
The main purpose of this study was to produce abundant new types of soliton solutions for the Radhakrishnan-Kundu-Lakshmanan equation that represents unstable optical solitons that emerge from optical propagations through the use of birefringent fibers. These new types of soliton solutions have behaviors that are bright, dark, W-shaped, M-shaped, periodic trigonometric, and hyperbolic and were not realized before by any other method. These new forms have been detected by using four different techniques, which are, the extended simple equation method, the Paul-Painlevé approach method, the Ricatti-Bernoulli-sub ODE, and the solitary wave ansatz method. These new solitons will be arranged to create a soliton catalog with new impressive behaviors and they will contribute to future studies not only for this model but also for the optical propagations through birefringent fiber.
Citation: Emad H. M. Zahran, Omar Abu Arqub, Ahmet Bekir, Marwan Abukhaled. New diverse types of soliton solutions to the Radhakrishnan-Kundu-Lakshmanan equation[J]. AIMS Mathematics, 2023, 8(4): 8985-9008. doi: 10.3934/math.2023450
[1] | Wael W. Mohammed, Kalpasree Sharma, Partha Jyoti Hazarika, G. G. Hamedani, Mohamed S. Eliwa, Mahmoud El-Morshedy . Zero-inflated discrete Lindley distribution: Statistical and reliability properties, estimation techniques, and goodness-of-fit analysis. AIMS Mathematics, 2025, 10(5): 11382-11410. doi: 10.3934/math.2025518 |
[2] | Alanazi Talal Abdulrahman, Khudhayr A. Rashedi, Tariq S. Alshammari, Eslam Hussam, Amirah Saeed Alharthi, Ramlah H Albayyat . A new extension of the Rayleigh distribution: Methodology, classical, and Bayes estimation, with application to industrial data. AIMS Mathematics, 2025, 10(2): 3710-3733. doi: 10.3934/math.2025172 |
[3] | Khaled M. Alqahtani, Mahmoud El-Morshedy, Hend S. Shahen, Mohamed S. Eliwa . A discrete extension of the Burr-Hatke distribution: Generalized hypergeometric functions, different inference techniques, simulation ranking with modeling and analysis of sustainable count data. AIMS Mathematics, 2024, 9(4): 9394-9418. doi: 10.3934/math.2024458 |
[4] | Ehab M. Almetwally, Ahlam H. Tolba, Dina A. Ramadan . Bayesian and non-Bayesian estimations for a flexible reduced logarithmic-inverse Lomax distribution under progressive hybrid type-Ⅰ censored data with a head and neck cancer application. AIMS Mathematics, 2025, 10(4): 9171-9201. doi: 10.3934/math.2025422 |
[5] | Mohamed S. Eliwa, Essam A. Ahmed . Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002 |
[6] | Mohamed S. Algolam, Mohamed S. Eliwa, Mohamed El-Dawoody, Mahmoud El-Morshedy . A discrete extension of the Xgamma random variable: mathematical framework, estimation methods, simulation ranking, and applications to radiation biology and industrial engineering data. AIMS Mathematics, 2025, 10(3): 6069-6101. doi: 10.3934/math.2025277 |
[7] | Juxia Xiao, Ping Yu, Zhongzhan Zhang . Weighted composite asymmetric Huber estimation for partial functional linear models. AIMS Mathematics, 2022, 7(5): 7657-7684. doi: 10.3934/math.2022430 |
[8] | Mohamed Ahmed Mosilhy . Discrete Erlang-2 distribution and its application to leukemia and COVID-19. AIMS Mathematics, 2023, 8(5): 10266-10282. doi: 10.3934/math.2023520 |
[9] | Nora Nader, Dina A. Ramadan, Hanan Haj Ahmad, M. A. El-Damcese, B. S. El-Desouky . Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Fréchet-inverted Weibull distribution. AIMS Mathematics, 2023, 8(12): 31217-31245. doi: 10.3934/math.20231598 |
[10] | Mustafa M. Hasaballah, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Reliability analysis for two populations Nadarajah-Haghighi distribution under Joint progressive type-II censoring. AIMS Mathematics, 2024, 9(4): 10333-10352. doi: 10.3934/math.2024505 |
The main purpose of this study was to produce abundant new types of soliton solutions for the Radhakrishnan-Kundu-Lakshmanan equation that represents unstable optical solitons that emerge from optical propagations through the use of birefringent fibers. These new types of soliton solutions have behaviors that are bright, dark, W-shaped, M-shaped, periodic trigonometric, and hyperbolic and were not realized before by any other method. These new forms have been detected by using four different techniques, which are, the extended simple equation method, the Paul-Painlevé approach method, the Ricatti-Bernoulli-sub ODE, and the solitary wave ansatz method. These new solitons will be arranged to create a soliton catalog with new impressive behaviors and they will contribute to future studies not only for this model but also for the optical propagations through birefringent fiber.
The count data sets emerge in various fields like the yearly number of destructive earthquakes, number of patients of a specific disease in a hospital ward, failure of machines, number of patients due to coronavirus, number of monthly traffic accidents, hourly bacterial growth, and so on. Various discrete probability models have been utilized to model these kinds of data sets. Poisson and negative binomial distributions are frequently for modeling count observations. On the other hand, in the advanced scientific eon, the data generated from different fields is getting complex day by day, however, existing discrete models do not provide an efficient fit.
Discretization of continuous distribution can be applied by using different approaches (survival discretization-mixed-Poisson-infinite series). The most widely used technique is the survival discretization approach by [1]. One of the important virtues of this methodology is that the generated discrete model retains the same functional form of the survival function as that of its continuous counterpart. Due to this feature, many survival characteristics of the distribution remain unchanged. The discretization approach to any continuous model depends on the domain of the random variable
Although various distributions are available in literate to analyze count observations, there is still a need to introduce a more flexible and suitable distribution under different conditions. The fundamental purpose of this paper is to propose discrete Ramos-Louzada distribution, which is a one-parameter lifetime distribution introduced by [24]. The proposed one-parameter distribution herein has distinctive properties which makes it among the best choice for modeling over-dispersed and positively skewed data with leptokurtic-shaped. A continuous random variable
g(x;λ)=1λ2(λ−1)(λ2−2λ+x)e−xλ;x≥0,λ≥2, | (1) |
where λ is the shape parameter. The corresponding survival function (sf) to Eq (1) can be formulated as
G(x;λ)=λ2−λ+xλ(λ−1)e−xλ;x≥0,λ≥2. | (2) |
In this article, the discrete version of Ramos and Louzada distribution is proposed and studied in detail. The following are some interesting features of the proposed distribution: Its statistical and reliability characteristics can be expressed as closed forms. Its failure rate is showing an increasing pattern. The suggested distribution evaluated time and count data sets more effectively than competing distributions. As a result, we feel that the proposed model is the greatest option for attracting a wider range of applications and industries.
The rest of the study is organized as follows: In Section 2, we introduce a new distribution using survival discretization methodology. Different mathematical properties are derived in Section 3. Parameter estimation and simulation study are presented in Section 4. Four data sets are utilized to show the flexibility of the proposed model in Section 5. Finally, Section 6 provides some conclusions.
Let
Pr(X=x;η)=G(x;η)−G(x+1;η);x∈Z+, |
where
Pr(X=x;λ)=p(x;λ)=e−xλλ(λ−1)[(λ2−λ+x)(1−e−1λ)−e−1λ];x=0,1,2,…, | (3) |
where
p(x+1;λ)=e−1λ[(λ2−λ+x+1)(1−e−1λ)−e−1λ][(λ2−λ+x)(1−e−1λ)−e−1λ]p(x;λ). |
Figure 1 illustrates some pmf plots of the DRL models based on different values of the model parameter
Based on
F(x;λ)=1−λ2−λ+x+1λ(λ−1)e−x+1λ;x=0,1,2,…. | (4) |
The corresponding sf to Eq (4) can be expressed as
S(x;λ)=λ2−λ+xλ(λ−1)e−xλ;x=0,1,2,…. | (5) |
The hazard rate function (hrf) of the DRL model is given by
h(x;λ)=(λ2−λ+x)(1−e−1λ)−e−1λ(λ2−λ+x);x=0,1,2,…, | (6) |
where
The reversed hazard rate function (rhrf) and the second rate of failure are given as
˘r=e−xλ[(λ2−λ+x)(1−e−1λ)−e−1λ]λ(λ−1)−(λ2−λ+x+1)e−x+1λ;x=0,1,2,… | (7) |
and
r∗(x)=log[(λ2−λ+x)e1λλ2−λ+x+1];x=0,1,2,…, | (8) |
where
In this Section, the probability generating function (pgf) as well as its rth moment are investigated. Assume the random variable
WX(z)=∞∑x=0zxPr(X=x;λ)=1+(z−1)∞∑x=1zx−1S(x;λ)=1+e−1λ(z−1)[1(1−ze−1λ)+1λ(λ−1)(1−ze−1λ)2]. | (9) |
On replacing z by
MX(z)=1+e−1λ(ez−1)[1(1−eze−1λ)+1λ(λ−1)(1−eze−1λ)2]. | (10) |
The first four moments around the origin
μ'1=λ−λ2+(λ2−λ+1)e1λλ(λ−1)(e1λ−1)2, |
μ'2=(λ(λ−1)+1)e2λ+3e1λ−λ(λ−1)λ(λ−1)(e1λ−1)3, |
μ'3=[λ(λ−1)+1]e3λ+[3λ(λ−1)+10]e2λ−[3λ(λ−1)−7]e1λ−λ(λ−1)λ(λ−1)(e1λ−1)4 |
and
μ'4=[λ(λ−1)+1]e4λ+[10λ(λ−1)+25]e3λ+67e2λ+[10λ(λ−1)−3]e1λ−λ(λ−1)λ(λ−1)(e1λ−1)5. |
Based on the rth moments, the variance can be expressed as
σ2=[λ4−2λ3+2λ2−λ]e3λ−[2λ4−4λ3+2λ2−1]e2λ+[λ4−2λ3+λ]e1λλ2(λ−1)2(e1λ−1)4. | (11) |
The dispersion index (di) is defined by variance to mean ratio. The di indicates that the reported model is suitable for under-, equi- or over-dispersed data sets. Using the derived moments, the coefficients skewness and kurtosis can be listed in closed forms. Some numerical computations for mean, variance, di, skewness, and kurtosis based on DRL parameters are listed in Table 1.
|
|||||||||
Measure | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 8.0 |
Mean | 3.500 | 3.678 | 4.014 | 4.414 | 4.847 | 5.299 | 5.762 | 6.234 | 8.652 |
Variance | 8.079 | 11.80 | 15.71 | 20.03 | 24.82 | 30.10 | 35.87 | 42.13 | 80.90 |
di | 2.308 | 3.207 | 3.913 | 4.538 | 5.121 | 5.680 | 6.224 | 6.757 | 9.351 |
Skewness | 1.395 | 1.519 | 1.629 | 1.708 | 1.764 | 1.806 | 1.837 | 1.862 | 1.928 |
Kurtosis | 5.940 | 6.353 | 6.821 | 7.199 | 7.495 | 7.727 | 7.910 | 8.057 | 8.484 |
According to Table 1, it is noted that the DRL model can be used effectively to model overdispersion data as di is greater than one, which makes it a proper probability tool to discuss actuarial data. Moreover, the new discrete probabilistic model can be utilized to analyze positively skewed data with leptokurtic-shaped.
In this section, six estimation methods are used to estimate the unknown parameter of DRL distribution. The considered estimation methods are maximum likelihood estimation (mle), method of moments (mom), least-squares estimation (lse), Anderson-Darling estimation (ade), Cramer von-Misses estimation (cvme), and maximum product of spacing estimator (mpse).
Assume a random sample
L(λ|x)=−1λ∑ni=1xi+∑ni=1ln[(λ2−λ+xi)(1−e−1λ)−e−1λ]−nlnλ−nln(λ−1). | (12) |
Differentiating the Eq (12) with respect to the parameter
∂L(λ|x)∂λ=1λ2∑ni=1xi+∑ni=1[(2λ−1)(1−e−1λ)−(1−1λ+1λ2+xiλ2)e−1λ][(λ2−λ+xi)(1−e−1λ)−e−1λ]−nλ−nλ−1, | (13) |
the exact solution of Eq (13) is not easy, so we will maximize it by using optimization approaches, for example, the Newton-Raphson approach using R software.
Based on the mom definition, we must equate the sample mean to the corresponding population mean, and then solve the non-linear equation for the parameter
λ−λ2+(λ2−λ+1)e1λλ(λ−1)(e1λ−1)2=1n∑ni=1xi. | (14) |
To solve Eq (14), the uniroot function should be utilized.
To estimate the parameter minimizing the sum of squares of residuals, a standard approach like the lse should be used. For the estimation of the parameter of DRL distribution, the lse can be obtained by minimizing
lse(λ)=∑ni=1[1−(λ2−λ+xi:n)λ(λ−1)e−xi:n+1λ−in+2]2, | (15) |
with respect to the parameter
The ade of the parameter can be derived by minimizing the following equation
ade(λ)=−n−1n∑ni=1(2i−1)[log(1−(λ2−λ+xi:n)λ(λ−1)e−xi:n+1λ)+log((λ2−λ+xi:n)λ(λ−1)e−xi:n+1λ)]2, | (16) |
with respect to the parameter
The cvme is an estimation method. This method is derived as the difference between the empirical cdf and fitted cdf where
cvme(λ)=112n+∑ni=1[1−(λ2−λ+xi:n)λ(λ−1)e−xi:n+1λ−2i−12n]2. | (17) |
For
mpse(λ)=[∏h+1u=1Du(λ)]1h+1, | (18) |
with respect to the parameter
In this section, we discussed the results of the simulation study to compare the estimation performance of the proposed estimators based on the DRL model. The performance of considered estimators is evaluated via absolute biases and mean square errors. We simulate
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
2.0 | 10 | 0.099 | 0.072 | 0.878 | 0.606 | 0.956 | 0.801 | 0.762 | 1.496 | 2.897 | 2.059 | 3.034 | 1.797 |
20 | 0.034 | 0.035 | 0.486 | 0.259 | 0.444 | 0.435 | 0.307 | 1.103 | 1.408 | 0.749 | 1.212 | 0.626 | |
50 | 0.017 | 0.160 | 0.122 | 0.037 | 0.065 | 0.172 | 0.055 | 0.811 | 0.304 | 0.086 | 0.148 | 0.111 | |
100 | 0.013 | 0.226 | 0.015 | 0.003 | 0.005 | 0.086 | 0.017 | 0.697 | 0.033 | 0.006 | 0.009 | 0.026 | |
200 | 0.009 | 0.277 | 0.000 | 0.000 | 0.000 | 0.050 | 0.007 | 0.620 | 0.000 | 0.000 | 0.000 | 0.008 | |
500 | 0.002 | 0.338 | 0.000 | 0.000 | 0.000 | 0.028 | 0.003 | 0.569 | 0.000 | 0.000 | 0.000 | 0.002 | |
2.5 | 10 | 0.081 | 0.131 | 1.109 | 1.140 | 1.397 | 0.958 | 1.105 | 2.032 | 3.694 | 3.919 | 4.392 | 2.609 |
20 | 0.065 | 0.239 | 0.837 | 0.869 | 1.060 | 0.622 | 0.485 | 1.487 | 2.368 | 2.560 | 2.765 | 1.173 | |
50 | 0.058 | 0.293 | 0.595 | 0.695 | 0.798 | 0.320 | 0.186 | 1.063 | 1.436 | 1.723 | 1.785 | 0.391 | |
100 | 0.027 | 0.298 | 0.475 | 0.602 | 0.672 | 0.195 | 0.091 | 0.816 | 1.082 | 1.373 | 1.428 | 0.165 | |
200 | 0.013 | 0.255 | 0.374 | 0.525 | 0.589 | 0.098 | 0.045 | 0.602 | 0.864 | 1.139 | 1.185 | 0.065 | |
500 | 0.007 | 0.146 | 0.273 | 0.484 | 0.532 | 0.047 | 0.018 | 0.316 | 0.674 | 0.979 | 1.014 | 0.022 | |
3.0 | 10 | 0.019 | 0.224 | 1.085 | 1.103 | 1.304 | 0.996 | 1.574 | 2.613 | 3.976 | 4.160 | 4.504 | 3.186 |
20 | 0.005 | 0.268 | 0.877 | 0.924 | 1.044 | 0.639 | 0.751 | 1.793 | 2.525 | 2.701 | 2.865 | 1.512 | |
50 | 0.003 | 0.193 | 0.738 | 0.844 | 0.893 | 0.357 | 0.313 | 1.003 | 1.540 | 1.728 | 1.760 | 0.537 | |
100 | 0.004 | 0.130 | 0.754 | 0.868 | 0.872 | 0.222 | 0.163 | 0.567 | 1.160 | 1.352 | 1.341 | 0.242 | |
200 | 0.001 | 0.053 | 0.775 | 0.887 | 0.896 | 0.141 | 0.084 | 0.238 | 0.920 | 1.112 | 1.106 | 0.113 | |
500 | 0.001 | 0.006 | 0.811 | 0.929 | 0.940 | 0.070 | 0.035 | 0.066 | 0.769 | 0.965 | 0.980 | 0.042 | |
4.0 | 10 | 0.049 | 0.209 | 1.105 | 1.023 | 1.181 | 1.100 | 2.450 | 3.694 | 5.254 | 5.458 | 5.552 | 4.850 |
20 | 0.043 | 0.169 | 0.896 | 0.891 | 0.985 | 0.748 | 1.339 | 2.065 | 3.000 | 3.234 | 3.315 | 2.269 | |
50 | 0.031 | 0.049 | 0.835 | 0.847 | 0.899 | 0.400 | 0.585 | 0.763 | 1.608 | 1.739 | 1.789 | 0.815 | |
100 | 0.008 | 0.014 | 0.849 | 0.878 | 0.891 | 0.255 | 0.291 | 0.328 | 1.161 | 1.240 | 1.285 | 0.377 | |
200 | 0.007 | 0.016 | 0.838 | 0.877 | 0.882 | 0.156 | 0.147 | 0.159 | 0.911 | 1.005 | 1.010 | 0.174 | |
500 | 0.004 | 0.002 | 0.831 | 0.877 | 0.878 | 0.066 | 0.058 | 0.064 | 0.773 | 0.861 | 0.862 | 0.062 |
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
5.0 | 10 | 0.106 | 0.077 | 1.058 | 1.013 | 1.242 | 1.164 | 3.881 | 4.545 | 6.333 | 6.748 | 7.579 | 6.421 |
20 | 0.061 | 0.036 | 0.955 | 0.915 | 1.007 | 0.824 | 2.026 | 2.335 | 3.527 | 3.991 | 4.014 | 3.056 | |
50 | 0.046 | 0.015 | 0.864 | 0.869 | 0.904 | 0.447 | 0.821 | 0.839 | 1.793 | 1.906 | 1.970 | 1.070 | |
100 | 0.013 | 0.002 | 0.857 | 0.866 | 0.857 | 0.270 | 0.399 | 0.411 | 1.244 | 1.325 | 1.303 | 0.513 | |
200 | 0.013 | 0.006 | 0.833 | 0.843 | 0.849 | 0.161 | 0.198 | 0.214 | 0.946 | 1.006 | 1.009 | 0.238 | |
500 | 0.001 | 0.003 | 0.832 | 0.846 | 0.843 | 0.082 | 0.079 | 0.078 | 0.792 | 0.829 | 0.822 | 0.086 | |
6.0 | 10 | 0.167 | 0.115 | 1.192 | 1.073 | 1.169 | 1.260 | 5.339 | 5.663 | 8.785 | 8.977 | 9.398 | 8.321 |
20 | 0.049 | 0.027 | 0.946 | 0.952 | 0.975 | 0.890 | 2.794 | 2.926 | 4.236 | 4.861 | 4.686 | 3.860 | |
50 | 0.008 | 0.019 | 0.873 | 0.889 | 0.881 | 0.499 | 1.081 | 1.079 | 2.081 | 2.225 | 2.292 | 1.417 | |
100 | 0.007 | 0.016 | 0.859 | 0.843 | 0.870 | 0.294 | 0.523 | 0.517 | 1.392 | 1.421 | 1.522 | 0.631 | |
200 | 0.007 | 0.006 | 0.845 | 0.839 | 0.846 | 0.181 | 0.261 | 0.269 | 1.030 | 1.061 | 1.065 | 0.308 | |
500 | 0.001 | 0.001 | 0.832 | 0.832 | 0.835 | 0.085 | 0.107 | 0.108 | 0.823 | 0.841 | 0.847 | 0.112 | |
8.0 | 10 | 0.141 | 0.089 | 1.294 | 1.077 | 1.320 | 1.622 | 8.569 | 8.656 | 12.77 | 12.61 | 13.63 | 13.41 |
20 | 0.074 | 0.009 | 1.050 | 0.991 | 1.111 | 1.110 | 4.265 | 4.178 | 6.399 | 6.736 | 7.355 | 6.250 | |
50 | 0.029 | 0.003 | 0.883 | 0.860 | 0.918 | 0.577 | 1.685 | 1.630 | 2.726 | 3.019 | 3.118 | 2.151 | |
100 | 0.015 | 0.014 | 0.867 | 0.861 | 0.859 | 0.372 | 0.834 | 0.814 | 1.787 | 1.862 | 1.859 | 1.029 | |
200 | 0.008 | 0.019 | 0.837 | 0.808 | 0.842 | 0.219 | 0.416 | 0.422 | 1.202 | 1.204 | 1.285 | 0.493 | |
500 | 0.006 | 0.001 | 0.826 | 0.814 | 0.820 | 0.097 | 0.169 | 0.175 | 0.877 | 0.879 | 0.902 | 0.176 | |
10.0 | 10 | 0.106 | 0.086 | 1.365 | 1.333 | 1.446 | 1.868 | 12.89 | 12.67 | 17.66 | 19.87 | 19.51 | 20.26 |
20 | 0.001 | 0.063 | 1.143 | 1.079 | 1.067 | 1.308 | 6.232 | 6.279 | 8.767 | 9.553 | 9.777 | 9.056 | |
50 | 0.025 | 0.036 | 0.899 | 0.892 | 0.933 | 0.686 | 2.483 | 2.373 | 3.774 | 4.076 | 4.248 | 3.246 | |
100 | 0.018 | 0.016 | 0.868 | 0.886 | 0.872 | 0.457 | 1.247 | 1.246 | 2.255 | 2.421 | 2.464 | 1.489 | |
200 | 0.001 | 0.009 | 0.852 | 0.827 | 0.829 | 0.267 | 0.636 | 0.599 | 1.467 | 1.501 | 1.501 | 0.712 | |
500 | 0.002 | 0.007 | 0.823 | 0.801 | 0.818 | 0.119 | 0.246 | 0.240 | 0.967 | 0.971 | 1.005 | 0.255 |
Based on the simulation criteria, it is observed that all estimation approaches work quite well in estimating the parameter λ of the DRL distribution.
In this section, the importance of the proposed distribution is discussed by using data sets from different areas. We shall compare the fits of the DRL distribution with different competitive distributions such as Poisson (Poi), discrete Pareto (DPr), discrete Rayleigh (DR), discrete inverse Rayleigh (DIR), discrete Burr-Hatke (DBH), discrete Bilal (DBi), discrete Lindley (DL), new discrete Lindley (NDL), and discrete Burr-XII (DBXII) distributions. The fitted probability distributions are compared using some criteria, namely, the negative log-likelihood (
The first data set represents the number of deaths due to coronavirus in Pakistan during the period March 18, 2020, to April 30, 2020, which were obtained from the public reports of the National Institute of Health (NIH), Islamabad, Pakistan (https://covid.gov.pk/stats/pakistan). The mean, variance, and di of data set I are 9.4773,102.39, and 10.804, respectively. The mle(s) along with standard error(s) "se(s)" and goodness-of-fit measures for this data are presented in Table 4.
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 8.8686 | 1.5033 | - | - | 145.22 | 292.43 | 0.156 | 0.2300 |
Poi | 9.4773 | 0.4641 | - | - | 283.94 | 569.89 | 0.391 | < 0.0001 |
DPr | 0.5021 | 0.0757 | - | - | 162.19 | 326.38 | 0.401 | < 0.0001 |
DR | 9.9883 | 0.7535 | - | - | 168.85 | 339.70 | 0.339 | < 0.0001 |
DIR | 7.4291 | 1.2625 | - | - | 166.31 | 334.61 | 0.382 | < 0.0001 |
DBH | 0.9950 | 0.0115 | - | - | 175.37 | 352.74 | 0.647 | < 0.0001 |
DBi | 11.838 | 1.2932 | - | - | 151.29 | 304.59 | 0.213 | 0.0370 |
DL | 0.8313 | 0.0165 | - | - | 149.17 | 300.33 | 0.184 | 0.1000 |
NDL | 0.1640 | 0.0161 | - | - | 148.44 | 298.89 | 0.237 | 0.0140 |
DBXII | 0.9536 | 0.0434 | 11.907 | 11.305 | 150.70 | 305.40 | 0.302 | 0.0007 |
The results in Table 4 show that the DRL distribution provides a better fit over other competing discrete models since it has the minimum aic, and ks values with the highest p-value. Figure 4 shows the probability-probability (pp) plots for all tested models which prove the empirical results listed in Table 4.
The second data set was reported in [25], which represents the exceedance of flood peaks in m3/s of the Wheaton River near Carcross in Yukon Territory, Canada based on the discretization concept. The mean, variance, and di of this data are 11.806,152.38, and 12.908, respectively. The mle(s), se(s), and goodness-of-fit measures for data set II are reported in Table 5.
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 11.214 | 1.4497 | - | - | 252.71 | 507.43 | 0.133 | 0.1600 |
Poi | 11.805 | 0.4049 | - | - | 564.38 | 1130.8 | 0.408 | < 0.0001 |
DPr | 0.4770 | 0.0563 | - | - | 276.82 | 555.64 | 0.311 | < 0.0001 |
DR | 12.280 | 0.7239 | - | - | 300.65 | 603.29 | 0.323 | < 0.0001 |
DIR | 4.7947 | 0.6303 | - | - | 331.46 | 664.92 | 0.497 | < 0.0001 |
DBH | 0.9966 | 0.0072 | - | - | 302.29 | 606.57 | 0.572 | < 0.0001 |
DBi | 14.621 | 1.2479 | - | - | 272.50 | 546.99 | 0.257 | 0.0002 |
DL | 0.8592 | 0.0109 | - | - | 264.30 | 530.59 | 0.232 | 0.0009 |
NDL | 0.1373 | 0.0107 | - | - | 262.09 | 526.17 | 0.271 | < 0.0001 |
DBXII | 0.8205 | 0.0591 | 2.6112 | 0.9287 | 270.50 | 544.99 | 0.228 | 0.0011 |
It is observed that the DRL model is the best among all competitive distributions. Figure 5 illustrates the pp plots for all tested distributions which prove the empirical results reported in Table 5.
The third data set was listed in [26] and represents the number of fires in Greece forest districts for the period from 1st July 1998 to 31 August 1998. The mean, variance, and di measures are 5.2, 32.382, and 6.2272, respectively. The mle(s), se(s), and goodness-of-fit measures for data set II are listed in Table 6.
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 4.3673 | 0.5510 | - | - | 301.11 | 604.21 | 0.1510 | 0.0140 |
Poi | 5.2000 | 0.2174 | - | - | 434.16 | 870.32 | 0.282 | < 0.0001 |
DPr | 0.6250 | 0.0597 | - | - | 339.05 | 680.10 | 0.352 | < 0.0001 |
DR | 5.6788 | 0.2714 | - | - | 352.72 | 707.45 | 0.261 | < 0.0001 |
DIR | 3.5198 | 0.3748 | - | - | 360.90 | 723.80 | 0.413 | < 0.0001 |
DBH | 0.9833 | 0.0136 | - | - | 352.42 | 706.85 | 0.532 | < 0.0001 |
DBi | 6.7993 | 0.4693 | - | - | 310.75 | 623.49 | 0.107 | < 0.0001 |
DL | 0.7337 | 0.0156 | - | - | 303.88 | 609.75 | 0.193 | 0.0100 |
NDL | 0.2567 | 0.0152 | - | - | 302.73 | 607.47 | 0.169 | 0.0037 |
DBXII | 0.7486 | 0.0459 | 2.4582 | 0.4938 | 325.00 | 654.01 | 0.287 | < 0.0001 |
It is found that the new discrete model is the best among all tested distributions. Figure 6 shows the pp plots for all competitive distributions which prove the empirical results listed in Table 6.
The fourth data set represents the time to death (in weeks) of AG-positive leukemia patients [27]. The mean, variance, and di values are 62.471, 2954.3, and 47.29, respectively. The estimates and goodness-of-fit measures for all competitive distributions are listed in Table 7.
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 61.943 | 15.273 | - | - | 87.425 | 176.85 | 0.152 | 0.8300 |
Poi | 62.470 | 1.9169 | - | - | 475.26 | 952.52 | 0.470 | 0.0011 |
DPr | 0.2838 | 0.0688 | - | - | 98.335 | 198.67 | 0.324 | 0.0560 |
DR | 58.076 | 7.0429 | - | - | 96.794 | 195.59 | 0.309 | 0.0770 |
DIR | 25.310 | 6.543 | - | - | 128.59 | 259.18 | 0.681 | < 0.0001 |
DBH | 0.9999 | 0.0029 | - | - | 119.81 | 241.62 | 0.716 | < 0.0001 |
DBi | 75.109 | 13.164 | - | - | 92.886 | 187.77 | 0.219 | 0.3900 |
DL | 0.9692 | 0.0052 | - | - | 91.858 | 185.72 | 0.215 | 0.4100 |
NDL | 0.0306 | 0.0052 | - | - | 91.458 | 184.92 | 0.218 | 0.3900 |
DBXII | 0.9975 | 0.0008 | 117.30 | 45.982 | 96.151 | 196.30 | 0.327 | 0.0530 |
It is noted that the DRL is the best for this data. Figure 7 shows the pp plots for all tested distributions which prove the empirical results mentioned in Table 7.
In this article, a new one-parameter discrete model has been proposed entitled a discrete Ramos-Louzada (DRL) distribution. The new model can be used effectively in modeling asymmetric data with overdispersion phenomena. Some of its statistical properties have been derived. It was found that all its properties can be expressed in closed forms, which makes the new model can be utilized in different analysis, especially, in time series and regression. Various estimation techniques including maximum likelihood, moments, least squares, Anderson's-Darling, Cramer von-Mises, and maximum product of spacing estimator, have been investigated to get the best estimator for the real data. The estimation performance of these estimation techniques has been assessed via a comprehensive simulation study. The flexibility of the proposed discrete model has been tested utilizing four distinctive real data sets in various fields. Finally, we hope that the DRL distribution attracts wider sets of applications in different fields.
The authors declare that they have no conflict of interest to report regarding the present study.
[1] |
A. Bekir, E. H. M. Zahran, Bright and dark soliton solutions for the complex Kundu-Eckhaus equation, Optik, 223 (2020), 165233. https://doi.org/10.1016/j.ijleo.2020.165233 doi: 10.1016/j.ijleo.2020.165233
![]() |
[2] |
A. Bekir, E. H. M. Zahran, Three distinct and impressive visions for the soliton solutions to the higher-order nonlinear Schrö dinger equation, Optik, 228 (2021), 166157. https://doi.org/10.1016/j.ijleo.2020.166157 doi: 10.1016/j.ijleo.2020.166157
![]() |
[3] |
A. Bekir, E. H. M. Zahran, New vision for the soliton solutions to the complex Hirota-dynamical model, Phys. Scripta, 96 (2021), 055212. https://doi.org/10.1088/1402-4896/abe889 doi: 10.1088/1402-4896/abe889
![]() |
[4] |
A. Biswas, 1-soliton solution of the K (m, n) equation with generalized evolution, Phys. Lett. A, 372 (2008), 4601–4602. https://doi.org/10.1016/j.physleta.2008.05.002 doi: 10.1016/j.physleta.2008.05.002
![]() |
[5] |
H. Triki, A. M. Wazwaz, Bright and dark soliton solutions for a K (m, n) equation with t-dependent coefficients, Phys. Lett. A, 373 (2009), 2162–2165. https://doi.org/10.1016/j.physleta.2009.04.029 doi: 10.1016/j.physleta.2009.04.029
![]() |
[6] |
H. Triki, A. M. Wazwaz, Bright and dark solitons for a generalized Korteweg-de Vries-modified Korteweg-de Vries equation with high-order nonlinear terms and time-dependent coefficients, Can. J. Phys., 89 (2011), 253–259. https://doi.org/10.1139/P11-015 doi: 10.1139/P11-015
![]() |
[7] |
N. A. Kudryashov, The Painlevé approach for finding solitary wave solutions of nonlinear non-integrable differential equations, Optik, 183 (2019), 642–649. https://doi.org/10.1016/j.ijleo.2019.02.087 doi: 10.1016/j.ijleo.2019.02.087
![]() |
[8] |
A. Bekir, E. H. M. Zahran, Optical soliton solutions of the thin-film ferro-electric materials equation according to the Painlevé approach, Opt. Quantum Electron., 53 (2021), 118. https://doi.org/10.1007/s11082-021-02754-w doi: 10.1007/s11082-021-02754-w
![]() |
[9] |
A. Bekir, E. H. M. Zahran, Painlevé approach and its applications to get new exact solutions of three biological models instead of its numerical solutions, Int. J. Mod. Phys. B, 34 (2020), 2050270. https://doi.org/10.1142/S0217979220502707 doi: 10.1142/S0217979220502707
![]() |
[10] |
A. Bekir, E. H. M. Zahran, New visions of the soliton solutions to the modified nonlinear Schrodinger equation, Optik, 232 (2021), 166539. https://doi.org/10.1016/j.ijleo.2021.166539 doi: 10.1016/j.ijleo.2021.166539
![]() |
[11] |
M. S. M. Shehata, H. Rezazadeh, E. H. M. Zahran, E. Tala-Tebue, A. Bekir, New optical soliton solutions of the perturbed Fokas-Lenells equation, Commun. Theor. Phys., 71 (2019), 1275c1280. https://doi.org/10.1088/0253-6102/71/11/1275 doi: 10.1088/0253-6102/71/11/1275
![]() |
[12] |
A. Bekir, E. H. M. Zahran, New multiple-different impressive perceptions for the solitary solution to the magneto-optic waveguides with anti-cubic nonlinearity, Optik, 240 (2021), 166939. https://doi.org/10.1016/j.ijleo.2021.166939 doi: 10.1016/j.ijleo.2021.166939
![]() |
[13] | A. Biswas, Y. Yildirim, E. Yasar, M. F. Mahmood, A. S. Alshomrani, Q. Zhou, et al., Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes, Optik, 163 (2018), 126–136. https://doi.org/10.1016/j.ijleo.2018.02.109 |
[14] |
N. A. Kudryashov, D. V. Safonova, A. Biswas, Painleve analysis and a solution to the traveling wave reduction of the Radhakrishnan-Kundu-Lakshmanan equation, Regul. Chaotic Dyn., 24 (2019), 607–614. https://doi.org/10.1134/S1560354719060029 doi: 10.1134/S1560354719060029
![]() |
[15] |
H. U. Rehman, M. S. Saleem, A. M. Sultan, M. Iftikhar, Comments on dynamics of optical solitons with Radhakrishnan-Kundu-Lakshmanan model via two reliable integration schemes, Optik, 178 (2019), 557–566. https://doi.org/10.1016/j.ijleo.2018.12.010 doi: 10.1016/j.ijleo.2018.12.010
![]() |
[16] |
T. A. Sulaiman, H. Bulut, G. Yel, S. S. Atas, Optical solitons to the fractional perturbed Radhakrishnan-Kundu-Lakshmanan model, Opt. Quant. Electron., 50 (2018), 372. https://doi.org/10.1007/s11082-018-1641-7 doi: 10.1007/s11082-018-1641-7
![]() |
[17] |
B. Sturdevant, D. A. Lott, A. Biswas, Topological 1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation with nonlinear dispersion, Mod. Phys. Lett. B, 24 (2010), 1825–1831. https://doi.org/10.1142/S0217984910024109 doi: 10.1142/S0217984910024109
![]() |
[18] |
S. Arshed, A. Biswas, P. Guggilla, A. S. Alshomrani, Optical solitons for Radhakrishnan-Kundu-Lakshmanan equation with full nonlinearity, Phys. Lett. A, 384 (2020), 126191. https://doi.org/10.1016/j.physleta.2019.126191 doi: 10.1016/j.physleta.2019.126191
![]() |
[19] | A. Bansal, A. Biswas, M. F. Mahmood, Q. Zhou, M. Mirzazadeh, A. S. Alshomrani, et al., Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by Lie group analysis, Optik, 163 (2018), 137–141. https://doi.org/10.1016/j.ijleo.2018.02.104 |
[20] |
A. Biswas, 1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation, Phys. Lett. A, 373 (2009), 2546–2548. https://doi.org/10.1016/j.physleta.2009.05.010 doi: 10.1016/j.physleta.2009.05.010
![]() |
[21] |
A. Biswas, Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by traveling wave hypothesis, Optik, 171 (2018), 217–220. https://doi.org/10.1016/j.ijleo.2018.06.043 doi: 10.1016/j.ijleo.2018.06.043
![]() |
[22] |
A. Biswas, M. Ekici, A. Sonmezoglu, A. S. Alshomrani, Optical solitons with Radhakrishnan, Kundu, Lakshmanan equation by extended trial function scheme, Optik, 160 (2018), 415–427. https://doi.org/10.1016/j.ijleo.2018.02.017 doi: 10.1016/j.ijleo.2018.02.017
![]() |
[23] |
N. A. Kudryashov, The Radhakrishnan-Kundu-Lakshmanan equation with arbitrary refractive index and its exact solutions, Optik, 238 (2021), 166738. https://doi.org/10.1016/j.ijleo.2021.166738 doi: 10.1016/j.ijleo.2021.166738
![]() |
[24] |
D. D. Ganji, A. Asgari, Z. Z. Ganji, Exp-function based solution of nonlinear Radhakrishnan, Kundu and Laskshmanan (RKL) equation, Acta Appl. Math., 104 (2008), 201–209. https://doi.org/10.1007/s10440-008-9252-0 doi: 10.1007/s10440-008-9252-0
![]() |
[25] |
O. Gonzalez-Gaxiola, A. Biswas, Optical solitons with Radhakrishnan-Kundu-Lakshmanan equation by Laplace-Adomian decomposition method, Optik, 179 (2019), 434–442. https://doi.org/10.1016/j.ijleo.2018.10.173 doi: 10.1016/j.ijleo.2018.10.173
![]() |
[26] |
A. Neirameh, Soliton solutions modeling of generalized Radhakrishnan-Kundu-Lakshmanan equation, J. Appl. Phys., 8 (2018), 71–80. https://doi.org/10.22051/JAP.2019.21375.1099 doi: 10.22051/JAP.2019.21375.1099
![]() |
[27] |
S. S. Singh, Solutions of Kudryashov-Sinelshchikov equation and generalized Radhakrishnan-Kundu-Lakshmanan equation by the first integral method, Int. J. Phys. Res., 4 (2016), 37–42. https://doi.org/10.14419/ijpr.v4i2.6202 doi: 10.14419/ijpr.v4i2.6202
![]() |
[28] |
B. Ghanbari, J. F. Gómez-Aguilar, Optical soliton solutions for the nonlinear Radhakrishnan-Kundu-Lakshmanan equation, Mod. Phys. Lett. B, 33 (2019), 1950402. https://doi.org/10.1142/S0217984919504025 doi: 10.1142/S0217984919504025
![]() |
[29] |
S. Rehman, J. Ahmad, Modulation instability analysis and optical solitons in birefringent fibers to RKL equation without four wave mixing, Alex. Eng. J., 60 (2021), 1339–1354. https://doi.org/10.1016/j.aej.2020.10.055 doi: 10.1016/j.aej.2020.10.055
![]() |
[30] |
Y. Yıldırım, A. Biswas, M. Ekici, H. Triki, O. Gonzalez-Gaxiol, A. K. Alzahrani, et al., Optical solitons in birefringent fibers for Radhakrishnan-Kundu-Lakshmanan equation with five prolific integration norms, Optik, 208 (2020), 164550. https://doi.org/10.1016/j.ijleo.2020.164550 doi: 10.1016/j.ijleo.2020.164550
![]() |
[31] |
Y. Yıldırım, A. Biswas, Q. Zhou, A. S. Alshomrani, M. R. Belic, Optical solitons in birefringentfibers for Radhakrishnan-Kundu-Lakshmanan equation with acouple of strategic integration architectures, Chin. J. Phys., 65 (2020), 341–354. https://doi.org/10.1016/j.cjph.2020.02.029 doi: 10.1016/j.cjph.2020.02.029
![]() |
[32] |
J. H. He, Exp-function method for fractional differential equations, Int. J. Nonlinear Sci. Numer. Simul., 14 (2013), 363–366. https://doi.org/10.1515/ijnsns-2011-0132 doi: 10.1515/ijnsns-2011-0132
![]() |
[33] |
Y. Tian, J. Liu, A modified exp-function method for fractional partial differential equations, Therm. Sci., 25 (2021), 1237–1241. https://doi.org/10.2298/TSCI200428017T doi: 10.2298/TSCI200428017T
![]() |
[34] |
F. Y. Ji, C. H. He, J. J. Zhang, A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar, Appl. Math. Modell., 82 (2020) 437–448. https://doi.org/10.1016/j.apm.2020.01.027 doi: 10.1016/j.apm.2020.01.027
![]() |
[35] |
J. H. He, N. Qie, C. H. He, Solitary waves travelling along an unsmooth boundary, Results Phys., 24 (2021), 104104. https://doi.org/10.1016/j.rinp.2021.104104 doi: 10.1016/j.rinp.2021.104104
![]() |
[36] |
J. H. He, W. F. Hou, C. H. He, T. Saeed, T. Hayat, Variational approach to fractal solitary waves, Fractals, 29 (2021), 2150199. https://doi.org/10.1142/S0218348X21501991 doi: 10.1142/S0218348X21501991
![]() |
[37] | C. X. Liu, Periodic solution of fractal Phi-4 equation, Therm. Sci., 25 (2021), 1345–1350 https://doi.org/10.2298/TSCI200502032L |
[38] |
J. H. He, E. D. Yusry, Periodic property of the time-fractional Kundu-Mukherjee-Naskar equation, Results Phys., 19 (2020), 103345. https://doi.org/10.1016/j.rinp.2020.103345 doi: 10.1016/j.rinp.2020.103345
![]() |
[39] |
J. H. He, Variational principle and periodic solution of the Kundu-Mukherjee-Naskar equation, Results Phys., 17 (2020), 103031. https://doi.org/10.1016/j.rinp.2020.103031 doi: 10.1016/j.rinp.2020.103031
![]() |
[40] |
J. H. He, W. F. Hou, N. Qie, K. A. Gepreel, A. H. Shirazi, H. M. Sedighi, Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators, Facta Univ. Ser. Mech. Eng., 19 (2021), 199–208. https://doi.org/10.22190/FUME201205002H doi: 10.22190/FUME201205002H
![]() |
[41] |
Y. Zhao, Y. B. Lei, Y. X. Xu, S. L. Xu, H. Triki, A. Biswas, et al., Vector spatiotemporal solitons and their memory features in cold rydberg gases, Chin. Phys. Lett., 39 (2022), 034202. https://doi.org/10.1088/0256-307X/39/3/034202 doi: 10.1088/0256-307X/39/3/034202
![]() |
[42] |
S. L. Xu, Y. B. Lei, J. T. Du, Y. Zhao, R. Hua, J. H. Zeng, Three-dimensional quantum droplets in spin-orbit-coupled Bose-Einstein condensates, Chaos Solitons Fract., 164 (2022), 112665. https://doi.org/10.1016/j.chaos.2022.112665 doi: 10.1016/j.chaos.2022.112665
![]() |
[43] |
K. Y. Huang, Y. Zhao, S. Q. Wu, S. L. Xu, M. R. Belic, B. A. Malomed, Quantum squeezing of vector slow-light solitons in a coherent atomic system, Chaos Solitons Fract., 163 (2022), 112557. https://doi.org/10.1016/j.chaos.2022.112557 doi: 10.1016/j.chaos.2022.112557
![]() |
[44] |
T. A. Nofal, Simple equation method for nonlinear partial differential equations and its applications, J. Egypt. Math. Soc., 24 (2016), 204–209. https://doi.org/10.1016/j.joems.2015.05.006 doi: 10.1016/j.joems.2015.05.006
![]() |
[45] |
N. A. Kudryashov, V. B. Loguinova, Extended simplest equation method for nonlinear differential equations, Appl. Math. Comput., 205 (2008), 396–402. https://doi.org/10.1016/j.amc.2008.08.019 doi: 10.1016/j.amc.2008.08.019
![]() |
[46] |
Y. L. Ma, C. B. Li, Q. Wang, A series of abundant exact travelling wave solutions for a modified generalized Vakhnenko equation using auxiliary equation method, Appl. Math. Comput., 211 (2009), 102–107. https://doi.org/10.1016/j.amc.2009.01.036 doi: 10.1016/j.amc.2009.01.036
![]() |
[47] |
G. B. Whitham, Comments on periodic waves and solitons, IMA J. Appl. Math., 32 (1984), 353–366. https://doi.org/10.1093/imamat/32.1-3.353 doi: 10.1093/imamat/32.1-3.353
![]() |
1. | Muhammad Ahsan-ul-Haq, On Poisson Moment Exponential Distribution with Applications, 2022, 2198-5804, 10.1007/s40745-022-00400-0 | |
2. | Mohamed S. Eliwa, Muhammad Ahsan-ul-Haq, Amani Almohaimeed, Afrah Al-Bossly, Mahmoud El-Morshedy, Barbara Martinucci, Discrete Extension of Poisson Distribution for Overdispersed Count Data: Theory and Applications, 2023, 2023, 2314-4785, 1, 10.1155/2023/2779120 | |
3. | Muhammad Ahsan-ul-Haq, Afrah Al-Bossly, Mahmoud El-Morshedy, Mohamed S. Eliwa, Maciej Lawrynczuk, Poisson XLindley Distribution for Count Data: Statistical and Reliability Properties with Estimation Techniques and Inference, 2022, 2022, 1687-5273, 1, 10.1155/2022/6503670 | |
4. | Abdulaziz S. Alghamdi, Muhammad Ahsan-ul-Haq, Ayesha Babar, Hassan M. Aljohani, Ahmed Z. Afify, The discrete power-Ailamujia distribution: properties, inference, and applications, 2022, 7, 2473-6988, 8344, 10.3934/math.2022465 | |
5. | Elebe Emmanuel Nwezza, Uchenna Ugwunnaya Uwadi, Christian Osagie, Modeling the number of component failures: A Poison-geometric distribution, 2022, 16, 24682276, e01206, 10.1016/j.sciaf.2022.e01206 | |
6. | Muhammed Irshad, Christophe Chesneau, Veena D’cruz, Radhakumari Maya, Discrete Pseudo Lindley Distribution: Properties, Estimation and Application on INAR(1) Process, 2021, 26, 2297-8747, 76, 10.3390/mca26040076 | |
7. | Muhammad Ahsan-ul-Haq, Javeria Zafar, A new one-parameter discrete probability distribution with its neutrosophic extension: mathematical properties and applications, 2023, 2364-415X, 10.1007/s41060-023-00382-z | |
8. | Ahmed Sedky Eldeeb, Muhammad Ahsan-ul-Haq, Ayesha Babar, A new discrete XLindley distribution: theory, actuarial measures, inference, and applications, 2024, 17, 2364-415X, 323, 10.1007/s41060-023-00395-8 | |
9. | Osama Abdulaziz Alamri, Classical and Bayesian estimation of discrete poisson Agu-Eghwerido distribution with applications, 2024, 109, 11100168, 768, 10.1016/j.aej.2024.09.063 | |
10. | Hassan M. Aljohani, Muhammad Ahsan-ul-Haq, Javeria Zafar, Ehab M. Almetwally, Abdulaziz S. Alghamdi, Eslam Hussam, Abdisalam Hassan Muse, Analysis of Covid-19 data using discrete Marshall–Olkinin Length Biased Exponential: Bayesian and frequentist approach, 2023, 13, 2045-2322, 10.1038/s41598-023-39183-6 | |
11. | Safar M. Alghamdi, Muhammad Ahsan-ul-Haq, Olayan Albalawi, Majdah Mohammed Badr, Eslam Hussam, H.E. Semary, M.A. Abdelkawy, Binomial Poisson Ailamujia model with statistical properties and application, 2024, 17, 16878507, 101096, 10.1016/j.jrras.2024.101096 | |
12. | Amani Alrumayh, Hazar A. Khogeer, A New Two-Parameter Discrete Distribution for Overdispersed and Asymmetric Data: Its Properties, Estimation, Regression Model, and Applications, 2023, 15, 2073-8994, 1289, 10.3390/sym15061289 | |
13. | John Kwadey Okutu, Nana K. Frempong, Simon K. Appiah, Atinuke O. Adebanji, Pritpal Singh, A New Generated Family of Distributions: Statistical Properties and Applications with Real-Life Data, 2023, 2023, 2577-7408, 1, 10.1155/2023/9325679 | |
14. | M. R. Irshad, Muhammed Ahammed, R. Maya, Christophe Chesneau, INAR(1) process with Poisson-transmuted record type exponential innovations, 2024, 19, 15741699, 145, 10.3233/MAS-231458 | |
15. | Khaled M. Alqahtani, Mahmoud El-Morshedy, Hend S. Shahen, Mohamed S. Eliwa, A discrete extension of the Burr-Hatke distribution: Generalized hypergeometric functions, different inference techniques, simulation ranking with modeling and analysis of sustainable count data, 2024, 9, 2473-6988, 9394, 10.3934/math.2024458 | |
16. | Mohamed Eliwa, Mahmoud El-Morshedy, Hend Shahen, Modelling dispersed count data under various shapes of failure rates: A discrete probability analogue of odd Lomax generator, 2023, 37, 0354-5180, 6177, 10.2298/FIL2318177E | |
17. | M. Ahsan-ul-Haq, M. R. Irshad, E. S. Muhammed Ahammed, R. Maya, New Discrete Bilal Distribution and Associated INAR(1) Process, 2023, 44, 1995-0802, 3647, 10.1134/S1995080223090020 | |
18. | Yingying Qi, Dan Ding, Yusra A. Tashkandy, M.E. Bakr, M.M. Abd El-Raouf, Anoop Kumar, A novel probabilistic model with properties: Its implementation to the vocal music and reliability products, 2024, 107, 11100168, 254, 10.1016/j.aej.2024.07.035 | |
19. | Khlood Al-Harbi, Aisha Fayomi, Hanan Baaqeel, Amany Alsuraihi, A Novel Discrete Linear-Exponential Distribution for Modeling Physical and Medical Data, 2024, 16, 2073-8994, 1123, 10.3390/sym16091123 | |
20. | Thanasate Akkanphudit, The Discrete Gompertz–Weibull–Fréchet Distribution: Properties and Applications, 2023, 44, 1995-0802, 3663, 10.1134/S1995080223090032 | |
21. | Mohamed S. Algolam, Mohamed S. Eliwa, Mohamed El-Dawoody, Mahmoud El-Morshedy, A discrete extension of the Xgamma random variable: mathematical framework, estimation methods, simulation ranking, and applications to radiation biology and industrial engineering data, 2025, 10, 2473-6988, 6069, 10.3934/math.2025277 | |
22. | Howaida Elsayed, Mohamed Hussein, A New Discrete Analogue of the Continuous Muth Distribution for Over-Dispersed Data: Properties, Estimation Techniques, and Application, 2025, 27, 1099-4300, 409, 10.3390/e27040409 | |
23. | Amir Mushtaq, Mohamed Kayid, Ghadah Alomani, A new discrete generalized class of distribution with application to radiation and COVID-19 data, 2025, 18, 16878507, 101485, 10.1016/j.jrras.2025.101485 |
|
|||||||||
Measure | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 8.0 |
Mean | 3.500 | 3.678 | 4.014 | 4.414 | 4.847 | 5.299 | 5.762 | 6.234 | 8.652 |
Variance | 8.079 | 11.80 | 15.71 | 20.03 | 24.82 | 30.10 | 35.87 | 42.13 | 80.90 |
di | 2.308 | 3.207 | 3.913 | 4.538 | 5.121 | 5.680 | 6.224 | 6.757 | 9.351 |
Skewness | 1.395 | 1.519 | 1.629 | 1.708 | 1.764 | 1.806 | 1.837 | 1.862 | 1.928 |
Kurtosis | 5.940 | 6.353 | 6.821 | 7.199 | 7.495 | 7.727 | 7.910 | 8.057 | 8.484 |
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
2.0 | 10 | 0.099 | 0.072 | 0.878 | 0.606 | 0.956 | 0.801 | 0.762 | 1.496 | 2.897 | 2.059 | 3.034 | 1.797 |
20 | 0.034 | 0.035 | 0.486 | 0.259 | 0.444 | 0.435 | 0.307 | 1.103 | 1.408 | 0.749 | 1.212 | 0.626 | |
50 | 0.017 | 0.160 | 0.122 | 0.037 | 0.065 | 0.172 | 0.055 | 0.811 | 0.304 | 0.086 | 0.148 | 0.111 | |
100 | 0.013 | 0.226 | 0.015 | 0.003 | 0.005 | 0.086 | 0.017 | 0.697 | 0.033 | 0.006 | 0.009 | 0.026 | |
200 | 0.009 | 0.277 | 0.000 | 0.000 | 0.000 | 0.050 | 0.007 | 0.620 | 0.000 | 0.000 | 0.000 | 0.008 | |
500 | 0.002 | 0.338 | 0.000 | 0.000 | 0.000 | 0.028 | 0.003 | 0.569 | 0.000 | 0.000 | 0.000 | 0.002 | |
2.5 | 10 | 0.081 | 0.131 | 1.109 | 1.140 | 1.397 | 0.958 | 1.105 | 2.032 | 3.694 | 3.919 | 4.392 | 2.609 |
20 | 0.065 | 0.239 | 0.837 | 0.869 | 1.060 | 0.622 | 0.485 | 1.487 | 2.368 | 2.560 | 2.765 | 1.173 | |
50 | 0.058 | 0.293 | 0.595 | 0.695 | 0.798 | 0.320 | 0.186 | 1.063 | 1.436 | 1.723 | 1.785 | 0.391 | |
100 | 0.027 | 0.298 | 0.475 | 0.602 | 0.672 | 0.195 | 0.091 | 0.816 | 1.082 | 1.373 | 1.428 | 0.165 | |
200 | 0.013 | 0.255 | 0.374 | 0.525 | 0.589 | 0.098 | 0.045 | 0.602 | 0.864 | 1.139 | 1.185 | 0.065 | |
500 | 0.007 | 0.146 | 0.273 | 0.484 | 0.532 | 0.047 | 0.018 | 0.316 | 0.674 | 0.979 | 1.014 | 0.022 | |
3.0 | 10 | 0.019 | 0.224 | 1.085 | 1.103 | 1.304 | 0.996 | 1.574 | 2.613 | 3.976 | 4.160 | 4.504 | 3.186 |
20 | 0.005 | 0.268 | 0.877 | 0.924 | 1.044 | 0.639 | 0.751 | 1.793 | 2.525 | 2.701 | 2.865 | 1.512 | |
50 | 0.003 | 0.193 | 0.738 | 0.844 | 0.893 | 0.357 | 0.313 | 1.003 | 1.540 | 1.728 | 1.760 | 0.537 | |
100 | 0.004 | 0.130 | 0.754 | 0.868 | 0.872 | 0.222 | 0.163 | 0.567 | 1.160 | 1.352 | 1.341 | 0.242 | |
200 | 0.001 | 0.053 | 0.775 | 0.887 | 0.896 | 0.141 | 0.084 | 0.238 | 0.920 | 1.112 | 1.106 | 0.113 | |
500 | 0.001 | 0.006 | 0.811 | 0.929 | 0.940 | 0.070 | 0.035 | 0.066 | 0.769 | 0.965 | 0.980 | 0.042 | |
4.0 | 10 | 0.049 | 0.209 | 1.105 | 1.023 | 1.181 | 1.100 | 2.450 | 3.694 | 5.254 | 5.458 | 5.552 | 4.850 |
20 | 0.043 | 0.169 | 0.896 | 0.891 | 0.985 | 0.748 | 1.339 | 2.065 | 3.000 | 3.234 | 3.315 | 2.269 | |
50 | 0.031 | 0.049 | 0.835 | 0.847 | 0.899 | 0.400 | 0.585 | 0.763 | 1.608 | 1.739 | 1.789 | 0.815 | |
100 | 0.008 | 0.014 | 0.849 | 0.878 | 0.891 | 0.255 | 0.291 | 0.328 | 1.161 | 1.240 | 1.285 | 0.377 | |
200 | 0.007 | 0.016 | 0.838 | 0.877 | 0.882 | 0.156 | 0.147 | 0.159 | 0.911 | 1.005 | 1.010 | 0.174 | |
500 | 0.004 | 0.002 | 0.831 | 0.877 | 0.878 | 0.066 | 0.058 | 0.064 | 0.773 | 0.861 | 0.862 | 0.062 |
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
5.0 | 10 | 0.106 | 0.077 | 1.058 | 1.013 | 1.242 | 1.164 | 3.881 | 4.545 | 6.333 | 6.748 | 7.579 | 6.421 |
20 | 0.061 | 0.036 | 0.955 | 0.915 | 1.007 | 0.824 | 2.026 | 2.335 | 3.527 | 3.991 | 4.014 | 3.056 | |
50 | 0.046 | 0.015 | 0.864 | 0.869 | 0.904 | 0.447 | 0.821 | 0.839 | 1.793 | 1.906 | 1.970 | 1.070 | |
100 | 0.013 | 0.002 | 0.857 | 0.866 | 0.857 | 0.270 | 0.399 | 0.411 | 1.244 | 1.325 | 1.303 | 0.513 | |
200 | 0.013 | 0.006 | 0.833 | 0.843 | 0.849 | 0.161 | 0.198 | 0.214 | 0.946 | 1.006 | 1.009 | 0.238 | |
500 | 0.001 | 0.003 | 0.832 | 0.846 | 0.843 | 0.082 | 0.079 | 0.078 | 0.792 | 0.829 | 0.822 | 0.086 | |
6.0 | 10 | 0.167 | 0.115 | 1.192 | 1.073 | 1.169 | 1.260 | 5.339 | 5.663 | 8.785 | 8.977 | 9.398 | 8.321 |
20 | 0.049 | 0.027 | 0.946 | 0.952 | 0.975 | 0.890 | 2.794 | 2.926 | 4.236 | 4.861 | 4.686 | 3.860 | |
50 | 0.008 | 0.019 | 0.873 | 0.889 | 0.881 | 0.499 | 1.081 | 1.079 | 2.081 | 2.225 | 2.292 | 1.417 | |
100 | 0.007 | 0.016 | 0.859 | 0.843 | 0.870 | 0.294 | 0.523 | 0.517 | 1.392 | 1.421 | 1.522 | 0.631 | |
200 | 0.007 | 0.006 | 0.845 | 0.839 | 0.846 | 0.181 | 0.261 | 0.269 | 1.030 | 1.061 | 1.065 | 0.308 | |
500 | 0.001 | 0.001 | 0.832 | 0.832 | 0.835 | 0.085 | 0.107 | 0.108 | 0.823 | 0.841 | 0.847 | 0.112 | |
8.0 | 10 | 0.141 | 0.089 | 1.294 | 1.077 | 1.320 | 1.622 | 8.569 | 8.656 | 12.77 | 12.61 | 13.63 | 13.41 |
20 | 0.074 | 0.009 | 1.050 | 0.991 | 1.111 | 1.110 | 4.265 | 4.178 | 6.399 | 6.736 | 7.355 | 6.250 | |
50 | 0.029 | 0.003 | 0.883 | 0.860 | 0.918 | 0.577 | 1.685 | 1.630 | 2.726 | 3.019 | 3.118 | 2.151 | |
100 | 0.015 | 0.014 | 0.867 | 0.861 | 0.859 | 0.372 | 0.834 | 0.814 | 1.787 | 1.862 | 1.859 | 1.029 | |
200 | 0.008 | 0.019 | 0.837 | 0.808 | 0.842 | 0.219 | 0.416 | 0.422 | 1.202 | 1.204 | 1.285 | 0.493 | |
500 | 0.006 | 0.001 | 0.826 | 0.814 | 0.820 | 0.097 | 0.169 | 0.175 | 0.877 | 0.879 | 0.902 | 0.176 | |
10.0 | 10 | 0.106 | 0.086 | 1.365 | 1.333 | 1.446 | 1.868 | 12.89 | 12.67 | 17.66 | 19.87 | 19.51 | 20.26 |
20 | 0.001 | 0.063 | 1.143 | 1.079 | 1.067 | 1.308 | 6.232 | 6.279 | 8.767 | 9.553 | 9.777 | 9.056 | |
50 | 0.025 | 0.036 | 0.899 | 0.892 | 0.933 | 0.686 | 2.483 | 2.373 | 3.774 | 4.076 | 4.248 | 3.246 | |
100 | 0.018 | 0.016 | 0.868 | 0.886 | 0.872 | 0.457 | 1.247 | 1.246 | 2.255 | 2.421 | 2.464 | 1.489 | |
200 | 0.001 | 0.009 | 0.852 | 0.827 | 0.829 | 0.267 | 0.636 | 0.599 | 1.467 | 1.501 | 1.501 | 0.712 | |
500 | 0.002 | 0.007 | 0.823 | 0.801 | 0.818 | 0.119 | 0.246 | 0.240 | 0.967 | 0.971 | 1.005 | 0.255 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 8.8686 | 1.5033 | - | - | 145.22 | 292.43 | 0.156 | 0.2300 |
Poi | 9.4773 | 0.4641 | - | - | 283.94 | 569.89 | 0.391 | < 0.0001 |
DPr | 0.5021 | 0.0757 | - | - | 162.19 | 326.38 | 0.401 | < 0.0001 |
DR | 9.9883 | 0.7535 | - | - | 168.85 | 339.70 | 0.339 | < 0.0001 |
DIR | 7.4291 | 1.2625 | - | - | 166.31 | 334.61 | 0.382 | < 0.0001 |
DBH | 0.9950 | 0.0115 | - | - | 175.37 | 352.74 | 0.647 | < 0.0001 |
DBi | 11.838 | 1.2932 | - | - | 151.29 | 304.59 | 0.213 | 0.0370 |
DL | 0.8313 | 0.0165 | - | - | 149.17 | 300.33 | 0.184 | 0.1000 |
NDL | 0.1640 | 0.0161 | - | - | 148.44 | 298.89 | 0.237 | 0.0140 |
DBXII | 0.9536 | 0.0434 | 11.907 | 11.305 | 150.70 | 305.40 | 0.302 | 0.0007 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 11.214 | 1.4497 | - | - | 252.71 | 507.43 | 0.133 | 0.1600 |
Poi | 11.805 | 0.4049 | - | - | 564.38 | 1130.8 | 0.408 | < 0.0001 |
DPr | 0.4770 | 0.0563 | - | - | 276.82 | 555.64 | 0.311 | < 0.0001 |
DR | 12.280 | 0.7239 | - | - | 300.65 | 603.29 | 0.323 | < 0.0001 |
DIR | 4.7947 | 0.6303 | - | - | 331.46 | 664.92 | 0.497 | < 0.0001 |
DBH | 0.9966 | 0.0072 | - | - | 302.29 | 606.57 | 0.572 | < 0.0001 |
DBi | 14.621 | 1.2479 | - | - | 272.50 | 546.99 | 0.257 | 0.0002 |
DL | 0.8592 | 0.0109 | - | - | 264.30 | 530.59 | 0.232 | 0.0009 |
NDL | 0.1373 | 0.0107 | - | - | 262.09 | 526.17 | 0.271 | < 0.0001 |
DBXII | 0.8205 | 0.0591 | 2.6112 | 0.9287 | 270.50 | 544.99 | 0.228 | 0.0011 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 4.3673 | 0.5510 | - | - | 301.11 | 604.21 | 0.1510 | 0.0140 |
Poi | 5.2000 | 0.2174 | - | - | 434.16 | 870.32 | 0.282 | < 0.0001 |
DPr | 0.6250 | 0.0597 | - | - | 339.05 | 680.10 | 0.352 | < 0.0001 |
DR | 5.6788 | 0.2714 | - | - | 352.72 | 707.45 | 0.261 | < 0.0001 |
DIR | 3.5198 | 0.3748 | - | - | 360.90 | 723.80 | 0.413 | < 0.0001 |
DBH | 0.9833 | 0.0136 | - | - | 352.42 | 706.85 | 0.532 | < 0.0001 |
DBi | 6.7993 | 0.4693 | - | - | 310.75 | 623.49 | 0.107 | < 0.0001 |
DL | 0.7337 | 0.0156 | - | - | 303.88 | 609.75 | 0.193 | 0.0100 |
NDL | 0.2567 | 0.0152 | - | - | 302.73 | 607.47 | 0.169 | 0.0037 |
DBXII | 0.7486 | 0.0459 | 2.4582 | 0.4938 | 325.00 | 654.01 | 0.287 | < 0.0001 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 61.943 | 15.273 | - | - | 87.425 | 176.85 | 0.152 | 0.8300 |
Poi | 62.470 | 1.9169 | - | - | 475.26 | 952.52 | 0.470 | 0.0011 |
DPr | 0.2838 | 0.0688 | - | - | 98.335 | 198.67 | 0.324 | 0.0560 |
DR | 58.076 | 7.0429 | - | - | 96.794 | 195.59 | 0.309 | 0.0770 |
DIR | 25.310 | 6.543 | - | - | 128.59 | 259.18 | 0.681 | < 0.0001 |
DBH | 0.9999 | 0.0029 | - | - | 119.81 | 241.62 | 0.716 | < 0.0001 |
DBi | 75.109 | 13.164 | - | - | 92.886 | 187.77 | 0.219 | 0.3900 |
DL | 0.9692 | 0.0052 | - | - | 91.858 | 185.72 | 0.215 | 0.4100 |
NDL | 0.0306 | 0.0052 | - | - | 91.458 | 184.92 | 0.218 | 0.3900 |
DBXII | 0.9975 | 0.0008 | 117.30 | 45.982 | 96.151 | 196.30 | 0.327 | 0.0530 |
|
|||||||||
Measure | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 8.0 |
Mean | 3.500 | 3.678 | 4.014 | 4.414 | 4.847 | 5.299 | 5.762 | 6.234 | 8.652 |
Variance | 8.079 | 11.80 | 15.71 | 20.03 | 24.82 | 30.10 | 35.87 | 42.13 | 80.90 |
di | 2.308 | 3.207 | 3.913 | 4.538 | 5.121 | 5.680 | 6.224 | 6.757 | 9.351 |
Skewness | 1.395 | 1.519 | 1.629 | 1.708 | 1.764 | 1.806 | 1.837 | 1.862 | 1.928 |
Kurtosis | 5.940 | 6.353 | 6.821 | 7.199 | 7.495 | 7.727 | 7.910 | 8.057 | 8.484 |
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
2.0 | 10 | 0.099 | 0.072 | 0.878 | 0.606 | 0.956 | 0.801 | 0.762 | 1.496 | 2.897 | 2.059 | 3.034 | 1.797 |
20 | 0.034 | 0.035 | 0.486 | 0.259 | 0.444 | 0.435 | 0.307 | 1.103 | 1.408 | 0.749 | 1.212 | 0.626 | |
50 | 0.017 | 0.160 | 0.122 | 0.037 | 0.065 | 0.172 | 0.055 | 0.811 | 0.304 | 0.086 | 0.148 | 0.111 | |
100 | 0.013 | 0.226 | 0.015 | 0.003 | 0.005 | 0.086 | 0.017 | 0.697 | 0.033 | 0.006 | 0.009 | 0.026 | |
200 | 0.009 | 0.277 | 0.000 | 0.000 | 0.000 | 0.050 | 0.007 | 0.620 | 0.000 | 0.000 | 0.000 | 0.008 | |
500 | 0.002 | 0.338 | 0.000 | 0.000 | 0.000 | 0.028 | 0.003 | 0.569 | 0.000 | 0.000 | 0.000 | 0.002 | |
2.5 | 10 | 0.081 | 0.131 | 1.109 | 1.140 | 1.397 | 0.958 | 1.105 | 2.032 | 3.694 | 3.919 | 4.392 | 2.609 |
20 | 0.065 | 0.239 | 0.837 | 0.869 | 1.060 | 0.622 | 0.485 | 1.487 | 2.368 | 2.560 | 2.765 | 1.173 | |
50 | 0.058 | 0.293 | 0.595 | 0.695 | 0.798 | 0.320 | 0.186 | 1.063 | 1.436 | 1.723 | 1.785 | 0.391 | |
100 | 0.027 | 0.298 | 0.475 | 0.602 | 0.672 | 0.195 | 0.091 | 0.816 | 1.082 | 1.373 | 1.428 | 0.165 | |
200 | 0.013 | 0.255 | 0.374 | 0.525 | 0.589 | 0.098 | 0.045 | 0.602 | 0.864 | 1.139 | 1.185 | 0.065 | |
500 | 0.007 | 0.146 | 0.273 | 0.484 | 0.532 | 0.047 | 0.018 | 0.316 | 0.674 | 0.979 | 1.014 | 0.022 | |
3.0 | 10 | 0.019 | 0.224 | 1.085 | 1.103 | 1.304 | 0.996 | 1.574 | 2.613 | 3.976 | 4.160 | 4.504 | 3.186 |
20 | 0.005 | 0.268 | 0.877 | 0.924 | 1.044 | 0.639 | 0.751 | 1.793 | 2.525 | 2.701 | 2.865 | 1.512 | |
50 | 0.003 | 0.193 | 0.738 | 0.844 | 0.893 | 0.357 | 0.313 | 1.003 | 1.540 | 1.728 | 1.760 | 0.537 | |
100 | 0.004 | 0.130 | 0.754 | 0.868 | 0.872 | 0.222 | 0.163 | 0.567 | 1.160 | 1.352 | 1.341 | 0.242 | |
200 | 0.001 | 0.053 | 0.775 | 0.887 | 0.896 | 0.141 | 0.084 | 0.238 | 0.920 | 1.112 | 1.106 | 0.113 | |
500 | 0.001 | 0.006 | 0.811 | 0.929 | 0.940 | 0.070 | 0.035 | 0.066 | 0.769 | 0.965 | 0.980 | 0.042 | |
4.0 | 10 | 0.049 | 0.209 | 1.105 | 1.023 | 1.181 | 1.100 | 2.450 | 3.694 | 5.254 | 5.458 | 5.552 | 4.850 |
20 | 0.043 | 0.169 | 0.896 | 0.891 | 0.985 | 0.748 | 1.339 | 2.065 | 3.000 | 3.234 | 3.315 | 2.269 | |
50 | 0.031 | 0.049 | 0.835 | 0.847 | 0.899 | 0.400 | 0.585 | 0.763 | 1.608 | 1.739 | 1.789 | 0.815 | |
100 | 0.008 | 0.014 | 0.849 | 0.878 | 0.891 | 0.255 | 0.291 | 0.328 | 1.161 | 1.240 | 1.285 | 0.377 | |
200 | 0.007 | 0.016 | 0.838 | 0.877 | 0.882 | 0.156 | 0.147 | 0.159 | 0.911 | 1.005 | 1.010 | 0.174 | |
500 | 0.004 | 0.002 | 0.831 | 0.877 | 0.878 | 0.066 | 0.058 | 0.064 | 0.773 | 0.861 | 0.862 | 0.062 |
Para. | n | Bias | mse | ||||||||||
|
mle | mom | ade | cvme | lse | mpse | mle | mom | ade | cvme | lse | mpse | |
5.0 | 10 | 0.106 | 0.077 | 1.058 | 1.013 | 1.242 | 1.164 | 3.881 | 4.545 | 6.333 | 6.748 | 7.579 | 6.421 |
20 | 0.061 | 0.036 | 0.955 | 0.915 | 1.007 | 0.824 | 2.026 | 2.335 | 3.527 | 3.991 | 4.014 | 3.056 | |
50 | 0.046 | 0.015 | 0.864 | 0.869 | 0.904 | 0.447 | 0.821 | 0.839 | 1.793 | 1.906 | 1.970 | 1.070 | |
100 | 0.013 | 0.002 | 0.857 | 0.866 | 0.857 | 0.270 | 0.399 | 0.411 | 1.244 | 1.325 | 1.303 | 0.513 | |
200 | 0.013 | 0.006 | 0.833 | 0.843 | 0.849 | 0.161 | 0.198 | 0.214 | 0.946 | 1.006 | 1.009 | 0.238 | |
500 | 0.001 | 0.003 | 0.832 | 0.846 | 0.843 | 0.082 | 0.079 | 0.078 | 0.792 | 0.829 | 0.822 | 0.086 | |
6.0 | 10 | 0.167 | 0.115 | 1.192 | 1.073 | 1.169 | 1.260 | 5.339 | 5.663 | 8.785 | 8.977 | 9.398 | 8.321 |
20 | 0.049 | 0.027 | 0.946 | 0.952 | 0.975 | 0.890 | 2.794 | 2.926 | 4.236 | 4.861 | 4.686 | 3.860 | |
50 | 0.008 | 0.019 | 0.873 | 0.889 | 0.881 | 0.499 | 1.081 | 1.079 | 2.081 | 2.225 | 2.292 | 1.417 | |
100 | 0.007 | 0.016 | 0.859 | 0.843 | 0.870 | 0.294 | 0.523 | 0.517 | 1.392 | 1.421 | 1.522 | 0.631 | |
200 | 0.007 | 0.006 | 0.845 | 0.839 | 0.846 | 0.181 | 0.261 | 0.269 | 1.030 | 1.061 | 1.065 | 0.308 | |
500 | 0.001 | 0.001 | 0.832 | 0.832 | 0.835 | 0.085 | 0.107 | 0.108 | 0.823 | 0.841 | 0.847 | 0.112 | |
8.0 | 10 | 0.141 | 0.089 | 1.294 | 1.077 | 1.320 | 1.622 | 8.569 | 8.656 | 12.77 | 12.61 | 13.63 | 13.41 |
20 | 0.074 | 0.009 | 1.050 | 0.991 | 1.111 | 1.110 | 4.265 | 4.178 | 6.399 | 6.736 | 7.355 | 6.250 | |
50 | 0.029 | 0.003 | 0.883 | 0.860 | 0.918 | 0.577 | 1.685 | 1.630 | 2.726 | 3.019 | 3.118 | 2.151 | |
100 | 0.015 | 0.014 | 0.867 | 0.861 | 0.859 | 0.372 | 0.834 | 0.814 | 1.787 | 1.862 | 1.859 | 1.029 | |
200 | 0.008 | 0.019 | 0.837 | 0.808 | 0.842 | 0.219 | 0.416 | 0.422 | 1.202 | 1.204 | 1.285 | 0.493 | |
500 | 0.006 | 0.001 | 0.826 | 0.814 | 0.820 | 0.097 | 0.169 | 0.175 | 0.877 | 0.879 | 0.902 | 0.176 | |
10.0 | 10 | 0.106 | 0.086 | 1.365 | 1.333 | 1.446 | 1.868 | 12.89 | 12.67 | 17.66 | 19.87 | 19.51 | 20.26 |
20 | 0.001 | 0.063 | 1.143 | 1.079 | 1.067 | 1.308 | 6.232 | 6.279 | 8.767 | 9.553 | 9.777 | 9.056 | |
50 | 0.025 | 0.036 | 0.899 | 0.892 | 0.933 | 0.686 | 2.483 | 2.373 | 3.774 | 4.076 | 4.248 | 3.246 | |
100 | 0.018 | 0.016 | 0.868 | 0.886 | 0.872 | 0.457 | 1.247 | 1.246 | 2.255 | 2.421 | 2.464 | 1.489 | |
200 | 0.001 | 0.009 | 0.852 | 0.827 | 0.829 | 0.267 | 0.636 | 0.599 | 1.467 | 1.501 | 1.501 | 0.712 | |
500 | 0.002 | 0.007 | 0.823 | 0.801 | 0.818 | 0.119 | 0.246 | 0.240 | 0.967 | 0.971 | 1.005 | 0.255 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 8.8686 | 1.5033 | - | - | 145.22 | 292.43 | 0.156 | 0.2300 |
Poi | 9.4773 | 0.4641 | - | - | 283.94 | 569.89 | 0.391 | < 0.0001 |
DPr | 0.5021 | 0.0757 | - | - | 162.19 | 326.38 | 0.401 | < 0.0001 |
DR | 9.9883 | 0.7535 | - | - | 168.85 | 339.70 | 0.339 | < 0.0001 |
DIR | 7.4291 | 1.2625 | - | - | 166.31 | 334.61 | 0.382 | < 0.0001 |
DBH | 0.9950 | 0.0115 | - | - | 175.37 | 352.74 | 0.647 | < 0.0001 |
DBi | 11.838 | 1.2932 | - | - | 151.29 | 304.59 | 0.213 | 0.0370 |
DL | 0.8313 | 0.0165 | - | - | 149.17 | 300.33 | 0.184 | 0.1000 |
NDL | 0.1640 | 0.0161 | - | - | 148.44 | 298.89 | 0.237 | 0.0140 |
DBXII | 0.9536 | 0.0434 | 11.907 | 11.305 | 150.70 | 305.40 | 0.302 | 0.0007 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 11.214 | 1.4497 | - | - | 252.71 | 507.43 | 0.133 | 0.1600 |
Poi | 11.805 | 0.4049 | - | - | 564.38 | 1130.8 | 0.408 | < 0.0001 |
DPr | 0.4770 | 0.0563 | - | - | 276.82 | 555.64 | 0.311 | < 0.0001 |
DR | 12.280 | 0.7239 | - | - | 300.65 | 603.29 | 0.323 | < 0.0001 |
DIR | 4.7947 | 0.6303 | - | - | 331.46 | 664.92 | 0.497 | < 0.0001 |
DBH | 0.9966 | 0.0072 | - | - | 302.29 | 606.57 | 0.572 | < 0.0001 |
DBi | 14.621 | 1.2479 | - | - | 272.50 | 546.99 | 0.257 | 0.0002 |
DL | 0.8592 | 0.0109 | - | - | 264.30 | 530.59 | 0.232 | 0.0009 |
NDL | 0.1373 | 0.0107 | - | - | 262.09 | 526.17 | 0.271 | < 0.0001 |
DBXII | 0.8205 | 0.0591 | 2.6112 | 0.9287 | 270.50 | 544.99 | 0.228 | 0.0011 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 4.3673 | 0.5510 | - | - | 301.11 | 604.21 | 0.1510 | 0.0140 |
Poi | 5.2000 | 0.2174 | - | - | 434.16 | 870.32 | 0.282 | < 0.0001 |
DPr | 0.6250 | 0.0597 | - | - | 339.05 | 680.10 | 0.352 | < 0.0001 |
DR | 5.6788 | 0.2714 | - | - | 352.72 | 707.45 | 0.261 | < 0.0001 |
DIR | 3.5198 | 0.3748 | - | - | 360.90 | 723.80 | 0.413 | < 0.0001 |
DBH | 0.9833 | 0.0136 | - | - | 352.42 | 706.85 | 0.532 | < 0.0001 |
DBi | 6.7993 | 0.4693 | - | - | 310.75 | 623.49 | 0.107 | < 0.0001 |
DL | 0.7337 | 0.0156 | - | - | 303.88 | 609.75 | 0.193 | 0.0100 |
NDL | 0.2567 | 0.0152 | - | - | 302.73 | 607.47 | 0.169 | 0.0037 |
DBXII | 0.7486 | 0.0459 | 2.4582 | 0.4938 | 325.00 | 654.01 | 0.287 | < 0.0001 |
Model | |
|
Goodness-of-fit measures | |||||
mle | se | mle | se | |
aic | ks | p-value | |
DRL | 61.943 | 15.273 | - | - | 87.425 | 176.85 | 0.152 | 0.8300 |
Poi | 62.470 | 1.9169 | - | - | 475.26 | 952.52 | 0.470 | 0.0011 |
DPr | 0.2838 | 0.0688 | - | - | 98.335 | 198.67 | 0.324 | 0.0560 |
DR | 58.076 | 7.0429 | - | - | 96.794 | 195.59 | 0.309 | 0.0770 |
DIR | 25.310 | 6.543 | - | - | 128.59 | 259.18 | 0.681 | < 0.0001 |
DBH | 0.9999 | 0.0029 | - | - | 119.81 | 241.62 | 0.716 | < 0.0001 |
DBi | 75.109 | 13.164 | - | - | 92.886 | 187.77 | 0.219 | 0.3900 |
DL | 0.9692 | 0.0052 | - | - | 91.858 | 185.72 | 0.215 | 0.4100 |
NDL | 0.0306 | 0.0052 | - | - | 91.458 | 184.92 | 0.218 | 0.3900 |
DBXII | 0.9975 | 0.0008 | 117.30 | 45.982 | 96.151 | 196.30 | 0.327 | 0.0530 |