. https://doi.org/10.1021/ci00047a033 doi: 10.1021/ci00047a033
![]() |
[39] |
M. RandiC, On characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975), 6609-6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001
![]() |
[40] |
K. Yuge, Extended configurational polyhedra based on graph representation for crystalline solids, Trans. Material Res. Soc., 43 (2018), 233-236. https://doi.org/10.14723/tmrsj.43.233 doi: 10.14723/tmrsj.43.233
![]() |
[41] | A. Dhanalakshmi, K. S. Rao, K. Sivakumar, Characterization of a-cyclodextrin using adjacency and distance matrix, Indian J. Sci., 12 (2015), 78-83. |
[42] |
J. Praznikar, M. Tomic, D. Turk, Validation and quality assessment of macromolecular structures using complex network analysis, Sci. Rep., 9 (2019), 1678. https://doi.org/10.1038/s41598-019-38658-9 doi: 10.1038/s41598-019-38658-9
![]() |
[43] |
H. Wu, Y. Zhang, W. Chen, Z. Mu, Comparative analysis of protein primary sequences with graph energy, Phys. A, 437 (2015), 249-262. https://doi.org/10.1016/j.physa.2015.04.017 doi: 10.1016/j.physa.2015.04.017
![]() |
[44] |
L. D. Paola, G. Mei, A. D. Venere, A. Giuliani, Exploring the stability of dimers through protein structure topology, Curr. Protein Peptide Sci., 17 (2016), 30-36. https://doi.org/10.2174/1389203716666150923104054 doi: 10.2174/1389203716666150923104054
![]() |
[45] | D. Sun, C. Xu, Y. Zhang, A novel method of 2D graphical representation for proteins and its application, MATCH Commun. Math. Comput. Chem., 75 (2016), 431-446. |
[46] |
L. Yu, Y. Z. Hang, I. Gutman, Y. Shi, M. Dehmer, Protein sequence comparison based on physicochemical properties and positionfeature energy matrix, Sci. Rep., 7 (2017), 46237. https://doi.org/10.1038/srep46237 doi: 10.1038/srep46237
![]() |
[47] |
A. Giuliani, S. Filippi, M. Bertolaso, Why network approach can promote a new way of thinking in biology, Front. Genet., 5 (2014), 83. https://doi.org/10.3389/fgene.2014.00083 doi: 10.3389/fgene.2014.00083
![]() |
[48] |
J. Jiang, R. Zhang, L. Guo, W. Li, X. Cai, Network aggregation process in multilayer air transportation networks, Chin. Phys. Lett., 33 (2016), 108901. https://doi.org/10.1088/0256-307X/33/10/108901 doi: 10.1088/0256-307X/33/10/108901
![]() |
[49] | T. A. Shatto, E. K. C. Etinkaya, Variations in graph energy: A measure for network resilience, in 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM), (2017), 1-7. https://doi.org/10.1109/RNDM.2017.8093019 |
[50] |
M. Akram, S. Naz, Energy of Pythagorean fuzzy graphs with applications, Mathematics, 6 (2018), 136. https://doi.org/10.3390/math6080136 doi: 10.3390/math6080136
![]() |
[51] | M. Gao, E. P. Lim, D. Lo, Network Data Mining and Analysis, World Scientific, 4 (2018), 1-4. https://doi.org/10.1142/9789813274969-0001 |
[52] | A. Pugliese, R. Nilchiani, Complexity analysis of fractionated spacecraft architectures, in AIAA SPACE and Astronautics Forum and Exposition, (2017), 5118-5126. https://doi.org/10.2514/6.2017-5118 |
[53] | C. Adiga, M. Smitha, On maximum degree energy of a graph, Int. J. Contemp. Math. Sci., 4 (2009), 385-396. |
[54] | B. Basavanagoud, P. Jakkannavar, Minimum degree energy pf graphs, Electron. J. Math. Anal. Appl., 7 (2019), 230-243. |
[55] |
S. Alikhani, N. Ghanbari, Randic energy of specific graphs, Appl. Math and Comp, 269 (2015), 722-730. https://doi.org/10.1016/j.amc.2015.07.112 doi: 10.1016/j.amc.2015.07.112
![]() |
[56] | M. R. Oboudi, Energy and seidel energy of graphs, MATCH Commun. Math. Comput. Chem., 75 (2016), 291-303. |
1. | Thuyen Dang, Yuliya Gorb, Silvia Jiménez Bolaños, Homogenization of a NonLinear Strongly Coupled Model of Magnetorheological Fluids, 2023, 55, 0036-1410, 102, 10.1137/22M1476939 | |
2. | S. Yu. Dobrokhotov, V. E. Nazaikinskii, Averaging method for problems on quasiclassical asymptotics, 2024, 70, 2949-0618, 53, 10.22363/2413-3639-2024-70-1-53-76 | |
3. | Patrick Dondl, Yongming Luo, Stefan Neukamm, Steve Wolff-Vorbeck, Efficient Uncertainty Quantification for Mechanical Properties of Randomly Perturbed Elastic Rods, 2024, 22, 1540-3459, 1267, 10.1137/23M1574233 | |
4. | Sabine Haberland, Patrick Jaap, Stefan Neukamm, Oliver Sander, Mario Varga, Representative Volume Element Approximations in Elastoplastic Spring Networks, 2024, 22, 1540-3459, 588, 10.1137/23M156656X | |
5. | S. Yu. Dobrokhotov, V. E. Nazaikinskii, Homogenization Method for Problems on Quasiclassical Asymptotics, 2024, 1072-3374, 10.1007/s10958-024-07490-6 |