Loading [MathJax]/jax/output/SVG/jax.js
Research article

Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains

  • Received: 25 July 2022 Revised: 17 April 2023 Accepted: 27 April 2023 Published: 06 June 2023
  • This is Part III of a series on the existence of uniformly bounded extension operators on randomly perforated domains in the context of homogenization theory. Recalling that randomly perforated domains are typically not John and hence extension is possible only from W1,p to W1,r, r<p, we will show that the existence of such extension operators can be guaranteed if the weighted expectations of four geometric characterizing parameters are bounded: The local Lipschitz constant M, the local inverse Lipschitz radius δ1 resp. ρ1, the mesoscopic Voronoi diameter d and the local connectivity radius R.

    Citation: Martin Heida. Stochastic homogenization on perforated domains III–General estimates for stationary ergodic random connected Lipschitz domains[J]. Networks and Heterogeneous Media, 2023, 18(4): 1410-1433. doi: 10.3934/nhm.2023062

    Related Papers:

    [1] Martin Heida . Stochastic homogenization on perforated domains Ⅰ – Extension Operators. Networks and Heterogeneous Media, 2023, 18(4): 1820-1897. doi: 10.3934/nhm.2023079
    [2] Martin Heida, Benedikt Jahnel, Anh Duc Vu . Regularized homogenization on irregularly perforated domains. Networks and Heterogeneous Media, 2025, 20(1): 165-212. doi: 10.3934/nhm.2025010
    [3] Hakima Bessaih, Yalchin Efendiev, Florin Maris . Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10(2): 343-367. doi: 10.3934/nhm.2015.10.343
    [4] Luca Lussardi, Stefano Marini, Marco Veneroni . Stochastic homogenization of maximal monotone relations and applications. Networks and Heterogeneous Media, 2018, 13(1): 27-45. doi: 10.3934/nhm.2018002
    [5] Patrick Henning . Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7(3): 503-524. doi: 10.3934/nhm.2012.7.503
    [6] Nils Svanstedt . Multiscale stochastic homogenization of monotone operators. Networks and Heterogeneous Media, 2007, 2(1): 181-192. doi: 10.3934/nhm.2007.2.181
    [7] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . Homogenization of variational functionals with nonstandard growth in perforated domains. Networks and Heterogeneous Media, 2010, 5(2): 189-215. doi: 10.3934/nhm.2010.5.189
    [8] Peter Bella, Arianna Giunti . Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13(1): 155-176. doi: 10.3934/nhm.2018007
    [9] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [10] Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski . Steklov problems in perforated domains with a coefficient of indefinite sign. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151
  • This is Part III of a series on the existence of uniformly bounded extension operators on randomly perforated domains in the context of homogenization theory. Recalling that randomly perforated domains are typically not John and hence extension is possible only from W1,p to W1,r, r<p, we will show that the existence of such extension operators can be guaranteed if the weighted expectations of four geometric characterizing parameters are bounded: The local Lipschitz constant M, the local inverse Lipschitz radius δ1 resp. ρ1, the mesoscopic Voronoi diameter d and the local connectivity radius R.





    [1] D. J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, New York: Springer, 1988.
    [2] R. G. Durán, M. A. Muschietti, The Korn inequality for Jones domains, Electron. J. Differ. Equ., 2004 (2004), 1–10.
    [3] N. Guillen, I. Kim, Quasistatic droplets in randomly perforated domains, Arch Ration Mech Anal, 215 (2015), 211–281.
    [4] M. Heida, An extension of the stochastic two-scale convergence method and application, Asymptot. Anal., 72 (2011), 1–30. https://doi.org/10.1097/INF.0b013e3181f1e704 doi: 10.1097/INF.0b013e3181f1e704
    [5] M. Heida, Stochastic homogenization on perforated domains I: Extension operators, arXiv: 2105.10945, [Preprint], (2021) [cited 2023 June 06 ]. Available from: https://arXiv.org/abs/2105.10945
    [6] M. Heida, Stochastic homogenization on perforated domains II–application to nonlinear elasticity models, Z Angew Math Mech, 102 (2022), e202100407.
    [7] M. Höpker, Extension Operators for Sobolev Spaces on Periodic Domains, Their Applications, and Homogenization of a Phase Field Model for Phase Transitions in Porous Media, (German), Doctoral Thesis of University Bremen, Bremen, 2016.
    [8] P. W. Jones, Quasiconformal mappings and extendability of functions in sobolev spaces, Acta Math., 147 (1981), 71–88. https://doi.org/10.1007/BF02392869 doi: 10.1007/BF02392869
    [9] J. Mecke, Stationäre zufällige Maße auf lokalkompakten abelschen Gruppen, Probab Theory Relat, 9 (1967), 36–58. https://doi.org/10.1007/BF00535466 doi: 10.1007/BF00535466
    [10] A. Piatnitski, M. Ptashnyk, Homogenization of biomechanical models of plant tissues with randomly distributed cells, Nonlinearity, 33 (2020), 5510. https://doi.org/10.1088/1361-6544/ab95ab doi: 10.1088/1361-6544/ab95ab
    [11] A.A. Tempel'man, Ergodic theorems for general dynamical systems, Trudy Moskovskogo Matematicheskogo Obshchestva, 26 (1972), 95–132.
  • This article has been cited by:

    1. Yunzhi Ma, Louis Lee, O. Keshet, Paul Keall, Lei Xing, Four-dimensional inverse treatment planning with inclusion of implanted fiducials in IMRT segmented fields, 2009, 36, 00942405, 2215, 10.1118/1.3121425
    2. Hendrik Teske, Kathrin Bartelheimer, Jan Meis, Rolf Bendl, Eva M Stoiber, Kristina Giske, Construction of a biomechanical head and neck motion model as a guide to evaluation of deformable image registration, 2017, 62, 0031-9155, N271, 10.1088/1361-6560/aa69b6
    3. Sebastian Suhr, Daniel Tenbrinck, Martin Burger, Jan Modersitzki, 2014, Chapter 24, 978-3-319-08553-1, 231, 10.1007/978-3-319-08554-8_24
    4. Ming Chao, Yaoqin Xie, Lei Xing, Auto-propagation of contours for adaptive prostate radiation therapy, 2008, 53, 0031-9155, 4533, 10.1088/0031-9155/53/17/005
    5. Lisa Tang, Ghassan Hamarneh, Rafeef Abugharbieh, 2010, Chapter 16, 978-3-642-14365-6, 173, 10.1007/978-3-642-14366-3_16
    6. Rozhin Penjweini, Michele M. Kim, Timothy C. Zhu, Three-dimensional finite-element based deformable image registration for evaluation of pleural cavity irradiation during photodynamic therapy, 2017, 44, 00942405, 3767, 10.1002/mp.12284
    7. Dana Paquin, Doron Levy, Lei Xing, Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy, 2008, 36, 00942405, 4, 10.1118/1.3026602
    8. Nicolás Barnafi, Gabriel N. Gatica, Daniel E. Hurtado, Primal and Mixed Finite Element Methods for Deformable Image Registration Problems, 2018, 11, 1936-4954, 2529, 10.1137/17M115219X
    9. Yaoqin Xie, Ming Chao, Lei Xing, Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of Shear Movement of Lungs, 2009, 74, 03603016, 1256, 10.1016/j.ijrobp.2009.02.023
    10. Jidong Hou, Mariana Guerrero, Wenjuan Chen, Warren D. D'Souza, Deformable planning CT to cone-beam CT image registration in head-and-neck cancer, 2011, 38, 00942405, 2088, 10.1118/1.3554647
    11. Yaoqin Xie, Ming Chao, Percy Lee, Lei Xing, Feature-based rectal contour propagation from planning CT to cone beam CT, 2008, 35, 00942405, 4450, 10.1118/1.2975230
    12. Klas Modin, Adrian Nachman, Luca Rondi, A multiscale theory for image registration and nonlinear inverse problems, 2019, 346, 00018708, 1009, 10.1016/j.aim.2019.02.014
    13. Eduard Schreibmann, Paul Pantalone, Anthony Waller, Tim Fox, A measure to evaluate deformable registration fields in clinical settings, 2012, 13, 15269914, 126, 10.1120/jacmp.v13i5.3829
    14. Ming Chao, Yaoqin Xie, Eduardo G. Moros, Quynh-Thu Le, Lei Xing, Image-based modeling of tumor shrinkage in head and neck radiation therapya), 2010, 37, 00942405, 2351, 10.1118/1.3399872
    15. Noémie Debroux, Carole Le Guyader, Luminita A. Vese, 2021, Chapter 10, 978-3-030-75548-5, 115, 10.1007/978-3-030-75549-2_10
    16. Robert Boyd, Amar Basavatia, Wolfgang A. Tomé, Validation of accuracy deformable image registration contour propagation using a benchmark virtual HN phantom dataset, 2021, 1526-9914, 10.1002/acm2.13246
    17. Noémie Debroux, Carole Le Guyader, 2023, Chapter 49, 978-3-031-31974-7, 639, 10.1007/978-3-031-31975-4_49
    18. Noémie Debroux, Carole Le Guyader, Luminita A. Vese, A Multiscale Deformation Representation, 2023, 16, 1936-4954, 802, 10.1137/22M1510200
    19. Veit Sandfort, Martin J. Willemink, Marina Codari, Domenico Mastrodicasa, Dominik Fleischmann, Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data, 2024, 6, 2638-6100, 10.1148/ryai.230153
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1527) PDF downloads(211) Cited by(1)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog