Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Review Special Issues

Risk of lung cancer due to external environmental factor and epidemiological data analysis


  • Received: 15 May 2021 Accepted: 30 June 2021 Published: 08 July 2021
  • Lung cancer is a cancer with the fastest growth in the incidence and mortality all over the world, which is an extremely serious threat to human's life and health. Evidences reveal that external environmental factors are the key drivers of lung cancer, such as smoking, radiation exposure and so on. Therefore, it is urgent to explain the mechanism of lung cancer risk due to external environmental factors experimentally and theoretically. However, it is still an open issue regarding how external environment factors affect lung cancer risk. In this paper, we summarize the main mathematical models involved the gene mutations for cancers, and review the application of the models to analyze the mechanism of lung cancer and the risk of lung cancer due to external environmental exposure. In addition, we apply the model described and the epidemiological data to analyze the influence of external environmental factors on lung cancer risk. The result indicates that radiation can cause significantly an increase in the mutation rate of cells, in particular the mutation in stability gene that leads to genomic instability. These studies not only can offer insights into the relationship between external environmental factors and human lung cancer risk, but also can provide theoretical guidance for the prevention and control of lung cancer.

    Citation: Lingling Li, Mengyao Shao, Xingshi He, Shanjing Ren, Tianhai Tian. Risk of lung cancer due to external environmental factor and epidemiological data analysis[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 6079-6094. doi: 10.3934/mbe.2021304

    Related Papers:

    [1] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [2] Yingchao Zhang, Yingzhen Lin . An ε-approximation solution of time-fractional diffusion equations based on Legendre polynomials. AIMS Mathematics, 2024, 9(6): 16773-16789. doi: 10.3934/math.2024813
    [3] Yingchao Zhang, Yuntao Jia, Yingzhen Lin . An ε-approximate solution of BVPs based on improved multiscale orthonormal basis. AIMS Mathematics, 2024, 9(3): 5810-5826. doi: 10.3934/math.2024282
    [4] Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532
    [5] Hui Zhu, Liangcai Mei, Yingzhen Lin . A new algorithm based on compressed Legendre polynomials for solving boundary value problems. AIMS Mathematics, 2022, 7(3): 3277-3289. doi: 10.3934/math.2022182
    [6] Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476
    [7] A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky . High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160
    [8] Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by ψ-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372
    [9] Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367
    [10] Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen . Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509
  • Lung cancer is a cancer with the fastest growth in the incidence and mortality all over the world, which is an extremely serious threat to human's life and health. Evidences reveal that external environmental factors are the key drivers of lung cancer, such as smoking, radiation exposure and so on. Therefore, it is urgent to explain the mechanism of lung cancer risk due to external environmental factors experimentally and theoretically. However, it is still an open issue regarding how external environment factors affect lung cancer risk. In this paper, we summarize the main mathematical models involved the gene mutations for cancers, and review the application of the models to analyze the mechanism of lung cancer and the risk of lung cancer due to external environmental exposure. In addition, we apply the model described and the epidemiological data to analyze the influence of external environmental factors on lung cancer risk. The result indicates that radiation can cause significantly an increase in the mutation rate of cells, in particular the mutation in stability gene that leads to genomic instability. These studies not only can offer insights into the relationship between external environmental factors and human lung cancer risk, but also can provide theoretical guidance for the prevention and control of lung cancer.



    In this paper, we propose shifted-Legendre orthogonal function method for high-dimensional heat conduction equation [1]:

    {ut=k(2ux2+2uy2+2uz2),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=ϕ(x,y,z),u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (1.1)

    Where u(t,x,y,z) is the temperature field, ϕ(x,y,z) is a known function, k is the thermal diffusion efficiency, and a,b,c are constants that determine the size of the space.

    Heat conduction system is a very common and important system in engineering problems, such as the heat transfer process of objects, the cooling system of electronic components and so on [1,2,3,4]. Generally, heat conduction is a complicated process, so we can't get the analytical solution of heat conduction equation. Therefore, many scholars proposed various numerical algorithms for heat conduction equation [5,6,7,8]. Reproducing kernel method is also an effective numerical algorithm for solving boundary value problems including heat conduction equation [9,10,11,12,13,14]. Galerkin schemes and Green's function are also used to construct numerical algorithms for solving one-dimensional and two-dimensional heat conduction equations [15,16,17,18,19]. Alternating direction implicit (ADI) method can be very effective in solving high-dimensional heat conduction equations [20,21]. In addition, the novel local knot method and localized space time method are also used to solve convection-diffusion problems [22,23,24,25]. These methods play an important reference role in constructing new algorithms in this paper.

    Legendre orthogonal function system is an important function sequence in the field of numerical analysis. Because its general term is polynomial, Legendre orthogonal function system has many advantages in the calculation process. Scholars use Legendre orthogonal function system to construct numerical algorithm of differential equations [26,27,28].

    Based on the orthogonality of Legendre polynomials, we delicately construct a numerical algorithm that can be extended to high-dimensional heat conduction equation. The proposed algorithm has α-Order convergence, and our algorithm can achieve higher accuracy compared with other algorithms.

    The content of the paper is arranged like this: The properties of shifted Legendre polynomials, homogenization and spatial correlation are introduced in Section 2. In Section 3, we theoretically deduce the numerical algorithm methods of high-dimensional heat conduction equations. The convergence of the algorithm is proved in Section 4. Finally, three numerical examples and a brief summary are given at the end of this paper.

    In this section, the concept of shifted-Legendre polynomials and the space to solve Eq (1.1) are introduced. These knowledge will pave the way for describing the algorithm in this paper.

    The traditional Legendre polynomial is the orthogonal function system on [1,1]. Since the variables t,x,y,z to be analyzed for Eq (1.1) defined in different intervals, it is necessary to transform the Legendre polynomial on [c1,c2], c1,c2R, and the shifted-Legendre polynomials after translation transformation and expansion transformation by Eq (2.1).

    p0(x)=1,p1(x)=2(xc1)c2c11,pi+1(x)=2i+1i+1[2(xc1)c2c11]pi(x)ii+1pi1(x),i=1,2,. (2.1)

    Obviously, {pi(x)}i=0 is a system of orthogonal functions on L2[c1,c2], and

    c2c1pi(x)pj(x)dx={c2c12i+1,i=j,0,ij.

    Let Li(x)=2i+1c2c1pi(x). Based on the knowledge of ref. [29], we begin to discuss the algorithm in this paper.

    Lemma 2.1. [29] {Li(x)}i=0 is a orthonormal basis in L2[c1,c2].

    Considering that the problem studied in this paper has a nonhomogeneous boundary value condition, the problem (1.1) can be homogenized by making a transformation as follows.

    v(t,x,y,z)=u(t,x,y,z)ϕ(x,y,z).

    Here, homogenization is necessary because we can easily construct functional spaces that meet the homogenization boundary value conditions. This makes us only need to pay attention to the operator equation itself in the next research, without considering the interference caused by boundary value conditions.

    In this paper, in order to avoid the disadvantages of too many symbols, the homogeneous heat conduction system is still represented by u, the thermal diffusion efficiency k=1, and the homogeneous system of heat conduction equation is simplified as follows:

    {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (2.2)

    The solution space of Eq (2.2) is a high-dimensional space, which can be generated by some one-dimensional spaces. Therefore, this section first defines the following one-dimensional space.

    Remember AC represents the space of absolutely continuous functions.

    Definition 2.1. W1[0,1]={u(t)|uAC,u(0)=0,uL2[0,1]}, and

    u,vW1=10uvdt,u,vW1.

    Let c1=0,c2=1, so {Ti(t)}i=0 is the orthonormal basis in L2[0,1], where Ti(t)=Li(t), note Tn(t)=ni=0citi. And {JTn(t)}n=0 is the orthonormal basis of W1[0,1], where

    JTn(t)=ni=0citi+1i+1.

    Definition 2.2. W2[0,a]={u(x)|uAC,u(0)=u(a)=0,uL2[0,a]}, and

    u,vW2=a0uvdx,u,vW2.

    Similarly, {Pn(x)}n=0 is the orthonormal basis in L2[0,a], and denote Pn(x)=nj=0djxj, where djR.

    Let

    JPn(x)=nj=0djxj+2aj+1x(j+1)(j+2),

    obviously, {JPn(x)}n=0 is the orthonormal basis of W2[0,a].

    We start with solving one-dimensional heat conduction equation, and then extend the algorithm to high-dimensional heat conduction equations.

    {2ux2ut=f(x),t[0,1],x[0,a],u(0,x)=0,u(t,0)=u(t,a)=0. (3.1)

    Let D=[0,1]×[0,a], CC represents the space of completely continuous functions, and Nn represents a set of natural numbers not exceeding n.

    Definition 3.1. W(D)={u(t,x)|uxCC,(t,x)D,u(0,x)=0,u(t,0)=u(t,a)=0,3utx2L2(D)}, and

    u,vW(D)=D3utx23vtx2dσ.

    Theorem 3.1. W(D) is an inner product space.

    Proof. u(t,x)W(D), if u,uW(D)=0, means

    D[3u(t,x)tx2]2dσ=0,

    and it implies

    3u(t,x)tx2=t(2u(t,x)x2)=0.

    Combined with the conditions of W(D), we can get u=0.

    Obviously, W(D) satisfies other conditions of inner product space.

    Theorem 3.2. uW(D),v1(t)v2(x)W(D), then

    u(t,x),v1(t)v2(x)W(D)=u(t,x),v1(t)W1,v2(x)W2.
    Proof.u(t,x),v1(t)v2(x)W(D)=D3u(t,x)tx23[v1(t)v2(x)]tx2dσ=D2x2[u(t,x)t]v1(t)t2v2(x)x2dσ=a02x2u(t,x),v1(t)W12v2(x)x2dx=u(t,x),v1(t)W1,v2(x)W2.

    Corollary 3.1. u1(t)u2(x)W(D),v1(t)v2(x)W(D), then

    u1(t)u2(x),v1(t)v2(x)W(D)=u1(t),v1(t)W1u2(x),v2(x)W2.

    Let

    ρij(t,x)=JTi(t)JPj(x),i,jN.

    Theorem 3.3. {ρij(t,x)}i,j=0is an orthonormal basis inW(D).

    Proof. ρij(t,x),ρlm(t,x)W(D),i,j,l,mN,

    ρij(t,x),ρlm(t,x)W(D)=JTi(t)JPj(x),JTl(t)JPm(x)W(D)=JTi(t),JTl(t)W1JPj(x),JPm(x)W2.

    So

    ρij(t,x),ρlm(t,x)W(D)={1,i=l,j=m,0,others.

    In addition, uW(D), if u,ρijW(D)=0, means

    u(t,x),JTi(t)JPj(x)W(D)=u(t,x),JTi(t)W1,JPj(x)W2=0.

    Note that {JPj(x)}j=0 is the complete system of W2, so u(t,x),JTi(t)W1=0.

    Similarly, we can get u(t,x)=0.

    Let L:W(D)L2(D),

    Lu=2ux2ut.

    So, Eq (3.1) can be simplified as

    Lu=f. (3.2)

    Definition 3.2. ε>0, if uW(D) and

    ||Luf||2L(D)<ε, (3.3)

    then u is called the εbest approximate solution for Lu=f.

    Theorem 3.4. Any ε>0, there is NN, when n>N, then

    un(t,x)=ni=0nj=0ηijρij(t,x) (3.4)

    is the εbest approximate solution for Lu=f, where ηij satisfies

    ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D),dijR,i,jNn.

    Proof. According to the Theorem 3.3, if u satisfies Eq (3.2), then u(t,x)=i=0j=0ηijρij(t,x), where ηij is the Fourier coefficient of u.

    Note that L is a bounded operator [30], hence, any ε>0, there is NN, when n>N, then

    ||i=n+1j=n+1ηijρij||2W(D)<ε||L||2.

    So,

    ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D)||ni=0nj=0ηijLρijf||2L2(D)=||ni=0nj=0ηijLρijLu||2L2(D)=||i=n+1j=n+1ηijLρij||2L2(D)||L||2||i=n+1j=n+1ηijρij||2W(D)< ε.

    For obtain un(t,x), we need to find the coefficients ηij by solving Eq (3.5).

    min{ηij}ni,j=0J=Lunf2L2(D) (3.5)

    In addition,

    J=Lunf2L2(D)=Lunf,LunfL2(D)=Lun,LunL2(D)2Lun,fL2(D)+f,fL2(D)=ni=0nj=0nl=0nm=0ηijηlmLρij,LρlmL2(D)2ni=0nj=0ηijLρij,fL2(D)+f,fL2(D).

    So,

    Jηij=2nl=0nm=0ηlmLρij,LρlmL2(D)2ηijLρij,fL2(D),i,jNn

    and the equations Jηij=0,i,jNn can be simplified to

    Aη=B, (3.6)

    where

    A=(Lρij,LρlmL2(D))N×N,N=(n+1)2,η=(ηij)N×1,B=(Lρij,fL2(D))N×1.

    Theorem 3.5. Aη=B has a unique solution.

    Proof. It can be proved that A is nonsingular. Let η satisfy Aη=0, that is,

    ni=0nj=0Lρij,LρlmL2(D)ηij=0,l,mNn.

    So, we can get the following equations:

    ni=0nj=0ηijLρij,ηlmLρlmL2(D)=0,l,mNn.

    By adding the above (n+1)2 equations, we can get

    ni=0nj=0ηijLρij,nl=0nm=0ηlmLρlmL2(D)=ni=0nj=0ηijLρij2L2(D)=0.

    So,

    ni=0nj=0ηijLρij=0.

    Note that L is reversible. Therefore, ηij=0,i,jNn.

    According to Theorem 3.5, un(t,x) can be obtained by substituting η=A1B into un=ni=0nj=0ηijρij(t,x).

    {2ux2+2uy2ut=f(x,y),t[0,1],x[0,a],y[0,b],u(0,x,y)=0,u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0. (3.7)

    Similar to definition 2.2, we can give the definition of linear space W3[0,b] as follows:

    W3[0,b]={u(y)|uAC,y[0,b],u(0)=u(b)=0,uL2[0,b]}.

    Similarly, let {Qn(y)}n=0 is the orthonormal basis in L2[0,b], and denote Qn(y)=nk=0qkyk.

    Let

    JQn(y)=nk=0qkyk+2bk+1y(k+1)(k+2),

    it is easy to prove that {JQn(y)}n=0 is the orthonormal basis of W3[0,b].

    Let Ω=[0,1]×[0,a]×[0,b]. Now we define a three-dimensional space.

    Definition 3.3 W(Ω)={u(t,x,y)|2uxyCC,(t,x,y)Ω,u(0,x,y)=0, u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0,5utx2y2L2(Ω)}, and

    u,vW(Ω)=Ω5utx2y25vtx2y2dΩ,u,vW(Ω).

    Similarly, we give the following theorem without proof.

    Theorem 3.6. {ρijk(t,x,y)}i,j,k=0is an orthonormal basis ofW(Ω), where

    ρijk(t,x,y)=JTi(t)JPj(x)JQk(y),i,j,kNn.

    Therefore, we can get un as

    un(t,x,y)=ni=0nj=0nk=0ηijkρijk(t,x,y), (3.8)

    according to the theory in Section 3.1, we can find all ηijk,i,j,kNn.

    {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (3.9)

    By Lemma 2.1, note that the orthonormal basis of L2[0,c] is {Rn(z)}n=0, and denote Rn(z)=nm=0rmzm, where rm is the coefficient of polynomial Rn(z).

    We can further obtain the orthonormal basis JRn(z)=nm=0rmzm+2cm+1z(m+1)(m+2) of W4[0,c], where

    JRn(z)=nm=0rmzm+2cm+1z(m+1)(m+2),

    and

    W4[0,c]={u(z)|uAC,z[0,c],u(0)=u(c)=0,uL2[0,c]}.

    Let G=[0,1]×[0,a]×[0,b]×[0,c]. Now we define a four-dimensional space.

    Definition 3.4. W(G)={u(t,x,y,z)|3uxyzCC,(t,x,y,z)G,u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0, u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0,7utx2y2z2L2(G)}, and

    u,vW(G)=

    where dG = dtdxdydz.

    Similarly, we give the following theorem without proof.

    Theorem 3.7. \{\rho_{ijk}(t, x, y, z)\}_{i, j, k, m = 0}^\infty \mathit{\mbox{is an orthonormal basis of}}\; W(G) , where

    \rho_{ijkm}(t,x,y,z) = JT_i(t)JP_j(x)JQ_k(y)JR_m(z),\; \; i,j,k,m\in \mathbb{N}.

    Therefore, we can get u_n as

    \begin{equation} u_n(t,x,y,z) = \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{n}\sum\limits_{k = 0}^{n}\sum\limits_{m = 0}^{n}\eta_{ijkm}\rho_{ijkm}(t,x,y,z), \end{equation} (3.10)

    according to the theory in Section 3.1, we can find all \eta_{ijkm}, \; \; i, j, k, m\in\mathbb{N}_n.

    Suppose u(t, x) = \sum\limits_{i = 0}^{\infty}\sum\limits_{j = 0}^{\infty}\eta_{ij}\rho_{ij}(t, x) is the exact solution of Eq (3.5). Let P_{N_1, N_2}u(t, x) = \sum\limits_{i = 0}^{N_1} \sum\limits_{j = 0}^{N_2} \eta_{ij}T_i(t)P_j(x) is the projection of u in L(D) .

    Theorem 4.1. Suppose \dfrac{\partial^{r+l} u(t, x)}{\partial t^{r}\partial x^{l}}\in L^2(D) , and N_1 > r, N_2 > l , then, the error estimate of P_{N_1, N_2}u(t, x) is

    ||u-P_{N_1,N_2}u||_{L^2(D)}^2 \leq C N^{-\alpha},

    where C is a constant, N = min\{N_1, N_2\}, \alpha = min\{r, l\}.

    Proof. According to the lemma in ref. [29], it follows that

    ||u-u_{N_1}||_{L_t^2[0,1]}^2 = ||u-P_{t,N_1}u||_{L_t^2[0,1]}^2\leq C_1 N_1^{-r}|| \dfrac{\partial^r}{\partial t^r}u(t,x) ||_{L_t^2[0,1]}^2,

    where u_{N_1} = P_{t, N_1}u represents the projection of u on variable t in L^2[0, 1] , and ||\cdot||_{L_t^2[0, 1]} represents the norm of (\cdot) with respect to variable t in L^2[0, 1] .

    By integrating both sides of the above formula with respect to x , we can get

    \begin{equation*} \begin{array}{lll} ||u-u_{N_1}||_{L^2(D)}^2 &\leq & C_1 N_1^{-r} \int_0^a ||\dfrac{\partial^r}{\partial t^r}u||_{L_t^2[0,1]}^2 dx\\ & = & C_1 N_1^{-r}||\dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2. \end{array} \end{equation*}

    Moreover,

    \begin{equation*} \begin{array}{lll} u(t,x)-u_{N_1}(t,x) & = & \sum\limits_{i = N_1+1}^{\infty} \langle u, T_i\rangle _{L_t^2[0,1]}T_i(t)\\ & = & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty} \langle \langle u, T_i\rangle _{L_t^2[0,1]}, P_j\rangle_{L_x^2[0,a]} P_j(x)T_i(t). \end{array} \end{equation*}

    According to the knowledge in Section 3,

    ||u-u_{N_1}||_{L^2(D)}^2 = \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2,

    where c_{ij} = \langle \langle u, T_i\rangle _{L_t^2[0, 1]}, P_j\rangle_{L_x^2[0, a]} .

    Therefore,

    \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2\leq C_1 N_1^{-r}||\dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2.

    Similarly,

    \sum\limits_{i = 0}^{\infty} \sum\limits_{j = N_2+1}^{\infty}c_{ij}^2\leq C_2 N_2^{-l}||\dfrac{\partial^l}{\partial x^l}u||_{L^2(D)}^2.

    In conclusion,

    \begin{equation*} \begin{array}{lll} ||u-P_{N_1,N_2}u||_{L^2(D)}^2 & = & ||(\sum\limits_{i = 0}^{\infty} \sum\limits_{j = 0}^{\infty}-\sum\limits_{i = 0}^{N_1} \sum\limits_{j = 0}^{N_2})c_{ij}^2 T_i(t)P_j(x)||_{L^2(D)}^2\\ &\leq & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{N_2}c_{ij}^2+\sum\limits_{i = 0}^{\infty} \sum\limits_{j = N2+1}^{\infty}c_{ij}^2\\ &\leq & \sum\limits_{i = N_1+1}^{\infty} \sum\limits_{j = 0}^{\infty}c_{ij}^2+\sum\limits_{i = 0}^{\infty} \sum\limits_{j = N_2+1}^{\infty}c_{ij}^2\\ &\leq & C_1 N_1^{-r}|| \dfrac{\partial^r}{\partial t^r}u||_{L^2(D)}^2 + C_2 N_2^{-l}|| \dfrac{\partial^l}{\partial x^l}u||_{L^2(D)}^2\\ &\leq & C N^{-\alpha}. \end{array} \end{equation*}

    Theorem 4.2. Suppose \dfrac{\partial^{r+l} u(t, x)}{\partial t^{r}\partial x^{l}}\in L^2(D) , u_n(t, x) is the \varepsilon- best approximate solution of Eq (3.2), and n > max\{r, l\} , then,

    ||u-u_n||_{W(D)}^2 \leq C n^{-\alpha}.

    where C is a constant, \alpha = min\{r, l\}.

    Proof. According to Theorem 3.4 and Theorem 4.1, the following formula holds.

    \begin{equation*} ||u-u_n||_{W(D)}^2 \leq ||u-P_{N_1,N_2}u||_{L^2(D)}^2\leq C n^{-\alpha}. \end{equation*}

    So, the \varepsilon- approximate solution has \alpha convergence order, and the convergence rate is related to n , where represents the number of bases, and the convergence order can calculate as follows.

    \begin{equation} C.R. = log_{\frac{n_2}{n_1}}\frac{max|e_{n_1}|}{max|e_{n_2}|}. \end{equation} (4.1)

    Where n_i, i = 1, 2 represents the number of orthonormal base elements.

    Here, three examples are compared with other algorithms. N represents the number of orthonormal base elements. For example, N = 10 \times 10 , which means that we use the orthonormal system \{\rho_{ij}\}_{i, j = 0}^{10} of W(D) for approximate calculation, that is, we take the orthonormal system \{JT_i(t)\}_{i = 0}^{10} and \{JP_j(x)\}_{j = 0}^{10} to construct the \varepsilon- best approximate solution.

    Example 5.1. Consider the following one-demensional heat conduction system [7,20]

    \begin{eqnarray*} \left\{ \begin{array}{l} u_t = u_{xx},\; \; (t,x)\in [0,1]\times[0,2\pi],\\ u(0,x) = \sin(x),\\ u(t,0) = u(t,2\pi) = 0. \end{array} \right. \end{eqnarray*}

    The exact solution of Ex. 5.1 is e^{-t}\sin x .

    In Table 1, C.R. is calculated according to Eq (4.2). The errors in Tables 1 and 2 show that the proposed algorithm is very effective. In Figures 1 and 2, the blue surface represents the surface of the real solution, and the yellow surface represents the surface of u_n . With the increase of N , the errors between the two surfaces will be smaller.

    Table 1.  \max |u-u_n| for Ex. 5.1.
    N HOC-ADI Method [20] FVM [7] Present method C.R.
    4 \times 4 6.12E-3 4.92E-2 9.892E-3
    6 \times 6 1.68E-3 2.05E-2 4.319E-4 3.8613
    8 \times 8 7.69E-4 1.27E-2 9.758E-6 6.5873
    10 \times 10 4.40E-4 9.20E-3 1.577E-7 9.2432

     | Show Table
    DownLoad: CSV
    Table 2.  |u-u_n| for Ex. 5.1 ( n = 9 ).
    |u-u_n| t=0.1 t=0.3 t=0.5 t=0.7 t=0.9
    x=\frac{\pi}{5} 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8
    x=\frac{3\pi}{5} 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    x=\frac{7\pi}{5} 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    x=\frac{9\pi}{5} 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8

     | Show Table
    DownLoad: CSV
    Figure 1.  u\; \; \mbox{and}\; \; u_{n} in Example 5.1( n = 9 ).
    Figure 2.  |u(1, x)-u_{n}(1, x)| in Example 5.1( n = 9 ).

    Example 5.2. Consider the following two-demensional heat conduction system [20,21]

    \begin{eqnarray*} \left\{ \begin{array}{l} u_t = u_{xx}+u_{yy},\; \; (t,x,y)\in [0,1]\times[0,1]\times[0,1],\\ u(0,x,y) = \sin(\pi x)\sin(\pi y),\\ u(t,0,y) = u(t,1,y) = u(t,x,0) = u(t,x,1) = 0. \end{array} \right. \end{eqnarray*}

    The exact solution of Ex. 5.2 is u = e^{-2\pi^2 t}\sin(\pi x)\sin(\pi y) .

    Example 5.2 is a two-dimensional heat conduction equation. Table 3 shows the errors comparison with other algorithms. Table 4 lists the errors variation law in the x- axis direction. Figures 3 and 4 show the convergence effect of the scheme more vividly.

    Table 3.  The absolute errors \max |u-u_n| for Ex. 5.2 ( t = 1, (x, y)\in [0, 1]\times[0, 1] ).
    N CCD-ADI Method [21] RHOC-ADI Method [20] Present method C.R.
    4 \times 4 \times 4 8.820E-3 3.225E-2 5.986E-3
    8 \times 8 \times 8 6.787E-5 1.969E-3 3.126E-5 2.52704

     | Show Table
    DownLoad: CSV
    Table 4.  The absolute errors |u-u_n| for Ex. 5.2 ( t = 1, n = 7 ).
    |u-u_n| y=0.1 y=0.3 y=0.5 y=0.7 y=0.9
    x=0.1 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6
    x=0.3 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    x=0.5 2.421E-5 6.347E-5 7.839E-5 6.347E-5 2.421E-5
    x=0.7 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    x=0.9 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6

     | Show Table
    DownLoad: CSV
    Figure 3.  u\; \; \mbox{and}\; \; u_{n} in Example 5.2( n = 7 ).
    Figure 4.  u-u_{n} in Example 5.2( n = 7 ).

    Example 5.3. Consider the three-demensional problem as following:

    \begin{eqnarray*} \left\{ \begin{array}{l} (\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2})u_t = u_{xx}+u_{yy}+u_{zz},\; \; (t,x,y,z)\in [0,1]\times[0,a]\times[0,b]\times[0,c],\\ u(0,x,y) = \sin(\dfrac{\pi x}{a})\sin(\dfrac{\pi y}{b})\sin(\dfrac{\pi z}{c}),\\ u(t,0,y) = u(t,1,y) = u(t,x,0) = u(t,x,1) = 0. \end{array} \right. \end{eqnarray*}

    The exact solution of Ex. 5.3 is u = e^{-\pi^2t}\sin(\dfrac{\pi x}{a})\sin(\dfrac{\pi y}{b})\sin(\dfrac{\pi z}{c}) .

    Example 5.3 is a three-dimensional heat conduction equation, this kind of heat conduction system is also the most common case in the industrial field. Table 5 lists the approximation degree between the \varepsilon- best approximate solution and the real solution when the boundary time t = 1 .

    Table 5.  The absolute errors |u-u_n| for Ex. 5.3 ( t = 1, z = 0.1, n = 2 ).
    |u-u_n| y=0.2 y=0.6 y=1.0 y=1.4 y=1.8
    x=0.1 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3
    x=0.3 2.893E-3 7.350E-3 8.820E-3 7.350E-3 2.893E-3
    x=0.5 3.482E-3 8.838E-3 1.059E-2 8.838E-3 3.482E-3
    x=0.7 2.893E-3 7.350E-3 8.820E-3 7.735E-3 2.893E-3
    x=0.9 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3

     | Show Table
    DownLoad: CSV

    The Shifted-Legendre orthonormal scheme is applied to high-dimensional heat conduction equations. The algorithm proposed in this paper has some advantages. On the one hand, the algorithm is evolved from the algorithm for solving one-dimensional heat conduction equation, which is easy to be understood and expanded. On the other hand, the standard orthogonal basis proposed in this paper is a polynomial structure, which has the characteristics of convergence order.

    This work has been supported by three research projects (2019KTSCX217, 2020WQNCX097, ZH22017003200026PWC).

    The authors declare no conflict of interest.



    [1] B. Vogelstein, K. W. Kinzler, Cancer genes and the pathways they control, Nat. Med., 10 (2004), 789–799. doi: 10.1038/nm1087
    [2] D. Hanahan, R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57–70.
    [3] D. Hanahan, R. A. Weinberg, The hallmarks of cancer: The next generation, Cell, 144 (2011), 646–674. doi: 10.1016/j.cell.2011.02.013
    [4] A. Amer, A. Nagah, T. T. Tian, X. A. Zhang, Mutation mechanisms of breast cancer among the female population in china, Curr. Bioinform., 15 (2020), 253–259. doi: 10.2174/1574893615666191220141548
    [5] L. D. Wood, D. W. Parson, S. Jones, J. Lin, T. Sj\ddot{o}blom, R. J. Leary, et al., The genomic landscapes of human breast and colorectal cancers, Science, 318 (2007), 1108–1113. doi: 10.1126/science.1145720
    [6] S. Basu, S. Lee, J. Salotti, S. Basu, K. Sakchaisri, X. Xiao, et al., Oncogenic RAS-induced perinuclear signaling complexes requiring KSR1 regulate signal transmission to downstream targets, Cancer Res., 78 (2017), 891–908.
    [7] S. Y. Hong, Y. R. Kao, T. C. Lee, C. W. Wu, Upregulation of e3 ubiquitin ligase cblc enhances egfr dysregulation and signaling in lung adenocarcinoma, Cancer Res., 78 (2018), 4984–4996. doi: 10.1158/0008-5472.CAN-17-3858
    [8] I. Bozic, T. Antal, H. Ohtsuki, H. Carter, M. A. Nowak, Accumulation of driver and passenger mutations during tumor progression, Proc. Natl. Acad. Sci. U.S.A., 107 (2010), 18545–18550. doi: 10.1073/pnas.1010978107
    [9] C. Tomasetti, B. Vogelstein, G. Parmigiani, Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor, Proc. Natl. Acad. Sci. U.S.A., 110 (2013), 1999–2004. doi: 10.1073/pnas.1221068110
    [10] S. Jones, W. D. Chen, G. Parmigiani, F. Diehl, S. D. Markowitz, Comparative lesion sequencing provides insights into tumor evolution, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 4283–4288. doi: 10.1073/pnas.0712345105
    [11] B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz, K. W. Kinzler, Cancer genome landscapes, Science, 339 (2013), 1546–1558.
    [12] P. Armitage, R. Doll, The age distribution of cancer and multi-stage theory of carcinogenesis, Br. J. Cancer, 8 (1954), 1–12. doi: 10.1038/bjc.1954.1
    [13] P. Armitage, R. Doll, A two-stage theory of carcinogenesis in relation to the age distribution of human cancer, Br. J. Cancer, 9 (1957), 161–169.
    [14] A. G. Knudson, Mutation and cancer: statistical study of retinoblastoma, Proc. Natl. Acad. Sci. U.S.A., 68 (1971), 820–823. doi: 10.1073/pnas.68.4.820
    [15] S. H. Moolgavkar, A. G. Knudson, Mutation and cancer: a model for human carcinogenesis, J. Natl. Cancer. Inst., 66 (1981), 1037–1052. doi: 10.1093/jnci/66.6.1037
    [16] S. H. Moolgavkar, N. E. Day, R. G. Stevens, Two-stage model for carcinogenesis: epidemiology of breast cancer in females, J. Natl. Cancer Inst., 65 (1980), 559–569.
    [17] S. H. Moolgavkar, A. Dewanji, D. J. Venzon, A stochastic two-stage model for cancer risk assessment I: The hazard function and the probability of tumor, Risk Anal., 8 (1988), 383–392. doi: 10.1111/j.1539-6924.1988.tb00502.x
    [18] R. Meza, J. Jeon, S. H. Moolgavkar, E. G. Luebeck, Age-specific incidence of cancer: phases, transitions, and biological implications, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 16284–16289. doi: 10.1073/pnas.0801151105
    [19] S. H. Moolgavkar, T. R. Holford, D. T. Levy, C. Y. Kong, M. Foy, L. Clarke, et al., Impact of reduced tobacco smoking on lung cancer mortality in the United States during 1975–2000, J. Natl. Cancer Inst., 104 (2012), 1–7.
    [20] W. R\ddot{u}hm, M. Eidemller, J. C. Kaiser, Biologically-based mechanistic models of radiation-related carcinogenesis applied to epidemiological data, Int. J. Radiat. Biol., 93 (2017), 1093–1117. doi: 10.1080/09553002.2017.1310405
    [21] L. Li, T. Tian, X. Zhang, The impact of radiation on the development of lung cancer, J. Theor. Biol., 428 (2017), 147–152. doi: 10.1016/j.jtbi.2017.06.020
    [22] B. M. Lang, J. Kuipers, B. Misselwitz, N. Beerenwinkel, Predicting colorectal cancer risk from adenoma detection via a two-type branching process model, PLOS Comput. Biol., 16 (2020), e1007552. doi: 10.1371/journal.pcbi.1007552
    [23] C. Paterson, H. Clevers, I. Bozic, Mathematical model of colorectal cancer initiation, Proc. Natl. Acad. Sci. U.S.A., 117 (2020), 20681–20688. doi: 10.1073/pnas.2003771117
    [24] M. A. Nowak, N. L. Komarova, A. Sengupta, P. V. Jallepalli, I. M. Shih, B. Vogelstein, et al., The role of chromosomal instability in tumor initiation, Proc. Natl. Acad. Sci. U.S.A., 99 (2002), 16226–16231. doi: 10.1073/pnas.202617399
    [25] M. P. Little, E. G. Wright, A stochastic carcinogenesis model incorporating genemic instability fitted to colon cancer data, Math. Biosci., 183 (2003), 111–134. doi: 10.1016/S0025-5564(03)00040-3
    [26] M. P. Little, P. Vineis, G. Li, A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data, J. Theor. Biol., 254 (2017), 229–238.
    [27] M. P. Little, Cancer models, genomic instability and somatic cellular darwinian evolution, Biol. Direct., 5 (2010), 1–19. doi: 10.1186/1745-6150-5-1
    [28] S. Z\ddot{o}llner, M. E. Sokolnikov, M. Eidem\ddot{o}ller, Beyond two-stage models for lung carcinogenesis in the Mayak Workers: implications for plutonium risk, PLoS ONE, 10 (2015), 1–20. doi: 10.1371/journal.pone.0116884
    [29] M. Eidem\ddot{u}ller, E. Holmberg, P. Jacob, M. Lundell, P. Karlsson, Breast cancer risk and possible mechanisms of radiation-induced genomic instability in the Swedish hemangioma cohort after reanalyzed dosimetry, Mutat. Res., 775 (2015), 1–9. doi: 10.1016/j.mrfmmm.2015.03.002
    [30] L. L. Li, T. H. Tian, X. A. Zhang, L. Pang, Mathematical modeling the pathway of genomic stability in lung cancer, Sci. Rep., 9 (2019), 14136–14144. doi: 10.1038/s41598-019-50500-w
    [31] W. D. Hazelton, G. Goodman, W. N. Rom, M. Tockman, M. Thornquist, S. H. Moolgavkar, et al., Longitudinal multistage model for lung cancer incidence, mortality, and CT detected indolent and aggressive cancers, Math. Biosci., 240 (2012), 20–34. doi: 10.1016/j.mbs.2012.05.008
    [32] X. Zhang, R. Simon, Estimating the number of rate limiting genomic changes for human breast cancer, Breast Cancer Res. Treat., 91 (2005), 121–124. doi: 10.1007/s10549-004-5782-y
    [33] X. Zhang, Y. Fang, Y. Zhao, W. Zheng, Mathematical modeling the pathway of human breast cancer, Math. Biosci., 253 (2014), 25–29. doi: 10.1016/j.mbs.2014.03.011
    [34] L. Li, T. Tian, X. Zhang, Mutation mechanisms of human breast cancer, J. Comput. Biol., 25 (2018), 1–9. doi: 10.1089/cmb.2018.29010.jh
    [35] C. Tomasetti, L. Marchionni, M. A. Nowak, G. Parmigiani, B. Vogelstein, Only three driver gene mutations are required for the development of lung and colorectal cancers, Proc. Natl. Acad. Sci. U.S.A., 112 (2015), 118–123. doi: 10.1073/pnas.1421839112
    [36] N. Castelletti, J. C. Kaiser, C. Simonetto, K. Furukawa, H. Küchenhoff, G.T. Stathopoulos, Risk of lung adenocarcinoma from smoking and radiation arises in distinct molecular pathways, Carcinogenesis, 40 (2019), 1240–1250. doi: 10.1093/carcin/bgz036
    [37] M. D. Radmacher, R. Simon, Estimation of Tamoxifen's efficiency for preventing the formation and growth of breast tumors, J. Natl. Cancer Inst., 92 (2000), 48–53. doi: 10.1093/jnci/92.1.48
    [38] L. L. Li, T. T. Tian, X. A. Zhang, Stochastic modelling of multistage carcinogenesis and progression of human lung cancer, J. Theor. Biol., 479 (2019), 81–89. doi: 10.1016/j.jtbi.2019.07.006
    [39] S. H. Moolgavkar, G. Luebeck, Two-event model for carcinogenesis: biological, mathematical, and statistical considerations, Risk Anal., 10 (1990), 323–341. doi: 10.1111/j.1539-6924.1990.tb01053.x
    [40] E. Parzen, Stochastic processes, in Applied Mathematics, San Francisco: Holden-Day, (1962), 188–299.
    [41] H. J. Clewell, D. W. Quinn, M. E. Andersen, R. B. Conolly, An improved approximation to the exact solution of the two-stage clonal growth model of cancer, Risk Anal., 15 (1995), 467–473. doi: 10.1111/j.1539-6924.1995.tb00339.x
    [42] R. T. Hoogenveen, H. J. Clewell, M. E. Andersen, W. Slob, An alternative exact solution of the two- stage clonal growth model of cancer, Risk Anal., 19 (1999), 9–14.
    [43] K. S. Crump, R. P. Subramaniam, C. B. van Landingham, A numerical solution to the nonhomogeneous two-stage MVK model of cancer, Risk Anal., 25 (2005), 921–926. doi: 10.1111/j.1539-6924.2005.00651.x
    [44] W. Song, S. Powers, Z. Wei, A. H. Yusuf, Substantial contribution of extrinsic risk factors to cancer development, Nature, 529 (2015), 43–47.
    [45] N. L. Komarovaa, A. Senguptac, M. A. Nowak, Mutation cselection networks of cancer initiation: tumor suppressor genes and chromosomal instability, J. Theor. Biol., 223 (2003), 433–450. doi: 10.1016/S0022-5193(03)00120-6
    [46] M. A. Nowak, F. Michor, Y. Iwasa, Genetic instability and clonal expansion, J. Theor. Biol., 241 (2006), 26–32. doi: 10.1016/j.jtbi.2005.11.012
    [47] A. D. Asatryan, N. L. Komarova, Evolution of genetic instability in heterogeneous tumors, J. Theor. Biol., 396 (2016), 1–12. doi: 10.1016/j.jtbi.2015.11.028
    [48] C. M. Choi, K. W. Seo, S. J. Jang, Y. M. Oh, T. S. Shim, W. S. Kim, et al., Chromosomal instability is a risk factor for poor prognosis of adenocarcinoma of the lung: Fluorescence in situ hybridization analysis of paraffin-embedded tissue from Korean patients, Lung Cancer, 64 (2009), 66–70. doi: 10.1016/j.lungcan.2008.07.016
    [49] V. I. Minina, M. Y. Sinitsky, V. G. Druzhinin, A. Fucic, M. L. Bakanova, A. V. Ryzhkova, et al., Chromosome aberrations in peripheral blood lymphocytes of lung cancer patients exposed to radon and air pollution, Eur. J. Cancer Prev., 27 (2016), 6–12.
    [50] C. J. Gomes, S. Centuori, J. D. Martinez, Abstract 3509: Overexpression of 14-3-3g contributes to chromosomal instability in human lung cancer, Cancer Res., 74 (2014), 3509–3509.
    [51] D. M. Parkin, F. Bray, J. Ferlay, P. Pisani, Global cancer statistics, 2002, CA Cancer J. Clin., 55 (2005), 74–108.
    [52] J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, D. M. Parkin, Estimates of worldwide burden of cancer in 2008: globocan 2008, Int. J. Cancer, 127 (2010), 2893–2917. doi: 10.1002/ijc.25516
    [53] J. C. Martin, N. Lunet, A. G. Marr\acute{o}n, C. L. Moyano, N. M. Santander, R. Cleries, et al., Projections in breast and lung cancer mortality among women: a bayesian analysis of 52 countries worldwide, Cancer Res., 78 (2018), 4436–4442. doi: 10.1158/0008-5472.CAN-18-0187
    [54] L. Walsh, F. Dufey, A. Tschense, M. Schnelzer, B. Grosche, M. Kreuzer, Radon and the risk of cancer mortality-internal Poisson models for the German uranium miners cohort, Health Phys., 99 (2010), 292–300. doi: 10.1097/HP.0b013e3181cd669d
    [55] I. Zaballa, M. Eidem\ddot{u}ller, Mechanistic study on lung cancer mortality after radon exposure in the wismut cohort supports important role of clonal expansion in lung carcinogenesis, Radiat. Environ. Biophys., 55 (2016), 299–315. doi: 10.1007/s00411-016-0659-0
    [56] P. Jacob, R. Meckbach, M. Sokolnikov, V. V. Khokhryakov, E. Vasilenko, Lung cancer risk of Mayak workers: modelling of carcinogenesis and bystander effect, Radiat. Environ. Biophys., 46, (2007), 383–394.
    [57] W. Heidenreich, L. Tomasek, B. Grosche, K. Leuraud, D. Laurier, Lung cancer mortality in the European uranium miners cohort analysed with a biologically based model taking into account radon measurement error, Radiat. Environ. Biophys., 51 (2012), 263–275. doi: 10.1007/s00411-012-0423-z
    [58] M. Eidem\ddot{u}ller, P. Jacob, R. S. D. Lane, S. E. Frost, L. B. Zablotska, Lung cancer mortality (1950–1999) among Eldorado uranium workers: a comparison of models of carcinogenesis and empirical excess risk models, PloS ONE, 7 (2012), e41431. doi: 10.1371/journal.pone.0041431
    [59] K. Furukawa, D. L. Preston, S. L\ddot{o}nn, S. Funamoto, K. Mabuchi, Radiation and smoking effects on lung cancer incidence among atomic bomb survivors, Radiat. Res., 174 (2010), 72–82. doi: 10.1667/RR2083.1
    [60] J. D. Campbell, A. Alexandrov, J. Kim, J. Wala, A. H. Berger, C. Sekhar, et al., Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas, Nat. Genet., 48 (2016), 607–616. doi: 10.1038/ng.3564
    [61] K. Wu, X. Zhang, F. Li, D. Xiao, Y. Hou, S. Zhu, et al., Frequent alterations in cytoskeleton remodelling genes in primary and metastatic lung adenocarcinomas, Nat. Commun., 6 (2015), 10131. doi: 10.1038/ncomms10131
    [62] A. F. Brouwer, R. Meza, M. C. Eisenberg, A systematic approach to determining the identifiability of multistage carcinogenesis models, Risk Anal., 37 (2016), 1375–1387.
    [63] T. Alarcn, H. M. Byrne, P. K. Maini, A multiple scale model for tumor growth, Multiscale Model. Sim., 3 (2005), 440–475. doi: 10.1137/040603760
    [64] M. D. Johnston, C. M. Edwards, W. F. Bodmer, P. K. Maini, S. J. Chapman, Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer, Proc. Natl. Acad. Sci. U.S.A., 104 (2007), 4008–4013. doi: 10.1073/pnas.0611179104
    [65] A. G. Fletcher, P. J. Murray, P. K. Maini, Multiscale modelling of intestinal crypt organization and carcinogenesis, Math. Models Methods Appl. Sci., 25 (2015), 2563–2585. doi: 10.1142/S0218202515400187
    [66] R. D. L. Cruz, P. Guerrero, J. Calvo, T. Alarcón, Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth, J. Comput. Physics, 350 (2017), 974–991. doi: 10.1016/j.jcp.2017.09.019
    [67] A. R. A. Anderson, P. K. Maini, Mathematical oncology, Bull. Math. Biol., 80 (2018), 945–953.
    [68] C. Surulescu, J. Kelkel, On some models for cancer cell migration through tissue networks, Math. Biosci. Eng., 8 (2012), 575–589.
    [69] H. L. Yang, J. Z. Lei, A mathematical model of chromosome recombination-induced drug resistance in cancer therapy, Math. Biosci. Eng., 16 (2019), 7098–7111. doi: 10.3934/mbe.2019356
    [70] The Cancer Genome Atlas Research Network, Comprehensive genomic characterization of squamous cell lung cancers, Nature, 489 (2012), 519–525. doi: 10.1038/nature11404
    [71] The Cancer Genome Atlas Research Network, Comprehensive molecular profiling of lung adenocarcinoma, Nature, 511 (2014), 543–550. doi: 10.1038/nature13385
    [72] G. J. Thomas, The cancer genome atlas research network: A sight to behold, Endocr. Pathol., 25 (2014), 362–365. doi: 10.1007/s12022-014-9345-4
    [73] N. Misra, E. Szczurek, M. Vingron, Inferring the paths of somatic evolution in cancer, Bioinformatics, 30 (2014), 2456–2463. doi: 10.1093/bioinformatics/btu319
    [74] D. Ramazzotti, G. Caravagna, L. O. Loohuis, A. Graudenzi, I. Kosunsky, A. Paroni, et al., CAPRI: efficient inference of cancer progression models from cross-sectional data, Bioinformatics, 31 (2015), 3016–3026. doi: 10.1093/bioinformatics/btv296
    [75] G. Caravagna, A. Graudenzi, D. Ramazzotti, L. D. Sano, G. Mauri, V. Moreno, et al., Algorithmic methods to infer the evolutionary trajectories in cancer progression, Proc. Natl. Acad. Sci. U.S.A., 113 (2015), E4025.
  • This article has been cited by:

    1. Yahong Wang, Wenmin Wang, Cheng Yu, Hongbo Sun, Ruimin Zhang, Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN, 2024, 8, 2504-3110, 91, 10.3390/fractalfract8020091
    2. Shiyv Wang, Xueqin Lv, Songyan He, The reproducing kernel method for nonlinear fourth-order BVPs, 2023, 8, 2473-6988, 25371, 10.3934/math.20231294
    3. Yingchao Zhang, Yuntao Jia, Yingzhen Lin, A new multiscale algorithm for solving the heat conduction equation, 2023, 77, 11100168, 283, 10.1016/j.aej.2023.06.066
    4. Safia Malik, Syeda Tehmina Ejaz, Shahram Rezapour, Mustafa Inc, Ghulam Mustafa, Innovative numerical method for solving heat conduction using subdivision collocation, 2025, 1598-5865, 10.1007/s12190-025-02429-9
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4541) PDF downloads(257) Cited by(8)

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog