Research article

New single traveling wave solution of the Fokas system via complete discrimination system for polynomial method

  • Received: 13 August 2022 Revised: 10 October 2022 Accepted: 11 October 2022 Published: 26 October 2022
  • MSC : 35C05, 35C07, 35R11

  • In this paper, the traveling wave solution of the Fokas system which represents the irregular pulse propagation in monomode optical fibers is studied by using the complete discriminant system method of polynomials. Firstly, the Fokas system is simplified into nonlinear ordinary differential equations by using the traveling wave transformation. Secondly, the Jacobian function solutions, the trigonometric function solutions, the hyperbolic function solutions and the rational function solution of Fokas system are obtained by using the complete discriminant system method of polynomials. Finally, in order to show the propagation of Fokas system in monomode optical fibers, three-dimensional diagram, two-dimensional diagram, contour plot and density plot of some solutions are drawn by using Maple software.

    Citation: Kun Zhang, Tianyong Han, Zhao Li. New single traveling wave solution of the Fokas system via complete discrimination system for polynomial method[J]. AIMS Mathematics, 2023, 8(1): 1925-1936. doi: 10.3934/math.2023099

    Related Papers:

    [1] Tianyong Han, Zhao Li, Jun Yuan . Optical solitons and single traveling wave solutions of Biswas-Arshed equation in birefringent fibers with the beta-time derivative. AIMS Mathematics, 2022, 7(8): 15282-15297. doi: 10.3934/math.2022837
    [2] Chun Huang, Zhao Li . New soliton solutions of the conformal time derivative generalized $ q $-deformed sinh-Gordon equation. AIMS Mathematics, 2024, 9(2): 4194-4204. doi: 10.3934/math.2024206
    [3] Da Shi, Zhao Li, Dan Chen . New traveling wave solutions, phase portrait and chaotic patterns for the dispersive concatenation model with spatio-temporal dispersion having multiplicative white noise. AIMS Mathematics, 2024, 9(9): 25732-25751. doi: 10.3934/math.20241257
    [4] Chunyan Liu . The traveling wave solution and dynamics analysis of the fractional order generalized Pochhammer–Chree equation. AIMS Mathematics, 2024, 9(12): 33956-33972. doi: 10.3934/math.20241619
    [5] Kun Zhang, Xiaoya He, Zhao Li . Bifurcation analysis and classification of all single traveling wave solution in fiber Bragg gratings with Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2022, 7(9): 16733-16740. doi: 10.3934/math.2022918
    [6] Dan Chen, Da Shi, Feng Chen . Qualitative analysis and new traveling wave solutions for the stochastic Biswas-Milovic equation. AIMS Mathematics, 2025, 10(2): 4092-4119. doi: 10.3934/math.2025190
    [7] Ninghe Yang . Exact wave patterns and chaotic dynamical behaviors of the extended (3+1)-dimensional NLSE. AIMS Mathematics, 2024, 9(11): 31274-31294. doi: 10.3934/math.20241508
    [8] Musong Gu, Chen Peng, Zhao Li . Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation. AIMS Mathematics, 2024, 9(3): 6699-6708. doi: 10.3934/math.2024326
    [9] Chun Huang, Zhao Li . Soliton solutions of conformable time-fractional perturbed Radhakrishnan-Kundu-Lakshmanan equation. AIMS Mathematics, 2022, 7(8): 14460-14473. doi: 10.3934/math.2022797
    [10] Yanxia Hu, Qian Liu . On traveling wave solutions of a class of KdV-Burgers-Kuramoto type equations. AIMS Mathematics, 2019, 4(5): 1450-1465. doi: 10.3934/math.2019.5.1450
  • In this paper, the traveling wave solution of the Fokas system which represents the irregular pulse propagation in monomode optical fibers is studied by using the complete discriminant system method of polynomials. Firstly, the Fokas system is simplified into nonlinear ordinary differential equations by using the traveling wave transformation. Secondly, the Jacobian function solutions, the trigonometric function solutions, the hyperbolic function solutions and the rational function solution of Fokas system are obtained by using the complete discriminant system method of polynomials. Finally, in order to show the propagation of Fokas system in monomode optical fibers, three-dimensional diagram, two-dimensional diagram, contour plot and density plot of some solutions are drawn by using Maple software.



    Nonlinear partial differential equation is a very important branch of the nonlinear science, which has been called the foreword and hot topic of current scientific development. In theoretical science and practical application, nonlinear partial differential is used to describe the problems in the fields of optics, mechanics, communication, control science and biology [1,2,3,4,5,6,7,8,9]. At present, the main problems in the study of nonlinear partial differential equations are the existence of solutions, the stability of solutions, numerical solutions and exact solutions. With the development of research, especially the study of exact solutions of nonlinear partial differential equations has important theoretical value and application value. In the last half century, many important methods for constructing exact solutions of nonlinear partial differential equations have been proposed, such as the planar dynamic system method [10], the Jacobi elliptic function method [11], the bilinear transformation method [12], the complete discriminant system method for polynomials [13], the unified Riccati equation method [14], the generalized Kudryashov method [15], and so on [16,17,18,19,20,21,22,23,24].

    There is no unified method to obtain the exact solution of nonlinear partial differential equations. Although predecessors have obtained some analytical solutions with different methods, no scholar has studied the system with complete discrimination system for polynomial method.

    The Fokas system is a very important class of nonlinear partial differential equations. In this article, we focus on the Fokas system, which is given as follows [25,26,27,28,29,30,31,32,33,34,35,36,37]

    {ipt+r1pxx+r2pq=0,r3qyr4(|p|2)x=0, (1.1)

    where p=p(x,y,t) and q=q(x,y,t) are the complex functions which stand for the nonlinear pulse propagation in monomode optical fibers. The parameters r1,r2,r3 and r4 are arbitrary non-zero constants, which are coefficients of nonlinear terms in Eq (1.1) and reflect different states of optical solitons.

    This paper is arranged as follows. In Section 2, we describe the method of the complete discrimination system for polynomial method. In Section 3, we substitute traveling wave transformation into nonlinear ordinary differential equations and obtain the different new single traveling wave solutions for the Fokas system by complete discrimination system for polynomial method. At the same time, we draw some images of solutions. In Section 4, the main results are summarized.

    First, we consider the following partial differential equations:

    {F(u,v,ux,ut,vx,vt,uxx,uxt,utt,)=0G(u,v,ux,ut,vx,vt,uxx,uxt,utt,)=0 (2.1)

    where F and G is polynomial function which is about the partial derivatives of each order of u(x,t) and v(x,t) with respect to x and t.

    Step 1: Taking the traveling wave transformation u(x,t)=u(ξ),v(x,t)=v(ξ),ξ=kx+ct into Eq (2.1), then the partial differential equation is converted to an ordinary differential equation

    {F(u,v,u,v,u,v,)=0,G(u,v,u,v,u,v,)=0. (2.2)

    Step 2: The above nonlinear ordinary differential equations (2.2) are reduced to the following ordinary differential form after a series of transformations:

    (u)2=u3+d2u2+d1u+d0. (2.3)

    The Eq (2.3) can also be written in integral form as:

    ±(ξξ0)=duu3+d2u2+d1u+d0. (2.4)

    Step 3: Let ϕ(u)=u3+d2u2+d1u+d0. According to the complete discriminant system method of third-order polynomial

    {Δ=27(2d3227+d0d1d23)24(d1d223)3,D1=d1d223, (2.5)

    the classification of the solution of the equation can be obtained, and the classification of traveling wave solution of the Fokas system will be given in the following section.

    In the current part, we obtain all exact solutions to Eq (1.1) by complete discrimination system for polynomial method. According to the wave transformation

    p(x,y,t)=φ(η)ei(λ1x+λ2y+λ3t+λ4),q(x,y,t)=ϕ(η),η=x+yvt, (3.1)

    where λ1,λ2,λ3,λ4 and v are real parameters, and v represents the wave frame speed.

    Substituting the above transformation Eq (3.1) into Eq (1.1), we get

    {(v+2r1λ1)iφλ3φ+r1φr1λ21φ+r2φϕ=0,r3ϕ2r4φφ=0. (3.2)

    Integrating the second equation in (3.2) and ignoring the integral constant, we get

    ϕ(η)=r4φ2(η)r3. (3.3)

    Substituting Eq (3.3) into the first equation in (3.2) and setting v=2r1λ1, we get the following:

    r1φ(λ3+r1λ21)φ+r2r4φ3r3=0. (3.4)

    Multiplying φ both sides of the Eq (3.4), then integrating once to get

    (φ)2=a4φ4+a2φ2+a0, (3.5)

    where a4=r2r42r1r3,a2=λ3+r1λ21r1, a0 is the arbitrary constant.

    Let  φ=±(4a4)13ω, b1=4a2(4a4)23,b0=4a0(4a4)13,η1=(4a4)13η. (3.6)

    Equation (3.5) can be expressed as the following:

    (ωη1)2=ω3+b1ω2+b0ω. (3.7)

    Then we can get the integral expression of Eq (3.7)

    ±(η1η0)=dωω(ω2+b1ω+b0), (3.8)

    where η0 is the constant of integration.

    Here, we get the F(ω)=ω2+b1ω+b0 and Δ=b214b0. In order to solve Eq (3.7), we discuss the third order polynomial discrimination system in four cases.

    Case 1:Δ=0 and ω>0.

    When b1<0, the solution of Eq (3.7) is

    ω1=b12tanh2(12b12(η1η0)). (3.9)
    ω2=b12coth2(12b12(η1η0)). (3.10)

    Thus, the classification of all solutions of Eq (3.7) is obtained by the third order polynomial discrimination system. The exact traveling wave solutions of the Eq (1.1) are obtained by combining the above solutions and the conditions (3.6) with Eq (3.1), can be expressed as below:

    p1(x,y,t)=±r3(λ3+r1λ21)r2r4tanh(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))ei(λ1x+λ2y+λ3t+λ4). (3.11)

    In Eq (3.11), p1(x,y,t) is a dark soliton solution, it expresses the energy depression on a certain intensity background. Figure 1 depict two-dimensional graph, three-dimensional graph, contour plot and density plot of the solution.

    q1(x,y,t)=λ3+r1λ21r2tanh2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0)) (3.12)
    p2(x,y,t)=±r3(λ3+r1λ21)r2r4coth(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))ei(λ1x+λ2y+λ3t+λ4), (3.13)
    Figure 1.  Module length graphs of Eq (3.12) when r1=2,r2=1,r3=1,r4=1,λ1=1,λ3=3,η0=0.

    where p1(x,y,t),q1(x,y,t),p2(x,y,t),q2(x,y,t) are hyperbolic function solutions. Specially, p2(x,y,t) is a bright soliton solution.

    q2(x,y,t)=λ3+r1λ21r2coth2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0)). (3.14)

    When b1>0, the solution of Eq (3.7) is

    ω3=b12tan2(12b12(η1η0)). (3.15)

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p3(x,y,t)=±r3(λ3+r1λ21)r2r4tan(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))ei(λ1x+λ2y+λ3t+λ4). (3.16)
    q3(x,y,t)=λ3+r1λ21r2tan2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0)). (3.17)

    In Eq (3.16) and Eq (3.17), p3(x,y,t) and q3(x,y,t) are trigonometric function solutions. q3(x,y,t) is a periodic wave solution, and it Shows the periodicity of q3(x,y,t) in Figure 2(a), (b).

    Figure 2.  Module length graphs of Eq (3.17) when r1=2,r2=1,r3=1,r4=1,λ1=1,λ3=1,η0=0.

    When b1=0, the solution of Eq (3.7) is

    ω4=4(η1η0)2. (3.18)

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p4(x,y,t)=±(2r2r4r1r3)132(2r2r4r1r3)13η+η0ei(λ1x+λ2y+λ3t+λ4), (3.19)
    q4(x,y,t)=r4r3(2r2r4r1r3)134((2r2r4r1r3)13η+η0)2, (3.20)

    where p4(x,y,t) is exponential function solution, and q4(x,y,t) is rational function solution.

    Case 2: Δ=0 and b0=0.

    When ω>b1 and b1<0, the solution of Eq (3.7) is

    ω5=b12tanh2(12b12(η1η0))b1. (3.21)
    ω6=b12coth2(12b12(η1η0))b1. (3.22)

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p5(x,y,t)=±r3(λ3+r1λ21)r2r4(tanh2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))2)ei(λ1x+λ2y+λ3t+λ4), (3.23)
    q5(x,y,t)=λ3+r1λ21r2tanh2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))+2(λ3+r1λ21)r2, (3.24)
    p6(x,y,t)=±r3(λ3+r1λ21)r2r4(coth2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))2)ei(λ1x+λ2y+λ3t+λ4), (3.25)
    q6(x,y,t)=λ3+r1λ21r2coth2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))+2(λ3+r1λ21)r2, (3.26)

    where p5(x,y,t),q5(x,y,t),p6(x,y,t) and q6(x,y,t) are hyperbolic function solutions.

    When ω>b1 and b1>0, the solution of Eq (3.7) is

    ω7=b12tan2(12b12(η1η0))b1. (3.27)

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p7(x,y,t)=±r3(λ3+r1λ21)r2r4(tan2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))+2)ei(λ1x+λ2y+λ3t+λ4), (3.28)
    q7(x,y,t)=λ3+r1λ21r2tan2(122(λ3+r1λ21)r1(2r2r4r1r3)23((2r2r4r1r3)13η+η0))+2(λ3+r1λ21)r2, (3.29)

    where p7(x,y,t) and q7(x,y,t) are trigonometric function solutions.

    Case 3: Δ>0 and b00. Let u<v<s, there u,v and s are constants satisfying one of them is zero and two others are the root of F(ω)=0.

    When u<ω<v, we can get the solution of Eq (3.7) is

    ω8=u+(vu)sn2(su2(η1η0),c), (3.30)

    where c2=vusu.

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p8(x,y,t)=±(2r2r4r1r3)13[u+(vu)sn2(su2((2r2r4r1r3)13η+η0),c)]ei(λ1x+λ2y+λ3t+λ4). (3.31)
    q8(x,y,t)=r4r3(2r2r4r1r3)13[u+(vu)sn2(su2((2r2r4r1r3)13η+η0),c)]. (3.32)

    When ω>s, the solution of Eq (3.7) is

    ω9=vsn2(su(η1η0)/2,c)+scn2(su(η1η0)/2,c). (3.33)

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p9(x,y,t)=±(2r2r4r1r3)13vsn2(su2((2r2r4r1r3)13η+η0),c)]+scn2(su2((2r2r4r1r3)13η+η0),c)ei(λ1x+λ2y+λ3t+λ4). (3.34)
    q9(x,y,t)=r4r3(2r2r4r1r3)13vsn2(su2((2r2r4r1r3)13η+η0),c)]+scn2(su2((2r2r4r1r3)13η+η0),c). (3.35)

    Case 4: Δ<0.

    When ω>0, similarly we get

    ω10=2b01+cn(b140(η1η0),c)b0, (3.36)

    where c2=(1b1b02)/2.

    The exact traveling wave solutions of the Eq (1.1) can be expressed as below:

    p10(x,y,t)=±2a0(2r2r4r1r3)12[21+cn((4a0(2r2r4r1r3)13)14((2r2r4r1r3)13η+η0),c)+1]ei(λ1x+λ2y+λ3t+λ4), (3.37)
    q10(x,y,t)=r4r32a0(2r2r4r1r3)12[21+cn((4a0(2r2r4r1r3)13)14((2r2r4r1r3)13η+η0),c)+1], (3.38)

    where p8(x,y,t),q8(x,y,t),p9(x,y,t),q9(x,y,t),p10(x,y,t) and q10(x,y,t) are Jacobian elliptic function solutions.

    In this paper, the complete discrimination system of polynomial method has been applied to construct the single traveling wave solutions of the Fokas system. The Jacobian elliptic function solutions, the trigonometric function solutions, the hyperbolic function solutions and the rational function solutions are obtained. The obtained solutions are very rich, which can help physicists understand the propagation of traveling wave in monomode optical fibers. Furthermore, we have also depicted two-dimensional graphs, three-dimensional graphs, contour plots and density plots of the solutions of Fokas system, which explains the state of solitons from different angles.

    This work was supported by Scientific Research Funds of Chengdu University (Grant No.2081920034).

    The authors declare no conflict of interest.



    [1] Z. Li, Z. G. Lian, Optical solitons and single traveling wave solutions for the Triki-Biswas equation describing monomode optical fibers, Optik, 258 (2022), 168835. https://doi.org/10.1016/j.ijleo.2022.168835 doi: 10.1016/j.ijleo.2022.168835
    [2] M. N. Alam, X. Li. Exact traveling wave solutions to higher order nonlinear equations, J. Ocean Eng. Sci., 4 (2019), 276–288. https://doi.org/10.1016/j.joes.2019.05.003 doi: 10.1016/j.joes.2019.05.003
    [3] N. Cheemaa, S. Chen, A. R. Seadawy, Propagation of isolated waves of coupled nonlienar (2+1)-deimensional Maccari system in plasma physics, Results Phys., 17 (2020), 102987. https://doi.org/10.1016/j.rinp.2020.102987 doi: 10.1016/j.rinp.2020.102987
    [4] A. Maccari, The Maccari system as model system for rogu waves, Phys. Lett. A, 384 (2020), 126740. https://doi.org/10.1016/j.physleta.2020.126740 doi: 10.1016/j.physleta.2020.126740
    [5] C. Peng, Z. Li, H. W. Zhao, New exact solutions to the Lakshmanan-Porsezian-Daniel equation with Kerr law of nonlinearity, Math. Probl. Eng., 2022 (2022), 7340373. https://doi.org/10.1155/2022/7340373 doi: 10.1155/2022/7340373
    [6] Z. Li, P. Li, T. Y. Han, Bifurcation, traveling wave solutions, and stability analysis of the fractional generalized Hirota-Satsuma coupled KdV equations, Discrete Dyn. Nat. Soc., 2021 (2021), 5303295. https://doi.org/10.1155/2021/5303295 doi: 10.1155/2021/5303295
    [7] C. A. Gomez, H. Rezazadeh, M. Inc, L. Akinyemi, F. Nazari, The generalized Chen-Lee-Liu model with higher order nonlinearity: Optical solitons, Opt. Quant. Electron., 54 (2022), 492. https://doi.org/10.1007/s11082-022-03923-1 doi: 10.1007/s11082-022-03923-1
    [8] S. C. Gomez, H. O. Roshid, M. Inc, L. Akinyemi, H. Rezazadeh, On soliton solutions for perturbed Fokas-Lenells equation, Opt. Quant. Electron., 54 (2022), 370. https://doi.org/10.1007/s11082-022-03796-4 doi: 10.1007/s11082-022-03796-4
    [9] K. Hosseini, A. Akbulut, D. Baleanu, S. Salahshour, M. Mirzazadeh, L. Akinyemi, The geophysical KdV equation: Its solitons, complexiton, and conservation laws, Int. J. Geomath., 13 (2022), 12. https://doi.org/10.1007/s13137-022-00203-8 doi: 10.1007/s13137-022-00203-8
    [10] Z. Li, Bifurcation and traveling wave solution to fractional Biswas-Arshed equation with the beta time derivative, Chaos Soliton. Fract., 160 (2022), 1122249. https://doi.org/10.1016/j.chaos.2022.112249 doi: 10.1016/j.chaos.2022.112249
    [11] T. A. Khalil, N. Badra, H. M. Ahmed, W. B. Rabie, Optical solitons and other solutions for coupled system of nonlinear Biswas-Milovic equation with Kudryashov's law of refractive index by Jacobi elliptic function expansion method, Optik, 253 (2022), 168540. https://doi.org/10.1016/j.ijleo.2021.168540 doi: 10.1016/j.ijleo.2021.168540
    [12] X. Y. Gao, Y. J. Guo, W. R. Shan, Regarding the shallow water in an ocean via a Whitham-Broer-Kaoup-like system: Hetero-Bäcklund transformations, bilinear forms and M solitons, Chaos, Soliton. Fract., 162 (2022), 112486. https://doi.org/10.1016/j.chaos.2022.112486 doi: 10.1016/j.chaos.2022.112486
    [13] K. Zhang, Z. Li, Bifurcation analysis and classification of all single traveling wave solution in fiber Bragg gratings with Radhakrishnan-Kundu-Lakshmanan equation, AIMS Math., 7 (2022), 16733–16740. https://doi.org/10.3934/math.2022918 doi: 10.3934/math.2022918
    [14] J. H. Xu, Unified, improved matrix upper bound on the solution of the continuous coupled algebraic Riccati equation, J. Franklin I., 350 (2013), 1634–3648. https://doi.org/10.1016/j.jfranklin.2013.03.015 doi: 10.1016/j.jfranklin.2013.03.015
    [15] J. Zhang, Propagation of optical solitons for Kudryashov's law with dual form of generalized non-local nonlinearity, Results Phys., 39 (2022), 105729. https://doi.org/10.1016/j.rinp.2022.105729 doi: 10.1016/j.rinp.2022.105729
    [16] A. M. Wazwaz, M. Mehanna, Higher-order Sasa-Satsuma equation: Bright and dark optical solitons, Optik, 243 (2021), 167421. https://doi.org/10.1016/j.ijleo.2021.167421 doi: 10.1016/j.ijleo.2021.167421
    [17] W. W. Mohammed, H. Ahmad, A. E. Hamza, E. S. Aly, M. Morshedy, E. M. Elabbasy, The exact solutions of the stochastic Ginzburg-Landau equation, Results Phys., 23 (2021), 103988. https://doi.org/10.1016/j.rinp.2021.103988 doi: 10.1016/j.rinp.2021.103988
    [18] D. Yang, Traveling waves and bifurcations and solutions for the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation, Optik, 248 (2021), 168058. https://doi.org/10.1016/j.ijleo.2021.168058 doi: 10.1016/j.ijleo.2021.168058
    [19] A. A. Al-Qarni, H. O. Bakodah, A. A. Alshaery, A. Biswas, Y. Yıldırım, L. Moraru, Numerical simulation of cubic-quartic optical solitons with perturbed Fokas-Lenells equation using improved Adomian decomposition algorithm, Mathematics, 10 (2022), 138. https://doi.org/10.3390/math10010138 doi: 10.3390/math10010138
    [20] O. González-Gaxiola, A. Biswas, M. R. Belic, Optical soliton perturbation of Fokas-Lenells equation by the Laplace-Adomian decomposition algorithm, J. Eur. Opt. Soc.-Rapid Publ., 15 (2019), 13. https://doi.org/10.1186/s41476-019-0111-6 doi: 10.1186/s41476-019-0111-6
    [21] K. S. Al-Ghafri, E. V. Krishnan, A. Biswas, Chirped optical soliton perturbation of Fokas-Lenells equation with full nonlinearity, Adv. Differ. Equ., 2020 (2020), 191. https://doi.org/10.1186/s13662-020-02650-9 doi: 10.1186/s13662-020-02650-9
    [22] D. Ntiamoah, W. Ofori-Atta, L. Akinyemi, The higher-order modified Korteweg-de Vries equation: Its soliton, breather and approximate solutions, J. Ocean Eng. Sci., 6 (2022), 042. https://doi.org/10.1016/j.joes.2022.06.042 doi: 10.1016/j.joes.2022.06.042
    [23] S. Abbagari, A. Houwe, L. Akinyemi, M. Inc, S. Y. Doka, K. T. Crépin, Synchronized wave and modulation instability gain induce by the effects of higher-order dispersions in nonlinear optical fibers, Opt. Quant. Electron., 54 (2022), 642. https://doi.org/10.1007/s11082-022-04014-x doi: 10.1007/s11082-022-04014-x
    [24] M. M. A. Khater, A. Jhangeer, H. Rezazadeh, L. Akinyemi, M. A. Akbar, M. Inc, Propagation of new dynamics of longitudinal bud equation among a magneto-electro-elastic round rod, Mod. Phys. Lett. B, 35 (2021), 2150381. https://doi.org/10.1142/S0217984921503814 doi: 10.1142/S0217984921503814
    [25] S. Tarla, K. K. Ali, T. C. Sun, R. Yilmazer, M. S. Osman, Nonlinear pulse propagation for novel optical solitons modeled by Fokas system in monomode optical fibers, Results Phys., 36 (2022), 105381. https://doi.org/10.1016/j.rinp.2022.105381 doi: 10.1016/j.rinp.2022.105381
    [26] J. G. Rao, D. Mihalache, Y. Cheng, J. S. He, Lump-soliton solution to the Fokas system, Phys. Lett. A, 383 (2019), 1138–1142. https://doi.org/10.1016/j.physleta.2018.12.045 doi: 10.1016/j.physleta.2018.12.045
    [27] Y. L. Cao, J. G. Rao, D. Mihalache, J. S. He, Semi-rational solutions for the (2+1)-dimensional nonlocal Fokas, Appl. Math. Lett., 80 (2018), 27–34. https://doi.org/10.1016/j.aml.2017.12.026 doi: 10.1016/j.aml.2017.12.026
    [28] S. Sarwar, New soliton wave structures of nonlinear (4+1)-dimensional Fokas dynamical model by using different methods, Alex. Eng. J., 60 (2021), 795–803. https://doi.org/10.1016/j.aej.2020.10.009 doi: 10.1016/j.aej.2020.10.009
    [29] W. Tan, Z. D. Dai, D. Q. Qiu, Parameter limit method and its application in the (4+1)-dimensional Fokas equation, Comput. Math. Appl., 75 (2018), 4214–4220. https://doi.org/10.1016/j.camwa.2018.03.023 doi: 10.1016/j.camwa.2018.03.023
    [30] K. J. Wang, J. H. Liu, J. Wu, Soliton solutions to the Fokas system arising in monomode optical fibers, Optik, 251 (2022), 168319. https://doi.org/10.1016/j.ijleo.2021.168319 doi: 10.1016/j.ijleo.2021.168319
    [31] K. J. Wang, Abundant exact soliton solution to the Fokas system, Optik, 249 (2022), 168265. https://doi.org/10.1016/j.ijleo.2021.168265 doi: 10.1016/j.ijleo.2021.168265
    [32] J. F. Zhang, M. Z. Jin, Spatial self-similar transformation and novel line rogue waves in the Fokas system, Phys. Lett. A, 424 (2022), 127840. https://doi.org/10.1016/j.physleta.2021.127840 doi: 10.1016/j.physleta.2021.127840
    [33] H. Khatri, M. S. Gautam, A. Maik, Localized and complex soliton solutions to the integrable (4+1)-dimensional Fokas equation, Appl. Sci., 1 (2019), 1070. https://doi.org/10.1007/s42452-019-1094-z doi: 10.1007/s42452-019-1094-z
    [34] P. Verma, L. Kaur, New exact solutions of the (4+1)-dimensional Fokas equation via extended version of exp (ψ(k)) -expansion method, Int. J. Comput. Appl., 7 (2021), 104. https://doi.org/10.1007/s40819-021-01051-0 doi: 10.1007/s40819-021-01051-0
    [35] Y. L. Cao, J. S. He, Y. Cheng, Reduction in the (4+1)-dimensional Fokas equation and their solutions, Nonlinear Dynam., 99 (2020), 3013–3028. https://doi.org/10.1007/s11071-020-05485-x doi: 10.1007/s11071-020-05485-x
    [36] S. Zhang, C. Tian, W. Y. Qian, Bilinearization and new multisoliton solutions for the (4+1)-dimensional Fokas equation, Pramana-J. Phys., 86 (2016), 1259–1267. https://doi.org/10.1007/s12043-015-1173-7 doi: 10.1007/s12043-015-1173-7
    [37] R. X. Yao, Y. L. Shen, Z. B. Li, Lump solutions and bilinear Bäcklund transformation for the (4+1)-dimensional Fokas equation, Math. Sci., 14 (2020), 301–308. https://doi.org/10.1007/s40096-020-00341-w doi: 10.1007/s40096-020-00341-w
  • This article has been cited by:

    1. Kun Zhang, Tianyong Han, The optical soliton solutions of nonlinear Schrödinger equation with quintic non-Kerr nonlinear term, 2023, 48, 22113797, 106397, 10.1016/j.rinp.2023.106397
    2. Chao Tang, Zhao Li, Andr Nicolet, Phase Portraits and Traveling Wave Solutions of Fokas System in Monomode Optical Fibers, 2023, 2023, 1687-9139, 1, 10.1155/2023/8783222
    3. Sachin Kumar, Nikita Mann, Dynamic study of qualitative analysis, traveling waves, solitons, bifurcation, quasiperiodic, and chaotic behavior of integrable kuralay equations, 2024, 56, 1572-817X, 10.1007/s11082-024-06701-3
    4. Nilkanta Das, S. Saha Ray, Dynamical investigation of the perturbed Chen–Lee–Liu model with conformable fractional derivative, 2024, 79, 0932-0784, 997, 10.1515/zna-2024-0112
    5. Adnan Ahmad Mahmud, Kalsum Abdulrahman Muhamad, Tanfer Tanriverdi, Haci Mehmet Baskonus, An investigation of Fokas system using two new modifications for the trigonometric and hyperbolic trigonometric function methods, 2024, 56, 1572-817X, 10.1007/s11082-024-06388-6
    6. Md. Tarikul Islam, Huda Alsaud, Tobibur Rahman, Mustafa Inc, Exclusive soliton solutions arise in mono-mode optical fibre connecting to nonlinear Fokas system, 2024, 56, 1572-817X, 10.1007/s11082-023-06200-x
    7. Khalid K. Ali, Salman A. AlQahtani, M. S. Mehanna, Ahmet Bekir, New optical soliton solutions for the (2+1) Fokas system via three techniques, 2023, 55, 0306-8919, 10.1007/s11082-023-04900-y
    8. Ozlem Kirci, Yusuf Pandir, Agamalieva Latifa, Hasan Bulut, A new version of trial equation method for a complex nonlinear system arising in optical fibers, 2024, 56, 1572-817X, 10.1007/s11082-024-06825-6
    9. Sajid Ali, Shafiq Ahmad, Aman Ullah, Shabir Ahmad, Analyzing Abundant Optical Soliton Solutions for Coupled Nonlinear Helmholtz System Arising in Optics Communication, 2025, 24, 1575-5460, 10.1007/s12346-025-01274-2
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1626) PDF downloads(91) Cited by(9)

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog