Citation: F. Z. Geng. Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems[J]. AIMS Mathematics, 2020, 5(6): 6020-6029. doi: 10.3934/math.2020385
| [1] | M. K. Kadalbajoo, P. Arora, V. Gupta, Collocation method using artificial viscosity for solving stiff singularly perturbed turning point problem having twin boundary layers, Comput. Math. Appl., 61 (2014), 1595-1607. |
| [2] |
G. M. Amiraliyev, F. Erdogan, Uniform numerical method for singularly perturbed delay differential equations, Comput. Math. Appl., 53 (2007), 1251-1259. doi: 10.1016/j.camwa.2006.07.009
|
| [3] | G. M. Amiraliyev, E. Cimen, Numerical method for a singularly perturbed convection diffusion problem with delay, Appl. Math. Comput., 216 (2010), 2351-2359. |
| [4] |
P. Rai, K. K. Sharma, Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability, Comput. Math. Appl., 63 (2012), 118-132. doi: 10.1016/j.camwa.2011.10.078
|
| [5] | P. Rai, K. K. Sharma, Numerical analysis of singularly perturbed delay differential turning point problem, Appl. Math. Comput., 218 (2011), 3483-3498. |
| [6] |
S. Natesan, J. Jayakumar, J. Vigo-Aguiar, Parameter uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers, J. Comput. Appl. Math., 158 (2003), 121-134. doi: 10.1016/S0377-0427(03)00476-X
|
| [7] |
A. T. Chekole, G. F. Duresssa, G. G. Kiltu, PNon-polynomial septic spline method for singularly perturbed two point boundary value problems of order three, J. Taibah Univ. Sci., 13 (2019), 651-660. doi: 10.1080/16583655.2019.1617986
|
| [8] |
F. Z. Geng, S. P. Qian, Modified reproducing kernel method for singularly perturbed boundary value problems with a delay, Appl. Math. Model., 39 (2015), 5592-5597. doi: 10.1016/j.apm.2015.01.021
|
| [9] |
F. Z. Geng, S. P. Qian, Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers, Appl. Math. Lett., 26 (2013), 998-1004. doi: 10.1016/j.aml.2013.05.006
|
| [10] |
D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data, Commun. Nonlinear Sci., 54 (2018), 233-247. doi: 10.1016/j.cnsns.2017.06.002
|
| [11] |
L. Beilina, M. V. Klibanov, A globally convergent numerical method for a coefficient inverse problem, SIAM J. Sci. Comput., 31 (2008), 478-509. doi: 10.1137/070711414
|
| [12] |
A. B. Bakushinskii, M. V. Klibanov, N. A. Koshev, Carleman weight functions for a globally convergent numerical method for ill-posed Cauchy problems for some quasilinear PDEs, Nonlinear Anal. Real., 34 (2017), 201-224. doi: 10.1016/j.nonrwa.2016.08.008
|
| [13] |
F. Z. Geng, S. P. Qian, An optimal reproducing kernel method for linear nonlocal boundary value problems, Appl. Math. Lett., 77 (2018), 49-56. doi: 10.1016/j.aml.2017.10.002
|
| [14] | F. Z. Geng, A new higher order accurate reproducing kernel-based approach for boundary value problems, Appl. Math. Lett., 107 (2020), 106494. |
| [15] | F. Z. Geng, Numerical methods for solving Schröinger equations in complex reproducing kernel Hilbert spaces, Math. Sci., (2020), https://doi.org/10.1007/s40096-020-00337-6. |
| [16] |
X. Y. Li, B. Y. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387-393. doi: 10.1016/j.cam.2016.08.010
|
| [17] |
X. Y. Li, B. Y. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108-113. doi: 10.1016/j.aml.2014.12.012
|
| [18] | X. Y. Li, B. Y. Wu, A new kernel functions based approach for solving 1-D interface problems, Appl. Math. Comput., 380 (2020), 125276. |
| [19] |
X. Y. Li, Y. Gao, B. Y. Wu, Approximate solutions of Atangana-Baleanu variable order fractional problems, AIMS Math., 5 (2020), 2285-2294. doi: 10.3934/math.2020151
|
| [20] |
M. Q. Xu, Z. H. Zhao, J. Niu, et al. A simplified reproducing kernel method for 1-D elliptic type interface problems, J. Comput. Appl. Math., 351 (2019), 29-40. doi: 10.1016/j.cam.2018.10.027
|
| [21] | H. Sahihi, S. Abbasbandy, T. Allahviranloo, Computational method based on reproducing kernel for solving singularly perturbed differential-difference equations with a delay, Appl. Math. Comput., 361 (2019), 583-598. |
| [22] |
O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Soliton. Fract., 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025
|
| [23] |
O. Abu Arqub, Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates, J. Appl. Math. Comput., 59 (2019), 227-243. doi: 10.1007/s12190-018-1176-x
|
| [24] | O. Abu Arqub, M. Al-Smadi, Fuzzy conformable fractional differential equations: Novel extended approach and new numerical solutions, Soft Comput., 2020, https://doi.org/10.1007/s00500-020-04687-0. |
| [25] |
O. Abu Arqub, Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis, Fund. Inform., 166 (2019), 111-137. doi: 10.3233/FI-2019-1796
|
| [26] |
A. Akgül, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid, J. Taibah Univ. Sci., 13 (2019), 858-863. doi: 10.1080/16583655.2019.1651988
|
| [27] |
A. Akgül, E. K. Akgül, S. Korhan, New reproducing kernel functions in the reproducing kernel Sobolev spaces, AIMS Math., 5 (2020), 482-496. doi: 10.3934/math.2020032
|
| [28] |
Z. H. Zhao, Y. Z. Lin. J. Niu, Convergence order of the reproducing kernel method for solving boundary value problems, Math. Model. Anal., 21 (2016), 466-477. doi: 10.3846/13926292.2016.1183240
|
| [29] |
H. Sahihi, T. Allahviranloo, S. Abbasbandy, Solving system of second-order BVPs using a new algorithm based on reproducing kernel Hilbert space, Appl. Numer. Math., 151 (2020), 27-39. doi: 10.1016/j.apnum.2019.12.008
|
| [30] | N. Aronszajn, Theory of reproducing kernel, Trans. A.M.S., 168 (1950), 1-50. |
| [31] | H. Wendland, Scattered data approximation, New York: Cambridge University Press, 2004. |