Loading [MathJax]/jax/output/SVG/jax.js
Research article

Neuro-swarms intelligent computing using Gudermannian kernel for solving a class of second order Lane-Emden singular nonlinear model

  • Received: 27 September 2020 Accepted: 09 December 2020 Published: 21 December 2020
  • MSC : 68T20, 65Lxx, 68U99

  • The present work is to design a novel Neuro swarm computing standards using artificial intelligence scheme to exploit the Gudermannian neural networks (GNN)accomplished with global and local search ability of particle swarm optimization (PSO) and sequential quadratic programming scheme (SQPS), called as GNN-PSO-SQPS to solve a class of the second order Lane-Emden singular nonlinear model (SO-LES-NM). The suggested intelligent computing solver GNN-PSO-SQPS using the Gudermannian kernel are unified with the configuration of the hidden layers of GNN of differential operators for solving the SO-LES-NM. An error based fitness function (FF) applying the differential form of the differential model and corresponding boundary conditions. The FF is optimized together with the combined heuristics of PSO-SQPS. Three problems of the SO-LES-NM are solved to validate the correctness, effectiveness and competence of the designed GNN-PSO-SQPS. The performance of the GNN-PSO-SQPS through statistical operators is tested to check the constancy, convergence and precision.

    Citation: Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Adnène Arbi, Gilder Cieza Altamirano, Jinde Cao. Neuro-swarms intelligent computing using Gudermannian kernel for solving a class of second order Lane-Emden singular nonlinear model[J]. AIMS Mathematics, 2021, 6(3): 2468-2485. doi: 10.3934/math.2021150

    Related Papers:

    [1] Osama Ala'yed, Rania Saadeh, Ahmad Qazza . Numerical solution for the system of Lane-Emden type equations using cubic B-spline method arising in engineering. AIMS Mathematics, 2023, 8(6): 14747-14766. doi: 10.3934/math.2023754
    [2] McSylvester Ejighikeme Omaba . New analytical method of solution to a nonlinear singular fractional Lane–Emden type equation. AIMS Mathematics, 2022, 7(10): 19539-19552. doi: 10.3934/math.20221072
    [3] Thanasak Mouktonglang, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Saira Bhatti, Thongchai Botmart, Wajaree Weera, Chantapish Zamart . Designing Meyer wavelet neural networks for the three-species food chain model. AIMS Mathematics, 2023, 8(1): 61-75. doi: 10.3934/math.2023003
    [4] Zhiqian He, Liangying Miao . Multiplicity of positive radial solutions for systems with mean curvature operator in Minkowski space. AIMS Mathematics, 2021, 6(6): 6171-6179. doi: 10.3934/math.2021362
    [5] Shakeel Muhammad, Obaid J. Algahtani, Sayed Saifullah, Amir Ali . Theoretical and numerical aspects of the Malaria transmission model with piecewise technique. AIMS Mathematics, 2023, 8(12): 28353-28375. doi: 10.3934/math.20231451
    [6] F. Z. Geng . Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems. AIMS Mathematics, 2020, 5(6): 6020-6029. doi: 10.3934/math.2020385
    [7] Chuanli Wang, Biyun Chen . An $ hp $-version spectral collocation method for fractional Volterra integro-differential equations with weakly singular kernels. AIMS Mathematics, 2023, 8(8): 19816-19841. doi: 10.3934/math.20231010
    [8] Osama Ala'yed, Ahmad Qazza, Rania Saadeh, Osama Alkhazaleh . A quintic B-spline technique for a system of Lane-Emden equations arising in theoretical physical applications. AIMS Mathematics, 2024, 9(2): 4665-4683. doi: 10.3934/math.2024225
    [9] Ramsha Shafqat, Ateq Alsaadi . Artificial neural networks for stability analysis and simulation of delayed rabies spread models. AIMS Mathematics, 2024, 9(12): 33495-33531. doi: 10.3934/math.20241599
    [10] Ziqiang Wang, Jiaojiao Ma, Junying Cao . A higher-order uniform accuracy scheme for nonlinear $ \psi $-Volterra integral equations in two dimension with weakly singular kernel. AIMS Mathematics, 2024, 9(6): 14325-14357. doi: 10.3934/math.2024697
  • The present work is to design a novel Neuro swarm computing standards using artificial intelligence scheme to exploit the Gudermannian neural networks (GNN)accomplished with global and local search ability of particle swarm optimization (PSO) and sequential quadratic programming scheme (SQPS), called as GNN-PSO-SQPS to solve a class of the second order Lane-Emden singular nonlinear model (SO-LES-NM). The suggested intelligent computing solver GNN-PSO-SQPS using the Gudermannian kernel are unified with the configuration of the hidden layers of GNN of differential operators for solving the SO-LES-NM. An error based fitness function (FF) applying the differential form of the differential model and corresponding boundary conditions. The FF is optimized together with the combined heuristics of PSO-SQPS. Three problems of the SO-LES-NM are solved to validate the correctness, effectiveness and competence of the designed GNN-PSO-SQPS. The performance of the GNN-PSO-SQPS through statistical operators is tested to check the constancy, convergence and precision.



    The singular based models have gotten much importance due to its valued applications in physiology, physics and mathematics submissions. The Lane-Emden based model is one the historic paramount singular model introduced by famous astrophysics Lane and the further explored by Emden [1,2]. The general form of the second order Lane-Emden singular nonlinear model (SO-LES-NM) is given as [3]:

    {v(η)+σηv(η)+g(η,v)=0,,σ0,0<η1,v(0)=i1,v(0)=i2, (1)

    where i1 and i2 are constants, σ is the shape factor, while g(η,v) is known as the real valued continuous function.

    The singular Lane-Emden nonlinear systems are widely implemented to solve an assortment of phenomena in the fields of physical science [4], gaseous star density [5], electromagnetic theory [6], morphogenesis study [7], stellar structure model [8], study of mathematical physics [9], oscillating magnetic fields [10], dusty fluid system [11] and an isotropic standard [12]. The singular models due to singularity are found to be hard and grim at the origin. A small number of numerical and analytical approaches are available to tackle such nonlinear singular systems are given in these references [13,14,15,16].

    All above-mentioned approaches shave their specific sensitivity, efficiency, potential and perfection, as well as, weaknesses, disadvantages, imperfections, flaws and demerits over one another. The potential of the wide-ranging computing heuristic of the scheme is applied to the singular models using the extensive approximation aptitude of artificial neural networks (ANNs) mutually with the local and global methodologies [17,18,19,20,21,22,23]. Some notable illustrations contain mosquito dispersal study in a heterogeneous conditions [24], nonlinear dusty plasma system [25], nonlinear functional differential singular models [26,27], plasma physics studies [28], Thomas-Fermi system [29], HIV infection system of CD4+ T cells [30], biological prey-predator model [31], nonlinear singular periodic differential system [32], nanotechnology systems [33], Jeffery Hamel flow problem [34], corneal shape system based on eye surgery [35], singular differential model [36] and atomic physics system [37].

    These prospective and potential submissions demonstrated the importance, value and significance of the numerical stochastic based computing solvers in terms of exactitude, stability and convergence. Consequently, the novel features of the Gudermannian neural network (GNN) are designed together with particle swarm optimization (PSO) and the sequential quadratic programming scheme, i.e., GNN-PSO-SQPS to solve the SO-LES-NM.

    The motive of this research work is to solve SO-LES-NM by integrating the intelligent computing approach based on the GNN-PSO-SQPS. The innovative features of the GNN-PSO-SQPS are given as follows:

    ● A novel computingGNN-PSO-SQPSintelligentsolveris exploited and explored using the GNN along with the hybrid-combination of PSO-SQPS.

    ● The designed GNN-PSO-SQPS are tested precisely and accurately for solving three different problems of the SO-LES-NM.

    ● The coinciding of the outcomes achieved by the proposed GNN-PSO-SQPS and the exact results demonstrations the correctness of the scheme to solve SO-LES-NM.

    ● The results through proposed GNN-PSO-SQPS for single/multiple runsvia performance investigations of mean, root mean square error (RMSE), semi inter quartile range(S-I-R), Theil's inequality coefficient (TIC), median and standard deviation certified the competence, consistency, precision, accuracy and correctness of the designed GNN-PSO-SQPS.

    The rest parts of this research paper are given as: The methodology is given in Sec 2, the performance indices information is given in Sec 3, the detail of numerical results together with future research clarifications is given in Section 4.

    In this section, the design of the differential operator GNN is presented to solve the SO-LES-NM. The detail of the differential model, fitness function (FF) and optimization using the suggested PSO-SQPS are provided.

    The models based on neural network are familiar to provide the reliable, standardized and consistent solutions for a number of applications indifferent fields. In the below modeling, ˆv(η) represents the obtained outcomes from the GNN-PSO-SQPS together with its nth derivatives are given as:

    ˆv(η)=mk=1akh(wkη+qk)ˆv(n)(η)=mk=1akh(n)(wkη+qk), (2)

    where, m and n represent the neurons and derivative order, respectively. The activation function is h, whereas, a, w and q are the unidentified weight vectors defined as W=[a,w,q], for a=[a1,a2,a3,...,am], w=[w1,w2,w3,...,wm] and q=[q1,q2,q3,...,qm]. The literature form of the Gudermannian function is given as:

    v(η)=2tan1(eη)π2 (3)

    The Gudermannian activation function using the above equation becomes as:

    ˆv(η)=mk=1ak(2tan1e(wkη+qk)0.5π),ˆv(η)=mk=1ak(2tan1e(wkη+qk)0.5π),ˆv(η)=mk=12akwk(e(wkη+qk)1+(e(wkη+qk))2),
    ˆv(η)=mk=12akwk2(e(wkη+qk)1+(e(wkη+qk))22e(wkη+qk)3(1+(e(wkη+qk))2)2)

    To solve the SO-LES-NM, the formulation of FF using the mean squared error metric is written as:

    ξFIT=ξFIT1+ξFIT2, (5)

    where ξFIT1and ξFIT2 are the unsupervised error functions connected to the SO-LES-NM and relevant conditions of the SO-LES-NM (1) are given as:

    ξFIT1=1NNk=1(ˆv(ηk)+σηkˆv(ηk)+g(ηk,ˆv(ηk)))2, (6)
    ξFIT2=12((ˆv0i1)2+(ˆv0i2)2), (7)

    where Nh=1,ˆvk=ˆv(ηk),g(ηk,ˆv)=g(ηk,ˆv(ηk))and ηk=kh.

    While the networks presented in (6, 7), used Gudermannian function (3) and its derivatives as a activation function. Now after learning of the weights of the networks, one can optimize the fitness/cost function in (6, 7) and accordingly the solution of system (1) is approximately by proposed methodology.

    The capability of the ANNs based optimization models to solve the SO-LES-NM using the designed GNN-PSO-SQPS.

    PSO is used as an alteration of the genetic algorithm and work as a global search method [38,39]. PSO is an easy implementation, needs less memory and global search optimization process introduced in the previous century [40]. Recently, PSO is applied in many applications like as Some recent PSO applications are traveling salesman problem [41], SFO-DTC induction motor drive [42], to evaluate the parameters of the reaction kinetic parameters [43], prediction of asphalting precipitation [44], reducing cost and increasing reliability [45] and object detection in autonomous driving [46].

    To modify the PSO parameters, the scheme provides optimal iterative solutions, PΦ1LB and PΦ1GB denote the swarm's position and velocity, written as:

    Xki=Xk1i+Vk1i, (8)

    where Vi and Xi denote the velocity and position, 1 and 2 are the constant values of the accelerations, while Ψ[0,1] shows the weight inertia vector.

    In order to perform the rapid convergence, the global PSO approach is hybridized with an appropriate local search scheme taking the PSO results. Therefore, an operative local search scheme named as SQS is executed to regulate the obtained outcomes through the GNN-PSO-SQPS. Some latest applications of SQS are transient heat conduction model [47], geometric optimization of radioactive enclosures [48], nonlinear predictive control model [49], cognitive radio system [50] and optimal management of automated vehicles at intersections [51]. The detail of the optimization procedure using the hybrid of PSO-SQPS are tabulated in the pseudo code Table 1.

    Table 1.  Pseudo code for the GNN-PSO-SQPS to solve the SO-LES-NM.

     | Show Table
    DownLoad: CSV

    The presentation of two different measures for solving the SO-LES-NM are constructed in terms of the RMSE and TIC that are executed to verify the proposed PSO-SQPS, the mathematical notations of these procedures are given as:

    RMSE=1nnk=1(vkˆvkk)2, (10)
    TIC=1nnk=1(vkˆvk)2(1nnk=1v2k+1nnk=1ˆv2k). (11)

    The detailed simulation based results of the numerical results through the GNN-PSO-SQPS for the SO-LES-NM are described in this section.

    Example1: Consider the SO-LES-NM (1)having exponential function g(η,v)=e2v(η)0.5ev(η) as:

    {v(η)+0.5ηv(η)+(e2v(η)12ev(η))=0,η(0,1),v(0)=ln(2),v(1)=0. (12)

    For the Eq (12), the FF becomes as:

    ξFIT=1NNk=1(ηkˆv(ηk)+0.5ˆv(ηk)+ηk(e2ˆv(ηk)0.5e2ˆv(ηk)))2+12((ˆv0ln(2))2+(ˆvN)2). (13)

    The true solution of the Eq (12) is ln2ln(η2+1).

    Example 2: Consider the SO-LES-NM (1) involving fifth order nonlinearity for g(η,v)=v5(η) as:

    {v(η)+2tv(η)+v5(η)=0,η(0,1),v(1)=0.75,v(0)=0. (14)

    For the Eq (14), the FF becomes as:

    ξFIT=1NNk=1(ηkˆv(ηk)+2ˆv(ηk)+ηkˆv5(ηk))2+12((ˆvN0.75)2+(ˆv0)2). (15)

    The true solution takes the form as (3η2+3)12.

    Example3: Consider the SO-LES-NM (1) involving exponential function g(η,v)=ev(η) as:

    {v(η)+1ηv(η)+ev(η)=0,η(0,1),v(1)=v(0)=0. (16)

    For the Eq (16), the FF becomes as:

    ξFIT=1NNk=1(ηkˆv(ηk)+ˆv(ηk)+ηkeˆv(ηk))2+12((ˆv0)2+(ˆvN)2). (17)

    The true solution of the Eq (16) is ln(422(322)η2+1)2.

    The optimization for all the examples of the SO-LES-NM optimized by the hybrid of PSO-SQPS using the Gudermannian activation function for hundred independent runs to get the system variables of the parameter. A set of the best weights authenticate the numerical results by taking 10 neurons and the mathematical notations of these proposed outcomes is written as:

    ˆv1(η)=0.7453(2tan1e(2.0927η+1.1104)0.5π)+0.1109(2tan1e(0.801η+5.8171)0.5π)+2.0076(2tan1e(1.5406η+0.3425)0.5π)2.6674(2tan1e(2.1168η+2.3665)0.5π)2.5625(2tan1e(0.1558η0.0935)0.5π)0.4081(2tan1e(1.0143η+10.712)0.5π)0.7660(2tan1e(4.1431η3.0384)0.5π)+1.5666(2tan1e(1.2997η0.735)0.5π)2.1009(2tan1e(1.7895η+5.5393)0.5π)+1.7772(2tan1e(0.5024η+0.599)0.5π), (18)
    ˆv2(η)=10.138(2tan1e(10.799η+12.852)0.5π)12.223(2tan1e(0.035η+1.0954)0.5π)11.339(2tan1e(11.867η+9.207)0.5π)7.1434(2tan1e(2.011η4.574)0.5π)7.3114(2tan1e(2.011η4.574)0.5π)7.3114(2tan1e(11.676η+9.506)0.5π)3.0726(2tan1e(2.012η11.384)0.5π)+1.1013(2tan1e(12.393η+11.63)0.5π)+7.8400(2tan1e(7.2194η+11.870)0.5π)+4.9173(2tan1e(8.072η11.27)0.5π), (19)
    ˆv3(η)=1.8380(2tan1e(2.1397η+6.8250)0.5π)+8.1775(2tan1e(6.0183η+7.2965)0.5π)6.3058(2tan1e(0.779η+2.4809)0.5π)+5.9782(2tan1e(8.4858η+7.5846)0.5π)4.9626(2tan1e(0.1227η8.6133)0.5π)9.4747(2tan1e(1.382η+6.6550)0.5π)+6.3056(2tan1e(0.328η+1.5773)0.5π)2.3713(2tan1e(5.0314η7.622)0.5π)+1.2986(2tan1e(5.2289η+7.6306)0.5π)+8.9176(2tan1e(6.4814η7.933)0.5π), (20)

    Figure 1 represents the set of the best weights for 10 neurons along with the comparison of the exact, best and mean performances of the results for the SO-LES-NM based Examples 1–3. The value of the best weight sets by using the Eqs 18 to 20 are plotted in the Figure 1 for all the problems. The numerical performances of the exact, best and mean results have been performed between 0 and 1 with the step size 0.1 along with 10numbers of neurons throughout this research study. The comparison of these mentioned exact, best and mean results for all the examples of the SO-LES-NM is matched over one another. These valuations of the outcomes represented in the Figure 1 specify the exactness, perfection and accuracy of the advised GNN-PSO-SQPS. The performance soundings based on the FIT, RMSE and TIC operators along with the mean, worst and best AE values for all measures of SO-LES-NM is plotted in Figure 2. To investigate the performances for the example 1, one can observe that the best FIT and TIC values lie around 10−08 to 10−10and the best RMSE values exist in10−05 to 10−06 interval. The mean FIT, RMSE and TIC values for example 1 exist in the ranges of10-04 to 10−06, 10−03 to 10−04 and 10−07 to 10−08, respectively. For examples 2 and 3, the best values of the FIT, RMSE and TIC values lie around 10−08 to 10−10. The mean values of the FIT, RMSE and TIC values lie around 10−02 to 10−04, 10−05 to 10−06 and 10−01 to 10−03. The worst values for all the performance indices are also found in good ranges. Toevaluate the absolute error (AE) for the examples 1, 2 and 3, the best values are calculated around 10−05–10−06, 10−04 to 10−05 and 10−04 to 10−06. The mean gage values are found around 10−03 to 10−04, 10−01 to 10−03and 10−02 to 10−03, respectively. On the behalf of these indices, one can calculate the specific, accurate and precise values of the RMSE and TIC for all theSO-LES-NM based examples 1 to 3. The statistical investigation based on Fitness, RMSE and TIC values using the histogram and the box plots for the SO-LES-NM is provided in Figures 3 to 5. It is interpreted that most of the independent executions have been achieved best values of FIT, RMSE and TIC.

    Figure 1.  A set of best weights for 10 neurons along with the comparison of the exact, best and mean performances of the results for the SO-LES-NM based Examples 1–3.
    Figure 2.  Performance soundings based on the FIT, RMSE and TIC operators along with the mean, worst and best AE values for all the measures of SO-LES-NM.
    Figure 3.  Statistical investigation via Fitness, histogram along with boxplots for the SO-LES-NM using the GNN-PSO-SQPS.
    Figure 4.  Statistical investigation via Fitness, histogram along with boxplots for the SO-LES-NM using the GNN-PSO-SQPS.
    Figure 5.  Statistical investigation via Fitness, histogram along with boxplots for the SO-LES-NM using GNN-PSO-SQPS.

    Statistical representations have been scrutinized applying the GNN-PSO-SQPS to solve the SO-LES-NM for 100 independent executions using the mean, semi inter quartile range (S.I.R), maximum (Max), standard deviation (STD), minimum (Min) and median (MED) are tabulated in Table 2. The Min gage value shows the best outcomes, whereas the Max values show the worst runs for the GNN-PSO-SQPS. S.I.R is one-half of the 3rd and 1st quartile difference. These statistic measures for all examples of the SO-LES-NM are obtained satisfactory. The global demonstrations for all examples of the SO- LES-NM applying the proposed GNN-PSO-SQPS are provided in Table 3. The Min [G-FIT], [G-RMSE] and [G-TIC] values lie 10−08 to 10−10, 10−05 to 10−06 and 10−09 to 10−10, respectively, whereas the MED values are examined in the ranges of 10−07 to 10−08, 10−04 to 10−05and 10−08 to 10−09, respectively for the SO-LES-NM using the designed GNN-PSO-SQPS. These optimal achieved values from the designed GNN-PSO-SQPS based global operatives approve the accuracy of the scheme. The complexity performances for the SO-LES-N Musing the designed GNN-PSO-SQPS based on the iterations, period of executions and function evaluations are provided in Table 4. One can see that the generations values, executed time together with the count of function lie around 35.553778, 1561.16667 and 53176.38667, respectively, for solving the SO-LES-NM using the designed GNN-PSO-SQPS.

    Table 2.  Statistical presentations for all examples of the SO-LES-NM using the designed GNN-PSO-SQPS.
    Index Gages The outcomes through GNN-PSO-SQPS for the SO-LES-NM
    0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0
    E 1 Min 1×10-07 5×10-06 5×10-06 6×10-06 7×10-08 2×10-06 6×10-06 5×10-06 5×10-06 4×10-06 3×10-06
    Mean 1×10-04 2×10-04 4×10-04 6×10-04 6×10-04 6×10-04 6×10-04 6×10-04 5×10-04 4×10-04 4×10-04
    Max 2×10-03 3×10-03 5×10-03 5×10-03 7×10-03 8×10-03 9×10-03 8×10-03 8×10-03 7×10-03 6×10-03
    Med 4×10-05 1×10-04 3×10-04 4×10-04 4×10-04 4×10-04 4×10-04 4×10-04 3×10-04 2×10-04 2×10-04
    STD 3×10-04 3×10-04 6×10-04 8×10-04 1×10-03 1×10-03 1×10-03 1×10-03 9×10-04 8×10-04 7×10-04
    S-I-R 5×10-05 1×10-04 2×10-04 3×10-04 2×10-04 2×10-04 2×10-04 2×10-04 2×10-04 2×10-04 2×10-04
    E 2 Min 1×10-06 1×10-05 1×10-05 2×10-05 1×10-05 1×10-05 1×10-05 1×10-05 1×10-05 1×10-05 1×10-05
    Mean 2×10-02 2×10-02 2×10-02 2×10-02 1×10-02 1×10-02 1×10-02 1×10-02 8×10-03 6×10-03 4×10-03
    Max 7×10-01 7×10-01 6×10-01 5×10-01 4×10-01 3×10-01 2×10-01 2×10-01 2×10-01 1×10-01 1×10-01
    Med 1×10-04 1×10-04 9×10-05 7×10-05 8×10-05 8×10-05 8×10-05 7×10-05 6×10-05 5×10-05 4×10-05
    STD 1×10-01 1×10-01 1×10-01 8×10-02 7×10-02 6×10-02 5×10-02 4×10-02 3×10-02 2×10-02 2×10-02
    S-I-R 1×10-04 1×10-04 1×10-04 1×10-04 1×10-04 1×10-04 1×10-04 1×10-04 8×10-05 6×10-05 4×10-05
    E 3 Min 7×10-08 2×10-07 2×10-06 8×10-07 1×10-07 8×10-07 6×10-08 1×10-06 2×10-07 1×10-06 1×10-10
    Mean 2×10-02 1×10-02 1×10-02 8×10-03 6×10-03 5×10-03 4×10-03 3×10-03 2×10-03 1×10-03 8×10-04
    Max 2×10-01 1×10-01 1×10-01 8×10-01 6×10-01 5×10-01 4×10-01 3×10-01 2×10-01 1×10-01 8×10-02
    Med 1×10-04 9×10-05 6×10-05 5×10-05 5×10-05 4×10-05 4×10-05 2×10-05 1×10-05 1×10-05 1×10-06
    STD 2×10-01 1×10-01 1×10-01 8×10-02 6×10-02 5×10-02 4×10-02 3×10-02 2×10-02 1×10-02 8×10-03
    S-I-R 1×10-04 6×10-05 5×10-05 3×10-05 3×10-05 2×10-05 2×10-05 2×10-05 1×10-05 9×10-06 6×10-06

     | Show Table
    DownLoad: CSV
    Table 3.  Global values for the SO-LES-NM using the designed GNN-PSO-SQPS.
    Example [G-FIT] [G-RMSE] [G-TIC]
    Min MED Min MED Min MED
    1 1.00696E-10 7.28133E-07 5.36058E-06 3.81384E-04 8.66807E-10 6.33787E-08
    2 9.02993E-10 3.33640E-07 2.04610E-05 8.11596E-05 2.86113E-09 1.16280E-08
    3 1.14757E-08 4.48479E-08 8.71755E-06 6.65576E-05 1.37498E-09 9.27960E-09

     | Show Table
    DownLoad: CSV
    Table 4.  Complexity performances for the SO-LES-NM using the GNN-PSO-SQPS.
    Example Generation Executed Time Function Calculations
    Mean STD Mean STD Mean STD
    1 32.341614 10.792954 1375.580000 1118.437060 48632.910000 15590.684384
    2 38.944620 13.014598 1533.930000 1257.031988 57831.440000 18477.308549
    3 35.375101 13.738706 1773.990000 1590.724900 53064.810000 19709.332159

     | Show Table
    DownLoad: CSV

    The present research investigations are associated to present a novel Gudermannian neural network to solve the nonlinear second order singular Lane-Emden system using the hybrid computing GNN-PSO-SQPS framework involving singularities at the origin. An error based objective function is optimized by using the global capability of particle swarm optimization and fast/rapid sequential quadratic scheme using 10 numbers of neurons throughout the present study. The design of the Gudermannian neural network is successfully exploited to solve the nonlinear second order singular Lane-Emden system. The obtained results using the process of optimization through the Gurmannian kernels have been compared with the true solutions for three different examples to check the precision and correctness of the suggested GNN-PSO-SQPS. One can find that the obtained and exact results overlapped over one another and examined the accuracy of order 5 to 7 decimal places. Furthermore, the performance of the scheme is investigated through the RMSE and TIC operators by taking the mean, worst and best AE values for all examples of the nonlinear second order singular Lane-Emden system. It is observed that the best values lie around 10-06-10-08, while the mean results and even the worst results lie in the good ranges for all the measures. The statistical clarifications for the 100 independent trials are implemented to the nonlinear second order singular Lane-Emden system in terms of the gages minimum, median, standard deviation, maximum, semi inter quartile range, mean authenticates the trustworthiness, robustness, accurateness and exactness of the proposed GNN-PSO-SQPS that is identified further by the performance measures of RMSE and TIC.

    In the future, the considered GNN-PSO-SQPS can be used to the biological systems [52,53], as well as, two or three-dimensional systems of fluid dynamics [54,55,56,57].

    The authors state that they have no conflict of interest. All authors have worked in an equal sense to find these results.



    [1] H. J. Lane, On the theoretical temperature of the Sun, under the Hypothesis of a gaseous Mass maintaining its Volume by its internal Heat and depending on the laws of gases as known to terrestrial Experiment, Am. J. Sci., 148 (1870), 57-74.
    [2] R. Emden, Gaskugeln Teubner. Leipzig und Berlin, 1907.
    [3] Z. Sabir, H. A. Wahab, H. Umr, M. G. Sakar, M. A. Z. Raja, Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation, Math. Comput. Simul., 172 (2020), 1-14. doi: 10.1016/j.matcom.2020.01.005
    [4] D. Baleanu, S. S. Sajjadi, A, Jajarmi, J. H. Asad, New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator. Eur. Phys. J. Plus, 134 (2019), 181. doi: 10.1140/epjp/i2019-12561-x
    [5] T. Luo, Z. Xin, H. Zeng, Nonlinear asymptotic stability of the Lane-Emden solutions for the viscous gaseous star problem with degenerate density dependent viscosities, Comm. Math. Phys, 347 (2016), 657-702. doi: 10.1007/s00220-016-2753-1
    [6] J. A. Khan, M. A. Z. Raja, M. M. Rashidi, M. I. Syam, A. M. Wazwaz, Nature-inspired computing approach for solving non-linear singular Emden-Fowler problem arising in electromagnetic theory, Connect. Sci., 27 (2015), 377-396. doi: 10.1080/09540091.2015.1092499
    [7] M. Ghergu, V. Rădulescu, On a class of singular Gierer-Meinhardt systems arising in morphogenesis, C. R. Math., 344 (2007), 163-168. doi: 10.1016/j.crma.2006.12.008
    [8] R Rach, J. S. Duan, A. M. Wazwaz, Solving coupled Lane-Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method, J. Math. Chem., 52 (2014), 255-267. doi: 10.1007/s10910-013-0260-6
    [9] A. H. Bhrawy, A. S. Alofi, R. A. Van Gorder, An efficient collocation method for a class of boundary value problems arising in mathematical physics and geometry, Abst. Appl. Anal., 2014 (2014).
    [10] M. Dehghan, F. Shakeri, Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method, Prog. Electromagn. Res., 78 (2008), 361-376. doi: 10.2528/PIER07090403
    [11] D. Flockerzi, K. Sundmacher, On coupled Lane-Emden equations arising in dusty fluid models, J. Phys.: Conference Series, 268 (2011), 012006. doi: 10.1088/1742-6596/268/1/012006
    [12] V. Rădulescu, D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal. Theor. Methods Appl., 75 (2012), 1524-1530. doi: 10.1016/j.na.2011.01.037
    [13] W. Adel, Z. Sabir, Solving a new design of nonlinear second-order Lane-Emden pantograph delay differential model via Bernoulli collocation method, Eur. Phys. J. Plus, 135 (2020), 427. doi: 10.1140/epjp/s13360-020-00449-x
    [14] S. Mall, S. Chakraverty, Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev Neural Network method, Neurocomputing, 149 (2015), 975-982. doi: 10.1016/j.neucom.2014.07.036
    [15] S. Mall, S. Chakraverty, Chebyshev neural network based model for solving Lane-Emden type equations, Appl. Math. Comput., 247 (2014), 100-114.
    [16] S. Mall, S. Chakraverty, Regression-based neural network training for the solution of ordinary differential equations, Int. J. Math. Modell. Numer. Optim., 4 (2013), 136-149.
    [17] Z. Sabir, M. Umar, J. L. G. Guirao, M. Shoaib, M. A. Z. Raja, Integrated intelligent computing paradigm for nonlinear multi-singular third-order Emden-Fowler equation, Neural Comput. Appl., (2020). Available from: https://doi.org/10.1007/s00521-020-05187-w.
    [18] I Ahmad, H. Ilyas, A. Urooj, M. S. Aslam, M. Shoaib, M. A. Z. Raja, Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels, Neural Comput. Appl., 31 (2019), 9041-9059. doi: 10.1007/s00521-019-04203-y
    [19] Z. Sabir, F. Amin, D. Pohl, J. L. G. Guirao, Intelligence computing approach for solving second order system of Emden-Fowler model, J. Intell. Fuzzy Syst., In press.
    [20] Z. Sabir, S. Saoud, M. A. Z. Raja, H. A. Wahab, A. Arbi, Heuristic computing technique for numerical solutions of nonlinear fourth order Emden-Fowler equation, Math. Comput. Simul., 178 (2020), 534-548. doi: 10.1016/j.matcom.2020.06.021
    [21] M. A. Z. Raja, J. Mehmood, Z. Sabir, A. K. Nasab, M. A. Manzar, Numerical solution of doubly singular nonlinear systems using neural networks-based integrated intelligent computing. Neural Comput. Appl., 31 (2019), 793-812.
    [22] S. U. I. Ahmed, F. Faisal, M. Shoaib, M. A. Z. Raja, A new heuristic computational solver for nonlinear singular Thomas-Fermi system using evolutionary optimized cubic splines, European Phys. J. Plus, 135 (2020), 1-29. doi: 10.1140/epjp/s13360-019-00059-2
    [23] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden-Fowler equation, Eur. Phys. J. Plus, 135 (2020), 1-17. doi: 10.1140/epjp/s13360-019-00059-2
    [24] M. Umar, M. A. Z. Raja, Z. Sabir, A. S. Alwabli, M. Shoaib, A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment, Eur. Phys. J. Plus, 135 (2020), 1-23. doi: 10.1140/epjp/s13360-019-00059-2
    [25] A. H. Bukhari, M. Sulaiman, M. A. Z. Raja, S. Islam, M. Shoaib, P. Kumam, Design of a hybrid NAR-RBFs neural network for nonlinear dusty plasma system, Alex. Eng. J., 59 (2020), 3325-3345. doi: 10.1016/j.aej.2020.04.051
    [26] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Neuro-swarm intelligent computing to solve the second-order singular functional differential model, Eur. Phys. J. Plus, 135 (2020), 474. doi: 10.1140/epjp/s13360-020-00440-6
    [27] Z Sabir, H. A. Wahab, M. Umar, F. Erdoğan, Stochastic numerical approach for solving second order nonlinear singular functional differential equation, Appl. Math. Comput., 363 (2019), 124605.
    [28] M. A. Z. Raja, F. H. Shah, M. Tariq, I. Ahmad, Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troesch's problem arising in plasma physics, Neural Comput. Appl., 29 (2018), 83-109. doi: 10.1007/s00521-016-2530-2
    [29] Z. Sabir, M. A. Manzar, M. A. Z. Raja, M. Sheraz, A. M. Wazwaz, Neuro-heuristics for nonlinear singular Thomas-Fermi systems, Appl. Soft Comput., 65 (2018), 152-169. doi: 10.1016/j.asoc.2018.01.009
    [30] M. Umar, Z. Sabir, F. Amin, J. L. G. Guirao, M. A. Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells, Eur. Phys. J. Plus, 135 (2020), 403. doi: 10.1140/epjp/s13360-020-00417-5
    [31] M. Umar, Z. Sabir, M. A. Z. Raja, Intelligent computing for numerical treatment of nonlinear prey-predator models, Appl. Soft Comput., 80 (2019), 506-524. doi: 10.1016/j.asoc.2019.04.022
    [32] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, A neuro-swarming intelligence based computing for second order singular periodic nonlinear boundary value problems, (2020), Pre-print.
    [33] M. A. Z. Raja, U. Farooq, N. I. Chaudhary, A. M. Wazwaz, Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes, Appl. Soft Comput., 38 (2016), 561-586. doi: 10.1016/j.asoc.2015.10.015
    [34] A. Mehmood, A. Zameer, S. H. Ling, M. A. Z. Raja, Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery-Hamel flow, J. Taiwan Institute Chem. Eng., 91 (2018), 57-85. doi: 10.1016/j.jtice.2018.05.046
    [35] M. Umar, F. Amin, H. A. Wahab, D. Baleanu, Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery, Appl. Soft Comput., 85 (2019), 105826. doi: 10.1016/j.asoc.2019.105826
    [36] Z. Sabir, M. A. Z. Raja, M. Shoaib, J. F. G. Aguilar, FMNEICS: Fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane-Emden system, Comput. Appl. Math., 39 (2020), 1-18. doi: 10.1007/s40314-019-0964-8
    [37] M. A. Z. Raja, A. Zameer, A. U. Khan, A. M. Wazwaz, A new numerical approach to solve Thomas-Fermi model of an atom using bio-inspired heuristics integrated with sequential quadratic programming, Springer Plus, 5 (2016), 1400. doi: 10.1186/s40064-016-3093-5
    [38] Y. Shi, R. C. Eberhart, Empirical study of particle swarm optimization, Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), 3, 1945-1950. IEEE, 1999.
    [39] Y. Shi, Particle swarm optimization: Developments, applications and resources, In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), 1, 81-86. IEEE, 2001.
    [40] A. P., Engelbrecht, Computational intelligence: an introduction. John Wiley & Sons, 2007.
    [41] S. Kefi, N. Rokbani, P. Krö mer, A. M. Alimi, Ant supervised by PSO and 2-opt algorithm, AS-PSO-2Opt, applied to traveling salesman problem. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (004866-004871), 2016, IEEE.
    [42] A. Taieb, A. Ferdjouni, A new design of fuzzy logic controller optimized by PSO-SCSO applied to SFO-DTC induction motor drive, Int. J. Elect. Comput. Eng., 10 (2020), 2088-8708.
    [43] Y. Ding, W. Zhang, L. Yu, K. Lu, The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis, Energy, 176 (2019), 582-588. doi: 10.1016/j.energy.2019.04.030
    [44] E. Keybondorian, A. Taherpour, A. Bemani, T. Hamule, Application of novel ANFIS-PSO approach to predict asphaltene precipitation, Petrol. Sci. Technol., 36 (2018), 154-159. doi: 10.1080/10916466.2017.1411948
    [45] N. Ghorbani, A. Kasaeian, A. Toopshekan, L. Bahrami, A. Maghami, Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability, Energy, 154 (2018), 581-591. doi: 10.1016/j.energy.2017.12.057
    [46] G. Wang, J. Guo, Y. Chen, Y. Li, Q. Xu, A PSO and BFO-based learning strategy applied to faster R-CNN for object detection in autonomous driving, IEEE Access, 7 (2019), 18840-18859. doi: 10.1109/ACCESS.2019.2897283
    [47] K. Long, X. Wang, X. Gu, Multi-material topology optimization for the transient heat conduction problem using a sequential quadratic programming algorithm, Eng. Optimiz., 50 (2018), 2091-2107. doi: 10.1080/0305215X.2017.1417401
    [48] S. Sun, Geometric optimization of radiative enclosures using sequential quadratic programming algorithm, ES Energy Environ., 6 (2019), 57-68.
    [49] G. Torrisi, S. Grammatico, R. S. Smith, M. Morari, A variant to sequential quadratic programming for nonlinear model predictive control. In: 2016 IEEE 55th Conference on Decision and Control (CDC), 2814-2819. IEEE, 2016.
    [50] G. Singh, M. Rattan, S. S. Gill, N. Mittal, Hybridization of water wave optimization and sequential quadratic programming for cognitive radio system, Soft Comput., 23 (2019), 7991-8011. doi: 10.1007/s00500-018-3437-x
    [51] R. Hult, M. Zanon, G. Frison, S. Gros, P. Falcone, Experimental validation of a semi‐distributed sequential quadratic programming method for optimal coordination of automated vehicles at intersections, Optim. Contr. Appl. Met., 41 (2020), 1068-1096. doi: 10.1002/oca.2592
    [52] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics, Symmetry, 12 (2020), 1628. doi: 10.3390/sym12101628
    [53] T. N. Cheema, M. A. Z. Raja, I. Ahmad, S. Naz, H. Ilyas, M. Shoaib, Intelligent computing with Levenberg-Marquardt artificial neural networks for nonlinear system of COVID-19 epidemic model for future generation disease control, Eur. Phys. J. Plus, 135 (2020), 1-35. doi: 10.1140/epjp/s13360-019-00059-2
    [54] M. Umar, Z. Sabir, I. Ali, H. A. Wahab, M. Shoaib, M. A. Z. Raja, The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion, Therm. Sci., 24 (2020), 2929. doi: 10.2298/TSCI190625339U
    [55] M. Shoaib, M. A. Z. Raja, M. T. Sabir, S. Islam, Z. Shah, P. Kumam, H. Alrabaiah, Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet, Sci. Rep., 10 (2020), 1-15. doi: 10.1038/s41598-019-56847-4
    [56] Z. Shah, M. A. Z. Raja, Y. M. Chu, W. A. Khan, M. Waqas, M. Shoaib, et al. Design of neural network based intelligent computing for neumerical treatment of unsteady 3D flow of Eyring-Powell magneto-nanofluidic model, J. Mater. Res. Technol., 9 (2020), 14372-14387. doi: 10.1016/j.jmrt.2020.09.098
  • This article has been cited by:

    1. Hairong Wang, Beijing Zhou, Bo Li, Xi Xu, Yuan Li, Research of Vertical Domain Entity Linking Method Fusing Bert-Binary, 2022, 2022, 1687-7268, 1, 10.1155/2022/4262270
    2. Dawei Wang, Jianjun Liu, Bo Zhao, Xiaofeng Xu, Kenan Hou, Bing Ma, Wei Tang, Changyuan Bao, Shuwei Hou, Chunyang Dong, 2022, Chapter 98, 978-3-030-96907-3, 787, 10.1007/978-3-030-96908-0_98
    3. Muhammad Umar, Muhammad Asif Zahoor Raja, Zulqurnain Sabir, Qasem Al-Mdallal, A computational framework to solve the nonlinear dengue fever SIR system, 2022, 25, 1025-5842, 1821, 10.1080/10255842.2022.2039640
    4. Aamir Rizwan, Iftikhar Ahmad, Muhammad Asif Zahoor Raja, Muhammad Shoaib, Design of Spline–Evolutionary Computing Paradigm for Nonlinear Thin Film Flow Model, 2021, 46, 2193-567X, 9279, 10.1007/s13369-021-05830-1
    5. Zulqurnain Sabir, Muhammad Umar, Muhammad Asif Zahoor Raja, Dumitru Baleanu, Numerical Solutions of a Novel Designed Prevention Class in the HIV Nonlinear Model, 2021, 129, 1526-1506, 227, 10.32604/cmes.2021.016611
    6. Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Juan L. G. Guirao, Tareq Saeed, Swarm Intelligence Procedures Using Meyer Wavelets as a Neural Network for the Novel Fractional Order Pantograph Singular System, 2021, 5, 2504-3110, 277, 10.3390/fractalfract5040277
    7. Waleed Adel, Zulqurnain Sabir, Hadi Rezazadeh, A. Aldurayhim, Lei Hou, Application of a Novel Collocation Approach for Simulating a Class of Nonlinear Third-Order Lane–Emden Model, 2022, 2022, 1563-5147, 1, 10.1155/2022/5717924
    8. Adnène Arbi, Najeh Tahri, Stability analysis of inertial neural networks: A case of almost anti‐periodic environment, 2022, 45, 0170-4214, 10476, 10.1002/mma.8379
    9. Zulqurnain Sabir, Muhammad Umar, Muhammad Asif Zahoor Raja, Haci Mehmet Baskonus, Wei Gao, Designing of Morlet wavelet as a neural network for a novel prevention category in the HIV system, 2022, 15, 1793-5245, 10.1142/S1793524522500127
    10. Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Abeer S. Alnahdi, Mdi Begum Jeelani, M. A. Abdelkawy, Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks, 2022, 19, 1551-0018, 351, 10.3934/mbe.2022018
    11. Perla Rubi Castañeda-Aviña, Esteban Tlelo-Cuautle, Luis-Gerardo de la Fraga, Phase noise optimization of integrated ring voltage-controlled oscillators by metaheuristics, 2022, 7, 2473-6988, 14826, 10.3934/math.2022813
    12. Muhammad Awais, Saeed Ehsan Awan, Muhammad Asif Zahoor Raja, Muhammad Nawaz, Wasim Ullah Khan, Muhammad Yousaf Malik, Yigang He, Heat Transfer in Nanomaterial Suspension (CuO and Al2O3) Using KKL Model, 2021, 11, 2079-6412, 417, 10.3390/coatings11040417
    13. Kashif Nisar, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Ag. Asri Ag. Ibrahim, Fevzi Erdogan, Muhammad Reazul Haque, Joel J. P. C. Rodrigues, Danda B. Rawat, Design of Morlet Wavelet Neural Network for Solving a Class of Singular Pantograph Nonlinear Differential Models, 2021, 9, 2169-3536, 77845, 10.1109/ACCESS.2021.3072952
    14. Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Juan L. G. Guirao, Tareq Saeed, Solution of novel multi-fractional multi-singular Lane–Emden model using the designed FMNEICS, 2021, 33, 0941-0643, 17287, 10.1007/s00521-021-06318-7
    15. Zulqurnain Sabir, Mohamed R. Ali, R. Sadat, Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model, 2022, 1868-5137, 10.1007/s12652-021-03638-3
    16. Uroosa Arshad, Mariam Sultana, Ali Hasan Ali, Omar Bazighifan, Areej A. Al-moneef, Kamsing Nonlaopon, Numerical Solutions of Fractional-Order Electrical RLC Circuit Equations via Three Numerical Techniques, 2022, 10, 2227-7390, 3071, 10.3390/math10173071
    17. Kai Liang, Yi Wan, Yan Jiang, Gopal Chaudhary, The Effect of Jogging on the Physical Health of College Students Based on Intelligent Computing, 2022, 2022, 1875-905X, 1, 10.1155/2022/7491839
    18. Ruo Li, Wei Zhong, An Improved Component-Wise WENO-NIP Scheme for Euler System, 2022, 10, 2227-7390, 3881, 10.3390/math10203881
    19. Noman Yousaf, Rubina Nasir, Saima Rafique, Aneela Zameer, Nasir M. Mirza, Muhammad Muneeb, PCGA: Polynomial collocation genetic algorithm for singular Poisson-Boltzmann equation arising in thermal explosions, 2023, 9, 24058440, e15076, 10.1016/j.heliyon.2023.e15076
    20. MUHAMMAD SHOAIB, RAFIA TABASSUM, KOTTAKKARAN SOOPPY NISAR, MUHAMMAD ASIF ZAHOOR RAJA, FAROOQ AHMED SHAH, MOHAMMED S. ALQAHTANI, C. AHAMED SALEEL, H. M. ALMOHIY, DESIGN OF BIO-INSPIRED HEURISTIC TECHNIQUE INTEGRATED WITH SEQUENTIAL QUADRATIC PROGRAMMING FOR NONLINEAR MODEL OF PINE WILT DISEASE, 2023, 31, 0218-348X, 10.1142/S0218348X23401485
    21. Zeeshan Ikram Butt, Iftikhar Ahmad, Muhammad Asif Zahoor Raja, Syed Ibrar Hussain, Muhammad Shoaib, Hira Ilyas, Mohammad R. Khosravi, Neuro-Heuristic Computational Intelligence Approach for Optimization of Electro-Magneto-Hydrodynamic Influence on a Nano Viscous Fluid Flow, 2023, 2023, 1098-111X, 1, 10.1155/2023/7626478
    22. Yao Wang, Santosh Tirunagari, Cognitive Neural Computation Modeling of Human Brain Information Storage and Extraction Based on Intelligent Computing, 2023, 2023, 1875-905X, 1, 10.1155/2023/8286598
    23. Adnène Arbi, 2025, Chapter 1, 978-3-031-68045-8, 1, 10.1007/978-3-031-68046-5_1
    24. Naveen S., Parthiban V., Mohamed I. Abbas, Qualitative Analysis of RLC Circuit Described by Hilfer Derivative with Numerical Treatment Using the Lagrange Polynomial Method, 2023, 7, 2504-3110, 804, 10.3390/fractalfract7110804
    25. Imed Bachar, Existence and Uniqueness of Positive Solutions for Semipositone Lane-Emden Equations on the Half-Axis, 2023, 11, 2227-7390, 4184, 10.3390/math11194184
    26. Syed Ali Asghar, Shafaq Naz, Muhammad Asif Zahoor Raja, Intelligent computing with the knack of Bayesian neural networks for functional differential systems in Quantum calculus model, 2023, 37, 0217-9792, 10.1142/S021797922350217X
    27. Ashish Kumar, Manoj Kumar, Pranay Goswami, Numerical solution of coupled system of Emden-Fowler equations using artificial neural network technique, 2024, 14, 2146-5703, 62, 10.11121/ijocta.1424
    28. A. A. Alderremy, J. F. Gómez-Aguilar, Zulqurnain Sabir, Shaban Aly, J. E. Lavín-Delgado, José R. Razo-Hernández, Numerical performances based artificial neural networks to deal with the computer viruses spread on the complex networks, 2024, 101, 0020-7160, 314, 10.1080/00207160.2024.2326926
    29. Saima Saleem, Anuradha Khattar, Monica Mehrotra, RETRACTED: A multimodal transfer learning framework for the classification of disaster-related social media images, 2024, 10641246, 1, 10.3233/JIFS-241271
    30. Abdul Mannan, Nimra Shoket, Jamshaid Ul Rahman, Rongin Uwitije, Dynamic analysis of ebola virus disease with non-linear incidence rate using morlet wavelet neural networks and hybrid optimization techniques, 2025, 11, 2363-6203, 10.1007/s40808-024-02256-0
    31. Achraf Wali, Imene Ouali, Adnène Arbi, 2025, chapter 2, 9798369381410, 35, 10.4018/979-8-3693-8141-0.ch002
    32. Oussama Wali, Mohamed Saifeddine Hadj Sassi, 2025, chapter 1, 9798369381410, 1, 10.4018/979-8-3693-8141-0.ch001
    33. Oussama Wali, Mohamed Saifeddine Hadj Sassi, 2025, chapter 3, 9798369381410, 69, 10.4018/979-8-3693-8141-0.ch003
    34. Oussama Wali, Mohamed Saifeddine Hadj Sassi, 2025, chapter 8, 9798369381410, 211, 10.4018/979-8-3693-8141-0.ch008
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2457) PDF downloads(68) Cited by(33)

Figures and Tables

Figures(5)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog