In this paper, a stochastic SIRS epidemic model with information intervention is considered. By constructing an appropriate Lyapunov function, the asymptotic behavior of the solutions for the proposed model around the equilibria of the deterministic model is investigated. We show the average in time of the second moment of the solutions of the stochastic system is bounded for a relatively small noise. Furthermore, we find that information interaction response rate plays an active role in disease control, and as the intensity of the response increases, the number of infected population decreases, which is beneficial for disease control.
Citation: Tingting Ding, Tongqian Zhang. Asymptotic behavior of the solutions for a stochastic SIRS model with information intervention[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 6940-6961. doi: 10.3934/mbe.2022327
[1] | Matthieu Canaud, Lyudmila Mihaylova, Jacques Sau, Nour-Eddin El Faouzi . Probability hypothesis density filtering for real-time traffic state estimation and prediction. Networks and Heterogeneous Media, 2013, 8(3): 825-842. doi: 10.3934/nhm.2013.8.825 |
[2] | Ye Sun, Daniel B. Work . Error bounds for Kalman filters on traffic networks. Networks and Heterogeneous Media, 2018, 13(2): 261-295. doi: 10.3934/nhm.2018012 |
[3] | Olli-Pekka Tossavainen, Daniel B. Work . Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8(3): 803-824. doi: 10.3934/nhm.2013.8.803 |
[4] | Michael Herty, Lorenzo Pareschi, Mohammed Seaïd . Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2(3): 481-496. doi: 10.3934/nhm.2007.2.481 |
[5] | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040 |
[6] | Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783 |
[7] | Jan Lorenz, Stefano Battiston . Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks and Heterogeneous Media, 2008, 3(2): 185-200. doi: 10.3934/nhm.2008.3.185 |
[8] | Fabio Della Rossa, Carlo D’Angelo, Alfio Quarteroni . A distributed model of traffic flows on extended regions. Networks and Heterogeneous Media, 2010, 5(3): 525-544. doi: 10.3934/nhm.2010.5.525 |
[9] | Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030 |
[10] | Paola Goatin, Sheila Scialanga . Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11(1): 107-121. doi: 10.3934/nhm.2016.11.107 |
In this paper, a stochastic SIRS epidemic model with information intervention is considered. By constructing an appropriate Lyapunov function, the asymptotic behavior of the solutions for the proposed model around the equilibria of the deterministic model is investigated. We show the average in time of the second moment of the solutions of the stochastic system is bounded for a relatively small noise. Furthermore, we find that information interaction response rate plays an active role in disease control, and as the intensity of the response increases, the number of infected population decreases, which is beneficial for disease control.
Biomedical and health information processing and analysis is playing an increasingly important role in life sciences and medicine. Relevant technologies are developing rapidly and help to assess surgical risks, process electronic medical records (EMR) or medical images, and provide precision medicine. This special issue aims to present some research about the application of medical data mining, and bioinformatics in processing or analyzing biomedical and health information.
There are 7 full length articles in this special issue. All articles are focused on medical data mining and bioinformatics.
Wan et al. [1] proposed a ELMo-ET-CRF model to extract medical named entities from Chinese EMR. The model used a Chinese medical domain-specific pretrained ELMo model as embedding layer, an encoder from transformer (ET) as encoding layer, conditional random field (CRF) as decoding layer, respectively. The model achieved competitive performance to the current state-of-the-art method on CCKS 2019 datasets.
Che et al. [2] integrated temporal convolutional network (TCN) and CRF for biomedical named entity recognition. The model significantly reduced training time while achieved comparable performance to the state-of-the-art methods on GENIA and CoNLL-2003 datasets.
Based on a pre-trained language model, Zhang et al. [3] presented a novel encoder-decoder structure for Chinese clinical event detection. The structure integrated contextual representations and character embeddings to improve semantic understanding. The experiments demonstrated the novel structure achieved the best precision, recall and F1-score.
Cheng et al. [4] optimized the U-Net for retinal blood vessel segmentation by adding dense blocks. This optimization improved the sensitivity of small blood vessels and outperformed state-of-the-art methods on two public datasets DRIVE and CHASE_DB1.
Liu et al. [5] proposed four methods, namely SESOP, STSSO, SESOP-MFIR and STSSO-MFIR, for the surgical outcome monitoring. The methods were optimized by standardizing variables, replacing statistics, and upgrading the control limits from asymptotic to time-varying. The experiments showed that the methods could effectively monitor surgical outcomes and early shifts.
Zhang et al. [6] proposed an anomaly detection method based on local density. By integrating with homomorphic encryption, the method could effectively and efficiently perform anomaly detection in the case of multi-party participation without leaking the private data of participants.
Hou et al. [7] developed a knowledge representation model named precision medicine ontology (PMO) to represent the relationships among 11 fields related to precision medicine, such as diseases, phenotypes, genes, mutations, drugs, etc., in 93 semantic relationships. Compared with the existing work, PMO covered mutations, genes and gene products more extensively, and had richer term set including 4.53 million terms.
In conclusion, this special issue provides 7 outstanding full-length research articles, mainly about the application of medical data mining, and bioinformatics in processing or analyzing biomedical and health information. We sincerely express our gratitude to all researchers who accepted our invitation and contributed to this special issue. In addition, we also thank MBE for editing assistance.
The work is supported by Natural Science Foundation of China (No. 61772146 and No. 61672450) and Guangzhou Science Technology and Innovation Commission (No. 201803010063).
The authors declare that they have no conflict of interest.
[1] | World Health Organization, World Health Statistics 2019, 2019. Available from: https://apps.who.int/iris/bitstream/handle/10665/324835/9789241565707-eng.pdf. |
[2] | World Health Organization, World Health Statistics 2020, 2020. Available from: https://www.who.int/data/gho/data/themes/tuberculosis. |
[3] | World Health Organization, World Health Statistics 2007, 2007. Available from: https://www.who.int/docs/default-source/gho-documents/world-health-statistic-reports/whostat2007.pdf. |
[4] | World Health Organization, World Health Statistics 2021, 2021. Available from: https://apps.who.int/iris/bitstream/handle/10665/342703/9789240027053-eng.pdf. |
[5] | World Health Organization, WHO Coronavirus (COVID-19) Dashboard, 2021. Available from: https://covid19.who.int/. |
[6] |
A. d'Onofrio, Stability properties of pulse vaccination strategy in SEIR epidemic model, Math. Biosci., 179 (2002), 57–72. https://doi.org/10.1016/s0025-5564(02)00095-0 doi: 10.1016/s0025-5564(02)00095-0
![]() |
[7] |
G. Huang, Y. Takeuchi, W. Ma, D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192–1207. https://doi.org/10.1007/s11538-009-9487-6 doi: 10.1007/s11538-009-9487-6
![]() |
[8] |
X. Luo, N. Shao, J. Cheng, W. Chen, Modeling the trend of outbreak of COVID–19 in the diamond princess cruise ship based on a time-delay dynamic system, Math. Model. Appl., 9 (2020), 15–22. https://doi.org/10.3969/j.issn.2095-3070.2020.01.004 doi: 10.3969/j.issn.2095-3070.2020.01.004
![]() |
[9] |
Y. Muroya, Y. Enatsu, T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes, Nonlinear Anal. Real World Appl., 14 (2013), 1693–1704. https://doi.org/10.1016/j.nonrwa.2012.11.005 doi: 10.1016/j.nonrwa.2012.11.005
![]() |
[10] |
Z. Sun, Analysis for the process of preventing and controlling plague, Math. Model. Appl., 9 (2020), 9–14. https://doi.org/10.3969/j.issn.2095-3070.2020.01.003 doi: 10.3969/j.issn.2095-3070.2020.01.003
![]() |
[11] |
R. Xu, Z. Ma, Z. Wang, Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity, Comput. Math. Appl., 59 (2010), 3211–3221. https://doi.org/10.1016/j.camwa.2010.03.009 doi: 10.1016/j.camwa.2010.03.009
![]() |
[12] |
F. Zhang, J. Li, J. Li, Epidemic characteristics of two classic SIS models with disease-induced death, J. Theor. Biol., 424 (2017), 73–83. https://doi.org/10.1016/j.jtbi.2017.04.029 doi: 10.1016/j.jtbi.2017.04.029
![]() |
[13] |
J. Deng, S. Tang, H. Shu, Joint impacts of media, vaccination and treatment on an epidemic Filippov model with application to COVID-19, J. Theor. Biol., 523 (2021), 110698. https://doi.org/10.1016/j.jtbi.2021.110698 doi: 10.1016/j.jtbi.2021.110698
![]() |
[14] |
A. Kumar, P. K. Srivastava, Y. Takeuchi, Modeling the role of information and limited optimal treatment on disease prevalence, J. Theor. Biol., 414 (2017), 103–119. https://doi.org/10.1016/j.jtbi.2016.11.016 doi: 10.1016/j.jtbi.2016.11.016
![]() |
[15] |
W. Zhou, A. Wang, F. Xia, Y. Xiao, S. Tang, Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak, Math. Biosci. Eng., 17 (2020), 2693–2707. https://doi.org/10.3934/mbe.2020147 doi: 10.3934/mbe.2020147
![]() |
[16] |
S. Funk, E. Gilad, V. Jansen, Endemic disease, awareness, and local behavioural response, J. Theor. Biol., 264 (2010), 501–509. https://doi.org/10.1016/j.jtbi.2010.02.032 doi: 10.1016/j.jtbi.2010.02.032
![]() |
[17] |
S. Funk, E. Gilad, C. Watkins, V. A. Jansen, The spread of awareness and its impact on epidemic outbreaks, Proc. Natl. Acad. Sci. U.S.A., 106 (2009), 6872–6877. https://doi.org/10.1073/pnas.0810762106 doi: 10.1073/pnas.0810762106
![]() |
[18] |
R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153–164. https://doi.org/10.1080/17486700701425870 doi: 10.1080/17486700701425870
![]() |
[19] |
J. A. Cui, X. Tao, H. Zhu, An SIS infection model incorporating media coverage, Rocky Mt. J. Math., 38 (2008), 1323–1334. https://doi.org/10.1216/RMJ-2008-38-5-1323 doi: 10.1216/RMJ-2008-38-5-1323
![]() |
[20] |
J. Cui, Y. Sun, H. Zhu, The impact of media on the control of infectious diseases, J. Dyn. Differ. Equations, 20 (2008), 31–53. https://doi.org/10.1007/s10884-007-9075-0 doi: 10.1007/s10884-007-9075-0
![]() |
[21] |
H. Joshi, S. Lenhart, K. Albright, K. Gipson, Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math. Biosci. Eng., 5 (2008), 757–770. https://doi.org/10.3934/mbe.2008.5.757 doi: 10.3934/mbe.2008.5.757
![]() |
[22] |
Y. Liu, J. A. Cui, The impact of media coverage on the dynamics of infectious disease, Int. J. Biomath., 1 (2008), 65–74. https://doi.org/10.1142/S1793524508000023 doi: 10.1142/S1793524508000023
![]() |
[23] |
A. Misra, A. Sharma, J. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Modell., 53 (2011), 1221–1228. https://doi.org/10.1016/j.mcm.2010.12.005 doi: 10.1016/j.mcm.2010.12.005
![]() |
[24] |
A. Misra, A. Sharma, V. Singh, Effect of awareness programs in controlling the prevalence of an epidemic with time delay, J. Biol. Syst., 19 (2011), 389–402. https://doi.org/10.1142/S0218339011004020 doi: 10.1142/S0218339011004020
![]() |
[25] |
Y. Xiao, S. Tang, J. Wu, Media impact switching surface during an infectious disease outbreak, Sci. Rep., 5 (2015), 1–9. https://doi.org/10.1038/srep07838 doi: 10.1038/srep07838
![]() |
[26] |
Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445–461. https://doi.org/10.3934/mbe.2013.10.445 doi: 10.3934/mbe.2013.10.445
![]() |
[27] |
A. L. Krause, L. Kurowski, K. Yawar, R. A. V. Gorder, Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies, J. Theor. Biol., 449 (2018), 35–52. https://doi.org/10.1016/j.jtbi.2018.04.023 doi: 10.1016/j.jtbi.2018.04.023
![]() |
[28] |
G. Lan, S. Yuan, B. Song, The impact of hospital resources and environmental perturbations to the dynamics of SIRS model, J. Franklin Inst., 358 (2021), 2405–2433. https://doi.org/10.1016/j.jfranklin.2021.01.015 doi: 10.1016/j.jfranklin.2021.01.015
![]() |
[29] |
Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate, Phys. A, 551 (2020), 124152. https://doi.org/10.1016/j.physa.2020.124152 doi: 10.1016/j.physa.2020.124152
![]() |
[30] |
S. Yan, Y. Zhang, J. Ma, S. Yuan, An edge-based SIR model for sexually transmitted diseases on the contact network, J. Theor. Biol., 439 (2018), 216–225. https://doi.org/10.1016/j.jtbi.2017.12.003 doi: 10.1016/j.jtbi.2017.12.003
![]() |
[31] |
Y. Cai, J. Jiao, Z. Gui, Y. Liu, W. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226. https://doi.org/10.1016/j.amc.2018.02.009 doi: 10.1016/j.amc.2018.02.009
![]() |
[32] |
N. Du, N. Nhu, Permanence and extinction for the stochastic SIR epidemic model, J. Differ. Equations, 269 (2020), 9619–9652. https://doi.org/10.1016/j.jde.2020.06.049 doi: 10.1016/j.jde.2020.06.049
![]() |
[33] |
T. Hou, G. Lan, S. Yuan, T. Zhang, Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate, Math. Biosci. Eng., 19 (2022), 4217–4236. https://doi.org/10.3934/mbe.2022195 doi: 10.3934/mbe.2022195
![]() |
[34] |
D. Zhao, T. Zhang, S. Yuan, The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence, Phys. A, 443 (2016), 372–379. https://doi.org/10.1016/j.physa.2015.09.092 doi: 10.1016/j.physa.2015.09.092
![]() |
[35] |
Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, The threshold of a stochastic SIS epidemic model with imperfect vaccination, Math. Comput. Simul., 144 (2018), 78–90. https://doi.org/10.1016/j.matcom.2017.06.004 doi: 10.1016/j.matcom.2017.06.004
![]() |
[36] |
Y. Zhou, W. Zhang, S. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244 (2014), 118–131. https://doi.org/10.1016/j.amc.2014.06.100 doi: 10.1016/j.amc.2014.06.100
![]() |
[37] |
Y. Zhou, S. Yuan, D. Zhao, Threshold behavior of a stochastic SIS model with Lévy jumps, Appl. Math. Comput., 275 (2016), 255–267. https://doi.org/10.1016/j.amc.2015.11.077 doi: 10.1016/j.amc.2015.11.077
![]() |
[38] |
Y. Zhao, L. Zhang, S. Yuan, The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model, Phys. A, 512 (2018), 248–260. https://doi.org/10.1016/j.physa.2018.08.113 doi: 10.1016/j.physa.2018.08.113
![]() |
[39] |
X. Jin, J. Jia, Qualitative study of a stochastic SIRS epidemic model with information intervention, Phys. A, 547 (2020), 123866. https://doi.org/10.1016/j.physa.2019.123866 doi: 10.1016/j.physa.2019.123866
![]() |
[40] |
J. Yu, D. Jiang, N. Shi, Global stability of two-group SIR model with random perturbation, J. Math. Anal. Appl., 360 (2009), 235–244. https://doi.org/10.1016/j.jmaa.2009.06.050 doi: 10.1016/j.jmaa.2009.06.050
![]() |
[41] | X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, UK, 2007. https://doi.org/10.1007/978-3-642-11079-5_2 |
[42] |
Q. Yan, Y. Tang, D. Yan, J. Wang, L. Yang, X. Yang, et al., Impact of media reports on the early spread of COVID-19 epidemic, J. Theor. Biol., 502 (2020), 110385. https://doi.org/10.1016/j.jtbi.2020.110385 doi: 10.1016/j.jtbi.2020.110385
![]() |
1. | Soobia Saeed, Habibollah Haron, NZ Jhanjhi, Mehmood Naqvi, Hesham A. Alhumyani, Mehedi Masud, Improve correlation matrix of Discrete Fourier Transformation technique for finding the missing values of MRI images, 2022, 19, 1551-0018, 9039, 10.3934/mbe.2022420 |