Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Existence and uniqueness results for fractional Langevin equations on a star graph


  • This paper discusses a class of fractional Langevin equations on a star graph with mixed boundary conditions. Using Schaefer's fixed point theorem and Banach contraction mapping principle, the existence and uniqueness of solutions are established. Finally, two examples are constructed to illustrate the application of the obtained results. This study provides new results that enrich the existing literature on the fractional boundary value problem for graphs.

    Citation: Wei Zhang, Jifeng Zhang, Jinbo Ni. Existence and uniqueness results for fractional Langevin equations on a star graph[J]. Mathematical Biosciences and Engineering, 2022, 19(9): 9636-9657. doi: 10.3934/mbe.2022448

    Related Papers:

    [1] Guodong Li, Ying Zhang, Yajuan Guan, Wenjie Li . Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Mathematical Biosciences and Engineering, 2023, 20(4): 7020-7041. doi: 10.3934/mbe.2023303
    [2] Debao Yan . Existence results of fractional differential equations with nonlocal double-integral boundary conditions. Mathematical Biosciences and Engineering, 2023, 20(3): 4437-4454. doi: 10.3934/mbe.2023206
    [3] Zahra Eidinejad, Reza Saadati . Hyers-Ulam-Rassias-Kummer stability of the fractional integro-differential equations. Mathematical Biosciences and Engineering, 2022, 19(7): 6536-6550. doi: 10.3934/mbe.2022308
    [4] Luís P. Castro, Anabela S. Silva . On the solution and Ulam-Hyers-Rassias stability of a Caputo fractional boundary value problem. Mathematical Biosciences and Engineering, 2022, 19(11): 10809-10825. doi: 10.3934/mbe.2022505
    [5] Huy Tuan Nguyen, Nguyen Van Tien, Chao Yang . On an initial boundary value problem for fractional pseudo-parabolic equation with conformable derivative. Mathematical Biosciences and Engineering, 2022, 19(11): 11232-11259. doi: 10.3934/mbe.2022524
    [6] Jutarat Kongson, Chatthai Thaiprayoon, Apichat Neamvonk, Jehad Alzabut, Weerawat Sudsutad . Investigation of fractal-fractional HIV infection by evaluating the drug therapy effect in the Atangana-Baleanu sense. Mathematical Biosciences and Engineering, 2022, 19(11): 10762-10808. doi: 10.3934/mbe.2022504
    [7] Xiaolin Fan, Tingting Xue, Yongsheng Jiang . Dirichlet problems of fractional $ p $-Laplacian equation with impulsive effects. Mathematical Biosciences and Engineering, 2023, 20(3): 5094-5116. doi: 10.3934/mbe.2023236
    [8] Tingting Xue, Xiaolin Fan, Hong Cao, Lina Fu . A periodic boundary value problem of fractional differential equation involving $ p\left(t \right) $-Laplacian operator. Mathematical Biosciences and Engineering, 2023, 20(3): 4421-4436. doi: 10.3934/mbe.2023205
    [9] Barbara Łupińska, Ewa Schmeidel . Analysis of some Katugampola fractional differential equations with fractional boundary conditions. Mathematical Biosciences and Engineering, 2021, 18(6): 7269-7279. doi: 10.3934/mbe.2021359
    [10] Alia M. Alzubaidi, Hakeem A. Othman, Saif Ullah, Nisar Ahmad, Mohammad Mahtab Alam . Analysis of Monkeypox viral infection with human to animal transmission via a fractional and Fractal-fractional operators with power law kernel. Mathematical Biosciences and Engineering, 2023, 20(4): 6666-6690. doi: 10.3934/mbe.2023287
  • This paper discusses a class of fractional Langevin equations on a star graph with mixed boundary conditions. Using Schaefer's fixed point theorem and Banach contraction mapping principle, the existence and uniqueness of solutions are established. Finally, two examples are constructed to illustrate the application of the obtained results. This study provides new results that enrich the existing literature on the fractional boundary value problem for graphs.



    In the last two decades, the topic in the study of fractional calculus theory has attracted significant attention from researchers. The strong interest stems not only from the important application of the theory, but also from the consideration of its mathematical nature. Indeed, many phenomena arising from scientific fields, including biology, physics, chemistry, financial economics, control theory, materials, medicine, and anomalous diffusion, are precisely described by fractional differential equations [1,2,3]. As an important topic for the theory of fractional differential equations, the existence results of fractional boundary value problems (BVPs) have been investigated comprehensively by scholars [4,5,6,7].

    On the other hand, the theory of differential equations on graphs originated from Lumer's research work in the framework of ramification spaces in the 1980s [8]. Differential equations on graphs appear in various fields, including chemical engineering, biology, physics, and ecology [9,10,11,12]. For this reason, many scholars study mathematical models described by fractional BVPs on graphs.

    In 2014 [10], Graef et al. investigated the existence of solutions for fractional BVPs on a star graph, which is composed of three nodes and two edges, that is G=VE with V={γ0,γ1,γ2} and E={γ1γ0,γ2γ0}, where γ0 represents the junction node, γiγ0 is the edge connecting γi and γ0 with length li=|γiγ0|,i=1,2. On each edge γiγ0,i=1,2, the authors considered the fractional BVPs in a local coordinate system with γi as origin on x(0,li), given by

    {Dα0+ui=mi(x)fi(x,ui),0<x<li,i=1,2.u1(0)=u2(0)=0,u1(l1)=u2(l2),Dβ0+u1(l1)+Dβ0+u2(l2)=0, (1.1)

    where Dα0+,Dβ0+ are Riemann-Liouville fractional derivative operators, 1<α2,0<β<α,miC[0,li],i=1,2 with mi(x)0 on [0,li] and fiC([0,li]×R,R),i=1,2. By using Schauder fixed point theorem and Banach contraction mapping theorem, the existence and uniqueness of solutions of BVP (1.1) are obtained.

    Later in 2019 [11], Mehandiratta et al. extended the results of Graef et al. on a general star graph (see Figure 1), which is a graph consisting of k+1 nodes and k edges, that is, the authors considered a graph G=VE,V={v0,v1,,vk},E={ei=viv0,i=1,2,,k}, where v0 is the junction node, viv0 represents the edge connecting vi and v0 with length li=|viv0|,i=1,2,,k. The author investigated the following fractional BVPs on the star graph G given by

    {CDα0,xui(x)=fi(x,ui(x),CDβ0,xui(x)),0<x<li,i=1,2,,k,ui(0)=0,i=1,2,,k,ui(li)=uj(lj),i,j=1,2,,k,ij,ki=1ui(li)=0,i=1,2,,k, (1.2)
    Figure 1.  A general star graph with k edges.

    where CDα0,x,CDβ0,x are Caputo fractional derivative, 1<α2,0<βα1,fi,i=1,2,,k are continuous functions on [0,li]×R×R. The existence and uniqueness results for BVP (1.2) are established using Schaefer's fixed point theorem and Banach contraction mapping theorem.

    Based on the two studies mentioned above, the subject of fractional BVPs on graphs has received significant research attention, and various interesting results have been recently established [12,13,14,15,16,17,18,19]. For example, in [12], Zhang and Liu discussed BVPs of fractional differential equations on a star graph with n+1 nodes and n edges. The existence and uniqueness of solutions are established using Schaefer's fixed point theorem and Banach contraction mapping principle. Etemad and Rezapour in [13] studied the BVPs of fractional differential equations on ethane graph. The existence results of solutions were obtained using Schaefer's fixed point theorem and Krasnoselskii's fixed point theorem. In [14], Baleanu et al. investigated the existence of solutions for BVPs of fractional differential equations on the glucose graphs. In [15], Ali et al. studied the existence of solutions of BVPs for fractional differential equations on the cyclohexane graphs using the fixed point theory. In [16], Mehandiratta et al. considered a nonlinear fractional BVPs on a particular metric graph. They proved the existence and uniqueness of solutions using Krasnoselskii's fixed point theorem and Banach contraction principle.

    It is well known that Langevin first formulated the Langevin equation in 1908. Langevin equation is an important tool for describing the evolution of physical phenomena in fluctuating environments [20]. However, people have realized that the traditional integer Langevin equation cannot accurately describe dynamic systems for complex phenomena. Therefore, one way to overcome this disadvantage is to use fractional derivative instead of integer derivative [21]. This gives rise to the fractional Langevin equation. Studies of BVPs on fractional Langevin equations have increased in recent years, and new research is constantly emerging [22,23,24,25]. For example, in [22], Fazli et al. studied the anti-periodic BVPs of fractional Langevin equation and obtained the existence and uniqueness solutions using the coupled fixed point theorem for mixed monotone mappings. In [23], Matar et al. established the existence, uniqueness and stability of solutions for the coupled Caputo-Hadamard fractional Langevin equation with the help of the fixed point theorem. In [24], Salem et al. considered the fractional Langevin equation with three-point boundary value conditions and obtained the existence of solutions by using Krasnoselskii's fixed point theorem and Leray-Schauder nonlinear alternative theorem.

    From the literature review, no result is concerned with fractional Langevin equations on graphs. To fill this knowledge gap, this study aims to establish the existence and uniqueness results for fractional Langevin equations on a star graph subject to mixed boundary conditions. Precisely, we investigate the following problems:

    {CDα0,x(D+λi)yi(x)=gi(x,yi(x),CDγ0,xyi(x)),0<x<ρi,i=1,2,,k,yi(0)=0,i=1,2,,k,yi(ρi)=yj(ρj),i,j=1,2,,k,ij,ki=1yi(ρi)=0,i=1,2,,k, (1.3)

    where 0<α<1,0<γ<α,λiR+,i=1,2,,k,CDα0,x,CDγ0,x are Caputo fractional derivative, D is the ordinary derivative, giC([0,ρi]×R2,R),i=1,2,,k. The star graph has k+1 nodes and k edges, that is G=VE,V={v0,v1,,vk},E={ei=viv0,i=1,2,,k}, where v0 is the junction node, ei=viv0 represents the edge connecting vi and v0 with length ρi=|viv0|,i=1,2,,k. We consider a local coordinate system with vi as origin and x(0,ρi) as the coordinate. The existence and uniqueness of the solution of BVP (1.3) are discussed using Schaefer's fixed point theorem and Banach contraction mapping principle.

    The rest of paper is organized as follows: In Section 2, we recall some basic definitions of fractional calculus and present an auxiliary lemma (Lemma 2.6), which transforms the problem (1.3) to BVP (2.1). In Section 3, we study the existence and uniqueness results of BVP (2.1) by using Schaefer's fixed point theorem and Banach contraction principle, respectively. Finally, two illustrative examples are discussed at the end of this paper.

    In this section, we recall some definitions of fractional calculus and provide preliminary results which we will use in the rest of the paper.

    Definition 2.1 [1]. The Riemann-Liouville fractional integral of order α>0 for a function fC(a,b) is defined by

    Iαa+f(t)=1Γ(α)ta(ts)α1f(s)ds,a<t<b.

    Definition 2.2 [1]. The Caputo fractional derivative of order α>0 for a function fCn(a,b) is presented by

    CDαa,tf(t)=1Γ(nα)ta(ts)nα1f(n)(s)ds,a<t<b,

    where n=[α]+1.

    Lemma 2.1 [1]. Let α>0. Suppose that uACn[0,1]. Then

    Iα0+CDα0,tu(t)=u(t)+c0+c1t+c2t2++cntn1,

    where ciR,i=1,2,,n,n=[α]+1.

    Lemma 2.2 [26]. Let α>0,nN, and D=d/dx. Suppose that (Dnx)(t) and (CDα+na,tx)(t) are exist. Then

    (CDαa,tDnx)(t)=(CDα+na,tx)(t).

    Lemma 2.3 [1]. If β>0,γ>β1,t>0, then

    CDβ0,ttγ=Γ(γ+1)Γ(γ+1β)tγβ.

    Theorem 2.4 [27]. (Scheafer's fixed point theorem) Let X be a Banach space. Assume that T:XX is a completely continuous operator and the set Ω={xX,x=μTx,μ(0,1)} is bounded. Then T has a fixed point in X.

    Lemma 2.5 [11]. Suppose that y is a function defined on [0,ρ] such that CDα0,xy exists on [0,ρ] with α>0 and let x[0,ρ],t=x/ρ[0,1],y(t)=y(ρt). Then

    CDα0,xy(x)=ρα(CDα0,ty(t)).

    Lemma 2.6 Suppose that y be a function defined on [0,ρ] such that CDα0,xy exists on [0,ρ] with α(n1,n) and let x[0,ρ],t=x/ρ[0,1],y(t)=y(ρt). Then

    CDα0,x(D+λ)y(x)=ρα1CDα0,t(D+λρ)y(t).

    Proof. By using the Definition 2.2 and Lemma 2.2, we can obtain

    CDα0,x(D+λ)y(x)=CDα+10,xy(x)+λCDα0,xy(x)=1Γ(nα)x0(xs)nα1y(n+1)(s)ds+λΓ(nα)x0(xs)nα1y(n)(s)ds=1Γ(nα)ρt0(ρts)nα1y(n+1)(s)ds+λΓ(nα)ρt0(ρts)nα1y(n)(s)ds(x=ρt)=ρnαΓ(nα)t0(tˆs)nα1y(n+1)(ρˆs)dˆs+λρnαΓ(nα)t0(tˆs)nα1y(n)(ρˆs)dˆs(ˆs=s/ρ)=ρα1Γ(nα)t0(tˆs)nα1y(n+1)(ˆs)dˆs+λραΓ(nα)t0(tˆs)nα1y(n)(ˆs)dˆs(y(n)(t)=ρny(n)(ρt))=ρα1CDα+10,ty(t)+λραCDα0,ty(t)=ρα1CDα0,t(D+λρ)y(t),

    This completes the proof of Lemma 2.6.

    By a direct calculation with help of Lemmas 2.5 and 2.6, BVP (1.3) can be transformed into a BVP defined on [0, 1] given by

    {CDα0,t(D+λiρi)yi(t)=ρα+1igi(t,yi(t),ργiCDγ0,tyi(t)),t(0,1),yi(0)=0,i=1,2,,k,yi(1)=yj(1),i,j=1,2,,k,ij,ki=1ρ1iyi(1)=0,i=1,2,,k, (2.1)

    where yi(t)=yi(ρit),gi(t,u,v)=gi(ρit,u,v),i=1,2,,k.

    In this section, we investigate the existence and uniqueness results of problem (2.1). To this end, we consider the space Y={y:yC[0,1],CDγ0,tyC[0,1]}, endowed with the norm

    ||y||Y=||y||+||CDγ0,ty||,

    where ||y||=maxt[0,1]|y(t)|,||CDγ0,ty||=maxt[0,1]|CDγ0,ty(t)|. Then (Y,||||Y) is a Banach space, and the product space (Yk,||||Yk) equipped with the norm

    ||(y1,y2,,yk)||Yk=ki=1||yi||Y,(y1,y2,,yk)Yk

    is also a Banach space, where Yk=kY×Y××Y.

    Lemma 3.1 Let hiC[0,1],i=1,2,,k. Then the BVP of fractional Langevin equations

    {CDα0,t(D+λiρi)yi(t)=hi(t),t(0,1),α(0,1),i=1,2,,k,yi(0)=0,i=1,2,,k,yi(1)=yj(1),i,j=1,2,,k,ij,ki=1ρ1iyi(1)=0,i=1,2,,k, (3.1)

    is equivalent to the integral equations

    yi(t)=λiρit0yi(s)ds+Iα+10+hi(t)+tkj=1j(λjρjyj(1)Iα0+hj(t)|t=1)+tkj=1,jij(λjρj10yj(s)ds+λiρi10yi(s)ds+Iα+10+hj(t)|t=1Iα+10+hi(t)|t=1),

    where j:=ρ1jkj=1ρ1j,i,j=1,2,,k.

    Proof. Applying the operator Iα0+ on both sides of Eq (3.1) and combining with the Lemma 2.1, we obtain

    (D+λiρi)yi(t)=Iα0+hi(t)+ci1,

    where ci1R,i=1,2,,k. The above equation can be rewritten as

    yi(t)=λiρiyi(t)+Iα0+hi(t)+ci1. (3.2)

    Integrating both sides of Eq (3.2) from 0 to t, we get

    yi(t)=λiρit0yi(s)ds+Iα+10+hi(t)+ci1t+yi(0).

    By conditions yi(0)=0,i=1,2,,k, we conclude

    yi(t)=λiρit0yi(s)ds+Iα+10+hi(t)+ci1t. (3.3)

    Applying the conditions ki=1ρ1iyi(1)=0 and yi(1)=yj(1),i,j=1,2,,k,ij in Eqs (3.2) and (3.3), respectively, we find

    ki=1ρ1i(λiρiyi(1)+Iα0+hi(t)|t=1+ci1)=0,

    and

    λiρi10yi(s)ds+Iα+10+hi(t)|t=1+ci1=λjρj10yj(s)ds+Iα+10+hj(t)|t=1+cj1,i,j=1,2,,k,ij.

    Combining the above two equations, we get

    kj=1ρ1j(λjρjyj(1)+Iα0+hj(t)|t=1)+ρ1ici1=kj=1,jiρ1jci1+kj=1,jiρ1j(λjρj10yj(s)ds+Iα+10+hj(t)|t=1+λiρi10yi(s)dsIα+10+hi(t)|t=1).

    This yields

    kj=1ρ1jci1=kj=1ρ1j(λjρjyj(1)+Iα0+hj(t)|t=1)+kj=1,jiρ1j(λjρj10yj(s)ds+λiρi10yi(s)ds+Iα+10+hj(t)|t=1Iα+10+hi(t)|t=1),

    from which we deduce that

    ci1=kj=1,jij(λjρj10yj(s)ds+λiρi10yi(s)ds+Iα+10+hj(t)|t=1Iα+10+hi(t)|t=1)kj=1j(λjρjyj(1)+Iα0+hj(t)|t=1),i=1,2,,k.

    Substituting ci1(i=1,2,,k) into the Eq (3.3), we get the desired result. The converse of the lemma is calculated directly. The proof is completed.

    In view of Lemma 3.1, we define the operator T:YkYk by

    T(y1,y2,,yk)(t):=(T1(y1,y2,,yk)(t),T2(y1,y2,,yk)(t),,Tk(y1,y2,,yk)(t)),

    for t[0,1] and yiY,i=1,2,,k, where

    Ti(y1,y2,,yk)(t)=λiρit0yi(s)ds+ρα+1iΓ(α+1)t0(ts)αgi(s,yi(s),ργiCDγ0,syi(s))ds+tkj=1j(λjρjyj(1)ρα+1jΓ(α)10(1s)α1gj(s,yj(s),ργjCDγ0,syj(s))ds)+tkj=1,jij(λjρj10yj(s)ds+ρα+1jΓ(α+1)10(1s)αgj(s,yj(s),ργjCDγ0,syj(s))ds)+tkj=1,jij(ρα+1iΓ(α+1)10(1s)αgi(s,yi(s),ργiCDγ0,syi(s))ds+λiρi10yi(s)ds). (3.4)

    In the following part, for convenience of presentation, we denote the notations:

    M1=1Γ(α+2)+1Γ(α+1)+1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2),M2=2Γ(α+2)+1Γ(α+1)+1Γ(αγ+2)+1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2).

    Theorem 3.1 Assume that

    (H1) The functions gi:[0,1]×R2R,(i=1,2,,k) are continuous and there exist functions ai(t)C([0,1],[0,+)), i=1,2,,k, such that

    |gi(t,u,v)gi(t,u1,v1)|ai(t)(|uu1|+|vv1|),

    for all t[0,1] and (u,v),(u1,v1)R2. Then the BVP (2.1) has a unique solution on [0, 1], provided that

    ki=1Pi(ki=1Ai)+ki=1Qi<1,

    where

    Pi=M1kj=1,ji(ρα+1j+ραγ+1j)+M2(ρα+1i+ραγ+1i),Qi=3λiρi+3λiρiΓ(2γ)+kj=1,ji(2λjρj+2λjρjΓ(2γ)),Ai=maxt[0,1]|ai(t)|.

    Proof. Applying the Banach contraction mapping principle, we have to prove that T is a contractive mapping. To prove this, we let y=(y1,y2,,yk),ˉy=(ˉy1,ˉy2,,ˉyk)Yk,t[0,1]. By Eq (3.4), we have

    |Tiy(t)Tiˉy(t)|ρα+1iΓ(α+1)t0(ts)α|gi(s,yi(s),ργiCDγ0,syi(s))gi(s,ˉyi(s),ργiCDγ0,sˉyi(s))|ds+λiρit0|yi(s)ˉyi(s)|ds+tkj=1j(λjρj|yj(1)ˉyj(1)|)+tkj=1jρα+1jΓ(α)10(1s)α1|gj(s,yj(s),ργjCDγ0,syj(s))dsgj(s,ˉyj(s),ργjCDγ0,sˉyj(s))|ds+tkj=1,jij(λjρj10|yj(s)ˉyj(s)|ds)+tkj=1,jiλiρij10|yi(s)ˉyi(s)|ds+tkj=1,jijρα+1jΓ(α+1)10(1s)α|gj(s,yj(s),ργjCDγ0,syj(s))gj(s,ˉyj(s),ργjCDγ0,sˉyj(s))|ds+tkj=1,jijρα+1iΓ(α+1)10(1s)α|gi(s,yi(s),ργiCDγ0,syi(s))gi(s,ˉyi(s),ργiCDγ0,sˉyi(s))|ds.

    By using the assumption (H1) and t[0,1],j(0,1),j=1,2,,k, we deduce

    |Tiy(t)Tiˉy(t)|2ρα+1iΓ(α+2)Ai||yiˉyi||+2ραγ+1iΓ(α+2)Ai||CDγ0,tyiCDγ0,tˉyi||+2λiρi||yiˉyi||+kj=1λjρj||yjˉyj||+kj=1,jiλjρj||yjˉyj||+kj=1ρα+1jAjΓ(α+1)||yjˉyj||+kj=1ραγ+1jAjΓ(α+1)||CDγ0,tyjCDγ0,tˉyj||+kj=1,jiρα+1jAjΓ(α+2)||yjˉyj||+kj=1,jiραγ+1jAjΓ(α+2)||CDγ0,tyjCDγ0,tˉyj||2AiΓ(α+2)(ρα+1i+ραγ+1i)(||yiˉyi||+||CDγ0,tyiCDγ0,tˉyi||)+3λiρi||yiˉyi||+kj=1,ji2λjρj||yjˉyj||+kj=1AjΓ(α+1)(ρα+1j+ραγ+1j)(||yjˉyj||+||CDγ0,tyjCDγ0,tˉyj||)+kj=1,jiAjΓ(α+2)(ρα+1j+ραγ+1j)(||yjˉyj||+||CDγ0,tyjCDγ0,tˉyj||).

    Then for any y,ˉyYk, we obtain

    ||TiyTiˉy||(2Γ(α+2)+1Γ(α+1))(ρα+1i+ραγ+1i)Ai||yiˉyi||Y+3λiρi||yiˉyi||Y+kj=1,ji(1Γ(α+2)+1Γ(α+1))(ρα+1j+ραγ+1j)Aj||yjˉyj||Y+kj=1,ji2λjρj||yjˉyj||Y. (3.5)

    On the other hand, by using Lemma 2.3, we have

    |CDγ0,tTiy(t)CDγ0,tTiˉy(t)|ρα+1iΓ(αγ+1)t0(ts)αγ|gi(s,yi(s),ργiCDγ0,syi(s))gi(s,ˉyi(s),ργiCDγ0,sˉyi(s))|ds+λiρiΓ(1γ)t0(ts)γ|yi(s)ˉyi(s)|ds+t1γΓ(2γ)kj=1jλjρj|yj(1)ˉyj(1)|+t1γΓ(2γ)Γ(α)kj=1jρα+1j10(1s)α1|gj(s,yj(s),ργjCDγ0,syj(s))dsgj(s,ˉyj(s),ργjCDγ0,sˉyj(s))|ds
    +t1γΓ(2γ)kj=1,jijλjρj10|yj(s)ˉyj(s)|ds+t1γΓ(2γ)kj=1,jiλiρij10|yi(s)ˉyi(s)|ds+t1γΓ(2γ)Γ(α+1)kj=1,jijρα+1j10(1s)α|gj(s,yj(s),ργjCDγ0,syj(s))gj(s,ˉyj(s),ργjCDγ0,sˉyj(s))|ds+t1γΓ(2γ)Γ(α+1)kj=1,jiρα+1ij10(1s)α|gi(s,yi(s),ργiCDγ0,syi(s))gi(s,ˉyi(s),ργiCDγ0,sˉyi(s))|ds.

    In a similar manner, we deduce

    |CDγ0,tTiy(t)CDγ0,tTiˉy(t)|ρα+1iAiΓ(αγ+2)||yiˉyi||+ραγ+1iAiΓ(αγ+2)||CDγ0,tyiCDγ0,tˉyi||+2λiρiΓ(2γ)||yiˉyi||+1Γ(2γ)kj=1λjρj||yjˉyj||+1Γ(2γ)Γ(α+1)kj=1ρα+1jAj||yjˉyj||+1Γ(2γ)Γ(α+1)kj=1ραγ+1jAj||CDγ0,tyjCDγ0,tˉyj||+1Γ(2γ)kj=1,jiλjρj||yjˉyj||+1Γ(2γ)Γ(α+2)kj=1,jiρα+1jAj||yjˉyj||+1Γ(2γ)Γ(α+2)kj=1,jiραγ+1jAj||CDγ0,tyjCDγ0,tˉyj||+ρα+1iAiΓ(2γ)Γ(α+2)||yiˉyi||+ραγ+1iAiΓ(2γ)Γ(α+2)||CDγ0,tyiCDγ0,tˉyi||1Γ(αγ+2)(ρα+1i+ραγ+1i)Ai(||yiˉyi||+||CDγ0,tyiCDγ0,tˉyi||)+3λiρiΓ(2γ)||yiˉyi||+2Γ(2γ)kj=1,jiλjρj||yjˉyj||+1Γ(2γ)Γ(α+1)kj=1(ρα+1j+ραγ+1j)Aj(||yjˉyj||+||CDγ0,tyjCDγ0,tˉyj||)+1Γ(2γ)Γ(α+2)kj=1,ji(ρα+1j+ραγ+1j)Aj(||yjˉyj||+||CDγ0,tyjCDγ0,tˉyj||)+1Γ(2γ)Γ(α+2)(ρα+1i+ραγ+1i)Ai(||yiˉyi||+||CDγ0,tyiCDγ0,tˉyi||).

    This implies that, for any y,ˉyYk,

    ||CDγ0,tTiy(t)CDγ0,tTiˉy(t)||(1Γ(αγ+2)+1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))(ρα+1i+ραγ+1i)Ai||yiˉyi||Y
    +(1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))kj=1,ji(ρα+1j+ραγ+1j)Aj||yjˉyj||Y+3λiρiΓ(2γ)||yiˉyi||Y+kj=1,ji2λjρjΓ(2γ)||yjˉyj||Y. (3.6)

    By a direct calculation with help of (3.5) and (3.6), we get

    ||TiyTiˉy||+||CDγ0,tTiyCDγ0,tTiˉy||M2(ρα+1i+ραγ+1i)Ai||yiˉyi||Y+(3λiρi+3λiρiΓ(2γ))||yiˉyi||Y+M1kj=1,ji(ρα+1j+ραγ+1j)Aj||yjˉyj||Y+kj=1,ji(2λjρj+2λjρjΓ(2γ))||yjˉyj||Y.

    From this it follows that

    ||TiyTiˉy||Y(M2(ρα+1i+ραγ+1i)+M1kj=1,ji(ρα+1j+ραγ+1j))(ki=1Ai)kj=1||yjˉyj||Y+(3λiρi+3λiρiΓ(2γ)+kj=1,ji(2λjρj+2λjρjΓ(2γ)))kj=1||yjˉyj||Y=(Pi(ki=1Ai)+Qi)kj=1||yjˉyj||Y.

    As a consequence, we obtain

    ||TyTˉy||Yk=ki=1||TiyTiˉy||Y(ki=1Pi(ki=1Ai)+ki=1Qi)||yˉy||Yk.

    It follows from the condition ki=1Pi(ki=1Ai)+ki=1Qi<1 that T is a contractive mapping. Hence, T has a unique fixed point on Yk, that is, BVP (2.1) has a unique solution. Therefore, we obtain the conclusion of the theorem.

    Theorem 3.2 Assume that

    (H2) The functions gi:[0,1]×R2R,(i=1,2,,k) are continuous and there exist functions pi(t),qi(t),ri(t)C([0,1],[0,+)),(i=1,2,,k) such that

    |gi(t,u,v)|pi(t)+qi(t)|u(t)|+ri(t)|v(t)|,

    for all t[0,1],u,vR. Then the BVP (2.1) admits at least one solution in Y provided that

    ki=1θi<1,

    where

    θi=Δi(qi+ργiri)+ϖi+kj=1,ji(˜Δj(qj+ργjrj)+˜ϖj),

    and

    pi=maxt[0,1]|pi(t)|,qi=maxt[0,1]|qi(t)|,ri=maxt[0,1]|ri(t)|,Δi=M2ρα+1i,ϖi=3λiρi+3λiρiΓ(2γ),˜ϖj=2λjρj+2λjρjΓ(2γ),˜Δj=M1ρα+1j.

    Proof. We divide the proof into two steps.

    Step 1. We need to verify that the operator T is a completely continuous. In fact, since the functions gi(i=1,2,,k) are continuous, we can easily prove that the operators Ti(i=1,2,k) are continuous, and thus T is continuous. Next, we have to show that T is compact. To see this, we define the bounded subset Λ={yiY,||yi||Yεi} on Y, then for any y=(y1,y2,,yk)Λ, by (H2), we find that

    |Tiy(t)|λiρit0|yi(s)|ds+ρα+1iΓ(α+1)t0(ts)α|gi(s,yi(s),ργiCDγ0,syi(s))|ds+kj=1j(λjρj|yj(1)|+ρα+1jΓ(α)10(1s)α1|gj(s,yj(s),ργjCDγ0,syj(s))|ds)+kj=1,jij(λjρj10|yj(s)|ds+ρα+1jΓ(α+1)10(1s)α|gj(s,yj(s),ργjCDγ0,syj(s))|ds)+kj=1,jij(ρα+1iΓ(α+1)10(1s)α|gi(s,yi(s),ργiCDγ0,syi(s))|ds+λiρi10|yi(s)|ds)λiρi||yi||+ρα+1iΓ(α+2)(pi+qi||yi||+ργiri||CDγ0,tyi||)+kj=1λjρj||yj||+kj=1ρα+1jΓ(α+1)(pj+qj||yj||+ργjrj||CDγ0,tyj||)+kj=1,jiλjρj||yj||+kj=1,jiρα+1jΓ(α+2)(pj+qj||yj||+ργjrj||CDγ0,tyj||)+ρα+1iΓ(α+2)(pi+qi||yi||+ργiri||CDγ0,tyi||)+λiρi||yi||λiρi||yi||Y+ρα+1iΓ(α+2)(pi+(qi+ργiri)||yi||Y)+kj=1λjρj||yj||Y+kj=1ρα+1jΓ(α+1)(pj+(qj+ργjrj)||yj||Y)+kj=1,jiλjρj||yj||Y+kj=1,jiρα+1jΓ(α+2)(pj+(qj+ργjrj)||yj||Y)
    +ρα+1iΓ(α+2)(pi+(qi+ργiri)||yi||Y)+λiρi||yi||Y.

    From which we can deduce that

    ||Tiy||3λiρi||yi||Y+(2Γ(α+2)+1Γ(α+1))ρα+1i(pi+(qi+ργiri)||yi||Y)+kj=1,ji2λjρj||yj||Y+kj=1,ji(1Γ(α+1)+1Γ(α+2))ρα+1j(pj+(qj+ργjrj)||yj||Y)(3λiρi+(2Γ(α+2)+1Γ(α+1))ρα+1i(qi+ργiri))||yi||Y+kj=1,ji(2λjρj+(1Γ(α+1)+1Γ(α+2))ρα+1j(qj+ργjrj))||yj||Y+(2Γ(α+2)+1Γ(α+1))ρα+1ipi+kj=1,ji(1Γ(α+1)+1Γ(α+2))ρα+1jpj. (3.7)

    On the other hand, by Lemma 2.3 and (H2), we also can get the estimate

    |CDγ0,tTiy(t)|λiρiΓ(1γ)t0(ts)γ|yi(s)|ds+ρα+1iΓ(α+1γ)t0(ts)αγ|gi(s,yi(s),ργiCDγ0,syi(s))|ds+t1γΓ(2γ)kj=1j(λjρj|yj(1)|+ρα+1jΓ(α)10(1s)α1|gj(s,yj(s),ργjCDγ0,syj(s))|ds)+t1γΓ(2γ)kj=1,jij(λjρj10|yj(s)|ds+ρα+1jΓ(α+1)10(1s)α|gj(s,yj(s),ργjCDγ0,syj(s))|ds)+t1γΓ(2γ)kj=1,jij(ρα+1iΓ(α+1)10(1s)α|gi(s,yi(s),ργiCDγ0,syi(s))|ds+λiρi10|yi(s)|ds)λiρiΓ(2γ)||yi||+ρα+1iΓ(αγ+2)(pi+qi||yi||+ργiri||CDγ0,tyi||)+1Γ(2γ)kj=1λjρj||yj||+1Γ(2γ)Γ(α+1)kj=1ρα+1j(pj+qj||yj||+ργjrj||CDγ0,tyj||)+1Γ(2γ)kj=1,jiλjρj||yj||+1Γ(2γ)Γ(α+2)kj=1,jiρα+1j(pj+qj||yj||+ργjrj||CDγ0,tyj||)+ρα+1iΓ(2γ)Γ(α+2)(pi+qi||yi||+ργiri||CDγ0,tyi||)+λiρiΓ(2γ)||yi||.

    In a similar manner, we deduce

    ||CDγ0,tTiy||(1Γ(αγ+2)+1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1i(qi+ργiri)||yi||Y
    +kj=1,ji(2λjρjΓ(2γ)+(1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1j(qj+ργjrj))||yj||Y+kj=1,ji(1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1jpj+3λiρiΓ(2γ)||yi||Y+(1Γ(αγ+2)+1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1ipi. (3.8)

    From (3.7) and (3.8), we get that

    ||Tiy||+||CDγ0,tTiy||M2ρα+1i(qi+ργiri)||yi||Y+(3λiρi+3λiρiΓ(2γ))||yi||Y+kj=1,ji(2λjρj+2λjρjΓ(2γ))||yj||Y+kj=1,jiM1ρα+1j(qj+ργjrj)||yj||Y+M2ρα+1ipi+kj=1,jiM1ρα+1jpj=Δi(qi+ργiri)||yi||Y+ϖi||yi||Y+kj=1,ji˜Δj(qj+ργjrj)||yj||Y+kj=1,ji˜ϖj||yj||Y+Δipi+kj=1,ji˜Δjpj(Δi(qi+ργiri)+ϖi)||yi||Y+kj=1,ji(˜Δj(qj+ργjrj)+˜ϖj)||yj||Y+Δipi+kj=1,ji˜Δjpj[(Δi(qi+ργiri)+ϖi)+kj=1,ji(˜Δj(qj+ργjrj)+˜ϖj)]kj=1||yj||Y+Ni=θikj=1εj+Ni,

    where

    Ni=Δipi+kj=1,ji˜Δjpj,i=1,2,k. (3.9)

    Form this it follows that

    ||Ty||Yk=ki=1||Tiy||Yki=1θi(kj=1εj)+ki=1Ni.

    Hence, the operator T is uniformly bounded on Λ.

    Now, We will show that the operator T is equicontinuous on Λ. Indeed, for y=(y1,y2,,yk)Λ,t1,t2[0,1],t1<t2, we have

    |Tiy(t2)Tiy(t1)|ρα+1iΓ(α+1)(t10((t2s)α(t1s)α)ds+t2t1(t2s)αds)(pi+qi||yi||+ργiri||CDγ0,tyi||)
    +(t2t1)kj=1(λjρj||yj||+ρα+1jΓ(α+1)(pj+qj||yj||+ργjrj||CDγ0,tyj||))+(t2t1)kj=1,ji(λjρj||yj||+ρα+1jΓ(α+2)(pj+qj||yj||+ργjrj||CDγ0,tyj||))+(t2t1)(ρα+1iΓ(α+2)(pi+qi||yi||+ργiri||CDγ0,tyi||)+λiρi||yi||)+λiρi||yi||(t2t1)λiρiεi(t2t1)+ρα+1i(pi+(qi+riργi)εi)Γ(α+2)(tα+12tα+11)+(t2t1)kj=1(λjρjεj+ρα+1j(pj+(qj+rjργj)εj)Γ(α+1))+(t2t1)kj=1,ji(λjρjεj+ρα+1j(pj+(qj+rjργj)εj)Γ(α+2))+(t2t1)(ρα+1i(pi+(qi+riργi)εi)Γ(α+2)+λiρiεi), (3.10)

    and

    |CDγ0,tTiy(t2)CDγ0,tTiy(t1)|λiρiΓ(1γ)||yi||(t10((t1s)γ(t2s)γ)ds+t2t1(t2s)γds)+ρα+1i(pi+qi||yi||+ργiri||CDγ0,tyi||)Γ(αγ+1)(t10((t2s)αγ(t1s)αγ)ds+t2t1(t2s)αγds)+(t1γ2t1γ1)Γ(2γ)kj=1λjρj||yj||+(t1γ2t1γ1)Γ(2γ)Γ(α+1)kj=1ρα+1j(pj+qj||yj||+ργjrj||CDγ0,tyj||)+(t1γ2t1γ1)Γ(2γ)kj=1,jiλjρj||yj||+(t1γ2t1γ1)Γ(2γ)Γ(α+2)kj=1,jiρα+1j(pj+qj||yj||+ργjrj||CDγ0,tyj||)+(t1γ2t1γ1)ρα+1iΓ(2γ)Γ(α+2)(pi+qi||yi||+ργiri||CDγ0,tyi||)+(t1γ2t1γ1)λiρi||yi||Γ(2γ)λiρiεiΓ(2γ)(t1γ1t1γ2+2(t2t1)1γ)+ρα+1i(pi+(qi+ργiri)εi)Γ(αγ+2)(tαγ+12tαγ+11)+(t1γ2t1γ1)Γ(2γ)kj=1λjρjεj+(t1γ2t1γ1)Γ(2γ)Γ(α+1)kj=1ρα+1j(pj+(qj+ργjrj)εj)+(t1γ2t1γ1)Γ(2γ)kj=1,jiλjρjεj+(t1γ2t1γ1)Γ(2γ)Γ(α+2)kj=1,jiρα+1j(pj+(qj+ργjrj)εj)+(t1γ2t1γ1)ρα+1iΓ(2γ)Γ(α+2)(pi+(qi+ργiri)εi)+(t1γ2t1γ1)λiρiεiΓ(2γ). (3.11)

    Form (3.10) and (3.11), we get

    ||Tiy(t2)Tiy(t1)||Y(3λiρiεi+(ρα+1iΓ(α+1)+ρα+1iΓ(α+2))(pi+(qi+ρβiri)εi))(t2t1)+ρα+1iΓ(α+2)(pi+(qi+ργiri)εi)(tα+12tα+11)+2λiρiεiΓ(2γ)(t1γ2t1γ1)+((ρα+1iΓ(2γ)Γ(α+2)+ρα+1iΓ(2γ)Γ(α+1))(pi+(qi+ργiri)εi))(t1γ2t1γ1)+λiρiεiΓ(2γ)(t1γ1t1γ2+2(t2t1)1γ)+ρα+1iΓ(αγ+2)(pi+(qi+ργiri)εi)(tαγ+12tαγ+11)+kj=1,ji(2λjρjεjΓ(2γ)+(ρα+1jΓ(2γ)Γ(α+1)+ρα+1jΓ(2γ)Γ(α+2))(pj+(qj+ργjrj)εj))(t1γ2t1γ1)+kj=1,ji(2λjρjεj+(ρα+1jΓ(α+2)+ρα+1jΓ(α+1))(pj+(qj+ργjrj)εj))(t2t1),

    which implies ||Tiy(t2)Tiy(t1)||Y0 as t2t1, and so ||Ty(t2)Ty(t1)||Yk0 as t2t1. Therefore, the operator T is equicontinuous on Λ. According to Arzelá-Ascoli theorem that T is completely continuous.

    Step 2. By applying Scheafer's fixed point theorem, we now prove that T has fixed point in Y. To this aim, we define Ω={(y1,y2,,yk)Yk:(y1,y2,,yk)=μT(y1,y2,,yk),μ(0,1)} and show that Ω is bounded. In fact, for (y1,y2,,yk)Ω, then (y1,y2,,yk)=μT(y1,y2,,yk), that is, for t[0,1], we have yi(t)=μTi(y1,y2,,yk),i=1,2,,k. Similarly in the proof of (3.7), by assumption (H2), we deduce

    |yi(t)|μ[(3λiρi+(2Γ(α+2)+1Γ(α+1))ρα+1i(qi+ργiri))||yi||Y+kj=1,ji(2λjρj+(1Γ(α+1)+1Γ(α+2))ρα+1j(qj+ργjrj))||yj||Y+(2Γ(α+2)+1Γ(α+1))ρα+1ipi+kj=1,ji(1Γ(α+1)+1Γ(α+2))ρα+1jpj],

    from which we obtain

    ||yi||(3λiρi+(2Γ(α+2)+1Γ(α+1))ρα+1i(qi+ργiri))||yi||Y+kj=1,ji(2λjρj+(1Γ(α+1)+1Γ(α+2))ρα+1j(qj+ργjrj))||yj||Y+(2Γ(α+2)+1Γ(α+1))ρα+1ipi+kj=1,ji(1Γ(α+1)+1Γ(α+2))ρα+1jpj. (3.12)

    In a similar manner of deduce (3.8), by assumption (H2), we also can obtain the estimate

    |CDγ0,tyi(t)|μ[(1Γ(αγ+2)+1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1i(qi+ργiri)||yi||Y+kj=1,ji(2λjρjΓ(2γ)+(1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1j(qj+ργjrj))||yj||Y+kj=1,ji(1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1jpj+3λiρiΓ(2γ)||yi||Y+(1Γ(αγ+2)+1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1ipi].

    Then for t[0,1], we get

    ||CDγ0,tyi||(1Γ(αγ+2)+1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1i(qi+ργiri)||yi||Y+kj=1,ji(2λjρjΓ(2γ)+(1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1j(qj+ργjrj))||yj||Y+kj=1,ji(1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1jpj+3λiρiΓ(2γ)||yi||Y+(1Γ(αγ+2)+1Γ(2γ)Γ(α+1)+1Γ(2γ)Γ(α+2))ρα+1ipi.

    Combining this with (3.12) gives

    ||yi||+||CDγ0,tyi||M2ρα+1i(qi+ργiri)||yi||Y+(3λiρi+3λiρiΓ(2γ))||yi||Y+kj=1,ji(2λjρj+2λjρjΓ(2γ))||yj||Y+kj=1,jiM1ρα+1j(qj+ργjrj)||yj||Y+M2ρα+1ipi+kj=1,jiM1ρα+1jpjθikj=1||yj||Y+Ni,

    where Ni is defined as in (3.9), from which we deduce that

    ||y||Yk=ki=1||yi||Yki=1θi||y||Yk+ki=1Ni.

    It follows from ki=1θi<1 that Ω is bounded. By Theorem 2.4, the operator T has at least one fixed point, that is, the BVP (2.1) has at least one solution.

    Example 4.1 Consider the BVP (1.3) with k=3,α=12,γ=13,λ1=λ2=λ3=ρ1=110,ρ2=120,ρ3=130, and

    {g1(x,u,v)=cosx+1(x+2)2(sinu+v),(x,u,v)[0,ρ1]×R×R,g2(x,u,v)=1x+12(x2+4)2(|u|+|v|),(x,u,v)[0,ρ2]×R×R,g3(x,u,v)=1+x2+13(x+3)3(u1+u+v),(x,u,v)[0,ρ3]×R×R.

    In view of Lemma 2.6, we get the equivalent system

    {CD1/20,t(D+1100)y1(t)=(110)3/2[cost+1(t+2)2(siny1(t)+(110)1/3CD1/30,ty1(t))],CD1/20,t(D+1200)y2(t)=(120)3/2[1t+12(t2+4)2(|y2(t)|+(120)1/3|CD1/30,ty2(t)|)],CD1/20,t(D+1300)y3(t)=(130)3/2[1+t2+13(t+3)3(y3(t)1+y3(t)+(130)1/3CD1/30,ty3(t))],y1(0)=y2(0)=y3(0)=0,y1(1)=y2(1)=y3(1),(1/10)1y1(1)+(1/20)1y2(1)+(1/30)1y3(1)=0. (4.1)

    From (4.1), for t[0,1],u,v,u1,v1R, we can conclude that

    |g1(t,u,v)g1(t,u1,v1)|1(t+2)2(|uu1|+|vv1|),|g2(t,u,v)g2(t,u1,v1)|12(t2+4)2(|uu1|+|vv1|),|g3(t,u,v)g3(t,u1,v1)|13(t+3)3(|uu1|+|vv1|).

    So, we get

    a1(t)=1(t+2)2,a2(t)=12(t2+4)2,a3(t)=13(t+3)3.

    By simple calculation, we obtain

    A1=maxt[0,1]|a1(t)|=14,A2=maxt[0,1]|a2(t)|=132,A3=maxt[0,1]|a3(t)|=181.
    P10.8256,P20.7281,P30.7183,Q10.0983,Q20.0878,Q30.0843.

    Then

    (3i=1Pi)(3i=1Ai)+3i=1Qi0.9374<1.

    From Theorem 3.1 that the BVP (4.1) has a unique solution.

    Example 4.2 Consider the BVP (1.3) with k=3,α=12,γ=13,λ1=λ2=λ3=120,ρ2=15,ρ1=ρ3=110, and

    {g1(x,u,v)=x10+12(x+3)3u+15310(x+2)2v,(x,u,v)[0,ρ1]×R×R,g2(x,u,v)=sinx+13(x+2)2u+x2035v,(x,u,v)[0,ρ2]×R×R,g3(x,u,v)=2x+1(x+5)2u+112310(x+2)v,(x,u,v)[0,ρ3]×R×R.

    Then by Lemma 2.6, we obtain the equivalent system

    {CD1/20,t(D+1200)y1(t)=(110)3/2[t10+siny1(t)2(t+3)3+CD1/1330,ty1(t)5310(t+2)2],CD1/20,t(D+1100)y2(t)=(15)3/2[sint+y2(t)3(t+2)2+t2035CD1/1330,ty2(t)],CD1/20,t(D+1200)y3(t)=(110)3/2[2t+y3(t)(t+5)2+D1/1330,ty3(t)12310(t+2)],y1(0)=y2(0)=y3(0),y1(1)=y2(1)=y3(1),(1/10)1y1(1)+(1/5)1y2(1)+(1/10)1y3(1)=0. (4.2)

    Then

    q1(t)=12(t+3)3,r1(t)=15(t+2)2,q2(t)=13(t+2)2,r2(t)=t20,q3(t)=1(t+5)2,r3(t)=112(t+2).

    For t[0,1], we have q1=154,q2=112,q3=125,r1=r2=120,r3=124. By calculation, we get

    Δ10.1783,˜Δ10.1253,ϖ10.0316,˜ϖ10.0211,Δ20.4043,˜Δ20.3544,ϖ20.0632,˜ϖ20.0421,Δ30.1783,˜Δ30.1253,ϖ30.0316,˜ϖ30.0211,

    So,

    θ1=Δ1(q1+ργ1r1)+ϖ1+(˜Δ2(q2+ργ2r2)+˜ϖ2)+(˜Δ3(q3+ργ3r3)+˜ϖ3)0.1934,θ2=Δ2(q2+ργ2r2)+ϖ2+(˜Δ1(q1+ργ1r1)+˜ϖ1)+(˜Δ3(q3+ργ3r3)+˜ϖ3)0.2057,θ3=Δ3(q3+ργ3r3)+ϖ3+(˜Δ1(q1+ργ1r1)+˜ϖ1)+(˜Δ2(q2+ργ2r2)+˜ϖ2)0.1935.

    Thus,

    θ1+θ2+θ30.5926<1.

    According to Theorem 3.2, the BVP (4.2) has at least one solution.

    This paper considers the fractional Langevin equations on a star graph of the form (1.3). By using Lemma 2.6, the problem (1.3) is transformed into an equivalent system of fractional Langevin equations supplemented with mixed boundary conditions defined on [0,1], that is, problem (2.1). Making use of the fixed point theorems (Schauder's fixed point theorem, Banach's contraction mapping principle), sufficient criteria for the existence and uniqueness results are derived. Finally, we present two examples to illustrate the validity of the obtained results. As a possible extension of this paper, we will study the higher-order fractional Langevin-type equations on star graphs in the future, such as

    CDα0,x(D2+λi)yi(x)=gi(x,yi(x),CDβ0,xyi(x)),0<x<li,i=1,2,,k,

    supplemented with the boundary conditions

    {yi(0)=yi(0)=0,i=1,2,,k,yi(li)=yj(lj),i,j=1,2,,k,ij,ki=1y

    and

    \left\{ \begin{gathered} {{\mathfrak{y}'}_i}(0) = {\mathfrak{y}_i}(1) = 0, \;\;i = 1, 2, \cdots , k, \hfill \\ {{\mathfrak{y}''}_i}({l_i}) = {{\mathfrak{y}''}_j}({l_j}), \;\;i, j = 1, 2, \cdots , k, i \ne j, \hfill \\ \sum\nolimits_{i = 1}^k {{{\mathfrak{y}''}_i}({l_i}) = 0, \;i = 1, 2, \cdots , k, } \hfill \\ \end{gathered} \right.

    where 0 < \alpha < 1, \; 0 < \beta < \alpha, \; {\lambda _i} \in \mathbb{R}^+, \; i = 1, 2, \cdots, k, \; {}^CD_{0, x}^\alpha, {}^CD_{0, x}^\beta are Caputo fractional derivative, D^2 is the ordinary second-order derivative, {{\mathfrak{g}_i}} \in C([0, {l_i}] \times \mathbb{R}^2, \mathbb{R}), \; i = 1, 2, \cdots, k. The star graph has k+1 nodes and k edges, that is G = V\cup E, V{\rm{ = }}\{ {v_0}, {v_1}, \cdots, {v_k}\}, E = \{ {e_i} = \overrightarrow {{v_i}{v_0}}, i = 1, 2, \cdots, k\}, where {v_0} is the junction node, {e_i} = \overrightarrow {{v_i}{v_0}} represents the edge connecting {v_i} and {v_0} with length {l_i} = \left| {\overrightarrow {{v_i}{v_0}} } \right|, i = 1, 2, \cdots, k.

    The authors wish to express their sincere appreciation to the editor and the anonymous referees for their valuable comments and suggestions. This research is supported by the National Natural Science Foundation of China (11601007) and the Key Program of University Natural Science Research Fund of Anhui Province (KJ2020A0291).

    The authors declare that they have no competing interests.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Ltd., 204 (2006), 1–523. https://doi.org/10.1016/S0304-0208(06)80001-0
    [2] X. Zheng, H. Wang, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes, SIAM J. Numer. Anal., 58 (2020), 330–352. https://doi.org/10.1137/19M1245621 doi: 10.1137/19M1245621
    [3] V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equations, 22 (2006), 558–576. https://doi.org/10.1002/num.20112 doi: 10.1002/num.20112
    [4] B. Ahmad, J. Henderson, R. Luca, Boundary Value Problems for Fractional Differential Equations and Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 9 (2021). https://doi.org/10.1142/11942
    [5] B. Ahmad, M. Alghanmi, A. Alsaedi, J. J. Nieto, Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions, Appl. Math. Lett., 116 (2021), 1–10. https://doi.org/10.1016/j.aml.2021.107018 doi: 10.1016/j.aml.2021.107018
    [6] R. Luca, On a class of nonlinear singular Riemann-Liouville fractional differential equations, Results Math., 73 (2018), 1–15. https://doi.org/10.1007/s00025-018-0887-5 doi: 10.1007/s00025-018-0887-5
    [7] R. Luca, Positive solutions for a system of fractional differential equations with p-Laplacian operator and multi-point boundary conditions, Nonlinear Anal. Model. Control, 23 (2018), 771–801. https://doi.org/10.15388/NA.2018.5.8 doi: 10.15388/NA.2018.5.8
    [8] G. Lumer, Connecting of local operators and evolution equations on networks, in Potential Theory Copenhagen, Lect. Notes Math., Springer, Berlin, Heidelberg, 787 (1979), 219–234. https://doi.org/10.1007/BFb0086338
    [9] A. I. Vol'pert, Differential equations on graphs, Math. Model. Nat. Phenom., 10 (2015), 6–15. https://doi.org/10.1051/mmnp/201510502 doi: 10.1051/mmnp/201510502
    [10] J. R. Graef, L. Kong, M. Wang, Existence and uniqueness of solutions for a fractional boundary value problem on a graph, Fract. Calc. Appl. Anal., 17 (2014), 499–510. https://doi.org/10.2478/s13540-014-0182-4 doi: 10.2478/s13540-014-0182-4
    [11] V. Mehandiratta, M. Mehra, G. Leugering, Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph, J. Math. Anal. Appl., 477 (2019), 1243–1264. https://doi.org/10.1016/j.jmaa.2019.05.011 doi: 10.1016/j.jmaa.2019.05.011
    [12] W. Zhang, W. Liu, Existence and Ulam's type stability results for a class of fractional boundary value problems on a star graph, Math. Methods Appl. Sci., 43 (2020), 8568–8594. https://doi.org/10.1002/mma.6516 doi: 10.1002/mma.6516
    [13] S. Etemad, S. Rezapour, On the existence of solutions for fractional boundary value problems on the ethane graph, Adv. Differ. Equations, 2020 (2020), 1–20. https://doi.org/10.1186/s13662-020-02736-4 doi: 10.1186/s13662-020-02736-4
    [14] D. Baleanu, S. Etemad, H. Mohammadi, S. Rezapour, A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul., 100 (2021), 1–13. https://doi.org/10.1016/j.cnsns.2021.105844 doi: 10.1016/j.cnsns.2021.105844
    [15] W. Ali, A. Turab, J. J. Nieto, On the novel existence results of solutions for a class of fractional boundary value problems on the cyclohexane graph, J. Inequal. Appl., 2022 (2022), 1–19. https://doi.org/10.1186/s13660-021-02742-4 doi: 10.1186/s13660-021-02742-4
    [16] V. Mehandiratta, M. Mehra, G. Leugering, Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge: A study of fractional calculus on metric graph, Networks Heterogen. Media, 16 (2021), 155–185. https://doi.org/10.3934/nhm.2021003 doi: 10.3934/nhm.2021003
    [17] A. Turab, W. Sintunavarat, The novel existence results of solutions for a nonlinear fractional boundary value problem on the ethane graph, Alexandria Eng. J., 60, 2021, 5365–5374. https://doi.org/10.1016/j.aej.2021.04.020
    [18] G. Mophou, G. Leugering, P. S. Fotsing, Optimal control of a fractional Sturm-Liouville problem on a star graph, Optimization, 70 (2021), 659–687. https://doi.org/10.1080/02331934.2020.1730371 doi: 10.1080/02331934.2020.1730371
    [19] A. Turab, Z. D. Mitrović, A. Savić, Existence of solutions for a class of nonlinear boundary value problems on the hexasilinane graph, Adv. Differ. Equations, 2021 (2021), 1–20. https://doi.org/10.1186/s13662-021-03653-w doi: 10.1186/s13662-021-03653-w
    [20] W. Coffey, Y. P. Kalmykov, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 27 (2012). https://doi.org/10.1142/8195
    [21] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, New York, 2001.
    [22] H. Fazli, J. J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos Solitons Fractals, 114 (2018), 332–337. https://doi.org/10.1016/j.chaos.2018.07.009 doi: 10.1016/j.chaos.2018.07.009
    [23] A. Salem, F. Alzahrani, B. Alghamdi, Langevin equation involving two fractional orders with three-point boundary conditions, Differ. Integr. Equations, 33 (2020), 163–180.
    [24] M. M. Matar, J. Alzabut, J. M. Jonnalagadda, A coupled system of nonlinear Caputo-Hadamard Langevin equations associated with nonperiodic boundary conditions, Math. Methods Appl. Sci., 44 (2021), 2650–2670. https://doi.org/10.1002/mma.6711 doi: 10.1002/mma.6711
    [25] Y. Liu, R. Agarwal, Existence of solutions of BVPs for impulsive fractional Langevin equations involving Caputo fractional derivatives, Turk. J. Math., 43 (2019), 2451–2472. https://doi.org/10.3906/mat-1905-23 doi: 10.3906/mat-1905-23
    [26] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, Inc., San Diego, CA, 198 (1999), 1–340. https://doi.org/10.1016/s0076-5392(99)x8001-5
    [27] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. https://doi.org/10.1007/978-0-387-21593-8
  • This article has been cited by:

    1. Guotao Wang, Hualei Yuan, Existence, uniqueness, and Ulam stability of solutions of fractional conformable Langevin system on the ethane graph, 2024, 47, 0170-4214, 7350, 10.1002/mma.9975
    2. Gang Chen, Jinbo Ni, Xinyu Fu, Existence, and Ulam's types stability of higher-order fractional Langevin equations on a star graph, 2024, 9, 2473-6988, 11877, 10.3934/math.2024581
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2090) PDF downloads(120) Cited by(2)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog