Research article Special Issues

Optical solitons and single traveling wave solutions of Biswas-Arshed equation in birefringent fibers with the beta-time derivative

  • This article describes the construction of optical solitons and single traveling wave solutions of Biswas-Arshed equation with the beta time derivative. By using the polynomial complete discriminant system method, a series of traveling wave solutions are constructed, including the rational function solutions, Jacobian elliptic function solutions, hyperbolic function solutions, trigonometric function solutions and inverse trigonometric function solutions. The conclusions of this paper comprise some new and different solutions that cannot be found in existing literature. Using the mathematic software Maple, the 3D and 2D graphs of the obtained traveling wave solutions were also developed. It is worth noting that these traveling wave solutions may motivate us to explore new phenomena which may be appear in optical fiber propagation theory.

    Citation: Tianyong Han, Zhao Li, Jun Yuan. Optical solitons and single traveling wave solutions of Biswas-Arshed equation in birefringent fibers with the beta-time derivative[J]. AIMS Mathematics, 2022, 7(8): 15282-15297. doi: 10.3934/math.2022837

    Related Papers:

    [1] Muhammad Imran Asjad, Naeem Ullah, Asma Taskeen, Fahd Jarad . Study of power law non-linearity in solitonic solutions using extended hyperbolic function method. AIMS Mathematics, 2022, 7(10): 18603-18615. doi: 10.3934/math.20221023
    [2] Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, M. Elsaid Ramadan, Islam Samir, Soliman Alkhatib . Influence of the β-fractional derivative on optical soliton solutions of the pure-quartic nonlinear Schrödinger equation with weak nonlocality. AIMS Mathematics, 2025, 10(3): 7489-7508. doi: 10.3934/math.2025344
    [3] Chun Huang, Zhao Li . New soliton solutions of the conformal time derivative generalized q-deformed sinh-Gordon equation. AIMS Mathematics, 2024, 9(2): 4194-4204. doi: 10.3934/math.2024206
    [4] Tianyong Han, Ying Liang, Wenjie Fan . Dynamics and soliton solutions of the perturbed Schrödinger-Hirota equation with cubic-quintic-septic nonlinearity in dispersive media. AIMS Mathematics, 2025, 10(1): 754-776. doi: 10.3934/math.2025035
    [5] Emad H. M. Zahran, Omar Abu Arqub, Ahmet Bekir, Marwan Abukhaled . New diverse types of soliton solutions to the Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2023, 8(4): 8985-9008. doi: 10.3934/math.2023450
    [6] Kun Zhang, Tianyong Han, Zhao Li . New single traveling wave solution of the Fokas system via complete discrimination system for polynomial method. AIMS Mathematics, 2023, 8(1): 1925-1936. doi: 10.3934/math.2023099
    [7] Da Shi, Zhao Li, Dan Chen . New traveling wave solutions, phase portrait and chaotic patterns for the dispersive concatenation model with spatio-temporal dispersion having multiplicative white noise. AIMS Mathematics, 2024, 9(9): 25732-25751. doi: 10.3934/math.20241257
    [8] Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, Taher A. Nofal, Islam Samir . Highly dispersive gap solitons for conformable fractional model in optical fibers with dispersive reflectivity solutions using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(9): 25205-25222. doi: 10.3934/math.20241229
    [9] Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal . Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101
    [10] Dumitru Baleanu, Kamyar Hosseini, Soheil Salahshour, Khadijeh Sadri, Mohammad Mirzazadeh, Choonkil Park, Ali Ahmadian . The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons. AIMS Mathematics, 2021, 6(9): 9568-9581. doi: 10.3934/math.2021556
  • This article describes the construction of optical solitons and single traveling wave solutions of Biswas-Arshed equation with the beta time derivative. By using the polynomial complete discriminant system method, a series of traveling wave solutions are constructed, including the rational function solutions, Jacobian elliptic function solutions, hyperbolic function solutions, trigonometric function solutions and inverse trigonometric function solutions. The conclusions of this paper comprise some new and different solutions that cannot be found in existing literature. Using the mathematic software Maple, the 3D and 2D graphs of the obtained traveling wave solutions were also developed. It is worth noting that these traveling wave solutions may motivate us to explore new phenomena which may be appear in optical fiber propagation theory.



    It is common knowledge that fractional partial differential equations are often used to establish mathematical models to fit experiments or practices. In order to better fit the experimental data more accurately, many scholars have studied partial differential equations (PDEs) involving a variety of fractional derivatives for decades, such as the Riemann-Liouville derivative [1], Caputo fractional derivative [2], conformable derivative [3,4,5,6,7,8,9,10,11] and beta derivative [12,13,14,15,16,17,18]. Investigating the traveling wave solutions to nonlinear PDEs plays an important role in the study of nonlinear physical phenomena [19,20,21,22].

    The Schrödinger equation is an important submicroscopic model in quantum mechanics. In recent years, researchers have established so many optical models based on the Schrödinger equation. Among these models, the Biswas-Arshed equation (BAE) is a generalization of the Schrödinger equation; it describes pulse propagation through optical fiber [23]. Due to the significant improvement of related technologies, the telecommunications industry has experienced great growth in the past few decades. In order to further study nonlinear optics, ignoring the self phase modulation, Anjan Biswas and Ssima Arshed established the BAE with the beta-time derivative [23]:

    iβψtβ+p12ψx2+p2βtβ(ux)+i(q13ux3+q2βtβ(2ux2))i(λ(|ψ|2ψ)x+ϕψ|ψ|2x+δ|ψ|2ψx)=0, (1.1)

    where ψ=ψ(x,t) is a complex-valued function. Also, x and t are spatial and temporal variables, respectively. The parameters p1 and p2 are the coefficients for the group velocity dispersion and the spatio-temporal dispersion, respectively. The parameters q1 and q2 are the coefficients for the third-order dispersion and the spatio-temporal third-order dispersion, respectively. The parameter λ is the coefficient for the self-steepening effect while ϕ and δ present the coefficients for nonlinear dispersions.

    A large number of methods for finding the traveling wave solutions of the BAE without fractional derivatives have been proposed, such as dynamical system methods [24], undetermined coefficients and Kudryashov's methods [25], the Φ6 model expansion method [26], the sine-Gordon equation method [27], the modified simple equation method [28], extended sinh-Gordon equation expansion and modified (G/G)-expansion schemes [29], the trial equation technique [30], Jacobi's elliptic function approach [31], extended simplest equation methods [32], improved modified extended tanh-function methods [33] and various other methods [34,35,36,37,38,39,40,41,42].

    However, the special methods can yield a special kind of solution. In this paper, we look for more optical solitons and single traveling wave solutions of the BAE with the beta time derivative by using the complete discrimination system method. Recently, the effectiveness of the method has been examined by some authors. For example, Xu et al. adopted the complete discrimination system method to study soliton transmission dynamics [24]. Tang studied the exact solutions to a conformable time-fractional Klein-Gordon equation with high-order nonlinearities [41].

    In 2020, Biswas and Arshed first introduced the beta-time derivative into the BAE. As far as we know, there are few studies on the optical solitons traveling wave solutions of Eq (1.1). In 2020, Demiray obtained the hyperbolic function solution of the BAE with beta-time derivative [17]. Hosseini and his partners used Jacobi and Kudryashov methods to obtain the solutions of the BAE with the beta-time derivative, which include hyperbolic function solutions and Jacobian elliptic functions [18]. Using the polynomial discriminant system method, we obtain the classification of all single wave solutions of (1.1), including solutions in the forms of rational functions and trigonometric functions, in addition to the solutions in [17,18].

    Definition 1.1. Let f(t) be a function defined for all non-negative t. Then, the beta derivative of f(t) is given by [18]:

    Tβ(f(t))=dβf(t)dtβ=lima0f(t+a(t+1Γ(β))1β)f(t)a,β(0,1],

    where Γ(β)=0ettβ1dt,β>0.

    Theorem 1.2. Let f(t) and g(t) be β-differentiable functions for all t>0 and β(0,1].Then

    Tβ(k1f(t)+k2g(t))=k1Tβ(f(t))+k2Tβ(g(t)),k1,k2R.

    Tβ(f(t)g(t))=g(t)Tβ(f(t))+f(t)Tβ(g(t)).

    Tβ(f(t)g(t))=g(t)Tβ(f(t))f(t)Tβ(g(t))(g(t))2.

    Tβ(f(t))=(t+1Γ(β))1βdf(t)dt.

    The outline of this paper is as follows. In Section 2, the reduced form of the BAE with the beta-time derivative is presented in a detailed manner, and the complete discrimination system is also reviewed. In Section 3, optical solitons and other solutions of the BAE with the beta-time derivative are derived. In Section 4, the graphical interpretation of some traveling wave solutions are given by using 2D and 3D graphics. The conclusion is given in the last section.

    In order to construct the optical solitons and single traveling wave solutions of Eq (1.1), we consider the following traveling wave transformation

    ψ(x,t)=u(ξ)eiφ(x,t),ξ=xρβ(t+1Γ(β))β,φ(x,t)=γx+ωβ(t+1Γ(β))β+φ0, (2.1)

    where ρ is the speed of the wave. The parameters γ, ω and φ0 are the frequency, wave number and phase constant respectively, and u(ξ) is a real function representing the amplitude portion of the traveling wave solution.

    Substituting Eq (2.1) into Eq (1.1), and separating the real and imaginary parts gives

    (2γρq23γq1+ωq2+ρp2p1)d2u(ξ)dξ2+(γ3q1γ2ωq2+γ2p1γωp2+ω)u(ξ)+(γλ+γδ)u3(ξ)=0, (2.2)
    (ρq2q1)d3u(ξ)dξ3+(γ2ρq2+3γ2q12γωq2γρp2+2γp1ωp2+ρ)du(ξ)dξ+(3λ+2ϕ+δ)u2(ξ)du(ξ)dξ=0. (2.3)

    Multiplying Eq (2.2) by du(ξ)dξ and integrating once gives

    (2γρq23γq1+ωq2+ρp2p1)(du(ξ)dξ)2+(γ3q1γ2ωq2+γ2p1γωp2+ω) u2(ξ)+12(γλ+γδ) u4(ξ)=C0, (2.4)

    where C0 is the integral constant.

    First, we can find the general solutions of Eq (2.4) by assuming C0=0:

    2γρq23γq1+ωq2+ρp2p1=0,γ3q1γ2ωq2+γ2p1γωp2+ω=0,γλ+γδ=0. (2.5)

    In this case Eq (2.3) is satisfied and from Eq (2.5), we have

    λ=δ,ω=γ3q1+γ2p1γ2q2+γp21,ρ=2γ3q1q2+3γ2p2q1+γ(p1p23q1)p1(2γq2+p2)(γ2q2+γp21). (2.6)

    Integrating Eq (2.3) once, we obtain the equation

    (ρq2q1)d2udξ2+(γ2ρq2+3γ2q12γωq2γρp2+2γp1ωp2+ρ) u(ξ)+13(3λ+2ϕ+δ) u(ξ)3=C1. (2.7)

    Multiplying both sides of Eq (2.7) by du(ξ)dξ and integrating once, we get

    (ρq2q1)(dudξ)2+(γ2ρq2+3γ2q12γωq2γρp2+2γp1ωp2+ρ) u2(ξ)+16(3λ+2ϕ+δ) u(ξ)4=2C1 u(ξ)+C2, (2.8)

    where C1 and C2 are integral constants.

    Substituting Eq (2.5) into Eq (2.8), we have

    (dudξ)2=d4 u4(ξ)+d2 u2(ξ)+d1 u(ξ)+d0, (2.9)

    where d4=(2γq2+p2)(γ2q2+γp21)(δϕ)3(p1p2q2p22q1q1q2)γp1q2+p2q1, d2=6q22(q11)γ5+9p2q2(q11)γ4+((p1p25q1+6)q2+4p22(q134))γ3(p1p2q2p22q1q1q2)γp1q2+p2q1+(3p1q2+(6q1+3)p2)γ2+3γq1+p1(p1p2q2p22q1q1q2)γp1q2+p2q1, d1=2C1(2γq2+p2)(γ2q2+γp21)(p1p2q2p22q1q1q2)γp1q2+p2q1 and d0=C2(2γq2+p2)(γ2q2+γp21)(p1p2q2p22q1q1q2)γp1q2+p2q1.

    Making the transformation as follows

    u(ξ)=|d4|14w(ξ1),ξ1=|d4|14ξ. (2.10)

    Substituting the transformation of Eq (2.10) into Eq (2.9) will change it into the following form:

    (dwdξ1)2=ε(w4+pw2+qw+r), (2.11)

    where p={d2|d4|14,d4>0d2|d4|14,d4<0,q={d1|d4|14,d4>0d1|d4|14,d4<0, r={d0,d4>0d0,d4<0 and ε={1,d4>01,d4<0.

    Denote F(w)=w4+pw2+qw+r. Then Eq (2.11) can be written in the integral form:

    ±(ξ1ξ0)=dwεF(w). (2.12)

    Let

    D1=p,D2=2p3+8pr9q2,D3=p3q2+4p4r+36pq2r32p2r2274q4+64r3andD4=9p232pr. (2.13)

    The system consisting of D1D4 defined by Eq (2.13) is called the complete discriminant system of the function F(w). According to the complete discriminant method, we can determine the root of the function F(w) from the signs of D1, D2, D3 and D4; then we can obtain the solution of Eq (2.12).

    Case 1. D1<0, D2=D3=0. F(w) has a pair of conjugate complex roots. Without losing generality, let us set

    F(w)=[(wl)2+s2]2,lR,sR+.

    When ε=1, Eq (2.12) has the solution

    w1=stan[s(ξ1ξ0)]+l.

    With the help of Eq (2.1), we get the solution of Eq (1.1) as follows:

    ψ1=|d4|14{stan[s(|d4|14ξξ0)]+l}eiφ(x,t). (3.1)

    Case 2. D1=D2=D3=0. F(w) has a quadruple root. So we set F(w)=w4. When ε=1, we can get the solution of Eq (2.12)

    w2=±1ξ1ξ0.

    Then, the solution of Eq (1.1) is:

    ψ2=±|d4|141|d4|14ξξ0eiφ(x,t). (3.2)

    Case 3. D1>0,D2=D3=0,D4>0. F(w) has two different double real roots. Without losing generality, let F(w)=(wα2)2(wα1)2, α2>α1.

    When ε=1, we get that:

    (1) When w>α2 or w<α1, Eq (2.12) can be written in the following form:

    ±(ξ1ξ0)=dw(wα1)(wα2)=1α1α2ln|wα2wα1|.

    We get the solution of Eq (1.1) as follows:

    ψ3=|d4|14eiφ(x,t){α1α22[coth(α2α1)(|d4|14ξξ0)21]+α1}. (3.3)

    (2) When α1<w<α2, we get the solution of Eq (2.12) as follows:

    w4=α1α22[tanh(α2α1)(ξ1ξ0)21]+α1.

    Then, the solution of Eq (1.1) is:

    ψ4=|d4|14{α1α22[tanh(α2α1)(|d4|14ξξ0)21]+α1}eiφ(x,t). (3.4)

    Case 4. D1>0,D2>0,D3=0. F(w) has a double real root and real roots with two multiplicities, namely, F(w)=(wα2)2(wα1)(wα3), where α1,α2 and α3 are real numbers and α1>α3.

    (1) ε=1.

    When α2>α1 and w>α1, or when α2<α3, and w<α3, we get the implicit solution of Eq (2.12):

    ±(ξ1ξ0)=1(α2α1)(α2α3)ln[(wα1)(α2α3)(α2α1)(wα3)]2|wα2|. (3.5)

    When α2>α1, and w<α3, or when α2<α3, and w<α1, we have the implicit solution of of Eq (2.12):

    ±(ξ1ξ0)=1(α2α1)(α2α3)ln[(wα1)(α3α2)(α1α2)(wα3)]2|wα2|. (3.6)

    When α1>α2>α3, we have the implicit solution of of Eq (2.12):

    ±(ξ1ξ0)=1(α1α2)(α2α3)arcsin(wα1)(α2α3)+(α2α1)(α2α3)|(wα2)(α1α3)|. (3.7)

    (2) ε=1.

    When α2>α1, and w>α1, or when α2<α3, and w<α3, the following solution of Eq (2.12) can be obtained:

    ±(ξ1ξ0)=1(α1α2)(α2α3)ln[(α1w)(α2α3)(α1α2)(wα3)]2|wα2|. (3.8)

    When α2>α1, and w<α3, or when α2<α3, and w<α1, the following solution of Eq (2.12) can be obtained:

    ±(ξ1ξ0)=1(α1α2)(α2α3)ln[(α1w)(α3α2)(α2α1)(wα3)]2|wα2|. (3.9)

    When α1>α2>α3, the following solution of Eq (2.12) can be obtained:

    ±(ξ1ξ0)=1(α2α1)(α2α3)arcsin(α1w)(α2α3)+(α1α2)(wα3)|(wα2)(α1α3)|. (3.10)

    From Eqs (3.5), (3.6), (3.7), (3.8), (3.9) and (3.10), we get the implicit solution of Eq (2.12) which involves logarithmic and inverse trigonometric functions.

    Especially, substituting δ=1,ϕ=3,γ=1,p1=2,p2=1,q1=3,q2=3,c1=0,c2=0, ξ0=0, α1=687,α2=0 and α3=687 into Eq (2.12), we construct the periodic solutions involving trigonometric functions of Eq (1.1):

    ψ5=24711+sin(47ξ)eiφ(x,t), (3.11)
    ψ6=24711sin(47ξ)eiφ(x,t). (3.12)

    Case 5. D1>0,D2=D3=D4=0. F(w) has real roots with three multiplicities and real roots with one multiplicity, namely,

    F(w)=(wα1)3(wα2),

    where α1, and β are real numbers.

    (1) ε=1. When w>max{α1,α2}, we get the solution of Eq (1.1) as follows:

    ψ7=|d4|14[4(α1α2)(α1α2)2(|d4|14ξξ0)24+α1]eiφ(x,t). (3.13)

    (2) ε=1. When min{α1,α2}<w<max{α1,α2}, we get the solution of Eq (1.1) as follows:

    ψ8=|d4|14[4(α1α2)(α1α2)2(|d4|14ξξ0)24+α1]eiφ(x,t). (3.14)

    Now, we have the rational function solutions given be Eqs (3.13) and (3.14).

    Case 6. D3=0, D1D2<0. F(w) has one double real root and a pair of conjugate complex roots, namely,

    F(w)=(wα)2[(wl)2+s2],

    where α, l and s are real numbers. Then, the solution of Eq (2.12) can be expressed as:

    w9,10=e±(ξ1ξ0)(αl)2+s2γ+(2γ)(αl)2+s2[e±(ξ1ξ0)(αl)2+s2γ]2+1,

    where γ=α2l(αl)2+s2 and δ=(αl)2+s2α(α2l)(αl)2+s2, which is a solitary wave solution.

    So, we get the solution of Eq (1.1) as follows:

    ψ9,10=|d4|14e±(|d4|14ξξ0)(αl)2+s2γ+(2γ)(αl)2+s2[e±(|d4|14ξξ0)(αl)2+s2γ]2+1eiφ(x,t). (3.15)

    Case 7. D1>0,D2>0,D3>0. F(w) has four distinct real roots, namely,

    F(w)=(wα1)(wα2)(wα3)(wα4),

    where α1,α2,α3 and α4 are real numbers, and α1>α2>α3>α4.

    (1) ε=1.

    When w>α1, or when w<α4, we consider the following transformation:

    w=α2(α1α4)sin2φα1(α2α4)(α1α4)sin2φ(α2α4).

    From Eq (2.12), we obtain

    ±(ξ1ξ0)=2(α1α3)(α2α4)dφ1m2sin2φ,

    where m2=(α1α4)(α2α3)(α1α3)(α2α4).

    According to the definition of the Jacobian elliptic sine function, we obtain that

    sinφ=±sn((ξ1ξ0)(α1α3)(α2α4)2,m).

    Then, we construct the solution of Eq (1.1) to be

    ψ11=|d4|14α2(α1α4)sn2((|d4|14ξξ0)(α1α3)(α2α4)2,m)α1(α2α4)(α1α4)sn2((|d4|14ξξ0)(α1α3)(α2α4)2,m)(α2α4)eiφ(x,t). (3.16)

    When α3<w<α2, we make the following transformation:

    w=α4(α2α3)sin2φα3(α2α4)(α2α3)sin2φ(α2α4)

    By using Eq (2.12), we obtain

    ±(ξ1ξ0)=2(α1α3)(α2α4)dφ1m2sin2φ.

    We construct the solution of Eq (1.1) to be:

    ψ12=|d4|14α4(α2α3)sn2((|d4|14ξξ0)(α1α3)(α2α4)2,m)α3(α2α4)(α2α3)sn2((|d4|14ξξ0)(α1α3)(α2α4)2,m)(α2α4)eiφ(x,t). (3.17)

    (2) ε=1.

    When α1>w>α2, we make the following transformation:

    w=α3(α1α2)sin2φα2(α2α3)(α1α2)sin2φ(α2α3).

    We get the solution of Eq (2.12):

    ±(ξ1ξ0)=2(α1α3)(α2α4)dφ1n2sin2φ,

    where n2=(α1α2)(α3α4)(α1α3)(α2α4).

    By the definition of the Jacobian elliptic sine function, we obtain that

    sinφ=±sn((ξ1ξ0)(α1α3)(α2α4)2,n).

    Then, we construct the solution of Eq (1.1):

    ψ13=|d4|14α3(α1α2)sn2((|d4|14ξξ0)(α1α3)(α2α4)2,n)α2(α2α3)(α1α2)sn2((|d4|14ξξ0)(α1α3)(α2α4)2,n)(α2α3)eiφ(x,t). (3.18)

    When α3>w>α4, we apply the following transformation:

    w=α1(α3α4)sin2φα4(α3α1)(α3α4)sin2φ(α3α1).

    Similarly, we get the solution of Eq (1.1):

    ψ14=|d4|14α1(α3α4)sn2((|d4|14ξξ0)(α1α3)(α2α4)2,n)α4(α3α1)(α3α4)sn2((|d4|14ξξ0)(α1α3)(α2α4)2,n)(α3α1)eiφ(x,t). (3.19)

    From Eqs (3.16), (3.17), (3.18) and (3.16), we obtain four biperiodic single traveling wave solutions of Eq (1.1).

    Case 8. D1D20,D3<0. F(w) has two different real roots and a pair of conjugate complex roots, namely,

    F(w)=(wα1)(wα2)[(wl)2+s2],

    where α1, α2, l and s are real numbers, and α1>α2 and l,s>0.

    We make the following transformation:

    w=acosφ+bccosφ+d,

    where a=α1+α22cα1α22d, b=α1+α22dα1α22c, c=α1lsm1, d=α1lsm1, E=s2+(α1l)(α2l)s(α1α2), m1=E±E2+1.

    From Eq (2.12), we obtain

    (ξ1ξ0)=2mm12sm1(α1α2)dφ1m2sin2φ,

    where m2=11+m21.

    (1) ε=1. By the definition of the Jacobian elliptic function, we obtain:

    cosφ=cn((ξ1ξ0)2sm1(α1α2)2mm1,m).

    We get the solution of Eq (1.1):

    ψ15=|d4|14acn((|d4|14ξξ0)2sm1(α1α2)2mm1,m)+bccn((|d4|14ξξ0)2sm1(α1α2)2mm1,m)+deiφ(x,t). (3.20)

    (2) ε=1. The solution of Eq (1.1) is as follows:

    ψ16=|d4|14acn((|d4|14ξξ0)2sm1(α1α2)2mm1,m)+bccn((|d4|14ξξ0)2sm1(α1α2)2mm1,m)+deiφ(x,t). (3.21)

    Case 9. D1D20,D3>0. F(w) has two pairs of conjugate complex roots, namely,

    F(w)=[(wl1)+s12][(wl2)+s22],

    where l1,l2,s1 and s2 are real numbers, and s1s2>0.

    If ε=1, Eq (2.12) will be meaningful. Then, we make the following transformation:

    w=atanφ+bctanφ+d,

    where a=l1c+s1d, b=l1ds1c, c=l1l2m1, d=l1l2, E=(l1l2)2+s12+s222s1s2, m1=E+E21. By using (2.12), we obtain

    (ξ1ξ0)=c2+d2s2(c2+d2)(m12c2+d2)dφ1m2sin2φ,

    where m2=m211m21.

    By the definition of the Jacobian elliptic function, we obtain that

    sinφ=sn(s2(ξ1ξ0)(c2+d2)(m12c2+d2)c2+d2,m),
    cosφ=cn(s2(ξ1ξ0)(c2+d2)(m12c2+d2)c2+d2,m).

    Then, we get the solution of Eq (1.1):

    ψ17=|d4|14asn(η(|d4|14ξξ0),m)+bcn(η(|d4|14ξξ0),m)csn(η(|d4|14ξξ0),m)+dcn(η(|d4|14ξξ0),m)eiφ(x,t). (3.22)

    From Eqs (3.20), (3.21) and (3.22), we have obtained three biperiodic traveling wave solutions of Eq (1.1).

    In this section, we describe the use of the mathematical software Maple to obtain the dynamical features of Eq (1.1). The results of numerical simulations are presented here to show the amplitude functions of the obtained solutions. Upon choosing suitable parameters, the main features of ψ2(x,t), ψ5(x,t), ψ11(x,t), ψ17(x,t) are shown in Figures 1, 2, 3 and 4, respectively.

    Figure 1.  3D and 2D graphs of the rational function solution given by Eq (3.2) with δ=1,ϕ=1/2,ρ=1,β=1/3,γ=1,p1=1/4,p2=(19105113)/88,q1=1/5,q2=1,c1=0,c2=0 and ξ0=0.
    Figure 2.  3D and 2D graphs of the trigonometric function solution given by Eq (3.11) with δ=1,ϕ=3,γ=1,ρ=1,β=1/4,p1=2,p2=1,q1=3,q2=3,c1=0,c2=0 and ξ0=0.
    Figure 3.  3D and 2D graphs of the Jacobi Elliptic solution given by Eq (3.16) with δ=2,ϕ=1,ρ=1,β=1/3,γ=2,p1=1,p2=2,q1=2,q2=2,c1=12,c2=0 and ξ0=0.
    Figure 4.  3D and 2D graphs of the solution given by (3.22) with δ=5,ϕ=1,γ=1/4,ρ=1,β=1/2,p1=1/4,p2=1/4,q1=1/4,q2=1,c1=0,c2=4 and ξ0=0.

    Figure 1 shows the amplitude of the rational function solution. Figures 2, 3 and 4 show the amplitudes of the three kinds of biperiodic function solutions.

    In this paper, a series of new optical solitons and single traveling wave solutions of the BAE in birefringent fibers with the beta-time derivative have been successfully obtained. These solutions include hyperbolic function solutions, rational wave solutions, Jacobi elliptic solutions and triangular functions solutions. The solutions obtained in this study not only contain the conclusions of the existing solutions, but they also contain the solutions in the forms of rational functions and trigonometric functions. These obtained solutions form a complete classification of single wave solutions. Finally, with the aid of the symbolic computational software Maple, we have presented 3D and 2D visualizations of some obtained solutions.

    Compared with the existing results, the polynomial complete discriminant system method is a reliable and efficient technique. The author of [17] obtained a series of traveling wave solutions involving hyperbolic functions, and those of [18] obtained a series of traveling wave solutions involving hyperbolic functions and the Jacobian elliptic function. The traveling wave solution obtained in this study contains not only hyperbolic function and Jacobian elliptic function solutions, but also rational function and trigonometric function solutions. This method allows us to solve the single wave solutions of more types of PDEs. The results of this study may help us to explore new phenomena that may appear in Eq (1.1). In further research, we will use the idea proposed in this paper to study the optical solitons and single traveling wave solutions of BAE with random terms or other fractional derivative terms.

    The limitations of this study are as follows. The references cited are this papers that have been published in SCI journals in the past 10 years, and thus do not include papers from less influential journals. Therefore, we remind the readers to pay attention to the limitations of the time and journal source when reading this article.

    The authors declare no conflict of interest.

    The authors are grateful to the anonymous reviewers for their careful reading and useful suggestions, which have greatly improved the presentation of the paper. This work was supported by Scientific Research Funds from Chengdu University under grant no.2081920034.



    [1] Y. Chalco-Cano, J. J. Nieto, A. Ouahab, H. Romn-Flores, Solution set for fractional differential equations with Riemann-Liouville derivative, Fract. Calc. Appl. Anal., 16(2013), 682–694. http://dx.doi.org/10.2478/s13540-013-0043-6 doi: 10.2478/s13540-013-0043-6
    [2] Y. G. Yan, Z. Z. Sun, J. W. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme, Commun. Comput. Phys., 22 (2017), 1028–1048. https://doi.org/10.4208/cicp.OA-2017-0019 doi: 10.4208/cicp.OA-2017-0019
    [3] R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [4] A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods, Opt. Quant. Electron., 49 (2017), Article number 278. https://doi.org/10.1007/s11082-017-1116-2 doi: 10.1007/s11082-017-1116-2
    [5] K. U. Tariq, M. Younis, H. Rezazadeh, et al, Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution, Mod. Phys. Lett. B, 32 (2018), Article number 1850317. https://doi.org/10.1142/S0217984918503177 doi: 10.1142/S0217984918503177
    [6] Z. Li, T. Y. Han, Bifurcation and exact solutions for the (2+1)-dimensional conformable time-fractional Zoomeron equation, Adv. Differ. Equ-Ny., 2020 (2020), Article number 656. https://doi.org/10.1186/s13662-020-03119-5 doi: 10.1186/s13662-020-03119-5
    [7] T. Y. Han, Z. Li, X. Zhang, Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrodinger equation, Phys. Lett. A, 395 (2021), Article number 127217. https://doi.org/10.1016/j.physleta.2021.127217 doi: 10.1016/j.physleta.2021.127217
    [8] K. Hosseini, P. Mayeli, A. Bekir, O. Guner, D. O. Mathematics, R. Branch, Density-dependent conformable space-time fractional diffusion-reaction equation and its exact solutions, Commun. Theor. Phys., 69 (2018), 1–4. https://doi.org/10.1088/0253-6102/69/1/1 doi: 10.1088/0253-6102/69/1/1
    [9] T. Lu, S. P. Chen, The classication of single traveling wave solutions for the fractional coupled nonlinear Schrodinger equation, Opt. Quant. Electron., 54 (2022), Article number 105. https://doi.org/10.1007/s11082-021-03496-5 doi: 10.1007/s11082-021-03496-5
    [10] C. Huang, Z. Li, New Exact Solutions of the Fractional Complex Ginzburg-Landau Equation, Math. Probl. Eng., 2021 (2021), Article ID 1283083. https://doi.org/10.1155/2021/6640086 doi: 10.1155/2021/6640086
    [11] A. Biswas, M. O. Al-Amr, H. Rezazadeh, M. Mirzazadeh, M. Eslami, Q. Zhou, et al., Resonant optical solitons with dualpower law nonlinearity and fractional temporal evolution, Optik, 165 (2018), 233–239. https://doi.org/10.1016/j.ijleo.2018.03.123 doi: 10.1016/j.ijleo.2018.03.123
    [12] B. Ghanbari, J. F. Gómez-Aguilar, The generalized exponential rational function method for Radhakrishnan-Kundu-Lakshmanan equation with β-conformable time derivative, Revista Mexicana de Fsica, 65 (2019), 503–518. https://doi.org/10.31349/RevMexFis.65.503 doi: 10.31349/RevMexFis.65.503
    [13] A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers, Front. Phys., 7 (2019), Article number 34. https://doi.org/10.3389/fphy.2019.00034 doi: 10.3389/fphy.2019.00034
    [14] M. Fa. Uddin, M. G. Hafez, Z. Hammouch, D. Baleanu, Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness, Waves Random Complex, 31 (2020), 2135–2149. https://doi.org/10.1080/17455030.2020.1722331 doi: 10.1080/17455030.2020.1722331
    [15] K. Hosseini, L. Kaur, M. Mirzazadeh, H. M. Baskonus, 1-Soliton solutions of the (2 + 1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative, Opt. Quant. Electron., 53 (2021), Article number 125. https://doi.org/10.1007/s11082-021-02739-9 doi: 10.1007/s11082-021-02739-9
    [16] A. Zafar, A. Bekir, M. Raheel, K. Sooppy Nisar, S. Mustafa, Dynamics of new optical solitons for the Triki-Biswas model using beta-time derivative, Mod. Phys. Lett. B, 35 (2021), Article number 2150511. https://doi.org/10.1142/S0217984921505114 doi: 10.1142/S0217984921505114
    [17] S. T. Demiray, New Solutions of Biswas-Arshed Equation with Beta Time Derivative, Optik, 222 (2020), Article number 165405. https://doi.org/10.1016/j.ijleo.2020.165405 doi: 10.1016/j.ijleo.2020.165405
    [18] K. Hosseini, M. Mirzazadeh, M. Ilie, J. F. Gómez-Aguilar, Biswas-Arshed equation with the beta time derivative: Optical solitons and other solutions, Optik, 217 (2020), Article number 164801. https://doi.org/10.1016/j.ijleo.2020.164801 doi: 10.1016/j.ijleo.2020.164801
    [19] K. Khan, M. A. Akbar, Solitary and periodic wave solutions of nonlinear wave equations via the functional variable method, J. Interdiscip. Math., 21 (2018), 43–57. https://doi.org/10.1080/09720502.2014.962839 doi: 10.1080/09720502.2014.962839
    [20] K. Khan, M. A. Akbar, Solving unsteady Korteweg-de Vries equation and its two alternatives, Math. Method. Appl. Sci., 39 (2016), 2752–2760. https://doi.org/10.1002/mma.3727 doi: 10.1002/mma.3727
    [21] T. Y. Han, J. J. Wen, Z. Li, J. Yuan, New Traveling Wave Solutions for the (2+1)-Dimensional Heisenberg Ferromagnetic Spin Chain Equation, Math. Probl. Eng., 2022 (2022), Article ID 1312181, 9 pages. https://doi.org/10.1155/2022/1312181 doi: 10.1155/2022/1312181
    [22] T. Y. Han, J. J. Wen, Z. Li, Bifurcation Analysis and Single Traveling Wave Solutions of the Variable-Coefficient Davey-Stewartson System, Discrete Dyn. Nat. Soc., 2022 (2022), 1–6. https://doi.org/10.1155/2022/9230723 doi: 10.1155/2022/9230723
    [23] A. Biswas, S. Arshed, Optical solitons in presence of higher order dispersions and absence of self-phase modulation, Optik, 174 (2018), 452–459. https://doi.org/10.1016/j.ijleo.2018.08.037 doi: 10.1016/j.ijleo.2018.08.037
    [24] W. R. Xu, L. F. Guo, C. Y. Wang, Optical solutions of Biswas-Arshed equation in optical fibers, Mod. Phys. Lett. B, 35 (2021), Article number 2150051. https://doi.org/10.1142/S0217984921500512 doi: 10.1142/S0217984921500512
    [25] H. U. Rehman, S. Jafar, A. Javed, S. Hussain, M. Tahir, New optical solitons of Biswas-Arshed equation using different techniques, Optik, 206 (2019), Article number 163670. https://doi.org/10.1016/j.ijleo.2019.163670 doi: 10.1016/j.ijleo.2019.163670
    [26] N. Sajid, G. Akram, Novel solutions of Biswas-Arshed equation by newly Φ6 model expansion method, Optik, 211 (2020), Article number 164564. https://doi.org/10.1016/j.ijleo.2020.164564 doi: 10.1016/j.ijleo.2020.164564
    [27] Y. Yıldırım, Optical solitons with Biswas-Arshed equation by sine-Gordon equation method, Optik, 223 (2020), Article number 165622. https://doi.org/10.1016/j.ijleo.2020.165622 doi: 10.1016/j.ijleo.2020.165622
    [28] M. Tahir, A. U. Awan, Optical singular and dark solitons with Biswas-Arshed model by modified simple equation method, Optik, 202 (2020), Article number 163523. https://doi.org/10.1016/j.ijleo.2019.163523 doi: 10.1016/j.ijleo.2019.163523
    [29] A. Zafar, A. Bekir, M. Raheel, W. Razzaq, Optical soliton solutions to Biswas-Arshed model with truncated M-fractional derivative, Optik, 222 (2020), Article number 165355. https://doi.org/10.1016/j.ijleo.2020.165355 doi: 10.1016/j.ijleo.2020.165355
    [30] Y. Yıldırım, Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique, Optik, 182 (2019), 810–820. https://doi.org/10.1016/j.ijleo.2019.01.084 doi: 10.1016/j.ijleo.2019.01.084
    [31] M.M.A. El-Sheikh, H. M. Ahmed, A. H. Arnous, et al, Optical solitons and other solutions in birefringent fibers with Biswas-Arshed equation by Jacobi's elliptic function approach. Optik, 202 (2019), Article number 163546. https://doi.org/10.1016/j.ijleo.2019.163546 doi: 10.1016/j.ijleo.2019.163546
    [32] E. M. E. Zayed, R. M. A. Shohib, Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method, Optik, 185 (2019), 626–635. https://doi.org/10.1016/j.ijleo.2019.03.112 doi: 10.1016/j.ijleo.2019.03.112
    [33] A. Darwish, H. M. Ahmed, Ahmed H. Arnous, M. F. Shehab, Optical solitons of Biswas-Arshed equation in birefringent fibers using improved modified extended tanh-function method, Optik, 227 (2021), Article number 165385. https://doi.org/10.1016/j.ijleo.2020.165385 doi: 10.1016/j.ijleo.2020.165385
    [34] Z. Korpinar, M. Inc, M. Bayram, M. S. Hashemi, New optical solitons for Biswas-Arshed equation with higher order dispersions and full nonlinearity, Optik, 206 (2020), Article number 163332. https://doi.org/10.1016/j.ijleo.2019.163332 doi: 10.1016/j.ijleo.2019.163332
    [35] P. K. Das, Chirped and chirp-free optical exact solutions of the Biswas-Arshed equation with full nonlinearity by the rapidly convergent approximation method, Optik, 223(2020), Article number 165293. https://doi.org/10.1016/j.ijleo.2020.165293 doi: 10.1016/j.ijleo.2020.165293
    [36] H. U. Rehman, M. S. Saleem, M.Zubair, S. Jafar, I. Latif, Optical solitons with Biswas-Arshed model using mapping method, Optik, 194 (2019), Article number 163091. https://doi.org/10.1016/j.ijleo.2019.163091 doi: 10.1016/j.ijleo.2019.163091
    [37] N. A. Kudryashov, Periodic and solitary waves of the Biswas-Arshed equation, Optik, 200 (2020), Article number 163442. https://doi.org/10.1016/j.ijleo.2019.163442 doi: 10.1016/j.ijleo.2019.163442
    [38] H. U. Rehman, M. Tahir, M. Bibi, Z. Ishfaq, Optical solitons to the Biswas-Arshed model in birefringent fibers using couple of integration techniques, Optik, 218 (2020), Article number 164894. https://doi.org/10.1016/j.ijleo.2020.164894 doi: 10.1016/j.ijleo.2020.164894
    [39] M. Munawar, A. Jhangeer, A. Pervaiz, F. Ibraheem, New general extended direct algebraic approach for optical solitons of Biswas-Arshed equation through birefringent fibers, Optik, 228 (2021), Article number 165790. https://doi.org/10.1016/j.ijleo.2020.165790 doi: 10.1016/j.ijleo.2020.165790
    [40] N. A. Kudryashov, Solitary wave solutions of the generalized Biswas-Arshed equation, Optik, 219(2020), Article number 165002. https://doi.org/10.1016/j.ijleo.2020.165002 doi: 10.1016/j.ijleo.2020.165002
    [41] L. Tang, Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities. Results Phys., 18 (2020), Article number 103289. https://doi.org/10.1016/j.rinp.2020.103289 doi: 10.1016/j.rinp.2020.103289
    [42] A. Atangana, R. T. Alqahtani, Modelling the spread of river blindness disease via the Caputo fractional derivative and the beta-derivative, Entropy, 18 (2016), Article number 40. https://doi.org/10.3390/e18020040 doi: 10.3390/e18020040
  • This article has been cited by:

    1. Tianyong Han, Zhao Li, Kun Zhang, Exact solutions of the stochastic fractional long–short wave interaction system with multiplicative noise in generalized elastic medium, 2023, 44, 22113797, 106174, 10.1016/j.rinp.2022.106174
    2. Muneerah Al Nuwairan, Bifurcation and Analytical Solutions of the Space-Fractional Stochastic Schrödinger Equation with White Noise, 2023, 7, 2504-3110, 157, 10.3390/fractalfract7020157
    3. Tianyong Han, Zhao Li, Kaibo Shi, Guo-Cheng Wu, Bifurcation and traveling wave solutions of stochastic Manakov model with multiplicative white noise in birefringent fibers, 2022, 163, 09600779, 112548, 10.1016/j.chaos.2022.112548
    4. Tianyong Han, Zhao Li, Chenyu Li, Lingzhi Zhao, Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg–Landau equation with nonlinear chromatic dispersion in non-Kerr law media, 2022, 0972-8821, 10.1007/s12596-022-01041-5
    5. Melih Cinar, Aydin Secer, Mustafa Bayram, On the optical soliton solutions of time-fractional Biswas–Arshed equation including the beta or M-truncated derivatives, 2023, 55, 0306-8919, 10.1007/s11082-022-04427-8
    6. Tianyong Han, Lingzhi Zhao, Bifurcation, sensitivity analysis and exact traveling wave solutions for the stochastic fractional Hirota–Maccari system, 2023, 47, 22113797, 106349, 10.1016/j.rinp.2023.106349
    7. S.M. Yiasir Arafat, S.M. Rayhanul Islam, M.M. Rahman, M.A. Saklayen, On nonlinear optical solitons of fractional Biswas-Arshed Model with beta derivative, 2023, 48, 22113797, 106426, 10.1016/j.rinp.2023.106426
    8. Yusuf Pandir, Tolga Akturk, Yusuf Gurefe, Hussain Juya, Muhammad Nadeem, The Modified Exponential Function Method for Beta Time Fractional Biswas-Arshed Equation, 2023, 2023, 1687-9139, 1, 10.1155/2023/1091355
    9. Romas Marcinkevicius, Inga Telksniene, Tadas Telksnys, Zenonas Navickas, Minvydas Ragulskis, The step-wise construction of solitary solutions to Riccati equations with diffusive coupling, 2023, 8, 2473-6988, 30683, 10.3934/math.20231568
    10. Mati Youssoufa, Selahattin Gulsen, Mir Sajjad Hashemi, Shahram Rezapour, Mustafa Inc, Novel exact solutions to the perturbed Gerdjikov–Ivanov equation, 2024, 56, 1572-817X, 10.1007/s11082-024-07166-0
    11. Jianming Qi, Qinghua Cui, Leiqiang Bai, Yiqun Sun, Investigating exact solutions, sensitivity, and chaotic behavior of multi-fractional order stochastic Davey–Sewartson equations for hydrodynamics research applications, 2024, 180, 09600779, 114491, 10.1016/j.chaos.2024.114491
    12. H. I. Abdel-Gawad, Novel optical solitons patterns via Biswas–Arshed equation with gain or loss. Modulated wave gain, 2024, 0217-9792, 10.1142/S0217979225500171
    13. Romas Marcinkevicius, Inga Telksniene, Tadas Telksnys, Zenonas Navickas, Minvydas Ragulskis, The step-wise construction of solitary solutions to Riccati equations with diffusive coupling, 2023, 8, 2473-6988, 30683, 10.3934/math.20221568
    14. Yusuf Pandir, Yusuf Gurefe, Calogero Vetro, A New Version of the Generalized F-Expansion Method for the Fractional Biswas-Arshed Equation and Boussinesq Equation with the Beta-Derivative, 2023, 2023, 2314-8888, 1, 10.1155/2023/1980382
    15. Mengke Yu, Cailiang Chen, Qiuyan Zhang, Bifurcations and exact solutions of the complex Ginzburg–Landau equation with Kudryashov's law, 2025, 1468-9367, 1, 10.1080/14689367.2025.2451421
    16. Khalil S. Al-Ghafri, Anjan Biswas, Yakup Yıldırım, Sub-pico-second chirped optical solitons in birefringent fibers for space–time fractional Kaup-Newell equation, 2025, 21, 1990-2573, 11, 10.1051/jeos/2025005
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2005) PDF downloads(86) Cited by(16)

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog