
a) The perforated strip
Machining natural fiber reinforced polymer composite materials is one of most challenging tasks due to the material's anisotropic property, non-homogeneous structure and abrasive nature of fibers. Commonly, conventional machining of composites leads to delamination, inter-laminar cracks, fiber pull out, poor surface finish and wear of cutting tool. However, these challenges can be significantly reduced by using proper machining conditions. Thus, this research aims at optimizing machining parameters in drilling hybrid sisal-cotton fibers reinforced polyester composite for better machining performance characteristics namely better hole roundness accuracy and surface finish using Taguchi method. The effect of machining parameters including spindle speed, feed rate and drill diameter on drill hole accuracy (roundness error) and surface-roughness of the hybrid composite are evaluated. Series of experiments based on Taguchi's L16 orthogonal array were performed using different ranges of machining parameters namely spindle speed (600,900, 1200, 1600 rpm), feed rate (10, 15, 20, 25 mm/min) and drill diameter (6, 7, 8, 10 mm). Hole roundness error and surface-roughness are determined using ABC digital caliper and Zeta 20 profilometer, respectively. Optimum machining condition for drilling hybrid composite material (speed: 1600 rpm, feed rate: 25 mm/min and drill diameter: 6 mm) is determined, and the results are verified by conducting confirmation test which proves that the results are reliable.
Citation: Nurhusien Hassen Mohammed, Desalegn Wogaso Wolla. Optimization of machining parameters in drilling hybrid sisal-cotton fiber reinforced polyester composites[J]. AIMS Materials Science, 2022, 9(1): 119-134. doi: 10.3934/matersci.2022008
[1] | Sergei A. Nazarov, Rafael Orive-Illera, María-Eugenia Pérez-Martínez . Asymptotic structure of the spectrum in a Dirichlet-strip with double periodic perforations. Networks and Heterogeneous Media, 2019, 14(4): 733-757. doi: 10.3934/nhm.2019029 |
[2] | Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski . Steklov problems in perforated domains with a coefficient of indefinite sign. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151 |
[3] | Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523 |
[4] | Günter Leugering, Sergei A. Nazarov, Jari Taskinen . The band-gap structure of the spectrum in a periodic medium of masonry type. Networks and Heterogeneous Media, 2020, 15(4): 555-580. doi: 10.3934/nhm.2020014 |
[5] | Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012 |
[6] | Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009 |
[7] | Patrizia Donato, Florian Gaveau . Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3(1): 97-124. doi: 10.3934/nhm.2008.3.97 |
[8] | Martin Heida . Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains. Networks and Heterogeneous Media, 2023, 18(4): 1410-1433. doi: 10.3934/nhm.2023062 |
[9] | Carlos Conca, Luis Friz, Jaime H. Ortega . Direct integral decomposition for periodic function spaces and application to Bloch waves. Networks and Heterogeneous Media, 2008, 3(3): 555-566. doi: 10.3934/nhm.2008.3.555 |
[10] | Oleh Krehel, Toyohiko Aiki, Adrian Muntean . Homogenization of a thermo-diffusion system with Smoluchowski interactions. Networks and Heterogeneous Media, 2014, 9(4): 739-762. doi: 10.3934/nhm.2014.9.739 |
Machining natural fiber reinforced polymer composite materials is one of most challenging tasks due to the material's anisotropic property, non-homogeneous structure and abrasive nature of fibers. Commonly, conventional machining of composites leads to delamination, inter-laminar cracks, fiber pull out, poor surface finish and wear of cutting tool. However, these challenges can be significantly reduced by using proper machining conditions. Thus, this research aims at optimizing machining parameters in drilling hybrid sisal-cotton fibers reinforced polyester composite for better machining performance characteristics namely better hole roundness accuracy and surface finish using Taguchi method. The effect of machining parameters including spindle speed, feed rate and drill diameter on drill hole accuracy (roundness error) and surface-roughness of the hybrid composite are evaluated. Series of experiments based on Taguchi's L16 orthogonal array were performed using different ranges of machining parameters namely spindle speed (600,900, 1200, 1600 rpm), feed rate (10, 15, 20, 25 mm/min) and drill diameter (6, 7, 8, 10 mm). Hole roundness error and surface-roughness are determined using ABC digital caliper and Zeta 20 profilometer, respectively. Optimum machining condition for drilling hybrid composite material (speed: 1600 rpm, feed rate: 25 mm/min and drill diameter: 6 mm) is determined, and the results are verified by conducting confirmation test which proves that the results are reliable.
In this paper we consider a spectral problem for the Laplace operator in an unbounded strip
a) The perforated strip
We provide asymptotic formulas for the endpoints of the spectral bands and show that these bands collapse asymptotically at the points of the spectrum of the Dirichlet problem in a rectangle obtained by gluing the lateral sides of the periodicity cell. These formulas show that the spectrum has spectral bands of length
It should be emphasized that waveguides with periodically perturbed boundaries have been the subject of research in the last decade: let us mention e.g. [34], [21], [22], [2] and [3] and the references therein. However the type of singular perturbation that we study in our paper has never been addressed. We consider a waveguide perforated by a periodic perforation string, which implies using a combination of homogenization methods and spectral perturbation theory.
As usual in waveguide theory, we first apply the Gelfand transform (cf. [6], [30], [33], [26], [11] and (11)) to convert the original problem, cf. (7), into a family of spectral problems depending on the Floquet-parameter
The above mentioned homogenization spectral problems have different boundary conditions from those considered in the literature (cf. [5], [14] and [16] for an extensive bibliography). Obtaining convergence for their spectra, correcting terms and precise bounds for discrepancies (cf. (10)), as
Let
Π={x=(x1,x2):x1∈R,x2∈(0,H)} | (1) |
be a strip of width
¯ω=ω∪∂ω⊂ϖ0, | (2) |
where
ϖ0=(−1/2,1/2)×(0,H)⊂Π. | (3) |
We also introduce the strip
ωε(j,k)={x:ε−1(x1−j,x2−εkH)∈ω}with j∈Z,k∈{0,…,N−1}, | (4) |
where
Πε=Π∖⋃j∈ZN−1⋃k=0¯ωε(j,k) | (5) |
is made equal to 1 by rescaling, and similarly, the period is made equal to
ϖε=ϖ0∖N−1⋃k=0¯ωε(0,k), |
(see b) in Figure 1). For brevity, we shall denote by
ωε=⋃j∈ZN−1⋃k=0ωε(j,k), | (6) |
while
In the domain (5) we consider the Dirichlet spectral problem
{−Δuε(x)=λεuε(x),x∈Πε,uε(x)=0,x∈∂Πε. | (7) |
The variational formulation of problem (7) refers to the integral identity
(∇uε,∇v)Πε=λε(uε,v)Πε∀v∈H10(Πε), | (8) |
where
Problem (7) gets a positive cutoff value
σε=⋃n∈NBεn, | (9) |
where
In Section 2 we address the setting of the Floquet parametric family of problems (13)-(16), obtained by applying the Gelfand transform (11) to the original problem (7). They are homogenization spectral problems in a perforated domain, the periodicity cell
Λεi(η)→Λ0i as ε→0,∀η∈[−π,π],i=1,2,⋯. |
However, this result does not give information on the spectral gaps.
Using the method of matched asymptotic expansions for the eigenfunctions of the homogenization problems (cf. Section 4) we are led to the unit cell boundary value problem (31)-(33), the so-called local problem, that is, a problem to describe the boundary layer phenomenon. Section 3 is devoted to the study of this stationary problem for the Laplace operator, which is independent of
|Λεi(η)−Λ0i−εΛ1i(η)|≤ciε3/2, | (10) |
with some
As a consequence, we deduce that the bands
[Λ0i+εBi−−ciε3/2,Λ0i+εBi++ciε3/2], |
of length
Dealing with the precise length of the band, we note that the results rely on the fact that the elements of the antidiagonal of the polarization matrix do not vanish (cf. (70)-(75)), but this is a generic property for many geometries of the unit hole
Summarizing, Section 2 addresses some asymptotics for the spectrum of the Floquet-parameter family of spectral problems; Section 3 considers the unit cell problem; Section 4 deals with the asymptotic expansions; in Section 5.1, we formulate the main asymptotic results of the paper, while the proofs are performed in Section 5.2.
In this section, we deal with the setting of the Floquet-parameter dependent spectral problems and the limit behavior of their spectra, cf. Sections 2.1 and 2.2, respectively.
The Floquet-Bloch-Gelfand transform (FBG-transform, in short)
uε(x)→Uε(x;η)=1√2π∑n∈Ze−inηuε(x1+n,x2), | (11) |
see [6] and, e.g., [30], [33], [11], [26] and [4], converts problem (7) into a
ϖε={x∈Πε:|x1|<1/2} | (12) |
see Figure 1, b. Note that
−ΔUε(x;η)=Λε(η)Uε(x;η),x∈ϖε, | (13) |
Uε(x;η)=0,x∈Γε, | (14) |
Uε(1/2,x2;η)=eiηUε(−1/2,x2;η),x2∈(0,H), | (15) |
∂Uε∂x1(12,x2;η)=eiη∂Uε∂x1(−12,x2;η),x2∈(0,H), | (16) |
where
The variational formulation of the spectral problem (13)-(16) reads:
(∇Uε,∇V)ϖε=Λε(Uε,V)ϖεV∈H1,ηper(ϖε;Γε), | (17) |
where
0<Λε1(η)≤Λε2(η)≤⋯≤Λεm(η)≤⋯→∞, | (18) |
which are repeated according to their multiplicities (see Ch. 10 in [1] and Ch. 13 in [30]). The eigenfunctions are assumed to form an orthonormal basis in
The function
η∈[−π,π]↦Λεm(η) | (19) |
is continuous and
Bεm={Λεm(η):η∈[−π,π]} | (20) |
are closed, connected and bounded intervals of the real positive axis
A first approach to the asymptotics for eigenpairs of (13)-(16) is given by the following convergence result, that we show adapting standard techniques in homogenization and spectral perturbation theory: see, e.g., Ch. 3 in [27] for a general framework and [14] for its application to spectral problems in perforated domains with different boundary conditions. Let us recall
ωε(0,0),…,ωε(0,N−1)⊂ϖ0. | (21) |
Theorem 2.1. Let the spectral problem (13)-(16) and the sequence of eigenvalues (18). Then, for any
Λεm(η)→Λ0m,as ε→0, | (22) |
where
0<Λ01<Λ02≤⋯≤Λ0m≤⋯→∞,as m→∞, | (23) |
are the eigenvalues, repeated according to their multiplicities, of the Dirichlet problem
−ΔU0(x)=Λ0U0(x),x∈υ,υ≡(0,1)×(0,H)U0(x)=0,x∈∂υ. | (24) |
Proof. First, for each fixed
0<C≤Λεm(η)≤Cm∀η∈[−π,π]. | (25) |
To obtain the lower bound in (25), it suffices to consider (17) for the eigenpair
Λεm(η)=minEεm⊂H1,ηper(ϖε;Γε)maxV∈Eεm,V≠0(∇V,∇V)ϖε(V,V)ϖε, |
where the minimum is computed over the set of subspaces
Hence, for each
Λεm(η)→Λ0m(η),Uεm(⋅;η)⇀U0m(⋅;η) in H1(ϖ0)−weak, as ε→0, | (26) |
for a certain positive
‖U;L2(ϖ0∖¯ω)‖≤C‖∇U;L2(ϖ0∖¯ω)‖∀U∈H1(ϖ0∖¯ω),U=0 on ∂ω, |
and we deduce
ε−1‖Uεm(⋅;η);L2({|x1|≤ε/2}∩ϖ0)‖2≤Cε‖∇Uεm(⋅;η);L2({|x1|≤ε/2}∩ϖ0)‖2. |
Now, taking limits as
−ΔU0m(x;η)=Λ0m(η)U0m(x;η),x1∈{(−1/2,0)∪(0,1/2)},x2∈(0,H),U0m(x;η)=0 for x2∈{0,H},x1∈(−1/2,1/2) and x1=0,x2∈(0,H),U0m(1/2,x2;η)=eiηU0m(−1/2,x2;η),x2∈(0,H),∂U0m∂x1(1/2,x2;η)=eiη∂U0m∂x1(−1/2,x2;η),x2∈(0,H), | (27) |
where the differential equation has been obtained by taking limits in the variational formulation (17) for
Now, from the orthonormality of
In addition, extending by
u0m(x;η)={U0m(x;η),x1∈(0,1/2),eiηU0m(x1−1,x2;η),x1∈(1/2,1), | (28) |
we obtain a smooth function in the rectangle
Remark 1. Note that the eigenpairs of (24) can be computed explicitly
Λ0np=π2(n2+p2H2),U0np(x)=2√Hsin(nπx1)sin(pπx2/H),p,n∈N. | (29) |
The eigenvalues
In this section, we study the properties of certain solutions of the boundary value problem in the unbounded strip
In order to obtain a corrector for the approach to the eigenpairs of (13)-(16) given by Theorem 2.1, we introduce the stretched coordinates
ξ=(ξ1,ξ2)=ε−1(x1,x2−εkH). | (30) |
which transforms each opening of the string
−ΔξW(ξ)=0,ξ∈Ξ, | (31) |
with the periodicity conditions
W(ξ1,H)=W(ξ1,0),∂W∂ξ2(ξ1,H)=∂W∂ξ2(ξ1,0),ξ1∈R, | (32) |
and the Dirichlet condition on the boundary of the hole
W(ξ)=0,ξ∈∂ω. | (33) |
Regarding (31)-(33), it should be noted that, for any
Δx+Λε=ε−2(Δξ+ε2Λε), |
and
w(x2)W(ε−1x), | (34) |
for the boundary layer. Here,
It is worth recalling that, according to the general theory of elliptic problems in domains with cylindrical outlets to infinity, cf., e.g., Ch. 5 in [26], problem (31)-(33) has just two solutions with a linear polynomial growth as
¯ω⊂(−R,R)×(0,H) | (35) |
and define the cut-off functions
χ±(y)={1, for ±y>2R,0, for ±y<R, | (36) |
where the subindex
Proposition 3.1. There are two normalized solutions of (31)-(33) in the form
W±(ξ)=±χ±(ξ1)ξ1+∑τ=±χτ(ξ1)pτ±+˜W±(ξ),ξ∈Ξ, | (37) |
where the remainder
p(Ξ)=(p++(Ξ)p+−(Ξ)p−+(Ξ)p–(Ξ)). | (38) |
Proof. The existence of two linearly independent normalized solutions
Let us consider the functions
ˆW±(ξ)=W±(ξ)∓χ±(ξ1)ξ1, | (39) |
which, obviously, satisfy (32), (33) and
−ΔξˆW±(ξ)=F±(ξ),ξ∈Ξ, | (40) |
with
Let
‖W,H‖=‖∇yW;L2(Ξ)‖. |
The variational formulation of (40), (32) and (33) reads: to find
(∇yˆW±,∇yV)Ξ=(F±,V)Ξ∀V∈H. | (41) |
Since
In addition, since for each
ˆWτ(ξ)=cτ±+O(e−(±ξ1)2π/H) as ±ξ1→+∞, |
where the constants
cτ±=limT→∞1H∫H0ˆWτ(±T,ξ2)dξ2=limT→∞1H∫H0(Wτ(±T,ξ2)−τδτ,±T)dξ2. | (42) |
Obviously,
In this section, we detect certain properties of the matrix
Proposition 3.2. The matrix
Proof. We represent (37) in the form
W±(ξ)=W±0(ξ)+{±ξ1−R,±ξ1>R,0,±ξ1<R. | (43) |
The function
[W±0]±(ξ2)=0,[∂W±0∂|ξ1|]±(ξ2)=−1,ξ2∈(0,H), |
where
In what follows, we write the equations for
∫H0Wτ0(±R,ξ2)dξ2=−∫H0Wτ0(±R,ξ2)[∂W±0∂|ξ1|]±(ξ2)dξ2=−(∇ξWτ0,∇ξW±0)Ξ. | (44) |
On the other hand, on account of (43) and the definition of
Wτ0(±R,ξ2)=Wτ(±R,ξ2) and [∂Wτ∂|ξ1|]±(ξ2)=0. |
Consequently, we can write
∫H0Wτ0(±R,ξ2)dξ2=−∫H0Wτ(±R,ξ2)[∂W±0∂|ξ1|]±(ξ2)dξ2=∫H0(Wτ(±R,ξ2)[∂W±0∂|ξ1|]±(ξ2)−W±0(±R,ξ2)[∂Wτ∂|ξ1|]±(ξ2))dξ2, |
and using again the Green formula for
∫H0Wτ0(±R,ξ2)dξ2=+limT→∞∫H0(Wτ(τT,ξ2)∂W±0∂|ξ1|(τT,ξ2)−W±0(τT,ξ2)∂Wτ∂|ξ1|(τT,ξ2))dξ2=−H(pτ±(Ξ)+δτ,±R). | (45) |
Here, we have used the following facts:
W±0(ξ)=χ±(ξ1)(p±±+R)+χ∓(ξ1)p∓±+˜W±(ξ). |
Considering (44) and (45) we have shown the equality for the Gram matrix
(∇ξWτ0,∇ξW±0)Ξ=H(pτ±(Ξ)+δτ,±R), |
which gives the symmetry and the positiveness of the matrix
Let us note that our results above apply for Lipschitz domains or even cracks as it was pointed out in Section 2.1. Now, we get the following results in Propositions 3.3 and 3.4 depending on whether
Proposition 3.3. Let
H(2p+−−p++−p–)>mes2(ω). |
Proof. We consider the linear combination
W0(ξ)=W+(ξ)−W−(ξ)−ξ1=χ+(ξ1)(p++−p+−)−χ−(ξ1)(p–−p−+)+˜W0(ξ). |
It satisfies
−ΔξW0(ξ)=0,ξ∈Ξ,W0(ξ)=−ξ1,ξ∈∂ω, |
with the periodicity conditions in the strip, and
0<‖∇W0;L2(Ξ)‖2+mes2(ω)=−∫∂ωξ1∂ν(ξ1)dν+∫∂ωW0∂ν(W0(ξ))dν=−∫∂ωξ1∂ν(ξ1+W0(ξ))dν=∫∂ω(∂νξ1(ξ1+W0(ξ))−ξ1∂ν(ξ1+W0(ξ)))dν=−limT→∞∑±±∫H0W0(±T,ξ2)dξ2=−H(p+++p–−p+−−p−+). |
Remark 2. observe that for a hole
p++=p–. | (46) |
Indeed, this is due to the fact that each one of the two normalized solutions in (37) are related with each other by symmetry. Also, we note that, on account of Proposition 3.2, the symmetry
Proposition 3.4. Let
p+−=p−+>0. | (47) |
In addition,
Proof. First, let us note that due to the symmetry
W−(ξ1,ξ2)={−ξ1+W∗(−ξ1,ξ2),ξ1<0,W∗(ξ1,ξ2),ξ1>0. | (48) |
where
−ΔξW∗(ξ)=0, for ξ∈Π+,W∗(0,ξ2)=0, for ξ2∈(h,H−h),−∂ξ1W∗(0,ξ2)=1/2, for ξ2∈(0,h)∪(H−h,H). | (49) |
Indeed, denoting by
[˜W∗](0,ξ2)=0,[∂˜W∗∂ξ1](0,ξ2)=−1, |
and hence, the function on the right hand side of (48) is a harmonic function in
Now, considering (49), integrating by parts on
∫Υ(0)W∗(0,ξ2)dξ2=limT→∞H∫0W∗(T,ξ2)dξ2=Hp−+(Ξ). |
Similarly, from (49), we get
0=−∫Π+W∗(ξ)ΔξW∗(ξ)dξ=∫Π+|∇ξW∗(ξ)|2dξ−12∫Υ(0)W∗(0,ξ2)dξ2. |
Therefore, we deduce
H2p−+(Ξ)=∫Π+|∇ξW∗(ξ)|2dξ>0 | (50) |
and from the symmetry of
Also, from the definition (48), we have
From Proposition 3.4, note that when
¯ω={ξ:δ−2ξ21+(ξ2−H/2)2≤τ2},τ=H/2−h, | (51) |
(47) holds true, for a small
In this section we construct asymptotic expansions for the eigenpairs (
Let
Λεm=Λ0m+εΛ1m(η)+⋯. | (52) |
To construct asymptotics of the corresponding eigenfunctions
Uεm(x;η)=U0m(x;η)+εU1m(x;η)+⋯ | (53) |
as the outer expansion, and
Uεm(x;η)=ε∑±wm±(x2;η)W±(xε)+⋯ | (54) |
as the inner expansion near the perforation string, cf. (4) and (21).
Above,
U0m(x;η)={U0m(x),x1∈(0,1/2),e−iηU0m(x1+1,x2),x1∈(−1/2,0), | (55) |
First, let us notice that
Uεm(x;η)=0+x1∂U0m∂x1(0,x2)+εU1m(+0,x2;η)+⋯,x1>0,Uεm(x;η)=0+x1e−iη∂U0m∂x1(1,x2)+εU1m(−0,x2;η)+⋯,x1<0, | (56) |
where, for second formula (56), we have used (55).
The inner expansion (54) is processed by means of decompositions (37). We have
Uεm(x;η)=εwm+(x2;η)(ξ1+p++)+εwm−(x2;η)p−++⋯,ξ1>0,Uεm(x;η)=εwm−(x2;η)(−ξ1+p–)+εwm+(x2;η)p+−+⋯,ξ1<0. | (57) |
Recalling relationship between
wm+(x2;η)=∂U0m∂x1(0,x2),wm−(x2;η)=−e−iη∂U0m∂x1(1,x2), | (58) |
and also obtain the equalities
U1m(+0,x2;η)=∑τ=±wmτ(x2;η)pτ+,U1m(−0,x2;η)=∑τ=±wmτ(x2;η)pτ−. | (59) |
Formulas (58) define coefficients of the linear combination (54) while formulas (59) are the boundary conditions for the correction term in (53). Moreover, inserting ans
{−ΔxU1m(x;η)−Λ0mU1m(x;η)=Λ1m(η)U0m(x;η),x∈ϖ0,x1≠0,U1m(x1,H;η)=U1m(x1,0;η)=0,x1∈(−1/2,0)∪(0,1/2), | (60) |
and the quasi-periodic conditions with
Since
∫ϖ0Λ1m(η)U0m(x;η)¯U0m(x;η)dx=H∫0U1m(−0,x2;η)¯∂U0m∂x1(−0,x2;η)dx2−H∫0U1m(+0,x2;η)¯∂U0m∂x1(+0,x2;η)dx2. |
Thus, by (55) and (59), the only compatibility condition in (60) (recall that
Λ1m(η)=−H∫0¯Bm(x2;η)⋅p(Ξ)Bm(x2;η)dx2 | (61) |
where
Bm(x2;η)=(∂U0m∂x1(0,x2),−e−iη∂U0m∂x1(1,x2))T∈C2, | (62) |
and it determines uniquely the second term of the ansatz (52). Here and in what follows, the top index
Also, from (53), (54) and (57) the composite expansion approaching
Uεm(x;η)≈U0m(x;η)+εU1m(x;η)+ε∑τ=±wmτ(x2;η)Wτ(xε)−(εwm±(x2;η)(ε−1|x1|+p±±)+εwm∓(x2;η)p∓±),±x1≥0. | (63) |
We address the case where
Λεm+l(η)→Λ0m+l as ε→0, for l=0,⋯,κm−1. | (64) |
Let
Following Section 4.1, for each
Λεm+l=Λ0m+εΛ1m+l(η)+⋯, | (65) |
the outer expansion for
Uεm+l(x;η)=U0m+l(x;η)+εU1m+l(x;η)+⋯, | (66) |
and the inner expansion
Uεm(x;η)=ε∑±wm+l±(x2;η)W±(xε)+⋯, | (67) |
where the terms
By repeating the reasoning in Section 4.2, we obtain formulas for the above mentioned terms in (65), (66) and (67) by replacing index
−ΔxU1m+l(x;η)−Λ0mU1m+l(x;η)=Λ1m+l(η)U0m+l(x;η),x∈ϖ0,x1≠0, |
and integrating by parts, we obtain
∫ϖ0Λ1m+l(η)U0m+l(x;η)¯U0m+l′(x;η)dx=−H∫0(∂U0m+l′∂x1(0,x2),−eiη∂U0m+l′∂x1(1,x2))⋅p(Ξ)×(∂U0m+l∂x1(0,x2),−e−iη∂U0m+l∂x1(1,x2))Tdx2. |
Since the eigenfunctions
H∫0∂U0m+l′∂x1(x∗1,x2)∂U0m+l∂x1(x∗1,x2)dx2=0, with x∗1∈{0,1},l≠l′, |
and, hence, for each
Λ1m+l(η)=−H∫0¯Bm+l(x2;η)⋅p(Ξ)Bm+l(x2;η)dx2, | (68) |
where
Bm+l(x2;η)=(∂U0m+l∂x1(0,x2),−e−iη∂U0m+l∂x1(1,x2))T. | (69) |
Therefore we have determined completely all the terms in the asymptotic ans
In this section, we justify the results obtained by means of matched asymptotic expasions in Section 4. Since the case in which all the eigenvalues of the Dirichlet problem (24) are simple can be a generic property, we first consider this case, cf. Theorem 5.1 and Corollary 5.1, and then the case in which these eigenvalues have a multiplicity greater than
Theorem 5.1. Let
|Λεm(η)−Λ0m−εΛ1m(η)|≤cmε3/2 | (70) |
and there are no other different eigenvalues in the sequence (18) satisfying (70).
Theorem 5.1 shows that
In order to detect the gaps between consecutive spectral bands (20) it is worthy writing formulas
Λ1m(η)=B0(m)+B1(m)cos(η), with B0(m)=H∫0(p++|∂U0m∂x1(0,x2)|2+p–|∂U0m∂x1(1,x2)|2)dx2,B1(m)=2p+−H∫0∂U0m∂x1(0,x2)∂U0m∂x1(1,x2)dx2, | (71) |
which are obtained from (61) and (62). Formula (29) demonstrates that
B0(m)=(p+++p–)H∫0|∂U0m∂x1(0,x2)|2dx2, |
and that the integral in
Remark 3. Let us consider that the eigenvalue
B0(m)=2(p+++p–)n2π2,B1(m)=(−1)n4p+−n2π2, |
and, consequently,
Λ1m(η)=2(p+++p–)n2π2+(−1)n4p+−n2π2cos(η). | (72) |
Corollary 5.1. Under the hypothesis of Theorem 5.1, the endpoints
|Bε±(m)−Λ0m−ε(B0(m)±|B1(m)|)|≤cmε3/2. | (73) |
Hence, the length of the band
Note that for the holes such that the polarization matrix (38) satisfies
Theorem 5.2. Let
|Λεm+l0(η)−Λ0m−εΛ1m+l(η)|≤cmε3/2. | (74) |
In addition, when
Corollary 5.2. Under the hypothesis in Theorem 5.2, the spectral bands
[Λ0m+εmin0≤l≤κm−1η∈[−π,π]Λ1m+l(η)−cmε3/2,Λ0m+εmax0≤l≤κm−1η∈[−π,π]Λ1m+l(η)+cmε3/2]. | (75) |
Hence, the length of the the bands
Remark 4. Under the hypothesis of Theorem 5.2, it may happen that, for
Remark 5. Notice that the positive cutoff value
In this section we prove the results of Theorems 5.1 and 5.2 and of their respective corollaries.
Proof of Theorem 5.1. Let us fix
⟨Tε(η)Uε,Vε⟩=(Uε,Vε)ϖε∀Uε,Vε∈H1,ηper(ϖε;Γε). | (76) |
The integral identity (17) for problem (13)-(16) can be rewritten as the abstract equation
Tε(η)Uε(⋅;η)=τε(η)Uε(⋅;η)in H1,ηper(ϖε;Γε), |
with the new spectral parameter
τε(η)=(1+Λε(η))−1. | (77) |
Since
{τεm(η)=(1+Λεm(η))−1}m∈N. |
For the point
tεm(η)=(1+Λ0m+εΛ1m(η))−1, | (78) |
cf. (52) and (61), we construct a function
‖Uεm;H1,ηper(ϖε;Γε)‖≥cm, | (79) |
‖Tε(η)Uεm−tεm(η)Uεm;H1,ηper(ϖε;Γε)‖≤Cmε3/2, | (80) |
where
‖(Tε(η)−tεm(η))−1;H1,ηper(ϖε;Γε)→H1,ηper(ϖε;Γε)‖≥c−1mε−3/2, |
with
dist(tεm(η),σ(Tε(η))=‖(Tε(η)−tεm(η))−1;H1,ηper(ϖε;Γε)→H1,ηper(ϖε;Γε)‖−1 |
supported by the spectral decomposition of the resolvent (cf., e.g., Section V.5 in [9] and Ch. 6 in [1]), we deduce that the closed segment
[t^{ \varepsilon}_{m}(\eta)- \mathbf{c}_m \varepsilon^{3/2}, t^{ \varepsilon}_{m}(\eta) + \mathbf{c}_m \varepsilon^{3/2}] |
contains at least one eigenvalue
\begin{equation} \left|(1+\Lambda^{ \varepsilon}_{p}(\eta))^{-1}- (1+ \Lambda^{0}_{m}+ \varepsilon\Lambda^{1}_{m}(\eta))^{-1}\right| \leq \mathbf{c}_m \varepsilon^{3/2}. \end{equation} | (81) |
Then, simple algebraic calculations (cf. (81) and (25)) show that, for a
\begin{equation} \left| \Lambda^{ \varepsilon}_{p}(\eta)- \Lambda^{0}_{m}- \varepsilon\Lambda^{1 }_{m}(\eta)\right| \leq \mathcal{C}_m \varepsilon^{3/2} \end{equation} | (82) |
is satisfied with a constant
To conclude with the proof of Theorem 5.1, there remains to present a function
\begin{equation} \mathcal{V}^{ \varepsilon m}_{out}(x;\eta) = U^{0}_{m}(x;\eta)+ \varepsilon U^{1}_{m}(x;\eta), \end{equation} | (83) |
where
\begin{equation} \mathcal{V}^{ \varepsilon m}_{in}(x;\eta) = \varepsilon \sum\limits_{\pm}w^m_\pm(x_2;\eta)W^\pm( \varepsilon^{-1}x), \end{equation} | (84) |
and
\begin{equation} \mathcal{V}^{ \varepsilon m}_{mat}(x;\eta) = \varepsilon w^m_\pm(x_2;\eta)( \varepsilon^{-1}|x_1|+p_{\pm\pm})+ \varepsilon w^m_\mp (x_2;\eta) p_{\mp\pm}, \quad \pm x_1 > 0, \end{equation} | (85) |
with
\begin{equation} \mathcal{U}^{ \varepsilon}_{m}(x;\eta) = X^ \varepsilon(x_1) \mathcal{V}^{ \varepsilon m}_{out}(x;\eta) + \mathcal{X}(x_1) \mathcal{V}^{ \varepsilon m}_{in}(x;\eta) -X^ \varepsilon(x_1) \mathcal{X}(x_1) \mathcal{V}^{ \varepsilon m}_{mat}(x;\eta), \end{equation} | (86) |
where
\begin{equation} X^ \varepsilon(x_1) = \left\{ \begin{array}{ll} 1, &\hbox{ for } |x_1| > 2R \varepsilon, \\ 0, &\hbox{ for } |x_1| < R \varepsilon, \end{array} \right. \mbox{ and } \quad \mathcal{X}(x_1) = \left\{ \begin{array}{ll} 1, &\hbox{ for } |x_1| < 1/6, \\ 0, &\hbox{ for } |x_1| > 1/3. \end{array} \right. \end{equation} | (87) |
Note that (85) takes into account components in both expressions (83) and (84), but the last subtrahend in
First, let us show that
First of all, we recall (83) and (87) to derive
\begin{multline*} \| \mathcal{U}^{ \varepsilon}_{m} ; H^{1, \eta}_{per} (\varpi^ \varepsilon;\Gamma^ \varepsilon)\| \\\geq \left\| \mathcal{U}^{ \varepsilon}_{m} ; L^2((1/3, 1/2)\times (0, H))\right\| = \| \mathcal{V}^{ \varepsilon m}_{out} ; L^2((1/3, 1/2)\times (0, H))\| \\ \geq \left\|U^{0}_{m} ; L^2((1/3, 1/2)\times (0, H))\right\| - \varepsilon\|U^{1}_{m} ; L^2((1/3, 1/2)\times (0, H))\| \geq c > 0, \end{multline*} |
for a small
Using (76) and (78), we have
\begin{multline} \|T^ \varepsilon(\eta) \mathcal{U}^{ \varepsilon}_{m} -t^{ \varepsilon}_{m}(\eta) \mathcal{U}^{ \varepsilon}_{m}; H^{1, \eta}_{per} (\varpi^ \varepsilon;\Gamma^ \varepsilon)\| = \sup\left|\langle T^ \varepsilon(\eta) \mathcal{U}^{ \varepsilon}_{m} -t^{ \varepsilon}_{m}(\eta) \mathcal{U}^{ \varepsilon}_{m}, \mathcal{W}^{ \varepsilon}\rangle\right|\\ = (1+ \Lambda^{0}_{m}+ \varepsilon\Lambda^{1}_{m}(\eta))^{-1}\sup \left|(\nabla \mathcal{U}^{ \varepsilon}_{m}, \nabla \mathcal{W}^{ \varepsilon})_{\varpi^ \varepsilon} -(\Lambda^{0}_{m}+ \varepsilon\Lambda^{1}_{m}(\eta))( \mathcal{U}^{ \varepsilon}_{m}, \mathcal{W}^{ \varepsilon})_{\varpi^ \varepsilon}\right|, \end{multline} | (88) |
where the supremum is computed over all
\| \mathcal{W}^{ \varepsilon}; H^{1, \eta}_{per} (\varpi^ \varepsilon;\Gamma^ \varepsilon)\|\leq 1. |
Taking into account the Dirichlet conditions on
\int_{ \Pi_T\setminus\overline{\omega} } \vert U \vert^2\, dy \leq C_{T}\int_{ \Pi_T\setminus\overline{\omega} } \vert \nabla_y U \vert^2 dy \quad \forall U \in H^1( \Pi_T\setminus\overline{\omega} ) , \, U = 0 \mbox{ on } \partial \omega, |
where
\int_0^\infty \frac{1}{t^2} z(t)^2\, dt\leq 4 \int_0^\infty \left\vert \frac{dz}{dt}(t)\right\vert^2\, dt \quad \forall z\in C^1[0, \infty), \, z(0) = 0. |
Then, we have
\begin{equation} \|( \varepsilon+|x_1|)^{-1} \mathcal{W}^{ \varepsilon}; L^2(\varpi^ \varepsilon)\|\leq c \|\nabla \mathcal{W}^{ \varepsilon}; L^2(\varpi^ \varepsilon)\|\leq c. \end{equation} | (89) |
Clearly, from (71),
\begin{multline*} \left|(\nabla \mathcal{U}^{ \varepsilon}_{m}, \nabla \mathcal{W}^{ \varepsilon})_{\varpi^ \varepsilon} -(\Lambda^{0}_{m}+ \varepsilon\Lambda^{1}_{m}(\eta))( \mathcal{U}^{ \varepsilon}_{m}, \mathcal{W}^{ \varepsilon})_{\varpi^ \varepsilon}\right|\\ = \left|(\Delta \mathcal{U}^{ \varepsilon}_{m}+(\Lambda^{0}_{m}+ \varepsilon\Lambda^{1}_{m}(\eta)) \mathcal{U}^{ \varepsilon}_{m}, \mathcal{W}^{ \varepsilon})_{\varpi^ \varepsilon}\right|. \end{multline*} |
On the basis of (83)-(86) we write
\begin{multline} \Delta \mathcal{U}^{ \varepsilon}_{m} + (\Lambda^{0}_{m}+ \varepsilon\Lambda^{1}_{m}(\eta)) \mathcal{U}^{ \varepsilon}_{m}\\ = X^ \varepsilon \left(\Delta U^{0}_{m}+\Lambda^{0}_{m} U^{0}_{m} + \varepsilon(\Delta U^{1}_{m}+\Lambda^{0}_{m} U^{1}_{m} +\Lambda^{1}_{m} U^{0}_{m})+ \varepsilon^2 \Lambda^{1}_{m} U^{1}_{m}\right)\\ \quad \quad\quad + [\Delta, X^ \varepsilon]( \mathcal{V}^{ \varepsilon m}_{out}- \mathcal{V}^{ \varepsilon m}_{mat})+ \mathcal{X}(\Delta \mathcal{V}^{ \varepsilon m}_{in}- X^ \varepsilon\Delta \mathcal{V}^{ \varepsilon m}_{mat})+[\Delta, \mathcal{X}]( \mathcal{V}^{ \varepsilon m}_{in}- \mathcal{V}^{ \varepsilon m}_{mat})\\ + (\Lambda^{0}_{m} + \varepsilon\Lambda^{1}_{m}) \mathcal{X}( \mathcal{V}^{ \varepsilon m}_{in}-X^ \varepsilon \mathcal{V}^{ \varepsilon m}_{mat}) = : S_1^ \varepsilon + S^ \varepsilon_2 + S_3^ \varepsilon + S^ \varepsilon_4 + S_5^ \varepsilon. \quad \quad\, \, \end{multline} | (90) |
Here,
Considering
\left|(S^ \varepsilon_1, \mathcal{W}^ \varepsilon)_{\varpi^ \varepsilon}\right|\leq \varepsilon^2 \Lambda^{1}_{m}(\eta) \|U^{1}_{m} ; L^2(\varpi^ \varepsilon)\|\| \mathcal{W}^{ \varepsilon}; L^2(\varpi^ \varepsilon)\|\leq C_m \varepsilon^2. |
As regards
\begin{eqnarray*} \left| \mathcal{V}^{ \varepsilon m}_{out}(x;\eta)- \mathcal{V}^{ \varepsilon m}_{mat}(x;\eta)\right|&\leq & c(|x_1|^2+ \varepsilon |x_1|), \\ \left|\frac{\partial \mathcal{V}^{ \varepsilon m}_{out }}{\partial x_1}(x;\eta)-\frac{\partial \mathcal{V}^{ \varepsilon m}_{mat }}{\partial x_1}(x;\eta)\right|&\leq &c(|x_1|+ \varepsilon), \quad\pm x_1\in [ \varepsilon R, 2 \varepsilon R]. \end{eqnarray*} |
Above, we have also used the smoothness of the function
\begin{eqnarray*} \left|(S^ \varepsilon_2, \mathcal{W}^ \varepsilon)_{\varpi^ \varepsilon}\right| \leq & \|S^ \varepsilon_2 ; L^2(\varpi^ \varepsilon_{ \varepsilon R})\|\| \mathcal{W}^{ \varepsilon}; L^2(\varpi^ \varepsilon_{ \varepsilon R})\|\leq c \varepsilon \|( \varepsilon+|x_1|)^{-1} \mathcal{W}^{ \varepsilon}; L^2(\varpi^ \varepsilon)\|\\ & \times \left(\int\limits^H_0\int\limits^{2 \varepsilon R}_{ \varepsilon R}\left(\frac{1}{ \varepsilon^2}\left|\frac{ \mathcal{V}^{ \varepsilon m}_{out }}{\partial x_1}-\frac{ \mathcal{V}^{ \varepsilon m}_{mat }}{\partial x_1}\right|^2+\frac{1}{ \varepsilon^4}\left| \mathcal{V}^{ \varepsilon m}_{out}- \mathcal{V}^{ \varepsilon m}_{mat}\right|^2\right)d|x_1|dx_2\right)^\frac 12 \\ \leq & c\left(\frac{1}{ \varepsilon^2} \varepsilon^2+\frac{1}{ \varepsilon^4} \varepsilon^4\right)^\frac 12\left(mes_2 \varpi^ \varepsilon_{ \varepsilon R} \right)^\frac 12 \varepsilon \|( \varepsilon+|x_1|)^{-1} \mathcal{W}^{ \varepsilon}; L^2(\varpi^ \varepsilon)\|\leq c \varepsilon^\frac{3}{2}. \end{eqnarray*} |
Dealing with
\begin{multline*} \Delta \mathcal{V}^{ \varepsilon m}_{in}(x;\eta)- X^ \varepsilon(x_1)\Delta \mathcal{V}^{ \varepsilon m}_{mat}(x;\eta)\\ = 2\sum\limits_{\pm} \frac{\partial w^m_\pm}{\partial x_2}(x_2;\eta)\frac{\partial W^\pm}{\partial \xi_2}(y) + \varepsilon \sum\limits_{\pm} \frac{\partial^2 w^m_\pm}{\partial x_2^2}(x_2;\eta)\widetilde{W}^\pm(y), \end{multline*} |
when
\begin{multline*} \left|(S^ \varepsilon_3, \mathcal{W}^ \varepsilon)_{\varpi^ \varepsilon}\right| \leq \\ c\left( \left\|( \varepsilon+|x_1|)\frac{\partial W^\pm}{\partial \xi_2}; L^2(\varpi^ \varepsilon)\right\| + \varepsilon \left\|( \varepsilon+|x_1|)\widetilde{W}^\pm; L^2(\varpi^ \varepsilon)\right\| \right) \left\|\frac{1}{ \varepsilon+|x_1|} \mathcal{W}^{ \varepsilon}; L^2(\varpi^ \varepsilon)\right\| \\ \leq c\left( \int\limits_0^{1/2} ( \varepsilon + t)^2e^{-2\delta t/ \varepsilon} dt\right)^\frac 12 \|\nabla \mathcal{W}^{ \varepsilon}; L^2(\varpi^ \varepsilon)\|\leq c \varepsilon^\frac{3}{2}. \end{multline*} |
Above, obviously, we take the positive constant
\left|(S^ \varepsilon_5, \mathcal{W}^ \varepsilon)_{\varpi^ \varepsilon}\right|\leq c \varepsilon^\frac{3}{2}. |
Moreover, the supports of the coefficients
\left|(S^ \varepsilon_4, \mathcal{W}^ \varepsilon)_{\varpi^ \varepsilon}\right|\leq c{e^{-2\delta/(3 \varepsilon) }}. |
Revisiting the obtained estimates we find the worst bound
The fact that the constants
\begin{equation} -\big(\frac{\partial}{\partial y_1} + {\rm i} \eta \big) \big(\frac{\partial}{\partial y_1} + {\rm i}\eta \big)- \frac{\partial^2}{\partial y_2^2}, \end{equation} | (91) |
and therefore, performing this change in (60), gives the solution
Proof of Corollary 5.1. Due to the continuity of the function (19), the maximum and minimum of
In order to show (73) for the maximum
\Lambda^{0}_{m}+ \varepsilon B_0(m) + \varepsilon |B_1(m)|-c_m \varepsilon^{3/2} \leq \Lambda_m^{ \varepsilon}(\eta^+) \leq \Lambda^{0}_{m}+ \varepsilon B_0(m) + \varepsilon |B_1(m)| + c_m \varepsilon^{3/2} |
and
\Lambda^{0}_{m} + \varepsilon \Lambda^1_m(\eta^+_{ \varepsilon, m}) -c_m \varepsilon^{3/2} \leq\Lambda_m^{ \varepsilon}(\eta^+_{ \varepsilon, m}) \leq \Lambda^{0}_{m}+ \varepsilon \Lambda^1_m(\eta^+_{ \varepsilon, m}) + c_m \varepsilon^{3/2}. |
Consequently, from (71), we derive
\begin{multline*} \Lambda^{0}_{m}+ \varepsilon B_0(m) + \varepsilon |B_1(m)|-c_m \varepsilon^{3/2} \leq \Lambda_m^{ \varepsilon}(\eta^+ ) \leq \Lambda_m^{ \varepsilon}(\eta^+_{ \varepsilon, m}) \\ \leq \Lambda^{0}_{m}+ \varepsilon B_0(m) + \varepsilon |B_1(m)| + c_m \varepsilon^{3/2}, \end{multline*} |
which gives (73) for
We proceed in a similar way for the minimum
\left [\Lambda^{0}_{m}+ \varepsilon B_0(m) - \varepsilon |B_1(m)|-c_m \varepsilon^{3/2} \, , \, \Lambda^{0}_{m}+ \varepsilon B_0(m) + \varepsilon |B_1(m)| + c_m \varepsilon^{3/2}\right] |
Therefore, the whole band
Proof of Theorem 5.2. This proof holds exactly the same scheme of Theorem 5.1. Indeed, for each
\begin{equation} \left| \Lambda^{ \varepsilon}_{p}(\eta)- \Lambda^{0}_{m}- \varepsilon\Lambda^{1 }_{m+l}(\eta)\right| \leq \mathcal{C}_{m, l} \varepsilon^{3/2} \end{equation} | (92) |
is satisfied for a certain natural
We use a classical argument of contradiction (cf. [15] and [25]). We consider the set of functions
\begin{equation} \| \mathcal{U}^{ \varepsilon}_{m+l} ; H^{1, \eta}_{per} (\varpi^ \varepsilon;\Gamma^ \varepsilon)\|\geq \widetilde c_m \quad \mbox{ and }\quad \left \vert \langle \mathcal{U}^{ \varepsilon}_{m+l} \, , \, \mathcal{U}^{ \varepsilon}_{m+l'} \rangle \right \vert \leq \widetilde C_m \varepsilon^{1/2}, \mbox{ with } l\not = l'\, , \end{equation} | (93) |
for certain constants
Then, we define
\begin{equation} \left|(1+\Lambda^{ \varepsilon}_{p(l)}(\eta))^{-1}- (1+ \Lambda^{0}_{m}+ \varepsilon\Lambda^{1}_{m+l}(\eta))^{-1}\right| \leq \widetilde{\mathbf{c }}_m \varepsilon^{3/2}, \end{equation} | (94) |
for a constant
\begin{equation} \left \| \, \widetilde{\mathcal{W }}^ \varepsilon_{m+l} -\widetilde{\mathcal{U }}^ \varepsilon_{m+l} ; H^{1, \eta}_{per} (\varpi^ \varepsilon;\Gamma^ \varepsilon) \right \|\leq \widetilde{\mathcal{C }}_m , \end{equation} | (95) |
where
\left \| \, \widetilde{\mathcal{U }}^ \varepsilon_{m+l} - \mathcal{W}^ \varepsilon_{m+l} ; H^{1, \eta}_{per} (\varpi^ \varepsilon;\Gamma^ \varepsilon) \right \|\leq \widetilde{\mathbf{c }}_m^{-1} \max\limits_{0\leq l\leq \kappa_m-1} \mathcal{C}_{l, m} , |
and some straightforward computation (cf., eg., Lemma 1 in Ch. 3 of [27]). Now, from (93) and (95) and straightforward computations we obtain
\begin{equation} \left \vert \langle\widetilde{\mathcal{W }}^{ \varepsilon}_{m+l} \, , \, \widetilde{\mathcal{W }}^{ \varepsilon}_{m+l'} \rangle \right \vert \leq 5\widetilde{\mathcal{C }}_m \, \mbox{ with } \, l\not = l'\, , \end{equation} | (96) |
and this allows us to assert that set
\sum\limits_{l = 0}^{\kappa_m-1} \alpha_l^ \varepsilon \widetilde{\mathcal{W }}^ \varepsilon_{m+l} = 0. |
Let us consider
\langle \widetilde{\mathcal{W }}^ \varepsilon_{m}, \widetilde{\mathcal{W }}^ \varepsilon_{m} \rangle \leq \sum\limits_{l = 1}^{\kappa_m-1} \left\vert \frac{\alpha_l^ \varepsilon}{\alpha_0^ \varepsilon} \right\vert \left\vert \langle \widetilde{\mathcal{W }}^ \varepsilon_{m+l}, \widetilde{\mathcal{W }}^ \varepsilon_{m} \rangle \right \vert \leq (\kappa_m-1) 5\widetilde{\mathcal{C }}_m . |
Now, setting
Thus,
[1] | UD Din I, Hao P, Aamir M, et al. (2019) FEM implementation of the coupled elastoplastic/damage model: Failure prediction of fiber reinforced polymers FRPs composites. J Solid Mech 11: 842–853. |
[2] |
Aamir M, Tolouei-Rad M, Giasin K, et al. (2019) Recent advances in drilling of carbon fiber reinforced polymers for aerospace applications: A review. J Adv Manuf Technol 105: 2289–2308. https://doi.org/10.1007/s00170-019-04348-z doi: 10.1007/s00170-019-04348-z
![]() |
[3] | Davim PJ (2010) Machining Composites Materials, London: Wiley & Sons. https://doi.org/10.1002/9781118602713 |
[4] |
Hassan A, Khan R, Khan N, et al. (2021) Effect of seawater ageing on fracture toughness of stitched glass fiber/epoxy laminates for marine applications. J Mar Sci Eng 196: 1–9. https://doi.org/10.3390/jmse9020196 doi: 10.3390/jmse9020196
![]() |
[5] |
Guen-Geffroy L, Davies P, Le Gac PY, et al. (2020) Influence of seawater ageing on fracture of carbon fiber reinforced epoxy composites for ocean engineering. Oceans 1: 198–214. https://doi.org/10.3390/oceans1040015 doi: 10.3390/oceans1040015
![]() |
[6] |
Boscato G, Mottram JT, Russo S (2011) Dynamic response of a sheet pile of fiber-reinforced polymer for waterfront barriers. J Compos Constr 15: 974–984. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000231 doi: 10.1061/(ASCE)CC.1943-5614.0000231
![]() |
[7] |
Rubino F, Nisticò A, Tucci F, et al. (2020) Marine application of fiber reinforced composites: A review. J Mar Sci Eng 8: 1–26. https://doi.org/10.3390/jmse8010026 doi: 10.3390/jmse8010026
![]() |
[8] |
Srinivasakumar P, Nandan MJ, Kiran CU, et al. (2013) Sisal and its potential for creating innovative employment opportunities and economic prospects. IOSR J Mech Civ Eng 8: 1–8. https://doi.org/10.9790/1684-0860108 doi: 10.9790/1684-0860108
![]() |
[9] | Kalia S, Kaith BS, Kaur I (2011). Cellulose Fibers: Bio-and Nano-Polymer Composites: Green Chemistry and Technology, Berlin: Springer. https://doi.org/10.1007/978-3-642-17370-7 |
[10] | Hufenbach W, Dobrzański LA, Gude M, et al. (2007) Optimization of the rivet joints of the CFRP composite material and aluminium alloy. J Achiev Mater Manuf Eng 20: 119–122. |
[11] |
Teti R (2002) Machining of composite materials. Cirp Ann Manuf Techn 51: 611–634. https://doi.org/10.1016/S0007-8506(07)61703-X doi: 10.1016/S0007-8506(07)61703-X
![]() |
[12] |
Mirsha R, Malik J, Singh I, et al. (2010) Neural network approach for estimate the residual tensile strength after drilling in unidirectional glass fiber reinforced plastic laminates. Mater Design 31: 2790–2795. https://doi.org/10.1016/j.matdes.2010.01.011 doi: 10.1016/j.matdes.2010.01.011
![]() |
[13] |
Abrão AM, Faria PE, Campos Rubio JC, et al. (2007) Drilling of fiber reinforced plastics: A review. J Mater Process Tech 186: 1–7. https://doi.org/10.1016/j.jmatprotec.2006.11.146 doi: 10.1016/j.jmatprotec.2006.11.146
![]() |
[14] |
Liu D, Tang Y, Cong W (2012) A review of mechanical drilling for composite laminates. Compos Struct 94: 1265–1279. https://doi.org/10.1016/j.compstruct.2011.11.024 doi: 10.1016/j.compstruct.2011.11.024
![]() |
[15] | Dinesh G, Guru Moorthy A, Balaji AN, Mechanical and corrosion properties of hybrid sisal fibre/cotton fibre/coconut sheath reinforced polymer composites, 2019. Available from: https://www.mzcet.in/naac/documents/cf91.pdf. |
[16] |
Kurt M, Bagci E, Kaynak Y (2009) Application of Taguchi methods in the optimization of cutting parameters for surface finish and hole diameter accuracy in dry drilling processes. Int J Adv Manuf Tech 40: 458–469. https://doi.org/10.1007/s00170-007-1368-2 doi: 10.1007/s00170-007-1368-2
![]() |
[17] |
Davim JP, Reis P (2003) Drilling carbon fiber reinforced plastic manufactured by auto clave experimental and statistical study. Mater Design 24: 315–324. https://doi.org/10.1016/S0261-3069(03)00062-1 doi: 10.1016/S0261-3069(03)00062-1
![]() |
[18] | Korkut I, Kucuk Y (2010) Experimental analysis of the deviation from circularity of bored hole based on the Taguchi method. Stroj Vestn-J Mech E 56: 340–346. |
[19] |
Tsao CC, Hocheng H (2008) Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J Mater Process Tech 203: 342–348. https://doi.org/10.1016/j.jmatprotec.2006.04.126 doi: 10.1016/j.jmatprotec.2006.04.126
![]() |
[20] |
Sahoo P, Barman TK, Routara BC (2008) Fractal dimension modelling of surface profile and optimization in CNC end milling using response surface method. Int J Manuf Res 3: 360–377. https://doi.org/10.1504/IJMR.2008.019216 doi: 10.1504/IJMR.2008.019216
![]() |
[21] |
Hadi RM, Mohsen H, Masatoshi K, et al. (2019) Experimental study on drilling of jute fiber reinforced polymer composites. J Compos Mater 53: 283–295. https://doi.org/10.1177/0021998318782376 doi: 10.1177/0021998318782376
![]() |
[22] | Taguchi G, Konishi S (1987) Taguchi Methods, Orthogonal Arrays and Linear Graphs: Tools for Quality Engineering, Dearborn Michigan: American Supplier Institute, 35–38. |
[23] |
Rao RS, Kumar CG, Prakasham RS, et al. (2008) The Taguchi methodology as a statistical tool for biotechnological application: A critical appraisal. Biotechnol J 3: 510–523. https://doi.org/10.1002/biot.200700201 doi: 10.1002/biot.200700201
![]() |
[24] | Yang WP, Tarng Y (1998) Design optimization of cutting parameters for turning operations based on the Taguchi method. J Mater Process Tech 84: 122–129. https://doi.org/10.1016/S0924-0136(98)00079-X |
[25] |
Lotfi A, Li H, Dao DV (2019) Machinability analysis in drilling flax fiber-reinforced polylactic acid bio-composite laminates. Int J Mater Metall Eng 13: 443–447. https://doi.org/10.5281/zenodo.3455743 doi: 10.5281/zenodo.3455743
![]() |
[26] | Philip JR (1996) Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, 2 Eds., Chennai: McGraw-Hill Education (India) Private Limited. |
[27] | Phadke MS (1989) Quality engineering using robust design, London: Prentice-Hall, 07632. https://doi.org/10.1007/978-1-4684-1472-1_3 |
[28] |
Ravishankar B, Nayak SK, Kader MA (2019) Hybrid composites for automotive applications–A review. J Reinf Plast Comp 38: 835–845. https://doi.org/10.1177/0731684419849708 doi: 10.1177/0731684419849708
![]() |
[29] |
Al-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66: 347–354. https://doi.org/10.1016/j.jclepro.2013.10.050 doi: 10.1016/j.jclepro.2013.10.050
![]() |
1. | Delfina Gómez, Sergei A. Nazarov, Rafael Orive-Illera, María-Eugenia Pérez-Martínez, Spectral gaps in a double-periodic perforated Neumann waveguide, 2023, 131, 18758576, 385, 10.3233/ASY-221776 | |
2. | D. Gómez, S. A. Nazarov, R. Orive-Illera, M.-E. Pérez-Martínez, Remark on Justification of Asymptotics of Spectra of Cylindrical Waveguides with Periodic Singular Perturbations of Boundary and Coefficients, 2021, 257, 1072-3374, 597, 10.1007/s10958-021-05506-z | |
3. | Sergei A. Nazarov, Jari Taskinen, Band-gap structure of the spectrum of the water-wave problem in a shallow canal with a periodic family of deep pools, 2023, 36, 1139-1138, 263, 10.1007/s13163-021-00420-z | |
4. | D. Gómez, S. A. Nazarov, R. Orive-Illera, M. -E. Pérez-Martínez, 2022, Chapter 7, 978-3-031-07170-6, 95, 10.1007/978-3-031-07171-3_7 | |
5. | Delfina Gómez, Sergei A. Nazarov, Rafael Orive‐Illera, María‐Eugenia Pérez‐Martínez, Asymptotic stability of the spectrum of a parametric family of homogenization problems associated with a perforated waveguide, 2023, 0025-584X, 10.1002/mana.202100589 | |
6. | D. Gómez, S. A. Nazarov, M.-E. Pérez-Martínez, Pointwise Fixation along the Edge of a Kirchhoff Plate, 2023, 1072-3374, 10.1007/s10958-023-06862-8 |