Citation: Budi Suarti, Sukarno, Ardiansyah, Slamet Budijanto. Bio-active compounds, their antioxidant activities, and the physicochemical and pasting properties of both pigmented and non-pigmented fermented de-husked rice flour[J]. AIMS Agriculture and Food, 2021, 6(1): 49-64. doi: 10.3934/agrfood.2021004
[1] | Luis Caffarelli, Antoine Mellet . Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3(3): 523-554. doi: 10.3934/nhm.2008.3.523 |
[2] | Joachim von Below, José A. Lubary . Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks and Heterogeneous Media, 2009, 4(3): 453-468. doi: 10.3934/nhm.2009.4.453 |
[3] | Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55 |
[4] | Caihong Gu, Yanbin Tang . Global solution to the Cauchy problem of fractional drift diffusion system with power-law nonlinearity. Networks and Heterogeneous Media, 2023, 18(1): 109-139. doi: 10.3934/nhm.2023005 |
[5] | Giuseppe Maria Coclite, Lorenzo di Ruvo . H1 solutions for a modified Korteweg-de Vries-Burgers type equation. Networks and Heterogeneous Media, 2024, 19(2): 724-739. doi: 10.3934/nhm.2024032 |
[6] | Kota Kumazaki, Adrian Muntean . Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks and Heterogeneous Media, 2019, 14(3): 445-469. doi: 10.3934/nhm.2019018 |
[7] | Hantaek Bae, Rafael Granero-Belinchón, Omar Lazar . On the local and global existence of solutions to 1d transport equations with nonlocal velocity. Networks and Heterogeneous Media, 2019, 14(3): 471-487. doi: 10.3934/nhm.2019019 |
[8] | Debora Amadori, Stefania Ferrari, Luca Formaggia . Derivation and analysis of a fluid-dynamical model in thin and long elastic vessels. Networks and Heterogeneous Media, 2007, 2(1): 99-125. doi: 10.3934/nhm.2007.2.99 |
[9] | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025 |
[10] | Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639 |
The 3D incompressible resistive Hall-Magnetohydrodynamics system (Hall-MHD in short) is the following system of PDEs for
ut+u⋅∇u−B⋅∇B+∇p−μΔu=0, | (1a) |
Bt+u⋅∇B−B⋅∇u+curl((curlB)×B)−νΔB=0, | (1b) |
divu=0,divB=0, | (1c) |
where
The Hall-MHD recently has been studied intensively. The Hall-MHD can be derived from either two fluids model or kinetic models in a mathematically rigorous way [1]. Global weak solution, local classical solution, global solution for small data, and decay rates are established in [4,5,6]. There have been many follow-up results of these papers; see [7,8,12,13,14,15,16,18,29,30,31,32,34,35] and references therein.
We note that the Hall term
Bt+curl((curlB)×B)+ΛβB=0,divB=0, | (2) |
where we take
Bt+curl((curlB)×B)+ΛB=0,divB=0. | (3) |
However, we can show the existence of solutions globally in time if initial data is sufficiently small.
Theorem 1.1. Let
‖B(t)‖2Hk+(1−Cϵ0)∫t0‖Λ12B(s)‖2Hkds≤‖B0‖2Hkforallt>0. |
Moreover,
‖ΛlB(t)‖L2≤C0(1+t)l,0<l≤k, | (4) |
where
Remark 1. The decay rate (4) is consistent with the decay rates of the linear part of (3).
Remark 2. After this work was completed, the referee pointed out that the same result is proved in [37,Theorem 1.1]. Compared to the proof in [37] where they use the Littlewood-Paley decomposition, we use the standard energy energy estimates and classical commutator estimates.
As one of a minimal modification of (3) to show the existence of unique local in time solutions, we now take a logarithmic correction of (3):
Bt+curl((curlB)×B)+ln(2+Λ)ΛB=0, | (5) |
where the Fourier symbol of
Theorem 1.2. Let
‖B(t)‖Hk≤ln(1e−‖B0‖Hk−Ct),0<t<T∗=exp(−‖B0‖Hk)C. | (6) |
In this paper, we also deal with 2D models closely related to the
B(t,x,y)=(−ψy(t,x,y),ψx(t,x,y),Z(t,x,y)), | (7) |
we can rewrite (3) as
ψt+Λψ=[ψ,Z], | (8a) |
Zt+ΛZ=[Δψ,ψ], | (8b) |
where
Although (8) is defined in 2D and has nice cancellation properties (18), the local well-posedness seems unreachable. But, suppose that we redistribute the power of the fractional Laplacians in (8) in such a way that (8b) has the full Laplacian and (8a) is inviscid:
ψt=[ψ,Z],Zt−ΔZ=[Δψ,ψ]. | (9) |
(9) has no direct link to (2), but we may interpret (9) as the
E(t)=‖ψ(t)‖2H4+‖Z(t)‖2H3,E0=‖ψ0‖2H4+‖Z0‖2H3. | (10) |
Theorem 1.3. There exists
E(t)≤E011−CtE0forall 0<t≤T∗<1CE0. |
Moreover, we have the following blow-up criterion:
E(t)+∫t0‖∇Z(s)‖2H2ds<∞⟺∫t0(‖∇2Z(s)‖L∞+‖∇2ψ(s)‖2L∞)ds<∞. |
Since there is no dissipative effect in the equation of
ψt+ψ=[ψ,Z],Zt−ΔZ=[Δψ,ψ]. | (11) |
In this case, we can show the existence of global in time solutions with small initial data having regularity one higher than the regularity in Theorem 1.3. Moreover, we can find decay rates of
F(t)=‖ψ(t)‖2H5+‖Z(t)‖2H4,F0=‖ψ0‖2H5+‖Z0‖2H4,N1(t)=‖∇ψ(t)‖2H4+‖∇Z(t)‖2H4. |
Theorem 1.4. There exists a constant
F(t)+(1−Cϵ0)∫t0N1(s)ds≤F0forallt>0. |
Moreover,
‖ψ(t)‖L2≤‖ψ0‖L2e−t,‖Λkψ(t)‖L2≤Fk−180‖∇ψ0‖5−k4L2e−(5−k)(1−Cϵ0)4t |
with
As another way to redistribute the derivatives in (8), we also deal with
ψt−Δψ=[ψ,Z],Zt=[Δψ,ψ]. | (12) |
Let
Theorem 1.5. There exists
E(t)≤E01−CtE0forall 0<t≤T∗<1CE0. |
Moreover, we have the following blow-up criterion
E(t)+∫t0‖∇ψ‖2H4ds<∞⟺∫t0‖∇2ψ‖2L∞ds. |
We now add a damping term to the equation of
ψt−Δψ=[ψ,Z],Zt+Z=[Δψ,ψ]. | (13) |
In this case, we can use the same regularity used in Theorem 1.5 because the dissipative effect in
Theorem 1.6. There exists a constant
E(t)+(1−Cϵ0)∫t0N2(s)ds≤E0forallt>0. |
Remark 3. Compared to Theorem 1.3, we only need one term in the blow-up criterion in Theorem 1.5 which is due to the dissipative effect in the equation of
All constants will be denoted by
The fractional Laplacian
^Λβf(ξ)=|ξ|βˆf(ξ). |
For
‖f‖Hs=‖f‖L2+‖f‖˙Hs,‖f‖˙Hs=‖Λsf‖L2. |
In the energy spaces, we have the following interpolations: for
‖f‖˙Hs≤‖f‖θ˙Hs0‖f‖1−θ˙Hs1,s=θs0+(1−θ)s1. | (14) |
We begin with two inequalities in 3D:
‖f‖L∞≤C‖f‖Hs,s>32, | (15a) |
‖f‖Lp≤C‖f‖˙Hs,1p=12−s3. | (15b) |
We also provide the following inequalities in 2D
‖f‖L4≤C‖f‖12L2‖∇f‖12L2,‖f‖L∞≤C‖f‖12L2‖Δf‖12L2 |
which will be used repeatedly in the proof of Theorem 1.3, Theorem 1.4, Theorem 1.5, and Theorem 1.6. We also recall
‖∇2f‖L2=‖Δf‖L2 |
which holds in any dimension.
We finally provide the Kato-Ponce commutator cstimate [22]
‖[Λk,f]g‖L2=‖Λk(fg)−fΛkg‖L2≤C‖∇f‖L∞‖Λk−1g‖L2+C‖g‖L∞‖Λkf‖L2 | (16) |
and the fractional Leibniz rule [11]: for
‖Λs(fg)‖Lp≤C‖Λsf‖Lp1‖g‖Lq1+C‖f‖Lp2‖Λsg‖Lq2,1p=1p1+1q1=1p2+1q2. | (17) |
We recall the commutator
Δ[f,g]=[Δf,g]+[f,Δg]+2[fx,gx]+2[fy,gy], | (18a) |
∫f[f,g]=0, | (18b) |
∫f[g,h]=∫g[h,f]. | (18c) |
We recall (3):
Bt+curl((curlB)×B)+ΛB=0. | (19) |
We first approximate (19) by putting
Bt+curl((curlB)×B)+ΛB=ϵΔB. | (20) |
We then mollify (20) as follows
∂tB(ϵ)+curl(Jϵ(curlJϵB(ϵ))×JϵB(ϵ))+ΛJ2ϵB(ϵ)=ϵJ2ϵΔB(ϵ),B(ϵ)0=JϵB0, | (21) |
where
We begin with the
12ddt‖B‖2L2+‖Λ12B‖2L2=0. | (22) |
We now take
12ddt‖ΛkB‖2L2+‖Λ12+kB‖2L2=−∫Λkcurl((curlB)×B)⋅ΛkB=∫([Λ12+k,B]×curlB)⋅Λk−12curlB≤‖[Λ12+k,B]×curlB‖L2‖Λ12+kB‖L2. |
By (16) and (15a) with
‖[Λ12+k,B]×curlB‖L2≤C‖∇B‖L∞‖Λk−12curlB‖L2≤C‖B‖Hk‖Λ12+kB‖2L2. | (23) |
So, we obtain
ddt‖ΛkB‖2L2+‖Λ12+kB‖2L2≤C‖B‖Hk‖Λ12+kB‖2L2. | (24) |
By (22) and (24),
ddt‖B‖2Hk+‖Λ12B‖2Hk≤C‖B‖Hk‖Λ12+kB‖2L2. |
If
‖B(t)‖2Hk+(1−Cϵ0)∫t0‖Λ12B(s)‖2Hkds≤‖B0‖2Hkforallt>0. | (25) |
Let
Bt+ΛB+curl((curlB1)×B)−curl((curlB)×B2)=0 | (26) |
with
12ddt‖B‖2L2+‖Λ12B‖2L2=−∫(curl((curlB1)×B))⋅B=−∫Λ12(((curlB1)×B))⋅Λ−12curlB≤C‖∇B1‖L∞‖Λ12B‖2L2+C‖∇Λ12B1‖L6‖B‖L3‖Λ12B‖L2≤C‖∇B1‖L∞‖Λ12B‖2L2+C‖Λ52B1‖L2‖Λ12B‖2L2≤C‖B1‖Hk‖Λ12B‖2L2, |
where we use (15b) to control
By (14), it is enough to derive the decay rate with
‖ΛkB‖2k+1kL2≤‖B‖1kL2‖Λ12+kB‖2L2≤‖B0‖1kL2‖Λ12+kB‖2L2 |
by (14) and (22), we create the following ODE from (24)
ddt‖ΛkB‖2L2+1−Cϵ0‖B0‖1kL2‖ΛkB‖2k+1kL2≤0. |
By solving this ODE, we find the following decay rate
‖ΛkB(t)‖L2≤((2k)k‖B0‖L2‖ΛkB0‖L2)(2k‖B0‖1kL2+(1−Cϵ0)‖ΛkB0‖1kL2t)k. | (27) |
We recall (5):
Bt+curl((curlB)×B)+ln(2+Λ)ΛB=0, |
The the uniqueness part of Theorem 1.2 is the same as that of Theorem 1.1 and we only derive a priori bounds. Let
‖√ln(2+Λ)Λsf‖2L2=∫(ln(2+|ξ|))|ξ|2s|ˆf(ξ)|2dξ. |
We begin with the
12ddt‖B‖2L2+‖√ln(2+Λ)Λ12B‖2L2=0. | (28) |
Following the computations in the proof of Theorem 1.1, we also have
ddt‖ΛkB‖2L2+‖√ln(2+Λ)Λ12+kB‖2L2≤C‖B‖Hk‖Λ12+kB‖2L2. | (29) |
For each
‖Λ12+kB‖2L2=∫|ξ|≤2N|ξ|2k+1|ˆB(ξ)|2dξ+∫|ξ|≥2N|ξ|2k+1|ˆB(ξ)|2dξ≤2N∫|ξ|≤2N|ξ|2k|ˆB(ξ)|2dξ+1ln(2+2N)∫|ξ|≥2Nln(2+|ξ|)|ξ|2k+1|ˆB(ξ)|2dξ≤2N‖ΛkB‖2L2+1ln(2+2N)‖√ln(2+Λ)Λ12+kB‖2L2. |
So, (29) is replaced by
ddt‖ΛkB‖2L2+‖√ln(2+Λ)Λ12+kB‖2L2≤C2N‖ΛkB‖2L2‖B‖Hk+C‖B‖Hkln(2+2N)‖√ln(2+Λ)Λ12+kB‖2L2. |
We now choose
12ln(2+2N)<C‖B‖Hk<ln(2+2N) |
and so
ddt‖ΛkB‖2L2≤Cexp(‖B‖Hk)‖B‖Hk‖ΛkB‖L2. | (30) |
By (28) and (30), we obtain
ddt‖B‖2Hk≤Cexp(‖B‖Hk)‖B‖2Hk |
and so we have
ddt‖B‖Hk≤Cexp(‖B‖Hk)‖B‖Hk≤Cexp(‖B‖Hk). |
By solving this ODE, we can derive (6).
We recall (9):
ψt=[ψ,Z], | (31a) |
Zt−ΔZ=[Δψ,ψ]. | (31b) |
We first approximate (31a) by putting
∂tψ(ϵ)=Jϵ[Jϵψ(ϵ),JϵZ(ϵ)]+ϵJ2ϵΔψ(ϵ),∂tZ(ϵ)−ΔJ2ϵZ(ϵ)=Jϵ[ΔJϵψ(ϵ),Jϵψ(ϵ)] | (32) |
with
We first note that
12ddt‖ψ‖2L2=∫ψ[ψ,Z]=0. | (33) |
We next multiply (31a) by
12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇Z‖2L2=∫(−Δψ[ψ,Z]+Z[Δψ,ψ])=0. | (34) |
We also multiply (31a) by
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R. | (35) |
We now compute the right-hand side of (35). By (18a), (18b), and (18c),
R=2∫Δ2ψ[Δψ,ΔZ]+4∫Δ2ψ[ψx,ΔZx]+4∫Δ2ψ[ψy,ΔZy]+4∫Δ2ψ[Δψx,Zx]+4∫Δ2ψ[Δψy,Zy]+4∫Δ2ψ[ψxx,Zxx]+8∫Δ2ψ[ψxy,Zxy]+4∫Δ2ψ[ψyy,Zyy]−2∫Δ2Z[Δψx,ψx]−2∫Δ2Z[Δψy,ψy]. | (36) |
So, we find that the number of derivatives acting on
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C∫|∇4ψ||∇4ψ||∇2Z|+C∫|∇3ψ||∇4ψ||∇3Z|+C∫|∇4ψ||∇2ψ||∇4Z|≤C‖Δ2ψ‖2L2‖∇2Z‖L∞+C‖∇3ψ‖L4‖Δ2ψ‖L2‖∇3Z‖L4+C‖Δ2ψ‖L2‖∇2ψ‖L∞‖Δ2Z‖L2≤C‖Δ2ψ‖2L2‖∇2Z‖L∞+C‖Δ2ψ‖32L2‖∇Δψ‖12L2‖Δ2Z‖L2+C‖Δ2ψ‖L2‖∇2ψ‖L∞‖Δ2Z‖L2≤CE2+14‖Δ2Z‖2L2+δ‖∇2Z‖2L∞≤CE2+12‖Δ2Z‖2L2+14‖∇Z‖2L2, |
where we use
‖∇2Z‖2L∞≤C‖ΔZ‖L2‖Δ2Z‖L2≤C‖∇Z‖23L2‖Δ2Z‖43L2≤C‖∇Z‖2L2+C‖Δ2Z‖2L2 |
with
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤CE2+12‖∇Z‖2L2. | (37) |
By (33), (34), and (37), we derive
E(t)≤E01−CtE0forall 0<t≤T∗<1CE0. | (38) |
Let
ψt=[ψ,Z1]+[ψ2,Z],Zt−ΔZ=[Δψ,ψ1]+[Δψ2,ψ] |
with
12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇Z‖2L2=−∫Δψ[ψ,Z1]−∫Δψ[ψ2,Z]+∫Z[Δψ,ψ1]+∫Z[Δψ2,ψ]=(I)+(II)+(III)+(IV). |
The first term is bounded using the definition of
(I)=∫(∇⊥Z1⋅∇ψ)Δψ=−∫(∇⊥∂lZ1⋅∇ψ)∂lψ≤C‖∇2Z1‖L∞‖∇ψ‖2L2. |
We next bound
(II)+(III)=−∫Z[Δψ,ψ]≤C‖∇2ψ‖L∞‖∇ψ‖L2‖∇Z‖L2≤C(‖∇2ψ1‖2L∞+‖∇2ψ2‖2L∞)‖∇ψ‖2L2+14‖∇Z‖2L2. |
The last term is bounded as
(IV)≤C‖∇2ψ2‖L∞‖∇ψ‖L2‖∇Z‖L2≤C‖∇2ψ2‖2L∞‖∇ψ‖2L2+14‖∇Z‖2L2. |
So, we have
ddt(‖∇ψ‖2L2+‖Z‖2L2)≤C(‖∇2Z1‖L∞+‖∇2ψ1‖2L∞+‖∇2ψ2‖2L∞)(‖∇ψ‖2L2+‖Z‖2L2). | (39) |
By (38),
∫t0(‖∇Z(s)‖2L2+‖Δ2Z(s)‖2L2)ds<∞for0<t≤T∗2 |
which gives the integrability of the first term in the parentheses on the right-hand side of (39). By repeating the same argument one more time, we have the uniqueness up to
Let
B(s)=‖∇2Z(s)‖L∞+‖∇2ψ(s)‖2L∞. |
We first deal with
12ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖ΔZ‖2L2=∫Δ2ψ[ψ,Z]−∫ΔZ[Δψ,ψ]=2∫Δψ[ψx,Zx]+2∫Δψ[ψy,Zy]≤C‖∇2Z‖L∞‖Δψ‖2L2 |
and so we have
ddt(‖Δψ‖2L2+‖∇Z‖2L2)+‖ΔZ‖2L2≤C‖∇2Z‖L∞‖Δψ‖2L2. |
This implies
‖Δψ(t)‖2L+‖∇Z(t)‖2L2+∫t0‖ΔZ(s)‖2L2ds<∞⟺∫t0‖∇2Z(s)‖L∞ds<∞. | (40) |
We also deal with
12ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖∇ΔZ‖2L2=−∫Δ3ψ[ψ,Z]+∫Δ2Z[Δψ,ψ]=−∫Δ2ψ[Δψ,Z]−2∫Δ2ψ([ψx,Zx]+[ψy,Zy])−2∫Δψ([ψx,ΔZx]+[ψy,ΔZy])=(I)+(II)+(III). |
As in Section 4.1.3,
(I)=∫(∇∇⊥Z⋅∇Δψ)⋅∇Δψ≤C‖∇2Z‖L∞‖∇Δψ‖2L2. | (41) |
We next estimate
(II)+(III)=−4∫Δψ([Δψy,Zy]+[ψy,ΔZy]+[ψxy,Zxy]+[ψyy,Zyy])≤C∫|∇2Z||∇3ψ|2+C∫|∇2ψ||∇3ψ||∇3Z|≤C‖∇2Z‖L∞‖∇Δψ‖2L2+C‖∇2ψ‖2L∞‖∇Δψ‖2L2+12‖∇ΔZ‖2L2. | (42) |
By (41) and (42), we have
ddt(‖∇Δψ‖2L2+‖ΔZ‖2L2)+‖∇ΔZ‖2L2≤C(‖∇2Z‖L∞+‖∇2ψ‖2L∞)‖∇Δψ‖2L2 |
which implies
‖∇Δψ(t)‖2L2+‖ΔZ(t)‖2L2+∫t0‖∇ΔZ(s)‖2L2ds<∞⟺∫t0B(s)ds<∞. | (43) |
We finally deal with
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2=∫Δ4ψ[ψ,Z]−∫Δ3Z[Δψ,ψ]=R |
with the same
12ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C‖∇2Z‖L∞‖Δ2ψ‖2L2+C‖∇2ψ‖L∞‖Δ2Z‖L2‖Δ2ψ‖L2+C‖∇ΔZ‖L4‖∇Δψ‖L4‖Δ2ψ‖L2≤C(‖∇2Z‖L∞+‖∇2ψ‖2L∞+‖∇ΔZ‖32L2‖∇Δψ‖32L2)‖Δ2ψ‖2L2+12‖Δ2Z‖2L2 |
which gives
ddt(‖Δ2ψ‖2L2+‖∇ΔZ‖2L2)+‖Δ2Z‖2L2≤C(B(s)+‖∇ΔZ‖32L2‖∇Δψ‖32L2)‖Δ2ψ‖2L2. | (44) |
By (40) and (43), (44) implies
‖Δ2ψ(t)‖2L2+‖∇ΔZ(t)‖2L2+∫t0‖Δ2Z(s)‖2L2ds<∞⟺∫t0B(s)ds<∞. |
We recall (11):
ψt+ψ=[ψ,Z],Zt−ΔZ=[Δψ,ψ] |
Since the uniqueness is already proved in Section 4.1.3 even without the damping term, we only focus on the a priori bounds and the decay rates.
We first have
12ddt‖ψ‖2L2+‖ψ‖2L2=0,12ddt(‖∇ψ‖2L2+‖Z‖2L2)+‖∇ψ‖2L2+‖∇Z‖2L2=0. | (45) |
We now consider the highest order part:
12ddt(‖∇Δ2ψ‖2L2+‖Δ2Z‖2L2)+‖∇Δ2ψ‖2L2+‖∇Δ2Z‖2L2=−∫Δ5ψ[ψ,Z]+∫Δ4Z[Δψ,ψ]. |
We compute the right-hand side of this. By (18a), (18b), and (18c),
−∫Δ5ψ[ψ,Z]+∫Δ4Z[Δψ,ψ]=2∫Δ3Z[Δψx,ψx]+2∫Δ3Z[Δψy,ψy]+2∫Δ2Z[Δ2ψx,ψx]+2∫Δ2Z[Δ2ψy,ψy]+2∫ΔZ[Δ2ψx,Δψx]+2∫ΔZ[Δ2ψy,Δψy]−∫Δ3ψ[Δψ,ΔZ]−2∫Δ3ψ[Δψx,Zx]−2∫Δ3ψ[Δψy,Zy]−2∫Δ3ψ[ψx,ΔZx]−2∫Δ3ψ[ψy,ΔZy]−2∫Δ4ψ[ψx,Zx]−2∫Δ4ψ[ψy,Zy]−∫Δ3ψ[Δ2ψ,Z]. | (46) |
We now count the number of derivatives hitting on
(6,2,4)↦(5,2,5), (5,3,4)(4,2,6)↦(5,5,2), (4,3,5)(2,2,8)↦(3,2,7)↦(4,2,6), (3,3,6)↦(5,5,2), (4,3,5)(2,4,6)↦(2,5,5), (3,4,5). |
The last integral is
∫(∇⊥Z⋅∇Δ2ψ)Δ3ψ=−∫(∇⊥∂lZ⋅∇Δ2ψ)∂lΔ2ψ |
and so this gives
(2,5,5), (3,4,5), (4,3,5), (5,2,5), (5,3,4). |
The first and the fourth cases are bounded by
C‖∇2Z‖L∞‖∇Δ2ψ‖2L2≤C‖∇2Z‖2L∞‖∇Δ2ψ‖2L2+16‖∇Δ2ψ‖2L2,C‖∇2ψ‖L∞‖∇Δ2Z‖2L2≤C‖∇2ψ‖L∞‖∇Δ2Z‖2L2+14‖∇Δ2Z‖2L2. |
The second case is bounded by
C‖∇3Z‖L4‖∇4ψ‖L4‖∇Δ2ψ‖L2≤C‖ΔZ‖12L2‖∇Δ2Z‖12L2‖Δ2ψ‖12L2‖∇Δ2ψ‖32L2≤C‖ΔZ‖2L2‖Δ2ψ‖2L2‖∇Δ2Z‖2L2+16‖∇Δ2ψ‖2L2. |
The third case is bounded by
\begin{split} &C\left\|\nabla^{4}Z\right\|_{L^{4}}\left\|\nabla^{3}\psi\right\|_{L^{4}}\left\|\nabla\Delta^{2}\psi\right\|_{L^{2}}\leq C\left\|\Delta^{2}Z\right\|^{\frac{1}{2}}_{L^{2}}\left\|\nabla\Delta^{2}Z\right\|^{\frac{1}{2}}_{L^{2}} \left\|\Delta \psi\right\|^{\frac{1}{2}}_{L^{2}}\left\|\nabla\Delta^{2}\psi\right\|^{\frac{3}{2}}_{L^{2}}\\ & \leq C\left\|\Delta \psi\right\|^{2}_{L^{2}}\left\|\Delta^{2}Z\right\|^{2}_{L^{2}}\left\|\nabla\Delta^{2}Z\right\|^{2}_{L^{2}} +\frac{1}{6}\left\|\nabla\Delta^{2}\psi\right\|^{2}_{L^{2}}. \end{split} |
The last one is bounded by
\begin{split} &C\left\|\nabla^{3}\psi\right\|_{L^{4}}\left\|\nabla^{4}\psi\right\|_{L^{4}}\left\|\nabla\Delta^{2}Z\right\|_{L^{2}}\leq C\left\|\nabla\Delta \psi\right\|^{\frac{1}{2}}_{L^{2}}\left\|\Delta^{2}\psi\right\|_{L^{2}}\left\|\nabla\Delta^{2}\psi\right\|^{\frac{1}{2}}_{L^{2}}\left\|\nabla\Delta^{2}Z\right\|_{L^{2}}\\ & \leq C\left\|\nabla \Delta \psi\right\|_{L^{2}}\left\|\nabla \Delta^{2}\psi\right\|_{L^{2}}\left\|\nabla\Delta^{2}Z\right\|_{L^{2}} \leq C\left\|\nabla \Delta \psi\right\|^{2}_{L^{2}}\left\|\nabla \Delta^{2}\psi\right\|^{2}_{L^{2}} +\frac{1}{4}\left\|\nabla\Delta^{2}Z\right\|^{2}_{L^{2}}. \end{split} |
So, we obtain
\begin{equation} \begin{split} &\frac{d}{dt} \left(\left\|\nabla \Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\Delta^{2} Z\right\|^{2}_{L^{2}} \right)+\left\|\nabla\Delta^{2}\psi\right\|^{2}_{L^{2}} +\left\|\nabla\Delta^{2} Z\right\|^{2}_{L^{2}}\\ & \leq C\left\|\nabla^{2}Z\right\|^{2}_{L^{\infty}}\left\|\nabla \Delta^{2}\psi\right\|^{2}_{L^{2}}+ C\left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}\left\|\nabla \Delta^{2}Z\right\|^{2}_{L^{2}}+C\left\|\nabla \Delta \psi\right\|^{2}_{L^{2}}\left\|\nabla \Delta^{2}\psi\right\|^{2}_{L^{2}}\\ &+C\left\|\Delta Z\right\|^{2}_{L^{2}}\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}\left\|\nabla\Delta^{2}Z\right\|^{2}_{L^{2}}+C\left\|\Delta \psi\right\|^{2}_{L^{2}}\left\|\Delta^{2}Z\right\|^{2}_{L^{2}}\left\|\nabla\Delta^{2}Z\right\|^{2}_{L^{2}} \end{split} \end{equation} | (47) |
By (45) and (47),
\mathcal{F}'(t)+\mathcal{N}_{1}(t)\leq C \left(\mathcal{F}(t)+\mathcal{F}^{2}(t)\right)\mathcal{N}_{1}(t). |
So, if
\label{A priori damping dd} \mathcal{F}(t)+(1-C \epsilon_{0})\int^{t}_{0}\mathcal{N}_{1}(s)ds\leq \mathcal{F}_{0} \quad {{\rm{for}} \;{\rm{all}} \;t > 0 .} |
From (45),
\begin{split} \frac{1}{2}\frac{d}{dt}\left\|\nabla \psi\right\|^{2}_{L^{2}}+\left\|\nabla \psi\right\|^{2}_{L^{2}}& = -\int \Delta \psi[\psi, Z] = \int \left(\nabla^{\perp}Z\cdot \nabla \psi\right)\Delta \psi\\ & = -\int \left(\partial_{l}\nabla^{\perp}Z\cdot \nabla \psi\right)\partial_{l} \psi\\ &\leq \left\|\nabla^{2}Z\right\|_{L^{\infty}}\left\|\nabla \psi\right\|^{2}_{L^{2}} \leq C\epsilon_{0}\left\|\nabla \psi\right\|^{2}_{L^{2}}, \end{split} |
we have
\left\|\nabla \psi(t)\right\|_{L^{2}}\leq \left\|\nabla \psi_{0}\right\|_{L^{2}} e^{-(1-C\epsilon_{0})t}. |
By using (14), we also obtain
\left\|\Lambda^{k}\psi(t)\right\|_{L^{2}}\leq \mathcal{F}^{\frac{k-1}{8}}_{0}\left\|\nabla \psi_{0}\right\|^{\frac{5-k}{4}}_{L^{2}} e^{-\frac{(5-k)(1-C\epsilon_{0})}{4}t}, \quad 1\leq k < 5. |
We recall (12):
\psi_{t}-\Delta \psi = [\psi, Z], \quad Z_{t} = [\Delta \psi, \psi]. |
By applying the same approximation and mollification methods in Section 4.1.1, we can show the existence of smooth solutions locally in time when
We first have
\begin{equation} \begin{split} &\frac{1}{2}\frac{d}{dt}\left\|\psi\right\|^{2}_{L^{2}}+\left\|\nabla \psi\right\|^{2}_{L^{2}} = 0, \\ & \frac{1}{2}\frac{d}{dt} \left(\left\|\nabla \psi\right\|^{2}_{L^{2}}+\left\|Z\right\|^{2}_{L^{2}}\right) + \left\|\Delta \psi\right\|^{2}_{L^{2}} = 0. \end{split} \end{equation} | (48) |
We next deal with
\frac{1}{2}\frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\nabla \Delta^{2} \psi\right\|^{2}_{L^{2}} = \int \Delta^{4} \psi [\psi, Z] -\int\Delta^{3} Z[\Delta \psi, \psi] = \mathcal{R} |
with the same
\begin{equation*} \begin{split} & \frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\nabla\Delta^{2} \psi\right\|^{2}_{L^{2}}\\ & \leq C \left\|\nabla^{2} Z\right\|_{L^{2}}\left\|\Delta^{2}\psi\right\|^{2}_{L^{4}} + C\left\|\nabla \Delta Z\right\|_{L^{2}} \left\|\nabla^{2}\psi\right\|_{L^{\infty}} \left\|\nabla \Delta^{2} \psi\right\|_{L^{2}}+\\ & C\left\|\Delta Z\right\|_{L^{4}}\left\|\nabla^{3}\psi\right\|_{L^{4}} \left\|\nabla \Delta^{2}\psi\right\|_{L^{2}} \\ &\leq C \mathcal{E}^{2}_{1}+\frac{1}{2}\left\|\nabla \Delta^{2} \psi\right\|^{2}_{L^{2}} \end{split} \end{equation*} |
and so we have the following bound
\begin{eqnarray} \frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\nabla \Delta^{2} \psi\right\|^{2}_{L^{2}} \leq C \mathcal{E}^{2}. \end{eqnarray} | (49) |
By (48) and (49), we derive
\begin{eqnarray} \mathcal{E}(t)\leq \frac{\mathcal{E}_{0}}{1-Ct\mathcal{E}_{0}} \quad {{\rm{for}}\; {\rm{all}}} \;\ 0 < t\leq T_{\ast} < \frac{1}{C \mathcal{E}_{0}}. \end{eqnarray} | (50) |
Let
\begin{equation*} \begin{split} &\frac{1}{2}\frac{d}{dt}\left(\left\|\nabla \psi\right\|^{2}_{L^{2}}+ \|Z\|^{2}_{L^{2}}\right)+ \left\|\Delta \psi\right\|^{2}_{L^{2}}\\ & = -\int \Delta \psi [\psi, Z_{1}]-\int \Delta \psi [\psi_{2}, Z]+\int Z [\Delta\psi, \psi_{1}]+\int Z[\Delta\psi_{2}, \psi]\\ & = \text{(I)+(II)+(III)+(IV)}. \end{split} \end{equation*} |
The first term three terms are bounded as
\begin{split} \text{(I)}&\leq \left\|\nabla Z_{1}\right\|_{L^{\infty}}\left\|\nabla \psi\right\|_{L^{2}}\left\|\Delta \psi\right\|_{L^{2}} \leq C\left\|\nabla Z_{1}\right\|^{2}_{L^{\infty}}\left\|\nabla \psi\right\|^{2}_{L^{2}}+\frac{1}{3}\left\|\Delta \psi\right\|^{2}_{L^{2}}, \\ \text{(II)+(III)}& = -\int Z[\Delta \psi, \psi]\leq C \left\|\nabla Z\right\|_{L^{\infty}}\left\|\nabla \psi\right\|_{L^{2}}\left\|\Delta \psi\right\|_{L^{2}} \\ &\leq C \left(\left\|\nabla Z_{1}\right\|^{2}_{L^{\infty}}+\left\|\nabla Z_{2}\right\|^{2}_{L^{\infty}}\right)\left\|\nabla \psi\right\|^{2}_{L^{2}}+\frac{1}{3}\left\|\Delta \psi\right\|^{2}_{L^{2}} \end{split} |
The last term is bounded as
\begin{split} \text{(IV)}&\leq C \left\|\nabla^{3}\psi_{2}\right\|_{L^{4}}\left\|\nabla \psi\right\|_{L^{4}}\left\|Z\right\|_{L^{2}} \leq C \left\|\nabla^{3}\psi_{2}\right\|_{L^{4}}\left\|\nabla \psi\right\|^{\frac{1}{2}}_{L^{2}}\left\|\Delta \psi\right\|^{\frac{1}{2}}_{L^{2}}\left\|Z\right\|_{L^{2}} \\ & \leq C \left\|\nabla^{3}\psi_{2}\right\|^{\frac{4}{3}}_{L^{4}}\left\|\nabla \psi\right\|^{\frac{2}{3}}_{L^{2}}\left\|Z\right\|^{\frac{4}{3}}_{L^{2}} +\frac{1}{3}\left\|\Delta \psi\right\|^{2}_{L^{2}} \leq C \left\|\nabla^{3}\psi_{2}\right\|^{4}_{L^{4}}\left\|\nabla \psi\right\|^{2}_{L^{2}}\\ &+ C \left\|Z\right\|^{2}_{L^{2}} +\frac{1}{3}\left\|\Delta \psi\right\|^{2}_{L^{2}}\\ & \leq C \left\|\nabla\Delta \psi_{2}\right\|^{2}_{L^{2}}\left\|\Delta^{2}\psi_{2}\right\|^{2}_{L^{2}} \left\|\nabla \psi\right\|^{2}_{L^{2}}+ C \left\|Z\right\|^{2}_{L^{2}} +\frac{1}{3}\left\|\Delta \psi\right\|^{2}_{L^{2}}. \end{split} |
So, we have
\begin{split} &\frac{d}{dt}\left(\left\|\nabla \psi\right\|^{2}_{L^{2}}+ \|Z\|^{2}_{L^{2}}\right)\\&\leq C\left(\left\|\nabla Z_{1}\right\|^{2}_{L^{\infty}}+\left\|\nabla Z_{2}\right\|^{2}_{L^{\infty}} +\left\|\nabla\Delta \psi_{2}\right\|^{2}_{L^{2}}\left\|\Delta^{2}\psi_{2}\right\|^{2}_{L^{2}}\right)\left(\left\|\nabla \psi\right\|^{2}_{L^{2}}+ \|Z\|^{2}_{L^{2}}\right). \end{split} |
By (50), the terms in the parentheses are integrable up to
To derive the blow-up criterion, we first bound
\begin{split} &\frac{1}{2}\frac{d}{dt} \left(\left\|\Delta\psi\right\|^{2}_{L^{2}}+\left\|\nabla Z\right\|^{2}_{L^{2}} \right) +\left\| \nabla \Delta \psi\right\|^{2}_{L^{2}} = \int \Delta^{2} \psi [\psi, Z] -\int\Delta Z[\Delta \psi, \psi]\\ & = 2\int \Delta \psi[\psi_{x}, Z_{x}]+2\int \Delta \psi[\psi_{y}, Z_{y}]\leq C \left\|\nabla^{2}\psi\right\|_{L^{\infty}}\left\|\nabla Z\right\|_{L^{2}}\left\|\nabla \Delta \psi\right\|_{L^{2}}\\ &\leq C \left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}\left\|\nabla Z\right\|^{2}_{L^{2}}+\frac{1}{2}\left\|\nabla \Delta \psi\right\|^{2}_{L^{2}} \end{split} |
and so we have
\frac{d}{dt} \left(\left\|\Delta\psi\right\|^{2}_{L^{2}}+\left\|\nabla Z\right\|^{2}_{L^{2}} \right) +\left\| \nabla \Delta \psi\right\|^{2}_{L^{2}} \leq C \left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}\left\|\nabla Z\right\|^{2}_{L^{2}}. |
This implies
\begin{eqnarray} \begin{split} &\left\|\Delta \psi(t)\right\|^{2}_{L^{}}+ \left\|\nabla Z(t)\right\|^{2}_{L^{2}}+\int^{t}_{0}\left\| \nabla \Delta \psi(s)\right\|^{2}_{L^{2}} ds < \infty\\& \iff \int^{t}_{0}\left\|\nabla^{2}\psi(s)\right\|^{2}_{L^{\infty}}ds < \infty \end{split} \end{eqnarray} | (51) |
We also take
\begin{split} &\frac{1}{2}\frac{d}{dt} \left(\left\|\nabla \Delta\psi\right\|^{2}_{L^{2}}+\left\|\Delta Z\right\|^{2}_{L^{2}} \right) +\left\| \Delta^{2} \psi\right\|^{2}_{L^{2}} = -\int \Delta^{3} \psi [\psi, Z] +\int\Delta^{2} Z[\Delta \psi, \psi]\\ & = -\int \Delta^{2}\psi [\Delta \psi, Z] -2\int \Delta^{2}\psi \left([\psi_{x}, Z_{x}]+[\psi_{y}, Z_{y}]\right) \\&\qquad- 2\int \Delta\psi \left([\psi_{x}, \Delta Z_{x}]+[\psi_{y}, \Delta Z_{y}]\right)\\ & = \text{(I)+(II)+(III)}. \end{split} |
By using the computation in (41),
\begin{split} \text{(I)}& = \int \left(\nabla \nabla^{\perp}Z\cdot \nabla \Delta \psi\right)\cdot \nabla \Delta\psi \leq C\left\|\nabla^{2}Z\right\|_{L^{2}} \left\|\nabla^{3}\psi \right\|^{2}_{L^{4}} \\ &\leq C\left\|\nabla^{2}Z\right\|^{2}_{L^{2}} \left\|\nabla\Delta \psi \right\|^{2}_{L^{2}}+\frac{1}{6}\left\|\Delta^{2}\psi \right\|^{2}_{L^{2}}. \end{split} |
We next estimate
\begin{equation*} \begin{split} \text{(II)}+\text{(III)}&\leq C\int \left|\nabla^{2}Z\right| \left|\nabla^{3}\psi \right|^{2}+C\int \left|\nabla^{2}\psi \right| \left|\nabla^{4}\psi \right|\left|\nabla^{2}Z\right|\\ &\leq C\left\|\Delta Z\right\|^{2}_{L^{2}} \left\|\nabla\Delta \psi \right\|^{2}_{L^{2}}+C\left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}} \left\|\Delta Z \right\|^{2}_{L^{2}}+\frac{1}{3}\left\|\Delta^{2}\psi \right\|^{2}_{L^{2}} \end{split} \end{equation*} |
So, we have
\begin{eqnarray} \begin{split} &\frac{d}{dt}\left(\left\|\nabla \Delta \psi\right\|^{2}_{L^{2}}+\left\|\Delta Z\right\|^{2}_{L^{2}}\right) +\left\|\Delta^{2} \psi\right\|^{2}_{L^{2}}\\&\leq C\left(\left\|\nabla\Delta \psi \right\|^{2}_{L^{2}}+\left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}\right)\left\|\Delta Z\right\|^{2}_{L^{2}}. \end{split} \end{eqnarray} | (52) |
By (51), (52) implies
\begin{eqnarray} \begin{split} &\left\|\nabla \Delta \psi(t)\right\|^{2}_{L^{2}}+\left\|\Delta Z(t)\right\|^{2}_{L^{2}}+\int \left\|\Delta^{2} \psi(s)\right\|^{2}_{L^{2}}ds < \infty \\ &\iff \int^{t}_{0}\left\|\nabla^{2}\psi(s)\right\|^{2}_{L^{\infty}}ds < \infty. \end{split} \end{eqnarray} | (53) |
We finally deal with
\frac{1}{2}\frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\nabla \Delta^{2} \psi\right\|^{2}_{L^{2}} = \int \Delta^{4} \psi [\psi, Z] -\int\Delta^{3} Z[\Delta \psi, \psi] |
where we count the number of derivatives acting on
\begin{equation*} \begin{split} &\frac{1}{2} \frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\nabla\Delta^{2} \psi\right\|^{2}_{L^{2}}\\ & \leq C\left\|\Delta Z\right\|^{2}_{L^{2}}\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}\\&\qquad+ C\left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}\left\|\nabla \Delta Z\right\|^{2}_{L^{2}} +C\left\|\Delta Z\right\|^{2}_{L^{4}}\left\|\nabla^{3}\psi\right\|^{2}_{L^{4}}+\frac{1}{2}\left\|\nabla \Delta^{2} \psi\right\|^{2}_{L^{2}}\\ &\leq C\left\|\Delta Z\right\|^{2}_{L^{2}}\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+ C\left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}\left\|\nabla \Delta Z\right\|^{2}_{L^{2}} +C\left\|\Delta Z\right\|^{2}_{L^{2}}\left\|\nabla\Delta Z\right\|^{2}_{L^{2}}\\ &+C\left\|\nabla \Delta \psi\right\|^{2}_{L^{2}}\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\frac{1}{2}\left\|\nabla \Delta^{2} \psi\right\|^{2}_{L^{2}} \end{split} \end{equation*} |
and so we have
\begin{equation} \begin{split} &\frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\nabla\Delta^{2} \psi\right\|^{2}_{L^{2}}\\ &\leq C\left(\left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}+\left\|\Delta Z\right\|^{2}_{L^{2}}\right)\left\|\nabla \Delta Z\right\|^{2}_{L^{2}} +C\left(\left\|\nabla \Delta \psi\right\|^{2}_{L^{2}}+\left\|\Delta Z\right\|^{2}_{L^{2}}\right)\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}} \end{split} \end{equation} | (54) |
By (51) and (53), (54) implies
\label{BW 5}\begin{split} &\left\|\Delta^{2} \psi(t)\right\|^{2}_{L^{2}}+\left\|\nabla \Delta Z(t)\right\|^{2}_{L^{2}}+\int^{t}_{0} \left\|\nabla\Delta^{2} \psi(s)\right\|^{2}_{L^{2}}ds < \infty\\& \iff \int^{t}_{0}\left\|\nabla^{2}\psi(s)\right\|^{2}_{L^{\infty}}ds < \infty. \end{split} |
We recall (13):
\psi_{t}-\Delta \psi = [\psi, Z], \quad Z_{t}+Z = [\Delta \psi, \psi]. |
Since the uniqueness is already proved in Section 5.1.2 even without the damping term, we only focus on the a priori bounds.
We first have
\begin{equation} \begin{split} &\frac{1}{2}\frac{d}{dt}\left\|\psi\right\|^{2}_{L^{2}}+\left\|\nabla \psi\right\|^{2}_{L^{2}} = 0, \\ & \frac{1}{2}\frac{d}{dt} \left(\left\|\nabla \psi\right\|^{2}_{L^{2}}+\left\|Z\right\|^{2}_{L^{2}}\right) + \left\|\Delta \psi\right\|^{2}_{L^{2}}+\left\|Z\right\|^{2}_{L^{2}} = 0. \end{split} \end{equation} | (55) |
We also have
\begin{split} \frac{1}{2}\frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) &+\left\|\nabla \Delta^{2} \psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \\ & = \int \Delta^{4} \psi [\psi, Z] -\int\Delta^{3} Z[\Delta \psi, \psi] = \mathcal{R} \end{split} |
with the same
\begin{equation*} \begin{split} & \frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\nabla\Delta^{2} \psi\right\|^{2}_{L^{2}} +\left\|\nabla\Delta Z\right\|^{2}_{L^{2}}\\ & \leq C \left\|\nabla^{2} Z\right\|_{L^{2}}\left\|\Delta^{2}\psi\right\|^{2}_{L^{4}} + C\left\|\nabla \Delta Z\right\|_{L^{2}} \left\|\nabla^{2}\psi\right\|_{L^{\infty}} \left\|\nabla \Delta^{2} \psi\right\|_{L^{2}}\\ &+ C\left\|\Delta Z\right\|_{L^{4}}\left\|\nabla^{3}\psi\right\|_{L^{4}} \left\|\nabla \Delta^{2}\psi\right\|_{L^{2}} \\ & \leq C \left\|\nabla Z\right\|^{\frac{1}{2}}_{L^{2}}\left\|\nabla\Delta Z\right\|^{\frac{1}{2}}_{L^{2}} \left\|\nabla \Delta\psi\right\|^{\frac{1}{2}}_{L^{2}}\left\|\nabla \Delta^{2}\psi\right\|^{\frac{3}{2}}_{L^{2}}+C\left\|\nabla \Delta Z\right\|_{L^{2}} \left\|\nabla^{2}\psi\right\|_{L^{\infty}} \left\|\nabla \Delta^{2} \psi\right\|_{L^{2}}\\ &+ C\left\|\Delta Z\right\|^{\frac{1}{2}}_{L^{2}}\left\|\nabla\Delta Z\right\|^{\frac{1}{2}}_{L^{2}} \left\|\Delta\psi\right\|^{\frac{1}{2}}_{L^{2}} \left\|\nabla \Delta^{2}\psi\right\|^{\frac{3}{2}}_{L^{2}}\\ & \leq C\left(\left\|\nabla Z\right\|^{2}_{L^{2}}\left\|\nabla \Delta\psi\right\|^{2}_{L^{2}}+\left\|\Delta Z\right\|^{2}_{L^{2}}\left\|\Delta\psi\right\|^{2}_{L^{2}}+\left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}\right)\left\|\nabla\Delta Z\right\|^{2}_{L^{2}}\\&\qquad +\frac{1}{2} \left\|\nabla \Delta^{2} \psi\right\|_{L^{2}}. \end{split} \end{equation*} |
So, we obtain
\begin{equation} \begin{split} &\frac{d}{dt} \left(\left\|\Delta^{2}\psi\right\|^{2}_{L^{2}}+\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \right) +\left\|\nabla\Delta^{2} \psi\right\|^{2}_{L^{2}} +\left\|\nabla\Delta Z\right\|^{2}_{L^{2}}\\ & \leq C\left(\left\|\nabla Z\right\|^{2}_{L^{2}}\left\|\nabla \Delta\psi\right\|^{2}_{L^{2}}+\left\|\Delta Z\right\|^{2}_{L^{2}}\left\|\Delta\psi\right\|^{2}_{L^{2}}+\left\|\nabla^{2}\psi\right\|^{2}_{L^{\infty}}\right)\left\|\nabla\Delta Z\right\|^{2}_{L^{2}} \end{split} \end{equation} | (56) |
By (55) and (56),
\mathcal{E}'(t)+\mathcal{N}_{2}(t)\leq C \left(\mathcal{E}(t)+\mathcal{E}^{2}(t)\right)\mathcal{N}_{2}(t). |
So, if
\mathcal{E}(t)+(1-C \epsilon_{0})\int^{t}_{0}\mathcal{N}_{2}(s)ds\leq \mathcal{E}_{0} \quad {\rm{for}}\; {\rm{all}}\; t > 0 . |
H.B. was supported by NRF-2018R1D1A1B07049015. H. B. acknowledges the Referee for his/her valuable comments that highly improve the manuscript.
[1] | de Mira NVM, Massaretto IL, Pascual CDSCI, et al. (2009) Comparative study of phenolic compounds in different Brazilian rice (Oryza sativa L.) genotypes. J Food Compos Anal 22: 405-409. |
[2] | Shao Y, Xu F, Sun X, et al. (2014) Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.). J Cereal Sci 59: 211-218. |
[3] | Gao Y, Guo X, Liu Y, et al. (2018) Comparative assessment of phytochemical profile, antioxidant capacity and antiproliferative activity in different varieties of brown rice (Oryza sativa L.). LWT 96: 19-25. |
[4] | Razak DLA, Abd Rashid NY, Jamaluddin A, et al. (2015) Enhancement of phenolic acid content and antioxidant activity of rice bran fermented with Rhizopus oligosporus and Monascus purpureus. Biocatal Agric Biotechnol 4: 33-38. |
[5] | Noviasari S, Kusnandar F, Setiyono A, et al. (2019) Profile of phenolic compounds, DPPH-scavenging and anti α-amylase activity of black rice bran fermented with Rhizopus oligosporus. Pertanika J Trop Agric Sci 42: 489-501. |
[6] | Bhanja T, Kumari A, Banerjee R (2009) Bioresource technology enrichment of phenolics and free radical scavenging property of wheat koji prepared with two filamentous fungi. Bioresour Technol 100: 2861-2866. |
[7] | Oliveiera M, Cipolatti EP, Badiale-furlong E, et al. (2012) Phenolic compounds and antioxidant activity in fermented rice (Oryza sativa) Phenolic compounds and antioxidant activity in fermented rice (Oryza sativa) bran. Food Sci Technol 32: 531-536. |
[8] | Hayat A, Jahangir TM, Khuhawar MY, et al. (2015) HPLC determination of gamma amino butyric acid (GABA) and some biogenic amines (BAs) in controlled, germinated, and fermented brown rice by pre-column derivatization. J. Cereal Sci 64: 56-62. |
[9] | AOAC (2015) Official methods of analysis of AOAC International 18th edition. AOAC International. |
[10] | Giusti MM, Wrolstad RE (2001) Characterization and Measurement of Anthocyanins by UV-Visible Spectroscopy. Current Protocols in Food Analytical Chemistry. John Wiley & Sons, Inc., New York. DOI: 10.1002/0471142913.faf0102s00. |
[11] | Reddy CKR, Imi LK, Aripriya SH, et al. (2017) Effects of polishing on proximate composition, physico- chemical characteristics, mineral composition and antioxidant properties of pigmented rice. Rice Sci 24: 241-252. |
[12] | Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28: 25-30. |
[13] | AACC (1999) AACC International Method. 61-03.01: Determination of the pasting properties of rice with the rapid visco analyzer. Minnesota (US): American Association of Cereal Chemists. 2-5. |
[14] | Surojanametakul V, Panthavee W, Satmalee P, et al. (2019) Effect of traditional dried starter culture on morphological, chemical and physicochemical properties of sweet fermented glutinous rice products. J Agric Sci 11: 43-51. |
[15] | Chinsamran K, Piyachomkwan K, Santisopasri V (2005) Effect of lactic acid fermentation on physico-chemical properties of starch derived from cassava, sweet potato and rice effect of lactic acid fermentation on physico-chemical properties of starch derived from cassava, sweet potato and rice. Kasetsart J Nat Sci 39: 76-87. |
[16] | Chu J, Zhao H, Lu Z, et al. (2019) Improved physicochemical and functional properties of dietary fi ber from millet bran fermented by Bacillus natto. Food Chem 294: 79-86. |
[17] | SNI (2009) Tepung Beras. Badan Standardisasi Nasional. Jakarta. Available from: https://bsn.go.id/uploads/download/skema_tepung_%E2%80%93_lampiran_xx_perka_bsn_11_tahun_2019.pdf. |
[18] | Liang J, Han BZ, Nout MJR, et al. (2008) Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem 110: 821-828. |
[19] | Liang J, Li Z, Tsuji K, Nakano K, et al. (2008) Milling characteristics and distribution of phytic acid and zinc in long-, medium- and short-grain rice. J. Cereal Sci 48: 83-91. |
[20] | Iwai T, Takahashi M, Oda K, et al. (2014) Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice. Plant Physiol 160: 2007-2014. |
[21] | Suresh S, Radha KV (2015) Effect of a mixed substrate on phytase production by Rhizopus oligosporus MTCC 556 using solid state fermentation and determination of dephytinization activities in food grains. Food Sci Biotechnol 24: 551-559. |
[22] | Oduguwa OO, Edema MO, Ayeni A (2008) Physico-chemical and microbiological analyses of fermented corn cob, rice bran and cowpea husk for use in composite rabbit feed. Bioresour Technol 99: 1816-1820. |
[23] | Benabda O, Sana M, Kasmi M, et al. (2019) Optimization of protease and amylase production by Rhizopus oryzae cultivated on bread waste using solid-state Fermentation. J Chem 2019: 1-9. |
[24] | Handoyo T, Morita N, (2006) Structural and functional properties of fermented soybean (tempeh) by using Rhizopus oligosporus. Int J Food Prop 9: 347-355. |
[25] | Verma DK, Srivastav PP (2017) Proximate composition, mineral content and fatty acids analyses of aromatic and non-aromatic indian rice. Rice Sci 24: 21-31. |
[26] | Oliveira S, Feddern V, Kupski L, et al. (2011) Bioresource technology changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour Technol 102: 8335-8338. |
[27] | Oliveira MDS, Feddern V, Kupski L, et al. (2010) Physico-chemical characterization of fermented rice bran biomass[ Caracterización fisico-química de la biomasa del salvado de arroz fermentado]. CyTA-J Food 8: 229-236. |
[28] | Ribeiro AC, Graca CS, Chiattoni ML, et al. (2017) Fermentation process in the availability of nutrients in rice bran. RR: J Microbiol Biotechnol 6: 45-52. |
[29] | Kong EL, Lee BK, Michelle, et al. (2015) DNA damage inhibitory effect and phytochemicals of fermented red brown rice extract. Asian Pacific J Trop Dis 5: 732-736. |
[30] | Schmidt CG, Gonç alves LM, Prietto L, et al. (2014) Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae. Food Chem 146: 371-377. |
[31] | Kumar P, Prakash KS, Jan K, et al. (2017) Effects of gamma irradiation on starch granule structure and physicochemical properties of brown rice starch. J Cereal Sci 77: 194-200. |
[32] | Zhang MW, Zhang RF, Zhang FX, et al. (2010) Phenolic profiles and antioxidant activity of black rice bran of different commercially available varieties. J Agric Food Chem 58: 7580-7587. |
[33] | Chaiyasut C, Pengkumsri N, Sirilun S, et al. (2017) Assessment of changes in the content of anthocyanins, phenolic acids, and antioxidant property of Saccharomyces cerevisiae mediated fermented black rice bran. AMB Expr 7: 114. |
[34] | Abdel-Aal ESM, Young JC, Rabalski I (2019) Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Agric Food Chem 54: 4696-4704. |
[35] | Maulani RR, Sumardi D, Pancoro A (2019) Total flavonoids and anthocyanins content of pigmented rice. Drug Invent Today 12: 369-373. |
[36] | Luximon-Ramma A, Bahorun T, Soobrattee M, et al. (2002) Antioxidant activities of phenolic, proanthocyanidin, and flavonoid components in extracts of Cassia fistula. J Agric Food Chem 50: 5042-5047. |
[37] | Cao G, Sofic E, Prior RL (1997) Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radic Biol Med 22: 749-760. |
[38] | Chen M, Meng H, Zhao Y, et al. (2015) Antioxidant and in vitro anticancer activities of phenolics isolated from sugar beet molasses. BMC Complementary Altern Med 15: 313. |
[39] | Anggraini T, Novelina, Limber U, et al. (2015) Antioxidant activities of some red, black and white rice cultivar from West Sumatra, Indonesia. Pak J Nutr 14: 112-117. |
[40] | Butsat S, Siriamornpun S (2010) Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem 119: 606-613. |
[41] | Pang Y, Ahmed S, Xu Y, et al. (2018) Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chem 240: 212-221. |
[42] | Juhász R, Salgó A (2008) Pasting behavior of amylose, amylopectin and their mixtures as determined by rva curves and First Derivatives. Starch-Stärke 60: 70-78. |
[43] | Patindol J, Wang YJ, Jane JL (2005) Structure-functionality changes in starch following rough rice storage. Starch-Stärke 57: 197-207. |
[44] | Olanipekun BF, Otunola ET, Adelakun OE, et al. (2009) Effect of fermentation with Rhizopus oligosporus on some physico-chemical properties of starch extracts from soybean flour. Food Chem Toxicol 47: 1401-1405. |
[45] | Balogun IO, Olatidoye OP, Otunola ET (2019) Effect of fermentation with R. oligosporus and R. stolonifer on some physicochemical properties of starch extracts from dehulled and undehulled. Int Res J Appl Sci 1: 71-75. |
[46] | Ikegwu OJ, Okechukwu PE, Ekumankana EO (2010) Physico-chemical and pasting characteristic of flour and starch from achi Brachytegia eurycoms seed. J Food Technol 8: 58-66. |
[47] | Varavinit S, Shobsngob S, Varanyanond W, et al. (2003) Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of thai rice. Starch-Stärke 55: 410-415. |
[48] | Oloyede OO, James S, Ocheme OB, et al. (2015) Effects of fermentation time on the functional and pasting properties of defatted Moringa oleifera seed flour. Food Sci Nutr 4: 89-95. |