We obtain the local well-posedness of a moving boundary problem that describes the swelling of a pocket of water within an infinitely thin elongated pore (i.e. on $ [a, +\infty), \ a>0 $). Our result involves fine a priori estimates of the moving boundary evolution, Banach fixed point arguments as well as an application of the general theory of evolution equations governed by subdifferentials.
Citation: Kota Kumazaki, Adrian Muntean. Local weak solvability of a moving boundary problem describing swelling along a halfline[J]. Networks and Heterogeneous Media, 2019, 14(3): 445-469. doi: 10.3934/nhm.2019018
[1] | Kota Kumazaki, Adrian Muntean . Local weak solvability of a moving boundary problem describing swelling along a halfline. Networks and Heterogeneous Media, 2019, 14(3): 445-469. doi: 10.3934/nhm.2019018 |
[2] | Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo . On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13(4): 585-607. doi: 10.3934/nhm.2018027 |
[3] | Shijin Deng . Large time behavior for the IBVP of the 3-D Nishida's model. Networks and Heterogeneous Media, 2010, 5(1): 133-142. doi: 10.3934/nhm.2010.5.133 |
[4] | Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu . The Green's functions for the Broadwell Model in a half space problem. Networks and Heterogeneous Media, 2006, 1(1): 167-183. doi: 10.3934/nhm.2006.1.167 |
[5] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[6] | Anya Désilles, Hélène Frankowska . Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions. Networks and Heterogeneous Media, 2013, 8(3): 727-744. doi: 10.3934/nhm.2013.8.727 |
[7] | Linglong Du . Characteristic half space problem for the Broadwell model. Networks and Heterogeneous Media, 2014, 9(1): 97-110. doi: 10.3934/nhm.2014.9.97 |
[8] | Alberto Bressan, Khai T. Nguyen . Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10(2): 255-293. doi: 10.3934/nhm.2015.10.255 |
[9] | Peter V. Gordon, Cyrill B. Muratov . Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks and Heterogeneous Media, 2012, 7(4): 767-780. doi: 10.3934/nhm.2012.7.767 |
[10] | Boris Andreianov, Mohamed Karimou Gazibo . Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11(2): 203-222. doi: 10.3934/nhm.2016.11.203 |
We obtain the local well-posedness of a moving boundary problem that describes the swelling of a pocket of water within an infinitely thin elongated pore (i.e. on $ [a, +\infty), \ a>0 $). Our result involves fine a priori estimates of the moving boundary evolution, Banach fixed point arguments as well as an application of the general theory of evolution equations governed by subdifferentials.
We wish to understand which effect the water-triggered micro-swelling of pores can have at observable scales of concrete-based materials. Such topic is especially relevant in cold regions, where buildings exposed to extremely low temperatures undergo freezing and build microscopic ice lenses that ultimately lead to the mechanical damage of the material; see, for instance, [19]. One way to tackle this issue from a theoretical point of view is to get a better picture of the transport of moisture. Our long-term goal is to build a macro-micro model for moisture transport suitable for cementitious mixtures, where at the macroscopic scale the transport of moisture follows a porous-media-like equation, while at the microscopic scale the moisture is involved in an adsorption-desorption process leading to a strong local swelling of the pores. Such a perspective would lead to a system of partial differential equations with distributed microstructures, see [8,10] for related settings. In this paper, we propose a one-dimensional microscopic problem posed on a halfline with a moving boundary at one of the ends. The moving boundary conditions encode the swelling mechanism, while a diffusion equation is responsible to providing water content for the swelling to take place.
Since we are interested in how far the water content can actually push the a priori unknown moving boundary of swelling, we assume that pore depth is infinite although the actual physical length is finite. Our target here is to show the well-posedness of the pore-level model.
Let us now describe briefly the setting of our equations. The timespan is
$ Qs(T):={(t,z)|0<t<T, a<z<s(t)}. $
|
Our free boundary problem, which we denote by
Find the pair
$ ut−kuzz=0 for (t,z)∈Qs(T), $
|
(1.1) |
$ −kuz(t,a)=β(h(t)−Hu(t,a)) for t∈(0,T), $
|
(1.2) |
$ −kuz(t,s(t))=u(t,s(t))st(t) for t∈(0,T), $
|
(1.3) |
$ st(t)=a0(u(t,s(t))−φ(s(t))) for t∈(0,T), $
|
(1.4) |
$ s(0)=s0,u(0,z)=u0(z) for z∈[a,s0]. $
|
(1.5) |
Here
From the physical perspective, (1.1) is the diffusion equation displacing
$ ∫s(t)au(t,z)dz−kuz(t,a)Δt=∫s(t+Δt)au(t+Δt,z)dz. $
|
Hence, by dividing
$ −kuz(t,a)=∫s(t)aut(t,z)dz+stu(t,s(t)). $
|
By
$ −kuz(t,a)=∫s(t)akuzz(t,z)dz+stu(t,s(t))=kuz(t,s(t))−kuz(t,a)+stu(t,s(t)). $
|
This formal argument motivates the structure of the moving boundary condition (1.3). The ordinary differential equation (1.4) describes the growth rate of the free boundary
From the mathematical point of view, our free boundary problem resembles remotely the classical one phase Stefan problem and its variations for handling superheating, phase transitions, evaporation; compare [9,16,17,20] and references cited therein. Our work contributes to the existing mathematical modeling work of swelling by Fasano and collaborators (see [6,7], e.g.) as well as other authors cf. e.g. [21]. The main difference between these papers and our formulation lies in the choice of the boundary conditions (1.2) and (1.3). Most of the cited settings impose an homogeneous Dirichlet boundary condition at one of the boundaries, while we impose flux boundary conditions at both boundaries. Relation (1.2) will be used in a forthcoming work to connect the microscopic moving boundary discussed here to a macroscopic transport equation.
It is worth mentioning that the literature contains already a number of free boundary problems posed for the corrosion of porous materials. We review here the closest contributions to our setting. For instance, we refer to Muntean and B
It is worth mentioning that the main reason why we are handling the one-dimensional case only is that we do not know how the sharp interface moves in higher dimensions; hence, we are unable to write down the proper boundary conditions to close the model formulation. A similar issue is present in the case of the concrete carbonation problem mentioned above or in settings involving freely moving redox fronts in porous materials. To be more precise, it is not at all clear how the sharp interface behaves close to corners, e.g.
The paper is organized as follows: In Section 2, we state the used notation and assumptions as well as our main theorem concerning the existence and uniqueness of a solution for the moving boundary problem. In Section 3, we consider an auxiliary problem focused on finding
In this framework, we use the following basic notations. We denote by
Throughout this paper, we assume the following restrictions on the model parameters and functions:
(A1)
(A2)
(A3)
(A4)
(A5)
For
Next, we define our concept of solution to (P)
Definition 2.1. We call that pair
(S1)
(S2)
(S3)
(S4)
(S5)
(S6)
The main result of this paper is concerned with the existence and uniqueness of a locally in time solution in the sense of Definition 2.1 to the problem (P)
Theorem 2.2. Let
To be able to prove Theorem 2.2, we transform (P)
$ ˜u(t,y)=u(t,(1−y)a+ys(t)) for (t,y)∈Q(T):=(0,T)×(0,1). $
|
Such a change of variable fixing the moving a priori unknown sharp interface is sometimes referred as Landau transformation. By using the function
$ \tilde{u}_t(t, y)-\frac{k}{(s(t)-a)^2}\tilde{u}_{yy}(t, y) = \frac{ys_t(t)}{s(t)-a}\tilde{u}_y(t, y) \mbox{ for }(t, y)\in Q(T), $ | (2.1) |
$ -\frac{k}{s(t)-a}\tilde{u}_y(t, 0) = \beta(h(t)-H\tilde{u}(t, 0)) \mbox{ for }t\in(0, T), $ | (2.2) |
$ -\frac{k}{s(t)-a}\tilde{u}_y(t, 1) = \tilde{u}(t, 1)s_t(t) \mbox{ for }t\in (0, T), $ | (2.3) |
$ s_t(t) = a_0(\tilde{u}(t, 1)-\varphi(s(t))) \mbox{ for }t\in (0, T), $ | (2.4) |
$ s(0) = s_0, $ | (2.5) |
$ \tilde{u}(0, y) = u_0(1-y)a+y s(0))(: = \tilde{u}_0(y)) \mbox{ for }y \in [0, 1]. $ | (2.6) |
Definition 2.3. For
(S'1)
(S'2) (2.1)–(2.6) hold.
To prove the existence of a solution of (P)
$ ˜ut(t,y)−k(s(t)−a)2˜uyy(t,y)=yst(t)s(t)−a˜uy(t,y) for (t,y)∈Q(T),−ks(t)−a˜uy(t,0)=β(h(t)−H˜u(t,0)) for t∈(0,T),−ks(t)−a˜uy(t,1)=σ(˜u(t,1))st(t) for t∈(0,T),st(t)=a0(σ(˜u(t,1))−φ(s(t))) for t∈(0,T),s(0)=s0, ˜u(0,y)=˜u0(y) for y∈[0,1], $
|
where
$ \sigma(r) = {r if r>φ(a),φ(a) if r≤φ(a). $
|
The definition of a solution of
Theorem 2.4. Let
By Theorem 2.4, we see that for a solution
$ u(t, z): = \tilde{u}\left(t, \frac{z-a}{s(t)-a}\right) \mbox{ for } z\in [a, s(t)] $ | (2.7) |
is a solution of
Remark 1. Theorem 2.2 is proven here by Banach's fixed point theorem, and hence, the existence and uniqueness of a locally in time solution is a direct consequence. To reach a globally in time solution of
Remark 2. It is worth noting the similarities and differences between our setting and the one in Ref. [18]. In both works the mathematical approach in handling the well-posedness of the FBP is similar in spirit, i.e. in both cases the free boundary is fixed by Landau-like transformations and weak solutions are searched by using Banach's fixed point argument. However, differences exist and are major. In our work, we require flux boundary conditions at both sides of the one-dimensional interval, thus very different ad hoc estimates have now to be built to ensure a weak maximum principle. As mentioned in the introduction, our motivation to work with our "flux" formulation of the FBP is mainly because we wish to couple our FBP to another PDE posed at a second (macro) spatial scale in an eventually fixed domain, the FBP staying then at a micro spatial level. The structure of the flux boundary conditions is motivated by what we expect from the way the mathematical theory of homogenization applies to such reaction-diffusion set-up with one slowly moving free boundary. These are prerequisites needed to build so-called distributed-microstructure (or two-scale, or micro-macro) models for swelling.
In this section, for
$ \tilde{u}_t(t, y)-\frac{k}{(s(t)-a)^2}\tilde{u}_{yy}(t, y) = \frac{ys_t(t)}{s(t)-a} \tilde{u}_y(t, y) \mbox{ for }(t, y)\in Q(T), $ | (3.1) |
$ -\frac{k}{s(t)-a}\tilde{u}_y(t, 0) = \beta(h(t)-H\tilde{u}(t, 0)) \mbox{ for }t\in(0, T), $ | (3.2) |
$ -\frac{k}{s(t)-a}\tilde{u}_y(t, 1) = a_0\sigma(\tilde{u}(t, 1))(\sigma(\tilde{u}(t, 1))-\varphi(s(t))) \mbox{ for }t\in (0, T), $ | (3.3) |
$ \tilde{u}(0, y) = \tilde{u}_0(y) \mbox{ for }y \in [0, 1], $ | (3.4) |
In the proof of the existence of solutions, we use the abstract theory of evolution equations in Hilbert spaces governed by time-dependent subdifferentials which is characterized by the following form (cf. [11] and references cited therein):
$ ut(t)+∂φt(u(t))∋l(t) in H for t∈[0,T], $
|
where
$ ∂φt(u):={z∗∈H |(z∗,v−u)H≤φt(v)−φt(u) for v∈H}, $
|
and
For
First of all, to solve
$ ˜ut(t,z)−k(s(t)−a)2˜uyy(t,z)=yst(t)s(t)−afy(t,z) for (t,z)∈Q(T),−ks(t)−a˜uy(t,0)=β(h(t)−H˜u(t,0)) for t∈(0,T),−ks(t)−a˜uy(t,1)=a0σ(˜u(t,1))(σ(˜u(t,1))−φ(s(t))) for t∈(0,T),˜u(0,y)=˜u0(y) for y∈[0,1]. $
|
Now, we define a family
$ \psi^t(u): = {k2(s(t)−a)2∫10|uy(y)|2dy+1s(t)−a∫u(1)0a0σ(ξ)(σ(ξ)−φ(s(t)))dξ−1s(t)−a∫u(0)0β(h(t)−Hξ)dξ if u∈D(ψt),+∞ if otherwise, $
|
where
Lemma 3.1. Let
(1) There exists positive constant
$ (i) |u(0)|2≤C0ψt(u)+C1 for u∈D(ψt)(ii) |u(1)|2≤C0ψt(u)+C1 for u∈D(ψt)(iii) k2(s(t)−a)2|uy|2L2(0,1)≤C0ψt(u)+C1 for u∈D(ψt) $
|
(2) For
Proof. First, we note that for
$ ∫u(1)0a0σ(ξ)(σ(ξ)−φ(s(t)))dξ=∫φ(a)0a0σ(ξ)(σ(ξ)−φ(s(t)))dξ+∫u(1)φ(a)a0σ(ξ)(σ(ξ)−φ(s(t)))dξ=∫φ(a)0a0φ(a)(φ(a)−φ(s(t)))dξ+∫u(1)φ(a)a0ξ(ξ−φ(s(t)))dξ=a0φ2(a)(φ(a)−φ(s(t)))+a0u3(1)3−a0φ(s(t))u2(1)2−(a0φ3(a)3−a0φ(s(t))φ2(a)2)=a0u3(1)3−a0φ(s(t))u2(1)2+(a02φ3(a)3−a0φ(s(t))φ2(a)2)≥a03u3(1)(1−2η3/2)−a03(cφ2η)3+(a02φ3(a)3−a0φ2(a)cφ2), $
|
(3.5) |
where
$ 1s(t)−a∫u(1)0a0σ(ξ)(σ(ξ)−φ(s(t)))dξ≥1s(t)−a(a03u3(1)(1−2η3/2)−(a03(cφ2η)3+a0φ2(a)cφ2))≥c0L−au3(1)−c1δs≥c0φ(a)L−au2(1)−c1δs. $
|
(3.6) |
In the case
$ −1s(t)−a∫u(0)0β(h(t)−Hξ)dξ≥−cβs(t)−au(0)=−cβs(t)−a(u(1)−∫10uy(y)dy)≥−c0φ(a)2(L−a)u2(1)−L−a2c0φ(a)(cβδs)2−k4(s(t)−a)2∫10|uy(y)|2dy−c2βk≥−c0φ(a)2(L−a)u2(1)−k4(s(t)−a)2∫10|uy(y)|2dy−(L−a2c0φ(a)(cβδs)2+c2βk), $
|
(3.7) |
where
$ ψt(u)≥k4(s(t)−a)2∫10|uy(y)|2dy+c0φ(a)2(L−a)u2(1)−c1δs−(L−a2c0φ(a)(cβδs)2+c2βk). $
|
(3.8) |
Also, it holds that
$ |u(0)|2=|∫10uy(y)dy+u(1)|2≤2(∫10|uy(y)|2dy+|u(1)|2)≤2(2(L−a)2kk2(s(t)−a)2∫10|uy(y)|2dy+|u(1)|2). $
|
Therefore, by (3.8) and the estimate of
We now prove statement (2). For
$ g1(s(t),r)=1s(t)−a∫r0a0σ(ξ)(σ(ξ)−φ(s(t)))dξ,g2(s(t),h(t),r)=−1s(t)−a∫r0β(h(t)−Hξ)dξ. $
|
Then, by
By Lemma 3.1 we obtain the following existence result concerning the solutions to problem
Lemma 3.2. Let
Proof. By Lemma 3.1, for
$ z∗=−k(s(t)−a)2uyy on (0,1),−ks(t)−auz(0)=β(h(t)−Hu(0)),−ks(t)−auz(1)=a0σ(u(1))(σ(u(1))−φ(s(t))). $
|
Also, there exists a positive constant
$ |\bar{u}-u|_{L^2(0, 1)} \leq |s(t_1)-s(t_2)|(1+|\varphi^{t_1}(u)|^{1/2}), $ | (3.9) |
$ |\psi^{t_2}(\bar{u})-\psi^{t_1}(u)|\leq C(|s(t_1)-s(t_2)|+|h(t_1)-h(t_2)|)(1+|\psi^{t_1}(u)|). $ | (3.10) |
Indeed, by taking
$ {˜ut+∂ψt(˜u(t))=yst(t)s(t)−afy(t) in L2(0,1)˜u(0,y)=˜u0(y) for y∈[0,1]. $
|
Here, we notice that since
Lemma 3.3. Let
Proof. By Lemma 3.2, we can define the solution operator
$ \frac{1}{2}\frac{d}{dt}|\tilde{u}|^2_{L^2(0, 1)} - \int_0^1 \frac{k}{(s(t)-a)^2}\tilde{u}_{yy} \tilde{u} dy = \int_0^1 \frac{y s_t}{s(t)-a}f_{y}\tilde{u}dy. $ | (3.11) |
Using the structure of the boundary conditions, we obtain
$ −∫10k(s(t)−a)2˜uyy˜udy=k(s(t)−a)2(−˜uy(t,1)˜u(t,1)+˜uy(t,0)˜u(t,0)+∫10|˜uy(t)|2dy)=a0s(t)−a×(σ(˜u1(t,1))(σ(˜u1(t,1))−φ(s(t)))−σ(˜u2(t,1))(σ(˜u2(t,1))−φ(s(t))))˜u(t,1)−1s(t)−a(β(h(t)−H˜u1(t,0))−β(h(t)−H˜u2(t,0)))˜u(t,0)+k(s(t)−a)2∫10|˜uy(t)|2dy≥−a0s(t)−aφ(s(t))|˜u(t,1)|2−cβHs(t)−a|˜u(t,0)|2+k(s(t)−a)2∫10|˜uy(t)|2dy. $
|
Combining this inequality with (3.11), it follows that
$ \frac{1}{2}\frac{d}{dt}|\tilde{u}(t)|^2_{L^2(0, 1)} + \frac{k}{(s(t)-a)^2}\int_0^1|\tilde{u}_y(t)|^2 dy\\ \leq \int_0^1 \frac{ys_t(t)}{s(t)-a}f_{y}(t) \tilde{u}(t)dy +\frac{a_0}{s(t)-a}\varphi(s(t))|\tilde{u}(t, 1)|^2 + \frac{c_{\beta}H}{s(t)-a}|\tilde{u}(t, 0)|^2. $ | (3.12) |
Here, we use the Sobolev's embedding theorem in one dimensional case:
$ |u(y)|^2 \leq C_e|u|_{H^1(0, 1)}|u|_{L^2(0, 1)} \mbox{ for }u\in H^1(0, 1) \mbox{ and }y\in [0, 1], $ | (3.13) |
where
$ \frac{1}{2}\frac{d}{dt}|\tilde{u}(t)|^2_{L^2(0, 1)} + \frac{k}{(s(t)-a)^2}\int_0^1|u_y(t)|^2 dy\\ \leq \int_0^1 \frac{ys_t(t)}{s(t)-a}f_{y}(t) \tilde{u}(t)dy + C_e\left(\frac{a_0c_{\varphi}}{s(t)-a} + \frac{c_{\beta}H}{s(t)-a}\right)|\tilde{u}(t)|_{H^1(0, 1)}|\tilde{u}(t)|_{L^2(0, 1)}. $ | (3.14) |
Taking
$ ∫10yst(t)s(t)−afy(t)˜u(t)dy≤|st|L∞(0,T)|˜u(t)|L2(0,1)(∫101(s(t)−a)2|fy(t)|2dy)1/2,C2s(t)−a|˜u|H1(0,1)|˜u|L2(0,1)≤C2s(t)−a(|˜uy|L2(0,1)|˜u|L2(0,1)+|˜u|2L2(0,1))≤k2(s(t)−a)2|˜uy|2L2(0,1)+(C222k+C2s(t)−a)|˜u|2L2(0,1). $
|
Now, we put
$ 12ddt|˜u(t)|2L2(0,1)+k2(s(t)−a)2∫10|˜uy(t)|2dy≤|fy(t)|2L2(0,1)2+(|st|2L∞(0,T)2δ2s+C222k+C2δs)|˜u(t)|2L2(0,1). $
|
(3.15) |
Now, by setting
$ I(t): = \frac{1}{2}|\tilde{u}(t)|^2_{L^2(0, 1)}+ \frac{k}{2(L-a)^2}\int_0^t|\tilde{u}_y(\tau)|^2_{L^2(0, 1)}d\tau $ |
for
$ ddtI(t)≤|fy(t)|2L2(0,1)2+(|st|2L∞(0,T)2δ2s+C222k+C2δs)I(t). $
|
(3.16) |
Denote by
$ I(t)≤(12∫t0|fy(τ)|2L2(0,1)dτ)eC3T for t∈[0,T]. $
|
This implies that that there exists a small
As next step, for given
Lemma 3.4. Let
Proof. We choose a sequence
$ 12ddt|˜un(t)|2L2(0,1)−∫10k(sn(t)−a)2˜unyy(t)˜un(t)dy=∫10ysnt(t)sn(t)−a˜uny(t)˜un(t)dy. $
|
For the second term in the left hand side, it holds that
$ −∫10k(sn(t)−a)2˜unyy(t)˜un(t)dy=1sn(t)−aa0σ(˜un(t,1))(σ(˜un(t,1))−φ(sn(t)))˜un(t,1)−1sn(t)−aβ(h(t)−H˜un(t,0))˜un(t,0)+k(sn(t)−a)2∫10|˜uny(t)|2dy. $
|
Accordingly, by
$ 12ddt|˜un(t)|2L2(0,1)+k(sn(t)−a)2∫10|˜uny(t)|2dy≤∫10ysnt(t)sn(t)−a˜uny(t)˜un(t)dy+1sn(t)−aa0φ(sn(t))σ(˜un(t,1))˜un(t,1)+1sn(t)−aβ(h(t)−H˜un(t,0))˜un(t,0) fort∈[0,T]. $
|
(3.17) |
Using (3.13) it follows that
$ ∫10ysnt(t)sn(t)−a˜uny(t)˜un(t)dy≤k4(sn(t)−a)2∫10|˜uny(t)|2dy+|snt(t)|2k∫10|˜un(t)|2dy, $
|
and
$ 1sn(t)−aa0φ(s(t))σ(˜un(t,1))˜un(t,1)≤a0cφsn(t)−a(|˜un(t,1)|2+˜un(t,1)φ(a))≤a0cφsn(t)−a(32|˜un(t,1)|2+φ2(a)2)≤3a0cφCe2(sn(t)−a)(|˜uny(t)|L2(0,1)|˜un(t)|L2(0,1)+|˜un(t)|2L2(0,1))+a0cφsn(t)−aφ2(a)2≤k4(sn(t)−a)2|˜uny(t)|2L2(0,1)+((3a0cφCe)24k+3a0cφCe2δ)|˜un(t)|2L2(0,1)+a0cφδφ2(a)2, $
|
and
$ 1sn(t)−aβ(h(t)−H˜un(t,0))˜un(t,0)≤cβsn(t)−a|˜un(t,0)|≤cβCe2(sn(t)−a)(|˜uny(t)|L2(0,1)|˜un(t)|L2(0,1)+|˜un(t)|2L2(0,1))+cβ2(sn(t)−a)≤k4(sn(t)−a)2|˜uny(t)|2L2(0,1)+((cβCe)24k+cβCe2δ)|˜un(t)|2L2(0,1)+cβ2δ. $
|
As a consequence, we see from the above two estimates and (3.17) that
$ 12ddt|˜un(t)|2L2(0,1)+k4(sn(t)−a)2∫10|˜uny(t)|2dy≤(|snt(t)|2k+(3a0cφCe)24k+3a0cβCe2δ+(cβCe)24k+cβCe2δ)|˜un(t)|2L2(0,1)+a0cφδφ2(a)2+cβ2δ for t∈[0,T]. $
|
We denote now the coefficient of
$ 12|˜un(t)|2L2(0,1)+∫t0k4(sn(t)−a)2|˜uny(t)|2L2(0,1)dτ≤(12|˜u(0)|2L2(0,1)+(a0cφδφ2(a)2+cβ2δ)T)e∫t0F(τ)dτ for t∈[0,T]. $
|
(3.18) |
Next, for each
$ ∫10˜unt(t)˜un(t)−˜un(t−h)hdy−∫10k(sn(t)−a)2˜unyy(t)˜un(t)−˜un(t−h)hdy=∫10ysnt(t)sn(t)−a˜uny(t)˜un(t)−˜un(t−h)hdy. $
|
(3.19) |
For the second term of (3.19), we obtain
$ −∫10k(s(t)−a)2˜unyy(t)˜un(t)−˜un(t−h)hdy=−k˜uny(t,1)(sn(t)−a)2˜un(t,1)−˜un(t−h,1)h+k˜uny(t,0)(sn(t)−a)2˜un(t,0)−˜un(t−h,0)h+∫10k˜uny(t)(s(t)−a)2˜uny(t)−˜uny(t−h)hdy. $
|
We name as
$ I1≥1h1sn(t)−a×(∫˜un(t,1)0a0σ(ξ)(σ(ξ)−φ(sn(t)))dξ−∫˜un(t−h,1)0a0σ(ξ)(σ(ξ)−φ(sn(t)))dξ)=g1(sn(t),˜un(t,1))−g1(sn(t−h),˜un(t−h,1))h+1h(1sn(t−h)−a−1sn(t)−a)∫˜un(t−h,1)0a0σ(ξ)(σ(ξ)−φ(sn(t−h)))dξ+1h1sn(t)−a×∫˜un(t−h,1)0(a0σ(ξ)(σ(ξ)−φ(sn(t−h)))−a0σ(ξ)(σ(ξ)−φ(sn(t))))dξ. $
|
Next, for the term
$ I2≥1h1sn(t)−a(−∫˜un(t,0)0β(h(t)−Hξ)dξ+∫˜un(t−h,0)0β(h(t)−Hξ)dξ)=g2(sn(t),h(t),˜un(t,0))−g2(sn(t−h),h(t−h),˜un(t−h,0))h+1h(−1sn(t−h)−a+1sn(t)−a)∫˜un(t−h,0)0β(h(t−h)−Hξ)dξ−1h1sn(t)−a∫˜un(t−h,0)0(β(h(t−h)−Hξ)−β(h(t)−Hξ))dξ $
|
The term
$ I3≥1hk2(sn(t)−a)2(∫10|˜uny(t)|2dy−∫10|˜uny(t−h)|2dy)=1h(k2(sn(t)−a)2∫10|˜uny(t)|2dy−k2(sn(t−h)−a)2∫10|˜uny(t−h)|2dy)+1h(k2(sn(t−h)−a)2−k2(sn(t)−a)2)∫10|˜uny(t−h)|2dy $
|
Combining all these lower bounds and using the fact that
$ lim infh→0(I1+I2+I3)≥ddtψt(˜un(t))+snt(t)(sn(t)−a)2∫˜un(t,1)0a0σ(ξ)(σ(ξ)−φ(sn(t)))dξ+a0φ′(sn(t))snt(t)sn(t)−a∫˜un(t,1)0σ(ξ)dξ+snt(t)(sn(t)−a)2∫˜un(t,0)0β(h(t)−Hξ)dξ−1sn(t)−a∫˜un(t,0)0β′(h(t)−Hξ)ht(t)dξ+ksnt(t)(sn(t)−a)3∫10|˜uny(t)|2dy. $
|
Applying this result to (3.19) and letting
$ |˜unt(t)|2L2(0,1)+ddtψt(˜un(t))≤∫10ysnt(t)sn(t)−a˜uny(t)˜unt(t)dy+|snt(t)|(sn(t)−a)2|∫˜un(t,1)0a0σ(ξ)(φ(sn(t))−σ(ξ))dξ|+a0|φ′(sn(t))||snt(t)|sn(t)−a∫˜un(t,1)0σ(ξ)dξ+|snt(t)|(sn(t)−a)2∫˜un(t,0)0β(h(t)−Hξ)dξ+1sn(t)−a|∫˜un(t,0)0β′(h(t)−Hξ)ht(t)dξ|+k|snt(t)|(sn(t)−a)3∫10|˜uny(t)|2dy. $
|
Using Lemma 3.1, we estimate now from above each of the terms
$ J1≤12|˜unt(t)|2L2(0,1)+12|snt(t)|2(sn(t)−a)2|˜uny(t)|2L2(0,1)≤12|˜unt(t)|2L2(0,1)+|snt(t)|2k(C0ψt(˜un(t))+C1),J2≤a0|snt(t)|φ(sn(t))2δ2(|˜un(t,1)|22+˜un(t,1)φ(a)),≤a0|snt(t)|φ(sn(t))2δ2(|˜un(t,1)|2+φ2(a)2),J3≤a0cφδ|snt(t)|(|˜un(t,1)|22+˜un(t,1)φ(a))≤a0cφδ|snt(t)|(|˜un(t,1)|2+φ2(a)2), $
|
$ J4≤|snt(t)|cβδ2|˜un(t,0)|≤cβδ2(|snt(t)|22+|˜un(t,0)|22),J5≤cβδ|ht(t)||˜un(t,0)|≤cβδ(|ht(t)|22+|˜un(t,0)|22),J6≤k|snt(t)|(sn(t)−a)3∫10|˜uny(t)|2dy≤2|snt(t)|δ(C0ψt(˜un(t))+C1). $
|
Finally, by combining all these estimates, we obtain that
$ 12|˜unt(t)|2L2(0,1)+ddtψt(˜un(t))≤(|snt(t)|2k+2|snt(t)|δ)(C0ψt(˜un(t)+C1)+a0|snt(t)|cφ2δ2(|˜un(t,1)|2+φ2(a)2)+cβδ2|snt(t)|22+a0cφ|snt(t)|δ(|˜un(t,1)|2+φ2(a)2)+(cφδ+cβδ2)|˜un(t,0)|22+cβδ|ht(t)|22 for t∈[0,T]. $
|
Therefore, by setting
$ l(t):=|snt(t)|2k+2|snt(t)|δ+a0|snt(t)|cφ2δ2+a0cφ|snt(t)|δ+12(cφδ+cβδ2)+φ2(a)2(a0|snt(t)|cφ2δ2+a0cφ|snt(t)|δ) $
|
and using Gronwall's lemma, we have that
$ 12∫t0|˜unt(τ)|2L2(0,1)dτ+ψt(˜un(t))≤[ψ0(˜u(0))+cβ2δ2∫t0|snt(t)|2dτ+cβ2δ∫t0|ht(τ)|2dτ+(C1+1)∫t0l(τ)dτ]eC0∫t0l(τ)dτ for t∈[0,T]. $
|
(3.20) |
Therefore, by
In this section, using the results obtained in Section 3, we establish the existence of a solution
$ M(T,s0,a′):={s∈W1,2(0,T)|a′≤s<L on [0,T],s(0)=s0}. $
|
Also, for given
$ MK(T):={s∈M(T,s0,a′)| |s|W1,2(0,T)≤K}. $
|
The construction of a solution of
Finally, by using (2.7), the solution of
Now, we start this section from noting the following estimates, which is already obtained in Section 3:
Lemma 4.1. Let
$ |Φ(s)|W1,2(0,T;L2(0,1))+|Φ(s)|L∞(0,T;H1(0,1))≤C for s∈MK(T), $
|
where
By using Lemma 4.1 we show that for some
Lemma 4.2. Let
Proof. For
$ ΓT(s)(t)=s0+∫t0a0(σ(Φ(s)(τ,1))−φ(s(τ)))dτ≥s0+a0(φ(a)−cφ)t for t∈[0,T]. $
|
(4.1) |
Here, by (3.13) and Lemma 4.1, it follows that
$ ∫t0|˜u(τ,1)|2dτ≤Ce∫t0(|˜uy|L2(0,1)|˜u|L2(0,1)+|˜u|2L2(0,1))dτ≤Ce(|˜u|L∞(0,T;L2(0,1))√t(∫t0|˜uy|2L2(0,1)dτ)1/2+t|˜u|2L∞(0,T;L2(0,1)))≤√tCe(1+√T)C2. $
|
Then, we have that
$ ΓT(s)≤s0+a0√t(∫t0|Φ(s)(τ,1)|2dτ)12≤s0+a0t34(Ce(1+√T)C2)12. $
|
(4.2) |
$ $
|
Hence, we obtain that
$ ∫t0|ΓT(s)|2dτ≤2s20t+2a20tT32(Ce(1+√T)C2) $
|
(4.3) |
and
$ ∫t0|Γ′T(s)|2dτ≤a20∫t0|Φ(s)(τ,1))|2dτ≤a20√tCe(1+√T)C2. $
|
(4.4) |
Therefore, by (4.1)-(4.4) we see that there exists
$ 12ddt|˜u(t)|2H−∫10(k(s1(t)−a)2˜u1yy(t)−k(s2(t)−a)2˜u2yy(t))˜u(t)dy=∫10(ys1t(t)s1(t)−a˜u1y(t)−ys2t(t)s2(t)−a˜u2y(t))˜u(t)dy. $
|
(4.5) |
Regarding the second term of the left hand side of (4.5), we write
$ −∫10(k(s1(t)−a)2˜u1yy(t)−k(s2(t)−a)2˜u2yy(t))˜u(t)dy=∫10(k(s1(t)−a)2˜u1y(t)−k(s2(t)−a)2˜u2y(t))˜uy(t)dy−(k(s1(t)−a)2˜u1y(t)(t,1)−k(s2(t)−a)2˜u2y(t)(t,1))˜u(t,1)+(k(s1(t)−a)2˜u1y(t,0)−k(s2(t)−a)2˜u2y(t,0))˜u(t,0)=:I1+I2+I3. $
|
For the term
$ I1=k(s1(t)−a)2|˜uy(t)|2L2(0,1)+∫10(k(s1(t)−a)2−k(s2(t)−a)2)˜u2y(t)˜uy(t)dy≥k(s1(t)−a)2|˜uy(t)|2L2(0,1)−2Lk|s(t)|δ3(s1(t)−a)|˜u2y(t)|L2(0,1)|˜uy(t)|L2(0,1)≥(1−η2)k(s1(t)−a)2|˜uy(t)|2L2(0,1)−k2η(2Lδ3)2|s(t)|2|˜u2y|2L2(0,1), $
|
where
$ −(k(s1(t)−a)2˜u1y(t,1)−k(s2(t)−a)2˜u2y(t,1))˜u(t,1)=a0(σ(˜u1(t,1))s1(t)−a(σ(˜u1(t,1))−φ(s1(t)))−σ(˜u2(t,1))s2(t)−aσ(˜u2(t,1))−φ(s2(t))))˜u(t,1)=a0s1(t)−a×(σ(˜u1(t,1))(σ(˜u1(t,1))−φ(s1(t)))−σ(˜u2(t,1))(σ(˜u2(t,1))−φ(s2(t))))˜u(t,1) $
|
$ +(1s1(t)−a−1s2(t)−a)a0σ(˜u2(t,1))(σ(˜u2(t,1))−φ(s2(t)))˜u(t,1)=a0s1(t)−a(σ(˜u1(t,1))−σ(˜u2(t,1)))(σ(˜u1(t,1))−φ(s1(t)))˜u(t,1)+a0s1(t)−aσ(˜u2(t,1))(σ(˜u1(t,1))−φ(s1(t))−σ(˜u2(t,1))+φ(s2(t)))˜u(t,1)+(1s1(t)−a−1s2(t)−a)a0σ(˜u2(t,1))(σ(˜u2(t,1))−φ(s2(t)))˜u(t,1)=:I21+I22+I23. $
|
By using (3.13) and (A4), the following inequalities hold:
$ |I21|≤a0Ces1(t)−a|σ(˜u1(t,1))−φ(s1(t))||˜u(t)|H1(0,1)|˜u(t)|L2(0,1)|I22|≤a0s1(t)−aσ(˜u2(t,1))(|˜u(t,1)|2+|φ(s1(t))−φ(s2(t))|˜u(t,1)|)≤a0Ces1(t)−aσ(˜u2(t,1))|˜u(t)|H1(0,1)|˜u(t)|L2(0,1)+a20Ce2(s1(t)−a)2(σ(˜u2(t,1))2|˜u(t)|H1(0,1)|˜u(t)|L2(0,1)+c2φ2|s(t)|2|I23|=(s(t)(s1(t)−a)(s2(t)−a))a0σ(˜u2(t,1))(σ(˜u2(t,1))−φ(s2(t)))˜u(t,1)≤Ce(a0σ(˜u2(t,1))(σ(˜u2(t,1))−φ(s2(t))))22δ2(s1(t)−a)2|˜u(t)|H1(0,1)|˜u(t)|L2(0,1)+12|s(t)|2. $
|
Accordingly, by adding the above three estimates, for
$ 3∑k=1|I2k|≤(L1(t)s1(t)−a+L2(t)(s1(t)−a)2)|˜u(t)|H1(0,1)|˜u(t)|L2(0,1)+(c2φ+1)2|s(t)|2, $
|
(4.6) |
where
$ (k(s1(t)−a)2˜u1y(t,0)−k(s2(t)−a)2˜u2y(t,0))˜u(t,0)=−(1s1(t)−aβ(h(t)−H˜u1(t,0))−1s2(t)−aβ(h(t)−H˜u2(t,0)))˜u(t,0)=−1s1(t)−a(β(h(t)−H˜u1(t,0))−β(h(t)−H˜u2(t,0)))˜u(t,0) $
|
$ −(1s1(t)−a−1s2(t)−a)β(h(t)−H˜u2(t,0))˜u(t,0)=:I31+I32. $
|
Then, by using (3.13) and (A3), we notice that
$ 2∑k=1|I3k|≤(cβCeHs1(t)−a+c2βCe2δ2(s1(t)−a)2)|˜u(t)|H1(0,1)|˜u(t)|L2(0,1)+12|s(t)|2 for t∈[0,T0]. $
|
(4.7) |
What concerns the right-hand side of (4.5), we obtain that
$ ∫10(ys1t(t)s1(t)−a˜u1y(t)−ys2t(t)s2(t)−a˜u2y(t))˜u(t)dy=∫10ys1t(t)s1(t)−a˜uy(t)˜u(t)dy+∫10yst(t)s1(t)−a˜u2y(t)˜u(t)dy+∫10(1s1(t)−a−1s2(t)−a)ys2t(t)˜u2y(t)˜u(t)dy, $
|
while the three terms are controlled from above in the following way:
$ I41≤ηk2(s1(t)−a)2|˜uy(t)|2L2(0,1)+12ηk|s1t(t)|2|˜u(t)|2L2(0,1),I42≤12δ(|st(t)|2+|˜u2y(t)|2L2(0,1)|˜u(t)|2L2(0,1)),I43≤12δ2(|s(t)|2|˜u2(t)|2L2(0,1)+|s2t(t)|2|˜u(t)|2L2(0,1)), $
|
Then, by (4.6) and (4.7) we have
$ 12ddt|˜u(t)|2L2(0,1)+(1−η)k(s1(t)−a)2|˜uy(t)|2L2(0,1)≤(L1(t)+cβCeH)1s1(t)−a|˜u(t)|H1(0,1)|˜u(t)|L2(0,1)+(L2(t)+c2βCe2δ2)1(s1(t)−a)2|˜u(t)|H1(0,1)|˜u(t)|L2(0,1)+(12ηk|s1t(t)|2+12δ|˜u2y(t)|2L2(0,1)+12δ2|s2t(t)|2)|˜u(t)|2L2(0,1)+(c2φ2+1+12δ2|˜u2(t)|2L2(0,1)+k2η(2Lδ3)2|˜u2y|2L2(0,1))|s(t)|2+12δ|st(t)|2. $
|
(4.8) |
Young's inequality together with (3.13) ensure
$ (L1(t)+cβCeH)1s1(t)−a|˜u(t)|H1(0,1)|˜u(t)|L2(0,1)≤(L1(t)+cβCeH)1s1(t)−a(|˜uy(t)|L2(0,1)|˜u(t)|L2(0,1)+|˜u(t)|2L2(0,1))≤(L1(t)+cβCeH)(ηk2(s1(t)−a)2|˜uy(t)|2L2(0,1)+(12ηk+1δ)|˜u(t)|2L2(0,1)) $
|
and
$ (L2(t)+c2βCe2δ2)1(s1(t)−a)2|˜u(t)|H1(0,1)|˜u(t)|L2(0,1)≤(L2(t)+c2βCe2δ2)1(s1(t)−a)2(|˜uy(t)|L2(0,1)|˜u(t)|L2(0,1)+|˜u(t)|2L2(0,1))≤(L2(t)+c2βCe2δ2)1(s1(t)−a)2ηk2|˜uy(t)|2L2(0,1)+1δ2(12ηk+1)|˜u(t)|2L2(0,1), $
|
Here, by (3.13) and Lemma 4.1, we have that
$ |˜ui(t,1)|2≤Ce(|˜uiy(t)|L2(0,1)|˜ui(t)|L2(0,1)+|˜ui(t)|2L2(0,1))≤2CeC2 for t∈[0,T0], $
|
(4.9) |
where
$ 12ddt|˜u(t)|2L2(0,1)+12k(s1(t)−a)2|˜uy(t)|2L2(0,1)≤(L1(t)+cβCeH)(12η0k+1δ)|˜u(t)|2L2(0,1)+(L2(t)+c2βCe2δ2)1δ2(12η0k+1)|˜u(t)|2L2(0,1)+(12η0k|s1t(t)|2+12δ|˜u2y(t)|2L2(0,1)+12δ2|s2t(t)|2)|˜u(t)|2L2(0,1)+(c2φ2+1+12δ2|˜u2(t)|2L2(0,1)+k2η0(2Lδ3)2|˜u2y(t)|2L2(0,1))|s(t)|2+12δ|st(t)|2. $
|
(4.10) |
Now, we put the summation of all coefficient of
$ 12ddt|˜u(t)|2L2(0,1)+12k(s1(t)−a)2|˜uy(τ)|2L2(0,1)≤L3(t)|˜u(t)|2L2(0,1)+L4(t)(|s(t)|2+|st(t)|2) for t∈[0,T0]. $
|
(4.11) |
Here, using Lemma 4.1, (4.2) and
$ 12|˜u(t)|2L2(0,1)+12k(s1(t)−a)2∫t0|˜uy(τ)|2L2(0,1)dτ≤(|L4|L∞(0,T0)|s|2W1,2(0,T))e∫t0L3(τ)dτ for t∈[0,T0]. $
|
(4.12) |
By using (4.12) we show that there exists
$ |(ΓT1(s1))t−(ΓT1(s2))t|L2(0,T1)=a0|σ(~u1(⋅,1))−φ(s1(⋅))−σ((~u2(⋅,1))−φ(s2(⋅))|L2(0,T1)≤a0(|˜u1(⋅,1)−˜u2(⋅,1)|L2(0,T1)+cφ|s|L2(0,T1))≤a0cφT1|st|L2(0,T1)+a0√Ce(∫T10(|˜uy|L2(0,1)|˜u|L2(0,1)+|˜u|2L2(0,1))dt)1/2≤a0cφT1|st|L2(0,T1)+C3(ε|s|W1,2(0,T1)+1ε√T1|s|W1,2(0,T1)+√T1|s|W1,2(0,T1)), $
|
(4.13) |
where
$ |ΓT1(s1)−ΓT1(s2)|L2(0,T1)≤T1(a0cφT1|st|L2(0,T1)+C3(ε|s|W1,2(0,T1)+(1ε+1)√T1|s|W1,2(0,T1))). $
|
(4.14) |
Therefore, by (4.13) and (4.14) and taking a sufficiently small number
From Lemma 4.2, by applying Banach's fixed point theorem, there exists
At the end of this section, we still must ensure the boundedness of a solution to
Lemma 4.3. Let
Proof. First, from (1.1), we have
$ 12ddt∫s(t)a|[−u(t)+φ(a)]+|2dz−st2|[−u(t,s(t))+φ(a)]+|2+k∫s(t)auzz(t)[−u(t)+φ(a)]+dz=0 for a.e.t∈[0,T]. $
|
(4.15) |
By
$ −st2|[−u(t,s(t))+φ(a)]+|2=a02(−σ(u(t,s(t)))+φ(s(t)))|[−u(t,s(t))+φ(a)]+|2≥0. $
|
Also, by the boundary conditions (1.2) and (1.3) it follows that
$ kuz(t,s(t))[−u(t,s(t))+φ(a)]+=−σ(u(t,s(t)))st(t)[−u(t,s(t))+φ(a)]+=a0σ(u(t,s(t)))(−σ(u(t,s(t))+φ(s(t)))[−u(t,s(t))+φ(a)]+ $
|
and
$ −kuz(t,a)[−u(t,a)+φ(s(t))]+=β(h(t)−Hu(t,a))[−u(t,a)+φ(s(t))]+. $
|
Since
$ ddt∫s(t)a|[−u(t)+φ(a)]+|2dz+k∫s(t)a|[−u(t)+φ(a)]+z|2dz≤0 for a.e. t∈[0,T]. $
|
(4.16) |
Integrating (4.16) over
$ 12ddt|u(t)|2L2(a,s(t))+12st(t)|u(t,s(t))|2+k∫s(t)a|uz(t)|2dz−β(h(t)−Hu(t,a))u(t,a)=0 for a.e. t∈[0,T]. $
|
(4.17) |
Here, by
$ st(t)2|u(t,s(t))|2=12(|st(t)|2a0+φ(s(t))st(t))u(t,s(t))≥φ(a)2a0|st(t)|2−cφ2|st(t)|u(t,s(t))≥φ(a)4a0|st(t)|2−a0c2φ4φ(a)u2(t,s(t)) $
|
and
$ −β(h(t)−Hu(t,a))u(t,a)=β(h(t)−Hu(t,a))h(t)−Hu(t,a)H−β(h(t)−Hu(t,a))h(t)H≥−β(h(t)−Hu(t,a))h(t)H. $
|
Hence, the above two results and (4.17) leads to
$ 12ddt|u(t)|2L2(a,s(t))+φ(a)4a0|st(t)|2+k∫s(t)a|uz(t)|2dz≤a0c2φ4φ(a)u2(t,s(t))+β(h(t)−Hu(t,a))h(t)H for a.e. t∈[0,T]. $
|
(4.18) |
By Sobolev's embedding theorem in one dimension, it follows that
$ a0c2φ4φ(a)u2(t,s(t))≤a0c2φ4φ(a)C′e|u(t)|H1(a,s(t))|u(t)|L2(a,s(t))≤a0c2φC′e4φ(a)(|uz(t)|L2(a,s(t))|u(t)|L2(a,s(t))+|u(t)|2L2(a,s(t)))≤k2|uz(t)|2L2(a,s(t))+(12k(a0c2φC′e4φ(a))2+a0c2φC′e4φ(a))|u(t)|2L2(a,s(t)), $
|
(4.19) |
where
$ 12ddt|u(t)|2L2(a,s(t))+φ(a)4a0|st(t)|2+k2∫s(t)a|uz(t)|2dz≤(12k(a0c2φC′e4φ(a))2+a0c2φC′e4φ(a))|u(t)|2L2(a,s(t))+cβ|h|L∞(0,T)H. $
|
(4.20) |
Integrating (4.20) over
$ 12ddt∫s(t)a|[u(t)−|h|L∞(0,T)H−1]+|2dz−st2|[u(t,s(t))−|h|L∞(0,T)H−1]+|2−k∫s(t)auzz(t)[u(t)−|h|L∞(0,T)H−1]+dz=0 for a.e. t∈[0,T]. $
|
(4.21) |
By noting from
$ −kuz(t,s(t))[u(t,s(t))−|h|L∞(0,T)H−1]+=u(t,s(t))st[u(t,s(t))−|h|L∞(0,T)H−1]+=a0u(t,s(t))(u(t,s(t))−φ(s(t)))[u(t,s(t))−|h|L∞(0,T)H−1]+≥a0|h|L∞(0,T)H−1(|h|L∞(0,T)H−1−supr∈Rφ(r))[u(t,s(t))−|h|L∞(0,T)H−1]+≥0, $
|
and
$ kuz(t,a)[u(t,a)−|h|L∞(0,T)H−1]+=−β(h(t)−Hu(t,a))[u(t,a)−|h|L∞(0,T)H−1]+=0, $
|
we can write (4.21) as follows:
$ 12ddt∫s(t)a|[u(t)−|h|L∞(0,T)H−1]+|2dz+k∫s(t)a|[u(t)−|h|L∞(0,T)H−1]+z|2dz≤st(t)2|[u(t,s(t))−|h|L∞(0,T)H−1]+|2 for a.e. t∈[0,T]. $
|
(4.22) |
Similarly to (4.19), we obtain
$ st(t)2|[u(t,s(t))−|h|L∞(0,T)H−1]+|2≤st(t)C′e2(|Uz(t)|L2(a,s(t))|U(t)|L2(a,s(t))+|U(t)|2L2(a,s(t)))≤k2|Uz(t)|2L2(a,s(t))+(12k(st(t)C′e2)2+st(t)C′e2)|U(t)|2L2(a,s(t)), $
|
where
$ 12|[u(t)−|h|L∞(0,T)H−1]+|2L2(a,s(t))+k2∫t0|[u(t)−|h|L∞(0,T)H−1]+z|2L2(a,s(t))dt≤(12|[u0−|h|L∞(0,T)H−1]+|2L2(a,s0))e∫t0G(τ)dτ=0 for t∈[0,T]. $
|
This means that
By Lemma 4.3, we can remove
The authors thank T. Aiki (Tokyo) for fruitful discussions. KK is supported by Grant-in-Aid No.16K17636, JSPS.
1. | Toyohiko Aiki, Kota Kumazaki, Adrian Muntean, A free boundary problem describing migration into rubbers – Quest for the large time behavior, 2022, 102, 0044-2267, 10.1002/zamm.202100134 | |
2. | Kota Kumazaki, Toyohiko Aiki, Adrian Muntean, Local existence of a solution to a free boundary problem describing migration into rubber with a breaking effect, 2022, 18, 1556-1801, 80, 10.3934/nhm.2023004 | |
3. | Surendra Nepal, Magnus Ögren, Yosief Wondmagegne, Adrian Muntean, Random walks and moving boundaries: Estimating the penetration of diffusants into dense rubbers, 2023, 74, 02668920, 103546, 10.1016/j.probengmech.2023.103546 | |
4. | Kota Kumazaki, Adrian Muntean, A two-scale model describing swelling in porous materials with elongated internal structures, 2025, 0033-569X, 10.1090/qam/1705 |