Citation: Anya Désilles, Hélène Frankowska. Explicit construction of solutions to the Burgers equation with discontinuous initial-boundary conditions[J]. Networks and Heterogeneous Media, 2013, 8(3): 727-744. doi: 10.3934/nhm.2013.8.727
[1] | Yifei Wang, Haibo Gu, Ruya An . Averaging principle for space-fractional stochastic partial differential equations driven by Lévy white noise and fractional Brownian motion. AIMS Mathematics, 2025, 10(4): 9013-9033. doi: 10.3934/math.2025414 |
[2] | Xueqi Wen, Zhi Li . $ p $th moment exponential stability and convergence analysis of semilinear stochastic evolution equations driven by Riemann-Liouville fractional Brownian motion. AIMS Mathematics, 2022, 7(8): 14652-14671. doi: 10.3934/math.2022806 |
[3] | Shaoliang Yuan, Lin Cheng, Liangyong Lin . Existence and uniqueness of solutions for the two-dimensional Euler and Navier-Stokes equations with initial data in $ H^1 $. AIMS Mathematics, 2025, 10(4): 9310-9321. doi: 10.3934/math.2025428 |
[4] | Abdelkader Moumen, Ramsha Shafqat, Azmat Ullah Khan Niazi, Nuttapol Pakkaranang, Mdi Begum Jeelani, Kiran Saleem . A study of the time fractional Navier-Stokes equations for vertical flow. AIMS Mathematics, 2023, 8(4): 8702-8730. doi: 10.3934/math.2023437 |
[5] | Mounir Zili, Eya Zougar, Mohamed Rhaima . Fractional stochastic heat equation with mixed operator and driven by fractional-type noise. AIMS Mathematics, 2024, 9(10): 28970-29000. doi: 10.3934/math.20241406 |
[6] | Kinda Abuasbeh, Ramsha Shafqat, Azmat Ullah Khan Niazi, Muath Awadalla . Nonlocal fuzzy fractional stochastic evolution equations with fractional Brownian motion of order (1,2). AIMS Mathematics, 2022, 7(10): 19344-19358. doi: 10.3934/math.20221062 |
[7] | Qasim Khan, Anthony Suen, Hassan Khan, Poom Kumam . Comparative analysis of fractional dynamical systems with various operators. AIMS Mathematics, 2023, 8(6): 13943-13983. doi: 10.3934/math.2023714 |
[8] | Krunal B. Kachhia, Jyotindra C. Prajapati . Generalized iterative method for the solution of linear and nonlinear fractional differential equations with composite fractional derivative operator. AIMS Mathematics, 2020, 5(4): 2888-2898. doi: 10.3934/math.2020186 |
[9] | Weiguo Liu, Yan Jiang, Zhi Li . Rate of convergence of Euler approximation of time-dependent mixed SDEs driven by Brownian motions and fractional Brownian motions. AIMS Mathematics, 2020, 5(3): 2163-2195. doi: 10.3934/math.2020144 |
[10] | Kaile Chen, Yunyun Liang, Nengqiu Zhang . Global existence of strong solutions to compressible Navier-Stokes-Korteweg equations with external potential force. AIMS Mathematics, 2023, 8(11): 27712-27724. doi: 10.3934/math.20231418 |
The Navier-Stokes equations have been derived, more than one century ago, by the engineer C. L. Navier to describe the motion of an incompressible Newtonian fluid. Later, they have been reformulated by the mathematician-physicist G. H. Stokes. Since that time, these equations continue to attract a great deal of attention due to their mathematical and physical importance. In a seminal paper [16], Leray proved the global existence of a weak solution with finite energy. It is well known that weak solutions are unique and regular in two spatial dimensions. In three dimensions, however, the question of regularity and uniqueness of weak solutions is an outstanding open problem in mathematical fluid mechanics, we refer to excellent monographs [15], [17] and [20].
More recently, stochastic versions of the Navier-Stokes equations have been considered in the literature; first by introducing a stochastic forcing term which comes from a Brownian motion (see, e.g., the first results in [2,22]). The addition of the white noise driven term to the basic governing equations is natural for both practical and theoretical applications to take into account for numerical and empirical uncertainties, and have been proposed as a model for turbulence. Later on other kinds of noises have been studied.
In this paper we consider the the Navier-Stokes equations with a stochastic forcing term modelled by a fractional Brownian motion
$
{∂tu(t,x)=(νΔu(t,x)−[u(t,x)⋅∇]u(t,x)−∇π(t,x))dt+Φ∂tWH(t,x)div u(t,x)=0u(0,x)=u0(x)
$
|
(1.1) |
We fix a smooth bounded domain
When
Our aim is to deal with
We shall prove a local existence and uniqueness result. Some remarks on global solutions will also be given. Let us recall also that results on the local existence of mild
In more details, in Section 2 we shall introduce the mathematical setting, in Section 3 we shall deal with the linear problem and in Section 4 we shall prove our main result.
In this section we introduce the functional setting to rewrite system (1.1) in abstract form.
Let
$ L_{\sigma}^{p} = \text{ the closure in } [L^{p}(D)]^d \text{ of }\{ u\in [C_{0}^{\infty}(D)]^d, \ div \ u = 0\} $ |
and
$ G^{p} = \{ \nabla q, q\in W^{1, p}(D) \}. $ |
We then have the following Helmholtz decomposition
$ [L^{p}(D)]^d = L_{\sigma}^{p} \oplus G^{p}, $ |
where the notation
Let us recall some results on the Stokes operator (see, e.g., [20]).
Now we fix
Now, we define the Stokes operator
In particular, for
$ D(A^{\beta}) = \big\{ v\in L_{\sigma}^{2}:\ \|v\|^2_{D(A^\beta)} = \sum\limits_{j = 1}^\infty \lambda_{j}^{2\beta} |(v, e_{j})|^{2} < \infty \big\}, $ |
$ A^\beta v = \sum\limits_{j = 1}^\infty \lambda_{j}^\beta (v, e_{j}) e_{j}. $ |
For negative exponents, we get the dual space:
$ \|A^{-\beta}\|_{\gamma(L^2_\sigma, L^2_\sigma)}^2 : = \sum\limits_{j = 1}^\infty \|A^{-\beta}e_j\|^2_{L^2_\sigma} = \sum\limits_{j = 1}^\infty \lambda_j^{-2\beta} \sim \sum\limits_{j = 1}^\infty j^{-2\beta\frac 2d} $ |
and the latter series in convergent for
We also recall (see, e.g., [23]) that for any
$
‖S(t)u‖Lpσ≤Mtd2(1r−1p)‖u‖Lrσ for 1<r≤p<∞
$
|
(2.1) |
$
‖AαS(t)u‖Lrσ≤Mtα‖u‖Lrσ for 1<r<∞,α>0
$
|
(2.2) |
for any
Lemma 2.1. We have
$ \|S(t)\|_{\gamma(H^{\frac d2};L^2_\sigma)} \le M(2-\ln t) \qquad\forall t\in (0, 1) $ |
and for
$
‖S(t)‖γ(Hq;L2σ)≤Mtd4−q2∀t>0
$
|
(2.3) |
Proof The Hilbert-Schmidt norm of the semigroup can be computed. Recall that
$ \|S(t)\|_{\gamma(H^q, L^2_\sigma)}^2 = \sum\limits_{j = 1}^\infty \|S(t) \frac {e_j}{\lambda_j^{q/2}}\|_{L^2_\sigma}^2 = \sum\limits_{j = 1}^\infty \frac 1{\lambda_j^{q}} \|e^{-\lambda_j t} e_j\|_{L^2_\sigma}^2 = \sum\limits_{j = 1}^\infty \frac {e^{-2\lambda_j t}}{\lambda_j^{q}}. $ |
Since
$ \|S(t)\|_{\gamma(H^q, L^2_\sigma)}^2\le C \sum\limits_{j = 1}^\infty \frac {e^{-2j^{\frac 2d} t}}{j^{\frac{2q}d}}. $ |
Therefore we analyse the series
● When
$ s_{\frac d2}(t) = \sum\limits_{j = 1}^\infty j^{-1} e^{-2j^{\frac 2d} t} = e^{-2t}+\sum\limits_{j = 2}^\infty j^{-1} e^{-2j^{\frac 2d} t} \le e^{-2t}+\int_1^\infty \frac 1x e^{-2x^{\frac 2d} t} dx. $ |
The integral is computed by means of the change of variable
$ \int_1^\infty \frac 1x e^{-2x^{\frac 2d} t} \text{d}x = \int_{\sqrt t}^\infty \frac dy e^{-2y^2}\text{d}y . $ |
Hence, for
$ s_{\frac d2}(t)\le e^{-2t}+d \int_{\sqrt t}^1 \frac 1y \text{d}y +\int_1^\infty e^{-2y^2}\text{d}y \le 1-\frac d2 \ln t+C. $ |
● When
$ \sum\limits_{j = 1}^\infty \frac {e^{-2j^{\frac 2d} t}}{j^{\frac{2q}d}} \le \int_0^\infty \frac {e^{-2x^{\frac 2d} t}}{x^{\frac{2q}d}}dx . $ |
Again, by the change of variable
$ \sum\limits_{j = 1}^\infty \frac {e^{-2j^{\frac 2d} t}}{j^{\frac{2q}d}}\le t^{q-\frac d2} d\int_0^\infty y^{d-2q-1} e^{-2y^2}\text{d}y . $ |
The latter integral is convergent since
● When
$
sq(tn)≡∞∑j=1atn(j)≤∫n1atn(x)dx+atn(n)+∫∞natn(x)dx=∫∞1x−2qde−2x2dtndx+n−2qde−2n2dtn≤d(∫∞0yd−1−2qe−2y2dy) tq−d2n+Cqtqn
$
|
where we have computed the integral by means of the change of variable
$ s_q(t_n)\le \tilde C t_n^{q-\frac d2} \;\text{ for any }n $ |
and therefore for
$ s_q(t)\le\frac C{t^{\frac d2-q}}. $ |
This proves (2.3) when
Let us define the nonlinear term by
$
⟨B(u,v),z⟩=−⟨B(u,z),v⟩,⟨B(u,v),v⟩=0
$
|
(2.4) |
Then one specifies that
$ \|B(u, v)\|_{H^{-1}}\le \|u\|_{L^4_\sigma} \|v\|_{L^4_\sigma} $ |
and thus
Since
For short we shall write
First, we recall that a real fractional Brownian motion (fBm)
$
E[BH(t)BH(s)]:=RH(t,s)=12(t2H+s2H−|t−s|2H),s,t≥0
$
|
(2.5) |
For more details see [18].
We are interested in the infinite dimensional fractional Brownian motion. We consider the separable Hilbert space
$
WH(t)=∞∑j=1ejβHj(t)
$
|
(2.6) |
where
We need to define the integral of the form
Applying the projection operator
$
{du(t)+Au(t) dt=B(u(t)) dt+ΦdWH(t),t>0u(0)=u0
$
|
(2.7) |
We consider its mild solution on the time interval
Definition 2.2. A measurable function
●
● for all
$
u(t)=S(t)u0+ ∫t0S(t−s)B(u(s)) ds+∫t0S(t−s)ΦdWH(s)
$
|
(2.8) |
Now we consider the linear problem associated to the Navier-Stokes equation (2.7), that is
$
dz(t)+Az(t) dt=ΦdWH(t)
$
|
(3.1) |
When the initial condition is
$
z(t)=∫t0S(t−s)Φ dWH(s).
$
|
(3.2) |
To analyze its regularity we appeal to the following result.
Proposition 1. Let
If there exist
$
‖S(t)Φ‖γ(L2σ,L2σ)≤Ctλ∀t>0
$
|
(3.3) |
and
$
λ+α2<H
$
|
(3.4) |
then
Proof. This is a well known result for
Now we use this result with
We have our regularity result for the stochastic convolution by assuming that
Proposition 2. Let
$
d2(1−1p)−q2<H
$
|
(3.5) |
then the process
Proof. According to Proposition 1 we have to estimate the Hilbert-Schmidt norm of the operator
Bearing in mind Lemma 2.1, when
$
‖S(t)Φ‖γ(L2σ,L2σ)≤‖S(t)‖γ(Hq,L2σ)‖Φ‖L(L2σ,Hq)≤Ctd4−q2
$
|
(3.6) |
and when
$
‖S(t)Φ‖γ(L2σ,L2σ)≤‖S(t)‖γ(Hd2,L2σ)‖Φ‖L(L2σ,Hd2)≤Cta
$
|
(3.7) |
for any
Otherwise, when
$
‖S(t)Φ‖γ(L2σ,L2σ)≤‖S(t)‖L(L2σ,L2σ)‖Φ‖γ(L2σ,L2σ)≤C
$
|
(3.8) |
for all
$
‖S(t)A12(q−d2)Φ‖γ(L2σ,L2σ)≤‖AεS(t)‖L(L2σ,L2σ)‖A−d4−ε‖γ(L2σ,L2σ)‖Aq2‖L(Hq,L2σ)‖Φ‖L(L2σ;Hq)≤Mtε
$
|
According to Proposition 1, choosing
$ \int_0^t S(t-s) A^{\frac 12(q-\frac d2)} \Phi \ dW^{{\mathcal H}}(s), \quad t \in [0, T] $ |
has a
$ \varepsilon+\frac 12[ d(\frac 12-\frac 1p)-(q-\frac d2)] <{\mathcal H}<1 $ |
i.e. choosing
$ \frac d2 (1-\frac 1p)-\frac q2<{\mathcal H}<1. $ |
Since
Remark 1. Instead of appealing to the Sobolev embedding
There are results providing the regularity in Banach spaces; see e.g. Corollary 4.4. in the paper [4] by Čoupek, Maslowski, and Ondreját. They involve the
According to [4], assuming
$ \|S(t) \Phi \|_{\gamma(L^2_\sigma, L^p_\sigma)}\le \frac C{t^\lambda} \qquad\forall t>0 $ |
Given
$ \|S(t) \Phi \|_{\gamma(L^2_\sigma, L^p_\sigma)}\le \|\Phi \|_{\mathcal L(L^2_\sigma, H^q)} \|S(t)\|_{\gamma(H^q, L^p_\sigma)} . $ |
The
$ \left[\int_D \Big(\sum\limits_{j = 1}^\infty |S(t) \frac {e_j(x)}{\lambda_j^{q/2}}|^2\Big)^{\frac p2}dx \right]^{1/p} $ |
since
Therefore, we estimate the integral. Let us do it for
$
∫D(∞∑j=1|S(t)ej(x)λq/2j|2)p2dx=∫D(∞∑j=1λ−qje−2λjt|ej(x)|2)p2dx=∫DΠp/2n=1(∞∑jn=1λ−qjne−2λjnt|ejn(x)|2)dx
$
|
Using the Hölder inequality, we get
$ \int_D |e_{j_1}(x)|^2 |e_{j_2}(x)|^2 \cdots |e_{j_{p/2}}(x)|^2 dx \le \|e_{j_1}\|_{L^p}^2 \|e_{j_2}\|_{L^p}^2 \cdots \|e_{j_{p/2}}\|_{L^p}^2 $ |
Hence
$ \int_D \Big(\sum\limits_{j = 1}^\infty |S(t) \frac {e_j(x)}{\lambda_j^{q/2}}|^2\Big)^{\frac p2}dx \le \left(\sum\limits_{j = 1}^\infty \lambda_j^{-q} e^{-2\lambda_j t} \|e_{j}\|_{L^p}^2\right)^{p/2} $ |
How to estimate
Finally, let us point out that for
In this section we study the Navier-Stokes initial problem (2.7) in the space
Following [7], we set
$
{dvdt(t)+Av(t)=B(v(t)+z(t)),t>0v(0)=u0
$
|
(4.1) |
and we get an existence result for
Theorem 4.1. Let
Given
$
d2(1−1p)−q2<H
$
|
(4.2) |
then there exists a local mild
Proof. From Proposition 2 we know that
Now we observe that to find a mild solution (2.8) to equation (2.7) is equivalent to find a mild solution
$ v(t) = S(t)u_{0} + \ \int_{0}^{t} S(t-s)B(v(s) +z(s))ds $ |
to equation (4.1).
We work pathwise and define a sequence by iterations: first
$ v^{j+1}(t) = S(t)u_{0}+ \ \int_{0}^{t} S(t-s)B(z(s)+ v^{j}(s)) \ ds , \quad t \in [0, T] $ |
for
Let us denote by
$ K_0 = \max\left(\| u_{0}\|_{L^p_\sigma}, \sup\limits_{t\in[0, T]} \|z(t) \|_{L^p_\sigma} \right). $ |
We shall show that there exists a random time
$ \|v^{j+1}(t)\|_{L^p_\sigma} \le \|S(t)u_{0}\|_{L^p_\sigma} + \int_{0}^{t} \|S(t-s)B(v^{j}(s)+z(s))\|_{L^p_\sigma} \ ds $ |
We observe that from (2.1) and (2.2) we get
$
‖S(t)u0‖Lpσ≤‖u0‖Lpσ
$
|
(4.3) |
and
$
∫t0‖S(t−s)B((vj(s)+z(s))‖Lpσds≤∫t0‖A12S(t−s)A−12P div ((vj(s)+z(s))⊗(vj(s)+z(s)))‖Lpσ ds,≤∫t01(t−s)12 ‖S(t−s)A−12P div ((vj(s)+z(s))⊗(vj(s)+z(s)))‖Lpσ ds≤∫t0M(t−s)12+d2p ‖A−12P div ((vj(s)+z(s))⊗(vj(s)+z(s)))‖Lp/2σ ds≤∫t0M(t−s)12+d2p ‖(vj(s)+z(s))⊗(vj(s)+z(s))‖Lp/2σ ds≤∫t0M(t−s)12+d2p ‖vj(s)+z(s)‖2Lpσ ds
$
|
(4.4) |
From (4.3) and (4.4) we deduce that
$
‖vj+1(t)‖Lpσ≤K0+∫t0M(t−s)12+d2p ‖vj(s)+z(s)‖2Lpσ ds≤K0+∫t02M(t−s)12+d2p ‖z(s)‖2Lpσ ds+∫t02M(t−s)12+d2p ‖vj(s)‖2Lpσ ds
$
|
Thus, when
$
supt∈[0,T]‖vj+1(t)‖Lpσ≤K0+2M T12−d2p12−d2p supt∈[0,T]‖z(t)‖2Lpσ+2M T12−d2p12−d2p (supt∈[0,T]‖vj(t)‖Lpσ)2≤K0+4pMp−dT12−d2pK20+4pMp−d T12−d2p (supt∈[0,T]‖vj(t)‖Lpσ)2
$
|
Now we show that if
$
supt∈[0,T]‖vj+1(t)‖Lpσ≤K0+4pMp−dT12−d2pK20+4pMp−dT12−d2p4K20=2K0(12+1220pMp−dT12−d2pK0).
$
|
Hence, when
$
20pMp−dT12−d2pK0≤1
$
|
we obtain the required bound. Therefore we define the stopping time
$
τ=min{T,(p−d20pMK0)2pp−d}
$
|
(4.5) |
so that
$
20pMp−dτ12−d2pK0≤1
$
|
(4.6) |
and obtain that
$
supt∈[0,τ]‖vj(t)‖Lpσ≤2K0∀j.
$
|
(4.7) |
Now, we shall show the convergence of the sequence
$
B(vj+1+z)−B(vj+z)=−Pdiv ((vj+1−vj)⊗vj+1+vj⊗(vj+1−vj)+(vj+1−vj)⊗z+z⊗(vj+1−vj)).
$
|
We proceed as in (4.4) and get
$
‖vj+2(t)−vj+1(t)‖Lpσ≤∫t0‖S(t−s)(B(vj+1(s)+z(s))−B(vj(s)+z(s)))‖Lpσds≤∫t0M(t−s)12+d2p(‖vj+1(s)‖Lpσ+‖vj(s)‖Lpσ+2‖z(s)‖Lpσ) ‖vj+1(s)−vj(s)‖Lpσds
$
|
Hence, using (4.7) we get
$
supt∈[0,τ]‖vj+2(t)−vj+1(t)‖Lpσ≤∫τ0M6K0(t−s)12+d2pds (sups∈[0,τ]‖vj+1(s)−vj(s)‖Lpσ)=12pMK0p−d τ12−d2p (supt∈[0,τ]‖vj+1(t)−vj(t)‖Lpσ)
$
|
Setting
$
supt∈[0,τ]‖vj+2(t)−vj+1(t)‖Lpσ≤C0supt∈[0,τ]‖vj+1(t)−vj(t)‖Lpσ≤Cj+10supt∈[0,τ]‖v1(t)−v0(t)‖Lpσ
$
|
Therefore
Since
Remark 2. We briefly discuss the case of cylindrical noise, i.e.
$
d2(1−1p)<H<1.
$
|
(4.8) |
When
$
1−1p<H<1
$
|
(4.9) |
This means that
Now we show pathwise uniqueness of the solution given in Theorem 4.1.
Theorem 4.2. Let
Given
$ \frac d2 (1-\frac 1p)-\frac q2<{\mathcal H} $ |
then the local mild
Proof. Let
$ u(t)-\tilde u(t) = \ \int_{0}^{t} S(t-s) \big(B(u(s))-B(\tilde u(s)) \big) \ ds . $ |
Writing
$
‖u(t)−˜u(t)‖Lpσ≤ ∫t0‖S(t−s)(B(u(s))−B(˜u(s)))‖Lpσ ds≤∫t0M(t−s)12+d2p(‖u(s)‖Lpσ+‖˜u(s)‖Lpσ)‖u(s)−˜u(s)‖Lpσ ds
$
|
Thus
$ \sup\limits_{[0, \tau]}\|u(t)-\tilde u(t)\|_{L^p_\sigma} \le 4K_0 M \frac{ \tau^{\frac{1}{2}- \frac{d}{2p}}}{\frac{1}{2}- \frac{d}{2p}} \ \sup\limits_{t\in [0, \tau]}\|u(t)-\tilde u(t)\|_{L^p_\sigma} . $ |
Keeping in mind the definition (4.5) of
$ \sup\limits_{[0, \tau]}\|u(t)-\tilde u(t)\|_{L^p_\sigma} \le \frac 25 \sup\limits_{[0, \tau]}\|u(t)-\tilde u(t)\|_{L^p_\sigma} $ |
which implies
Let us recall that [6] proved global existence an uniqueness of an
Let us begin with the case
Let us multiply equation (4.1) by
$
12ddt‖v(t)‖2L2σ+‖∇v(t)‖2L2=⟨B(v(t)+z(t),z(t)),v(t)⟩≤‖v(t)+z(t)‖L4σ‖z(t)‖L4σ‖∇v(t)‖L2≤12‖∇v(t)‖2L2+C2‖z(t)‖4L4σ‖v(t)‖2L2σ+C2‖z(t)‖4L4σ
$
|
Hence
$ \frac d{dt}\|v(t)\|_{L^2_\sigma}^2\le C \|z(t)\|_{L^4_\sigma}^4 \|v(t)\|_{L^2_\sigma}^2+C \|z(t)\|_{L^4_\sigma}^4 . $ |
As soon as
Notice that for
Similarly one proceeds when
C. Olivera is partially supported by FAPESP by the grants 2017/17670-0 and 2015/07278-0. B. Ferrario is partially supported by INdAM-GNAMPA, by PRIN 2015 "Deterministic and stochastic evolution equations" and by MIUR -Dipartimenti di Eccellenza Program (2018-2022) - Dept. of Mathematics "F. Casorati", University of Pavia.
The authors declare no conflicts of interest in this paper.
[1] |
D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations and Applications, 4 (1997), 1-42. doi: 10.1007/PL00001406
![]() |
[2] |
C. Bardos, A. Leroux and J. Nedelec, First order quasilinear equations with boundary conditions, Commun. Partial Diff. Equat., 4 (1979), 1017-1034. doi: 10.1080/03605307908820117
![]() |
[3] | A. Bressan, "Hyperbolic Systems of Conservation Laws: The One-dimensional Cauchy Problem," Oxford Lecture Series in Mathematics and its Applications, 20. Oxford University Press, Oxford, 2000. |
[4] |
M. G. Crandall, L. C. Evans and P.-L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. AMS., 282 (1984), 487-502. doi: 10.1090/S0002-9947-1984-0732102-X
![]() |
[5] | L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. |
[6] |
H. Frankowska, On LeFloch solutions to initial-boundary value problem for scalar conservation laws, Journal of Hyperbolic Differential Equations, 7 (2010), 503-543. doi: 10.1142/S0219891610002219
![]() |
[7] | H. Frankowska, Lower semicontinuous solutions to Hamilton-Jacobi-Bellman equations, Proceedings of 30th CDC Conference, IEEE, Brighton, December 11-13, (1991), 265-270. |
[8] |
H. Frankowska, Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equation, SIAM J. Control and Optimization, 31 (1993), 257-272. doi: 10.1137/0331016
![]() |
[9] |
P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406
![]() |
[10] |
P. G. LeFloch, Explicit formula for scalar nonlinear conservation laws with boundary condition, Math. Methods Appl. Sci., 10 (1988), 265-287. doi: 10.1002/mma.1670100305
![]() |
[11] |
M. Lighthill and G. Whitham, On kinematic waves, II: A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
![]() |
[12] |
P. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
![]() |
[13] |
I. Strub and A. Bayen, Weak formulation of boundary conditions for scalar conservation laws: An application to highway traffic modelling, Int. J. Robust Nonlinear Control, 16 (2006), 733-748. doi: 10.1002/rnc.1099
![]() |
1. | Zirong Zeng, Mild solutions of the stochastic MHD equations driven by fractional Brownian motions, 2020, 491, 0022247X, 124296, 10.1016/j.jmaa.2020.124296 | |
2. |
Manil T. Mohan,
Lp -solutions of deterministic and stochastic convective Brinkman–Forchheimer equations,
2021,
11,
1664-2368,
10.1007/s13324-021-00595-0
|
|
3. | N. Durga, Mohamed Djemai, D.N. Chalishajar, Solvability and trajectory controllability of impulsive stochastic MHD equations with Rosenblatt process, 2023, 175, 09600779, 114013, 10.1016/j.chaos.2023.114013 | |
4. | Lihong Guo, Renormalization Group Method for a Stochastic Differential Equation with Multiplicative Fractional White Noise, 2024, 12, 2227-7390, 379, 10.3390/math12030379 | |
5. | Durga Nagarajan, S. Satham Hussain, Muslim Malik, Optimal Control of Stochastic Magneto‐Hydrodynamics With Non‐Instantaneous Impulsive Effects: Applications to Solar Flare Impact Mitigation, 2025, 0143-2087, 10.1002/oca.3260 |