The higher frequency electromagnetic (EM) emission in low voltage power systems is rising continuously due to the increasing use of modern electronic devices. The electronic ballast of a compact fluorescent lamp (CFL) is one of the sources of conducted EM emission in the power system. Conducted EM emission measurements are performed on compact fluorescent lamps (CFL) in the range of 2–150 kHz and compared with simulation results. The LTSpice simulation of typical 11W compact fluorescent lamps is used to analyze the measured values. Comparisons are made in both the time and frequency domains. The EMI filter in the ballast circuit can reduce the level of high-frequency EM emission. However, in order to get a more accurate result, it is necessary to find out the main cause of conducted EM emission in the ballast circuit, as the HF distortion spreads through the LV network in current signal between electronic devices.
Citation: Mulualem T. Yeshalem, Baseem Khan, Om Prakash Mahela. Conducted electromagnetic emissions of compact fluorescent lamps and electronic ballast modeling[J]. AIMS Electronics and Electrical Engineering, 2022, 6(2): 178-187. doi: 10.3934/electreng.2022011
[1] | Swati Shinde, Madhura Kalbhor, Pankaj Wajire . DeepCyto: a hybrid framework for cervical cancer classification by using deep feature fusion of cytology images. Mathematical Biosciences and Engineering, 2022, 19(7): 6415-6434. doi: 10.3934/mbe.2022301 |
[2] | Kai Zhang, Xinwei Wang, Hua Liu, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Ming Ma . Mathematical analysis of a human papillomavirus transmission model with vaccination and screening. Mathematical Biosciences and Engineering, 2020, 17(5): 5449-5476. doi: 10.3934/mbe.2020294 |
[3] | Simphiwe M. Simelane, Justin B. Munyakazi, Phumlani G. Dlamini, Oluwaseun F. Egbelowo . Projections of human papillomavirus vaccination and its impact on cervical cancer using the Caputo fractional derivative. Mathematical Biosciences and Engineering, 2023, 20(7): 11605-11626. doi: 10.3934/mbe.2023515 |
[4] | Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati . Mathematical analysis of a SIPC age-structured model of cervical cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 6013-6039. doi: 10.3934/mbe.2022281 |
[5] | Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445 |
[6] | Vitalii V. Akimenko, Fajar Adi-Kusumo . Stability analysis of an age-structured model of cervical cancer cells and HPV dynamics. Mathematical Biosciences and Engineering, 2021, 18(5): 6155-6177. doi: 10.3934/mbe.2021308 |
[7] | Najat Ziyadi . A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences and Engineering, 2017, 14(1): 339-358. doi: 10.3934/mbe.2017022 |
[8] | Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045 |
[9] | Nengkai Wu, Dongyao Jia, Chuanwang Zhang, Ziqi Li . Cervical cell extraction network based on optimized yolo. Mathematical Biosciences and Engineering, 2023, 20(2): 2364-2381. doi: 10.3934/mbe.2023111 |
[10] | Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019 |
The higher frequency electromagnetic (EM) emission in low voltage power systems is rising continuously due to the increasing use of modern electronic devices. The electronic ballast of a compact fluorescent lamp (CFL) is one of the sources of conducted EM emission in the power system. Conducted EM emission measurements are performed on compact fluorescent lamps (CFL) in the range of 2–150 kHz and compared with simulation results. The LTSpice simulation of typical 11W compact fluorescent lamps is used to analyze the measured values. Comparisons are made in both the time and frequency domains. The EMI filter in the ballast circuit can reduce the level of high-frequency EM emission. However, in order to get a more accurate result, it is necessary to find out the main cause of conducted EM emission in the ballast circuit, as the HF distortion spreads through the LV network in current signal between electronic devices.
[1] |
Meyer J, Klatt M, Schegner P (2011) Power quality challenges in future distribution networks. 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), 1‒6. https://doi.org/10.1109/ISGTEurope.2011.6162833 doi: 10.1109/ISGTEurope.2011.6162833
![]() |
[2] | CENELEC CLC/SC 205A TF EMI (2015) Study report on electromagnetic interference between electrical equipment/systems in the frequency range below 150 kHz. Edition 2, CENELEC. |
[3] |
Rönnberg S, Bollen M (2012) Emission from Four Types of LED Lamps at frequencies up to 150 kHz. 2012 IEEE 15th International Conference on Harmonics and Quality of Power, 451‒456. https://doi.org/10.1109/ICHQP.2012.6381216 doi: 10.1109/ICHQP.2012.6381216
![]() |
[4] |
Larsson EOA, Lundmark CM, Bollen MHJ (2006) Measurement of current taken by fluorescent lights in the frequency range 2 - 150 kHz'. 2006 IEEE Power Engineering Society General Meeting, 1‒6. https://doi.org/10.1109/PES.2006.1709417 doi: 10.1109/PES.2006.1709417
![]() |
[5] |
Mao P, Zhang W, Zhang M (2014) Solution to Some Key Problems of Self exciting Electronic Ballast. Trans Electr Electro 15: 1‒6. https://doi.org/10.4313/TEEM.2014.15.1.1 doi: 10.4313/TEEM.2014.15.1.1
![]() |
[6] |
Robert I (2015) High frequency emissions of electromagnetic and electronic fluorescent lamps. 2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics, 371‒374. https://doi.org/10.1109/SACI.2015.7208231 doi: 10.1109/SACI.2015.7208231
![]() |
[7] | Electromagnetic compatibility (EMC) – Part 4-7: Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto, BS EN 61000-4-7: 2002 +A1: 2009. |
[8] |
Giezendanner F, Biela J, Kolar JW, et al. (2010) EMI Noise Prediction for Electronic Ballasts. IEEE T Power Electr 25: 2133‒2141. https://doi.org/10.1109/TPEL.2010.2046424 doi: 10.1109/TPEL.2010.2046424
![]() |
[9] |
Yang YR, Chen CL (1999) Steady-state analysis and simulation of a BJT self-oscillating ZVS-CV ballast driven by a saturable transformer. IEEE T Ind Electron 46: 249‒260. https://doi.org/10.1109/41.753763 doi: 10.1109/41.753763
![]() |
[10] |
Liang TJ, Cheng CA, Shyu WB, et al. (2001) Design procedure for resonant components of fluorescent lamps electronic ballast based on lamp model. 4th IEEE International Conference on Power Electronics and Drive Systems 2: 618‒622. https://doi.org/10.1109/PEDS.2001.975389 doi: 10.1109/PEDS.2001.975389
![]() |
[11] |
Wakabayashi FT, Canesin CA (2005) An Improved Design Procedure for LCC Resonant Filter of Dimmable Electronic Ballasts for Fluorescent Lamps, Based on Lamp Model. IEEE T Power Electr 20: 1186‒1196. https://doi.org/10.1109/TPEL.2005.854058 doi: 10.1109/TPEL.2005.854058
![]() |
[12] | Teodosescu PD, Bojan M, Vese IC, et al. (2015) Research concerning unified electronic lighting devices. 2015 Proceedings of the Romanian Academy Series A 16: 226–234. |
[13] |
Wu TF, Hung JC, Yu TH (1995) A PSpice Model for Fluorescent Lamps Operated at High Frequencies. Proceedings of IECON '95 - 21st Annual Conference on IEEE Industrial Electronics 1: 359‒364. https://doi.org/10.1109/IECON.1995.483422 doi: 10.1109/IECON.1995.483422
![]() |
[14] | Cosby MC, Nelms RM (1993) Designing a Parallel-loaded Resonant Inverter for an Electronic Ballast Using the Fundamental Approximation. Proceedings Eighth Annual Applied Power Electronics Conference and Exposition, 418‒423. |
[15] | Meyer J, Haehle S, Schegner P (2013) Impact of Higher Frequency of Emission above 2 kHz on Electronic mass market equipment. 22nd International Conference on Electricity Distribution (CIRED), Paper No 0999. https://doi.org/10.1049/cp.2013.1027 |
[16] | RÖNNBERG S, LARSSON A, BOLLEN M, Schanen JL (2011) A Simple model for interaction between equipment at frequency of tens of kHz. 21st International Conference on Electricity Distribution (CIRED), Paper No 0206. |
[17] |
Ferreira PIL, Fontgalland G, Aragao GF, et al. (2010) Conducted Interference Reduction from Compact Fluorescents Lamps. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 309‒312. https://doi.org/10.1109/APEMC.2010.5475650 doi: 10.1109/APEMC.2010.5475650
![]() |
1. | Oluwaseun Sharomi, Tufail Malik, A model to assess the effect of vaccine compliance on Human Papillomavirus infection and cervical cancer, 2017, 47, 0307904X, 528, 10.1016/j.apm.2017.03.025 | |
2. | Aliya A. Alsaleh, Abba B. Gumel, Analysis of Risk-Structured Vaccination Model for the Dynamics of Oncogenic and Warts-Causing HPV Types, 2014, 76, 0092-8240, 1670, 10.1007/s11538-014-9972-4 | |
3. | Fei Xu, Ross Cressman, Voluntary vaccination strategy and the spread of sexually transmitted diseases, 2016, 274, 00255564, 94, 10.1016/j.mbs.2016.02.004 | |
4. | A. Omame, D. Okuonghae, R.A. Umana, S.C. Inyama, Analysis of a co-infection model for HPV-TB, 2020, 77, 0307904X, 881, 10.1016/j.apm.2019.08.012 | |
5. | A. Omame, R. A. Umana, D. Okuonghae, S. C. Inyama, Mathematical analysis of a two-sex Human Papillomavirus (HPV) model, 2018, 11, 1793-5245, 1850092, 10.1142/S1793524518500924 | |
6. | Raúl Peralta, Cruz Vargas-De-León, Augusto Cabrera, Pedro Miramontes, Dynamics of High-Risk Nonvaccine Human Papillomavirus Types after Actual Vaccination Scheme, 2014, 2014, 1748-670X, 1, 10.1155/2014/542923 | |
7. | Fernando Saldaña, Andrei Korobeinikov, Ignacio Barradas, Optimal Control against the Human Papillomavirus: Protection versus Eradication of the Infection, 2019, 2019, 1085-3375, 1, 10.1155/2019/4567825 | |
8. | Andrew Omame, Daniel Okuonghae, A co‐infection model for oncogenic human papillomavirus and tuberculosis with optimal control and Cost‐Effectiveness Analysis, 2021, 0143-2087, 10.1002/oca.2717 | |
9. | A. Omame, D. Okuonghae, S. C. Inyama, 2020, Chapter 4, 978-981-15-2285-7, 107, 10.1007/978-981-15-2286-4_4 | |
10. | Kai Zhang, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Yong Ye, Hua Liu, Sensitivity analysis and optimal treatment control for a mathematical model of Human Papillomavirus infection, 2020, 5, 2473-6988, 2646, 10.3934/math.2020172 | |
11. | ALIYA A. ALSALEH, ABBA B. GUMEL, DYNAMICS ANALYSIS OF A VACCINATION MODEL FOR HPV TRANSMISSION, 2014, 22, 0218-3390, 555, 10.1142/S0218339014500211 | |
12. | Tufail Malik, Mudassar Imran, Raja Jayaraman, Optimal control with multiple human papillomavirus vaccines, 2016, 393, 00225193, 179, 10.1016/j.jtbi.2016.01.004 | |
13. | Ana Gradíssimo, Robert D. Burk, Molecular tests potentially improving HPV screening and genotyping for cervical cancer prevention, 2017, 17, 1473-7159, 379, 10.1080/14737159.2017.1293525 | |
14. | Abba B. Gumel, Jean M.-S. Lubuma, Oluwaseun Sharomi, Yibeltal Adane Terefe, Mathematics of a sex-structured model for syphilis transmission dynamics, 2018, 41, 01704214, 8488, 10.1002/mma.4734 | |
15. | Shasha Gao, Maia Martcheva, Hongyu Miao, Libin Rong, A two-sex model of human papillomavirus infection: Vaccination strategies and a case study, 2022, 536, 00225193, 111006, 10.1016/j.jtbi.2022.111006 | |
16. | Fernando Saldaña, José A Camacho-Gutiérrez, Geiser Villavicencio-Pulido, Jorge X. Velasco-Hernández, Modeling the transmission dynamics and vaccination strategies for human papillomavirus infection: An optimal control approach, 2022, 112, 0307904X, 767, 10.1016/j.apm.2022.08.017 | |
17. | A. Omame, D. Okuonghae, U. E. Nwafor, B. U. Odionyenma, A co-infection model for HPV and syphilis with optimal control and cost-effectiveness analysis, 2021, 14, 1793-5245, 10.1142/S1793524521500509 | |
18. | Shasha Gao, Maia Martcheva, Hongyu Miao, Libin Rong, The impact of vaccination on human papillomavirus infection with disassortative geographical mixing: a two-patch modeling study, 2022, 84, 0303-6812, 10.1007/s00285-022-01745-z | |
19. | 丽娜 王, Dynamic Analysis of a Kind of HPV Transmission Model Incorporating Media Impact and Early Screening, 2024, 13, 2324-7991, 3845, 10.12677/aam.2024.138366 | |
20. | Arsène Jaurès Ouemba Tassé, Berge Tsanou, Cletus Kwa Kum, Jean Lubuma, A mathematical model on the impact of awareness and traditional medicine in the control of Ebola: case study of the 2014–2016 outbreaks in Sierra Leone and Liberia, 2024, 0272-4960, 10.1093/imamat/hxae025 | |
21. | Roya Khalili Amirabadi, Omid S. Fard, Mohsen Jalaeian Farimani, Towards optimal control of HPV model using safe reinforcement learning with actor–critic neural networks, 2025, 264, 09574174, 125783, 10.1016/j.eswa.2024.125783 | |
22. | Henok Desalegn Desta, Getachew Teshome Tilahun, Tariku Merga Tolasa, Mulugeta Geremew Geleso, Francisco R. Villatoro, Mathematical Model of Human Papillomavirus (HPV) Dynamics With Double‐Dose Vaccination and Its Impact on Cervical Cancer, 2024, 2024, 1026-0226, 10.1155/ddns/9971859 | |
23. | Sylas Oswald, Eunice Mureithi, Berge Tsanou, Michael Chapwanya, Kijakazi Mashoto, Crispin Kahesa, MCMC-Driven mathematical modeling of the impact of HPV vaccine uptake in reducing cervical cancer, 2025, 24682276, e02633, 10.1016/j.sciaf.2025.e02633 | |
24. | A. El-Mesady, Tareq M. Al-shami, Hegagi Mohamed Ali, Optimal control efforts to reduce the transmission of HPV in a fractional-order mathematical model, 2025, 2025, 1687-2770, 10.1186/s13661-024-01991-8 |