The vehicle routing problem (VRP) problem is a classic NP-hard problem. Usually, the traditional optimization method cannot effectively solve the VRP problem. Metaheuristic optimization algorithms have been successfully applied to solve many complex engineering optimization problems. This paper proposes a discrete Harris Hawks optimization (DHHO) algorithm to solve the shared electric vehicle scheduling (SEVS) problem considering the charging schedule. The SEVS model is a variant of the VPR problem, and the influence of the transfer function on the model is analyzed. The experimental test data are based on three randomly generated examples of different scales. The experimental results verify the effectiveness of the proposed DHHO algorithm. Furthermore, the statistical analysis results show that other transfer functions have apparent differences in the robustness and solution accuracy of the algorithm.
Citation: Yuheng Wang, Yongquan Zhou, Qifang Luo. Parameter optimization of shared electric vehicle dispatching model using discrete Harris hawks optimization[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 7284-7313. doi: 10.3934/mbe.2022344
[1] | Clément Cancès . On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks and Heterogeneous Media, 2010, 5(3): 635-647. doi: 10.3934/nhm.2010.5.635 |
[2] | Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969 |
[3] | Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661 |
[4] | Shyam Sundar Ghoshal . BV regularity near the interface for nonuniform convex discontinuous flux. Networks and Heterogeneous Media, 2016, 11(2): 331-348. doi: 10.3934/nhm.2016.11.331 |
[5] | Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433 |
[6] | Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015 |
[7] | Raimund Bürger, Stefan Diehl, María Carmen Martí . A conservation law with multiply discontinuous flux modelling a flotation column. Networks and Heterogeneous Media, 2018, 13(2): 339-371. doi: 10.3934/nhm.2018015 |
[8] | Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina . Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2(1): 159-179. doi: 10.3934/nhm.2007.2.159 |
[9] | Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada . A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219. doi: 10.3934/nhm.2021004 |
[10] | Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163 |
The vehicle routing problem (VRP) problem is a classic NP-hard problem. Usually, the traditional optimization method cannot effectively solve the VRP problem. Metaheuristic optimization algorithms have been successfully applied to solve many complex engineering optimization problems. This paper proposes a discrete Harris Hawks optimization (DHHO) algorithm to solve the shared electric vehicle scheduling (SEVS) problem considering the charging schedule. The SEVS model is a variant of the VPR problem, and the influence of the transfer function on the model is analyzed. The experimental test data are based on three randomly generated examples of different scales. The experimental results verify the effectiveness of the proposed DHHO algorithm. Furthermore, the statistical analysis results show that other transfer functions have apparent differences in the robustness and solution accuracy of the algorithm.
[1] |
R. Mounce, J. D. Nelson, On the potential for one-way electric vehicle car-sharing in future mobility systems, Trans. Res. Part A: Policy Pract., 120 (2019), 17–30. https://doi.org/10.1016/j.tra.2018.12.003 doi: 10.1016/j.tra.2018.12.003
![]() |
[2] |
F. Ferrero, G. Perboli, M. Rosano, A. Vesco, Car-sharing services: an annotated review, Sustainable Cities Soc., 37 (2018), 501–518. https://doi.org/10.1016/j.scs.2017.09.020 doi: 10.1016/j.scs.2017.09.020
![]() |
[3] |
M. Nourinejad, M. J. Roorda, Carsharing operations policies: a comparison between one-way and two-way systems, Transportation, 42 (2015), 497–518. https://doi.org/10.1007/s11116-015-9604-3 doi: 10.1007/s11116-015-9604-3
![]() |
[4] |
J. Firnkorn, M. Müller, What will be the environmental effects of new free-floating car-sharing systems? The case of car2 go in Ulm, Ecol. Econ., 70 (2011), 1519–1528. https://doi.org/10.1016/j.ecolecon.2011.03.014 doi: 10.1016/j.ecolecon.2011.03.014
![]() |
[5] |
J. H. Holland, Genetic algorithms, Sci. Am., 1992. https://doi.org/10.1038/scientificamerican0792-66 doi: 10.1038/scientificamerican0792-66
![]() |
[6] | R. Storn, Differential evolution research–trends and open questions, in Advances in Differential Evolution, 143 (2008), 1–31. https://doi.org/10.1007/978-3-540-68830-3_1 |
[7] | I. Rechenberg, Evolutionary strategy, Comput. Intell.: Imitating Life, 1994. |
[8] | G. B. Fogel, Evolutionary programming, in Handbook of Natural Computing, Springer, Berlin, 2011. |
[9] |
A. V. Sebald, L. J. Fogel, Evolutionary programming, Evol. Program., (1994), 1–386. https://doi.org/10.1142/9789814534116 doi: 10.1142/9789814534116
![]() |
[10] |
O. K. Erol, I. Eksin, A new optimization method: Big Bang–Big Crunch, Adv. Eng. Software., 37 (2006), 106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005 doi: 10.1016/j.advengsoft.2005.04.005
![]() |
[11] |
E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004
![]() |
[12] |
A. Kaveh, S. Talatahari, A novel heuristic optimization method: charged system search, Acta Mech., 213 (2010):267–289. https://doi.org/10.1007/s00707-009-0270-4 doi: 10.1007/s00707-009-0270-4
![]() |
[13] | M. H. Tayarani-N, M. R. Akbarzadeh-T, Magnetic Optimization Algorithms a new synthesis, in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), (2008), 2659–2664. https://doi.org/10.1109/CEC.2008.4631155 |
[14] |
R. A. Formato, Central force optimization: a new metaheuristic with applications in applied electromagnetics, Prog. Electromagn. Res., 77 (2007), 425–491. https://doi.org/10.2528/PIER07082403 doi: 10.2528/PIER07082403
![]() |
[15] |
B. Alatas, ACROA: artificial chemical reaction optimization algorithm for global optimization, Expert Syst. Appl., 38 (2011), 13170–13180. https://doi.org/10.1016/j.eswa.2011.04.126 doi: 10.1016/j.eswa.2011.04.126
![]() |
[16] |
A. Hatamlou, Black hole: a new heuristic optimization approach for data clustering, Inf. Sci., 222 (2013), 175–184. https://doi.org/10.1016/j.ins.2012.08.023 doi: 10.1016/j.ins.2012.08.023
![]() |
[17] | H. Du, X. Wu, J. Zhuang, Small-world optimization algorithm for function optimization, in Advances in Natural Computation, (2006), 264–273. https://doi.org/10.1007/11881223_33 |
[18] |
H. Shah-Hosseini, Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimization, Int. J. Comput. Sci. Eng., 6 (2011), 132–140. https://doi.org/10.1504/IJCSE.2011.041221 doi: 10.1504/IJCSE.2011.041221
![]() |
[19] | Y. T. Hsiao, C. L. Chuang, J. A. Jiang, C. C. Chien, A novel optimization algorithm: space gravitational optimization, in 2005 IEEE International Conference on Systems, Man and Cybernetics, 3 (2005), 2323–2328. https://doi.org/10.1109/ICSMC.2005.1571495 |
[20] |
F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas solubility optimization: a novel physics-based algorithm, Future Gener. Comput. Syst., 101 (2019), 646–667. https://doi.org/10.1016/j.future.2019.07.015 doi: 10.1016/j.future.2019.07.015
![]() |
[21] |
L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/j.cma.2020.113609 doi: 10.1016/j.cma.2020.113609
![]() |
[22] |
I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, H. Chen, RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method, Expert Syst. Appl., 181 (2021), 115079. https://doi.org/10.1016/j.eswa.2021.115079 doi: 10.1016/j.eswa.2021.115079
![]() |
[23] | J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95-International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 |
[24] |
D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39 (2007), 459–471. https://doi.org/10.1007/s10898-007-9149-x doi: 10.1007/s10898-007-9149-x
![]() |
[25] |
M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents, IEEE Trans. Syst., Man, Cybern., Part B, 26 (1996), 29–41. https://doi.org/10.1109/3477.484436 doi: 10.1109/3477.484436
![]() |
[26] | X. S. Yang, Firefly algorithms for multimodal optimization, in Stochastic Algorithms: Foundations and Applications, Springer, (2009), 169–178. https://doi.org/10.1007/978-3-642-04944-6_14 |
[27] |
X. S. Yang, A. H. Gandomi, Bat algorithm: a novel approach for global engineering optimization, Eng. Comput., 29 (2012), 464–483. https://doi.org/10.1108/02644401211235834 doi: 10.1108/02644401211235834
![]() |
[28] |
E. Valian, E. Valian, A cuckoo search algorithm by Lévy flights for solving reliability redundancy allocation problems, Eng. Optim., 45 (2013), 1273–1286. https://doi.org/10.1080/0305215X.2012.729055 doi: 10.1080/0305215X.2012.729055
![]() |
[29] |
S. A. Uymaz, G. Tezel, E. Yel, Artificial algae algorithm (AAA) for nonlinear global optimization, Appl. Soft Comput., 31 (2015), 153–171. https://doi.org/10.1016/j.asoc.2015.03.003 doi: 10.1016/j.asoc.2015.03.003
![]() |
[30] |
M. S. Kiran, TSA: Tree-seed algorithm for continuous optimization, Expert Syst. Appl., 42 (2015), 6686–6690. https://doi.org/10.1016/j.eswa.2015.04.055 doi: 10.1016/j.eswa.2015.04.055
![]() |
[31] |
S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
![]() |
[32] |
J. James, V. O. Li, A social spider algorithm for global optimization, Appl. Soft Comput., 30 (2015), 614–627. https://doi.org/10.1016/j.asoc.2015.02.014 doi: 10.1016/j.asoc.2015.02.014
![]() |
[33] |
S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89 (2015), 228–249. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006
![]() |
[34] |
S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
![]() |
[35] |
A. Kaveh, N. Farhoudi, A new optimization method: dolphin echolocation, Adv. Eng. Software, 59 (2013), 53–70. https://doi.org/10.1016/j.advengsoft.2013.03.004 doi: 10.1016/j.advengsoft.2013.03.004
![]() |
[36] | S. C. Chu, P. W. Tsai, J. S. Pan, Cat swarm optimization, in PRICAI 2006: Trends in Artificial Intelligence, Springer, (2006), 854–858. https://doi.org/10.1007/978-3-540-36668-3_94 |
[37] |
M. Yazdani, F. Jolai, Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm, J. Comput. Des. Eng., 3 (2016), 24–36. https://doi.org/10.1016/j.jcde.2015.06.003 doi: 10.1016/j.jcde.2015.06.003
![]() |
[38] | X. Bo, W. J. Gao, Fruit fly optimization algorithm, in Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms, 2014. |
[39] |
M. Khishe, M. R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl., 149 (2020), 113338. https://doi.org/10.1016/j.eswa.2020.113338 doi: 10.1016/j.eswa.2020.113338
![]() |
[40] |
M. S. Braik, Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems, Expert Syst. Appl., 174 (2021), 114685. https://doi.org/10.1016/j.eswa.2021.114685 doi: 10.1016/j.eswa.2021.114685
![]() |
[41] |
S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
![]() |
[42] |
Y. Yang, H. Chen, A. A. Heidari, A. H. Gandomi, Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl., 177 (2021), 114864. https://doi.org/10.1016/j.eswa.2021.114864 doi: 10.1016/j.eswa.2021.114864
![]() |
[43] |
J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithm, J. Bionic Eng., 18 (2021), 674–710. https://doi.org/10.1007/s42235-021-0050-y doi: 10.1007/s42235-021-0050-y
![]() |
[44] |
G. B. Dantzig, J. H. Ramser, The truck dispatching problem, Manage. Sci., 6 (1959), 80–91. https://doi.org/10.1287/mnsc.6.1.80 doi: 10.1287/mnsc.6.1.80
![]() |
[45] |
J. Du, X. Li, L. Yu, R. Dan, J. Zhou, Multi-depot vehicle routing problem for hazardous materials transportation: a fuzzy bilevel programming, Inf. Sci., 399 (2017), 201–218. https://doi.org/10.1016/j.ins.2017.02.011 doi: 10.1016/j.ins.2017.02.011
![]() |
[46] |
A. García-Nájera, J. A. Bullinaria, M. A. Gutiérrez-Andrade, An evolutionary approach for multi-objective vehicle routing problems with backhauls, Comput. Ind. Eng., 81 (2015), 90–108. https://doi.org/10.1016/j.cie.2014.12.029 doi: 10.1016/j.cie.2014.12.029
![]() |
[47] |
E. Cao, M. Lai, H. Yang, Open vehicle routing problem with demand uncertainty and its robust strategies, Expert Syst. Appl., 41 (2014), 3569–3575. https://doi.org/10.1016/j.eswa.2013.11.004 doi: 10.1016/j.eswa.2013.11.004
![]() |
[48] |
E. Jabir, V. V. Panicker, R. Sridharan, Design and development of a hybrid ant colony-variable neighbourhood search algorithm for a multi-depot green vehicle routing problem, Trans. Res. Part D: Transp. Environ., 57 (2017), 422–457. https://doi.org/10.1016/j.trd.2017.09.003 doi: 10.1016/j.trd.2017.09.003
![]() |
[49] |
M. Okulewicz, J. Mańdziuk, The impact of particular components of the PSO based algorithm solving the Dynamic Vehicle Routing Problem, Appl. Soft Comput., 58 (2017), 586–604. https://doi.org/10.1016/j.asoc.2017.04.070 doi: 10.1016/j.asoc.2017.04.070
![]() |
[50] |
S. Iqbal, M. Kaykobad, M. S. Rahman, Solving the multi-objective Vehicle Routing Problem with Soft Time Windows with the help of bees, Swarm Evol. Comput., 24 (2015), 50–64. https://doi.org/10.1016/j.swevo.2015.06.001 doi: 10.1016/j.swevo.2015.06.001
![]() |
[51] |
E. Teymourian, V. Kayvanfar, G. M. Komaki, M. Zandieh, Enhanced intelligent water drops and cuckoo search algorithms for solving the capacitated vehicle routing problem, Inf. Sci., 334–335 (2016), 354–378. https://doi.org/10.1016/j.ins.2015.11.036 doi: 10.1016/j.ins.2015.11.036
![]() |
[52] |
A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028
![]() |
[53] |
C. Fan, Y. Zhou, Z. Tang, Neighborhood centroid opposite-based learning Harris Hawks optimization for training neural networks, Evol. Intell., 14 (2021), 1847–1867. https://doi.org/10.1007/s12065-020-00465-x doi: 10.1007/s12065-020-00465-x
![]() |
[54] |
H. Zhang, H. Nguyen, X. N. Bui, B. Pradhan, P. G. Asteris, R. Costache, et al., A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm, Eng. Comput., 2021. https://doi.org/10.1007/s00366-020-01272-9 doi: 10.1007/s00366-020-01272-9
![]() |
[55] |
S. Mouassa, T. Bouktir, F. Jurado, Scheduling of smart home appliances for optimal energy management in smart grid using Harris-hawks optimization algorithm, Optim. Eng., 22 (2021), 1625–1652. https://doi.org/10.1007/s11081-020-09572-1 doi: 10.1007/s11081-020-09572-1
![]() |
[56] |
P. Kumar, S. N. Singh, S. Dawra, Software component reusability prediction using extra tree classifier and enhanced Harris hawks optimization algorithm, Int. J. Syst. Assur. Eng. Manage., 13 (2022), 892–903. https://doi.org/10.1007/s13198-021-01359-6 doi: 10.1007/s13198-021-01359-6
![]() |
[57] |
M. K. Naik, R. Panda, A. Wunnava, B. Jena, A. Abraham, A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding, Multimedia Tools Appl., 80 (2021), 35543–35583. https://doi.org/10.1007/s11042-020-10467-7 doi: 10.1007/s11042-020-10467-7
![]() |
[58] |
M. A. Mossa, O. M. Kamel, H. M. Sultan, A. A. Z. Diab, Parameter estimation of PEMFC model based on Harris Hawks' optimization and atom search optimization algorithms, Neural Comput. Appl., 33 (2021), 5555–5570. https://doi.org/10.1007/s00521-020-05333-4 doi: 10.1007/s00521-020-05333-4
![]() |
[59] |
E. H. Houssein, M. E. Hosney, D. Oliva, W.M. Mohamed, M. Hassaballah, A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery, Comput. Chem. Eng., 133 (2020), 106656. https://doi.org/10.1016/j.compchemeng.2019.106656 doi: 10.1016/j.compchemeng.2019.106656
![]() |
[60] |
I. N. Setiawan, R. Kurniawan, B. Yuniarto, R. E. Caraka, B. Pardamean, Parameter optimization of support vector regression using Harris Hawks optimization, Procedia Comput. Sci., 179 (2021), 17–24. https://doi.org/10.1016/j.procs.2020.12.003 doi: 10.1016/j.procs.2020.12.003
![]() |
[61] |
A. A. Dehkordi, A. S. Sadiq, S. Mirjalili, K. Z. Ghafoor, Nonlinear-based Chaotic Harris Hawks Optimizer: algorithm and internet of vehicles application, Appl. Soft Comput., 109 (2021), 107574. https://doi.org/10.1016/j.asoc.2021.107574 doi: 10.1016/j.asoc.2021.107574
![]() |
[62] |
H. M. Alabool, D. Alarabiat, L. Abualigah, A. A. Heidari, Harris Hawks optimization: a comprehensive review of recent variants and applications, Neural Comput. Appl., 33 (2021), 8939–8980. https://doi.org/10.1007/s00521-021-05720-5 doi: 10.1007/s00521-021-05720-5
![]() |
[63] | R. Y. Zhang, Z. M. Wang, D. C. Wang, Modeling and optimization of transportation problem for shared electric-cars with recharging scheduling, Syst. Eng.-Theory Pract., 41 (2021), 370–377. |
[64] |
H. Haklı, H. Uğuz, A novel particle swarm optimization algorithm with Levy flight, Appl. Soft Comput., 23 (2014), 333–345. https://doi.org/10.1016/j.asoc.2014.06.034 doi: 10.1016/j.asoc.2014.06.034
![]() |
[65] | X. S. Yang, Nature-inspired Metaheuristic Algorithms, Luniver press, 2010. |
[66] |
N. Wang, W. J. Zhang, X. Liu, J. Zuo, Inter-Site-Vehicle artificial scheduling strategy design for electric vehicle sharing, J. Tongji Univ. (Nat. Sci.), 46 (2018), 1064–1071. https://doi.org/10.11908/j.issn.0253-374x.2018.08.009 doi: 10.11908/j.issn.0253-374x.2018.08.009
![]() |
[67] |
A. Beşkirli, İ. Dağ, A new binary variant with transfer functions of Harris Hawks optimization for binary wind turbine micrositing, Energy Rep., 6 (2020), 668–673. https://doi.org/10.1016/j.egyr.2020.11.154 doi: 10.1016/j.egyr.2020.11.154
![]() |
[68] |
M. Beşkirli, İ. Koç, H. Haklı, H. Kodaz, A new optimization algorithm for solving wind turbine placement problem: binary artificial algae algorithm, Renewable Energy, 121 (2018), 301–308. https://doi.org/10.1016/j.renene.2017.12.087 doi: 10.1016/j.renene.2017.12.087
![]() |
[69] |
R. M. Rizk-Allah, A. E. Hassanien, M. Elhoseny, M. Gunasekaran, A new binary salp swarm algorithm: development and application for optimization tasks, Neural Comput. Appl., 31 (2019), 1641–1663. https://doi.org/10.1007/s00521-018-3613-z doi: 10.1007/s00521-018-3613-z
![]() |
1. | Boris Andreianov, Clément Cancès, A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rock media, 2014, 18, 1420-0597, 211, 10.1007/s10596-014-9403-5 | |
2. | Eduardo Abreu, Mathilde Colombeau, Eugeny Panov, Weak asymptotic methods for scalar equations and systems, 2016, 444, 0022247X, 1203, 10.1016/j.jmaa.2016.06.047 | |
3. | Boris Andreianov, Clément Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape, 2015, 12, 0219-8916, 343, 10.1142/S0219891615500101 | |
4. | Elyes Ahmed, Caroline Japhet, Michel Kern, Space–time domain decomposition for two-phase flow between different rock types, 2020, 371, 00457825, 113294, 10.1016/j.cma.2020.113294 | |
5. | Clément Cancès, Michel Pierre, An Existence Result for Multidimensional Immiscible Two-Phase Flows with Discontinuous Capillary Pressure Field, 2012, 44, 0036-1410, 966, 10.1137/11082943X | |
6. | Cynthia Michalkowski, Kilian Weishaupt, Veronika Schleper, Rainer Helmig, Modeling of Two Phase Flow in a Hydrophobic Porous Medium Interacting with a Hydrophilic Structure, 2022, 144, 0169-3913, 481, 10.1007/s11242-022-01816-1 | |
7. | Boris Andreianov, Kenneth Hvistendahl Karlsen, Nils Henrik Risebro, A Theory of L 1-Dissipative Solvers for Scalar Conservation Laws with Discontinuous Flux, 2011, 201, 0003-9527, 27, 10.1007/s00205-010-0389-4 | |
8. | Boris Andreianov, Clément Cancès, Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks’ medium, 2013, 17, 1420-0597, 551, 10.1007/s10596-012-9329-8 | |
9. | B. Andreianov, K. Brenner, C. Cancès, Approximating the vanishing capillarity limit of two-phase flow in multi-dimensional heterogeneous porous medium, 2014, 94, 00442267, 655, 10.1002/zamm.201200218 | |
10. | Tufan Ghosh, Carina Bringedal, Rainer Helmig, G.P. Raja Sekhar, Upscaled equations for two-phase flow in highly heterogeneous porous media: Varying permeability and porosity, 2020, 145, 03091708, 103716, 10.1016/j.advwatres.2020.103716 | |
11. | Clément Cancès, David Maltese, A Gravity Current Model with Capillary Trapping for Oil Migration in Multilayer Geological Basins, 2021, 81, 0036-1399, 454, 10.1137/19M1284233 | |
12. | Brahim Amaziane, Mikhail Panfilov, Leonid Pankratov, Homogenized Model of Two-Phase Flow with Local Nonequilibrium in Double Porosity Media, 2016, 2016, 1687-9120, 1, 10.1155/2016/3058710 | |
13. | MIROSLAV BULÍČEK, PIOTR GWIAZDA, AGNIESZKA ŚWIERCZEWSKA-GWIAZDA, MULTI-DIMENSIONAL SCALAR CONSERVATION LAWS WITH FLUXES DISCONTINUOUS IN THE UNKNOWN AND THE SPATIAL VARIABLE, 2013, 23, 0218-2025, 407, 10.1142/S0218202512500510 | |
14. | Konstantin Brenner, Clément Cancès, Danielle Hilhorst, Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure, 2013, 17, 1420-0597, 573, 10.1007/s10596-013-9345-3 | |
15. | PATRICK HENNING, MARIO OHLBERGER, BEN SCHWEIZER, HOMOGENIZATION OF THE DEGENERATE TWO-PHASE FLOW EQUATIONS, 2013, 23, 0218-2025, 2323, 10.1142/S0218202513500334 | |
16. | Boris Andreianov, Abraham Sylla, Finite volume approximation and well-posedness of conservation laws with moving interfaces under abstract coupling conditions, 2023, 30, 1021-9722, 10.1007/s00030-023-00857-9 | |
17. | F. Claret, N. I. Prasianakis, A. Baksay, D. Lukin, G. Pepin, E. Ahusborde, B. Amaziane, G. Bátor, D. Becker, A. Bednár, M. Béreš, S. Bérešová, Z. Böthi, V. Brendler, K. Brenner, J. Březina, F. Chave, S. V. Churakov, M. Hokr, D. Horák, D. Jacques, F. Jankovský, C. Kazymyrenko, T. Koudelka, T. Kovács, T. Krejčí, J. Kruis, E. Laloy, J. Landa, T. Ligurský, T. Lipping, C. López-Vázquez, R. Masson, J. C. L. Meeussen, M. Mollaali, A. Mon, L. Montenegro, B. Pisani, J. Poonoosamy, S. I. Pospiech, Z. Saâdi, J. Samper, A.-C. Samper-Pilar, G. Scaringi, S. Sysala, K. Yoshioka, Y. Yang, M. Zuna, O. Kolditz, EURAD state-of-the-art report: development and improvement of numerical methods and tools for modeling coupled processes in the field of nuclear waste disposal, 2024, 3, 2813-3412, 10.3389/fnuen.2024.1437714 |