Research article Special Issues

Averaging principle for space-fractional stochastic partial differential equations driven by Lévy white noise and fractional Brownian motion

  • Received: 13 January 2025 Revised: 29 March 2025 Accepted: 08 April 2025 Published: 21 April 2025
  • MSC : 35R60, 60H15

  • This paper's main objective was to obtain an averaging principle for space-fractional stochastic partial differential equations (SFPDEs) driven by Lévy space-time white noise and fractional Brownian motion (fBm). By using the fixed point theorem, we first obtained the existence and uniqueness of mild solutions for the given equation. Subsequently, given some appropriate conditions, we proved that the solution of the original equation converges to that of the averaged equation as the time scale $ \epsilon\to 0 $. This greatly decreases the complexity since one can focus on the averaged equation rather than the original equation.

    Citation: Yifei Wang, Haibo Gu, Ruya An. Averaging principle for space-fractional stochastic partial differential equations driven by Lévy white noise and fractional Brownian motion[J]. AIMS Mathematics, 2025, 10(4): 9013-9033. doi: 10.3934/math.2025414

    Related Papers:

  • This paper's main objective was to obtain an averaging principle for space-fractional stochastic partial differential equations (SFPDEs) driven by Lévy space-time white noise and fractional Brownian motion (fBm). By using the fixed point theorem, we first obtained the existence and uniqueness of mild solutions for the given equation. Subsequently, given some appropriate conditions, we proved that the solution of the original equation converges to that of the averaged equation as the time scale $ \epsilon\to 0 $. This greatly decreases the complexity since one can focus on the averaged equation rather than the original equation.



    加载中


    [1] N. Kryloff, N. Bogoliouboff, La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire, Ann. Math., 38 (1937), 65–113. https://doi.org/10.2307/1968511 doi: 10.2307/1968511
    [2] I. Bodnarchuk, Averaging principle for a stochastic cable equation, Mod. Stoch. Theory App., 7 (2020), 449–467. https://doi.org/10.15559/20-VMSTA168 doi: 10.15559/20-VMSTA168
    [3] P. Gao, Averaging principles for stochastic 2D Navier-Stokes equations, J. Stat. Phys., 186 (2022), 28. http://doi.org/10.1007/s10955-022-02876-9 doi: 10.1007/s10955-022-02876-9
    [4] P. Gao, Averaging principle for multiscale nonautonomous random 2D Navier-Stokes system, J. Funct. Anal., 285 (2023), 110036. https://doi.org/10.1016/j.jfa.2023.110036 doi: 10.1016/j.jfa.2023.110036
    [5] M. Cheng, Z. Liu, M. Röckner, Averaging principle for stochastic complex Ginzburg-Landau equations, J. Differ. Equations, 368 (2023), 58–104. https://doi.org/10.1016/j.jde.2023.05.031 doi: 10.1016/j.jde.2023.05.031
    [6] G. Xiao, M. Fečkan, J. Wang, On the averaging principle for stochastic differential equations involving Caputo fractional derivative, Chaos, 32 (2022), 101105. http://doi.org/10.1063/5.0108050 doi: 10.1063/5.0108050
    [7] M. Mouy, H. Boulares, S. Alshammari, M. Alshammari, Y. Laskri, W. W. Mohammed, On averaging principle for Caputo-Hadamard fractional stochastic differential pantograph equation, Fractal Fract., 7 (2022), 31. https://doi.org/10.3390/fractalfract7010031 doi: 10.3390/fractalfract7010031
    [8] J. Zou, D. Luo, A new result on averaging principle for Caputo-type fractional delay stochastic differential equations with Brownian motion, Appl. Anal., 103 (2024), 1397–1417. http://doi.org/10.1080/00036811.2023.2245845 doi: 10.1080/00036811.2023.2245845
    [9] L. Ren, G. Xiao, The averaging principle for Caput type fractional stochastic differential equations with Lévy noise, Fractal Fract., 8 (2024), 595. https://doi.org/10.3390/fractalfract8100595 doi: 10.3390/fractalfract8100595
    [10] M. Yang, T. Lv, Q. Wang, The averaging principle for Hilfer fractional stochastic evolution equations with Lévy noise, Fractal Fract., 7 (2023), 701. https://doi.org/10.3390/fractalfract7100701 doi: 10.3390/fractalfract7100701
    [11] J. Liu, H. Zhang, J. Wang, C. Jin, J. Li, W. Xu, A note on averaging principles for fractional stochastic differential equations, Fractal Fract., 8 (2024), 216. https://doi.org/10.3390/fractalfract8040216 doi: 10.3390/fractalfract8040216
    [12] Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes, IEEE T. Automat. Contr., 70 (2024), 1176–1183. https://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
    [13] Q. Zhu, Stability analysis of stochastic delay differential equations with Lévy noise, Syst. Control Lett., 118 (2018), 62–68. https://doi.org/10.1016/j.sysconle.2018.05.015 doi: 10.1016/j.sysconle.2018.05.015
    [14] H. M. Ahmed, Q. Zhu, A note on averaging principles for fractional stochastic differential equations, Appl. Math. Lett., 112 (2021), 106755. https://doi.org/10.1016/j.aml.2020.106755 doi: 10.1016/j.aml.2020.106755
    [15] J. Liu, W. Wei, J. Wang, W. Xu, Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations, Appl. Math. Lett., 140 (2023), 108586. https://doi.org/10.1016/j.aml.2023.108586 doi: 10.1016/j.aml.2023.108586
    [16] S. Moualkia, Y. Liu, J. Qiu, J. Lu, An averaging result for fractional variable-order neutral differential equations with variable delays driven by Markovian switching and Lévy noise, Chaos Soliton. Fract., 182 (2024), 114795. https://doi.org/10.1016/j.chaos.2024.114795 doi: 10.1016/j.chaos.2024.114795
    [17] R. Kasinathan, R. Kasinathan, D. Chalishajar, D. Baleanu, V. Sandrasekaran, The averaging principle of Hilfer fractional stochastic pantograph equations with non-Lipschitz conditions, Stat. Probabil. Lett., 215 (2024), 110221. https://doi.org/10.1016/j.spl.2024.110221 doi: 10.1016/j.spl.2024.110221
    [18] P. Azerad, M. Mellouk, On a stochastic partial differential equation with non-local diffusion, Potential Anal., 27 (2007), 183–197. http://doi.org/10.1007/s11118-007-9052-6 doi: 10.1007/s11118-007-9052-6
    [19] K. Shi, Y. Wang, On a stochastic fractional partial differential equation driven by a Lévy space-time white noise, J. Math. Anal. Appl., 364 (2010), 119–129. https://doi.org/10.1016/j.jmaa.2009.11.010 doi: 10.1016/j.jmaa.2009.11.010
    [20] Z. Avazzadeh, O. Nikan, A. Nguyen, V. Nguyen, A localized hybrid kernel meshless technique for solving the fractional Rayleigh-Stokes problem for an edge in a viscoelastic fluid, Eng. Anal. Bound. Elem., 146 (2023), 695–705. https://doi.org/10.1016/j.enganabound.2022.11.003 doi: 10.1016/j.enganabound.2022.11.003
    [21] T. Gunasekar, P. Raghavendran, S. Santra, M. Sajid, Existence and controllability results for neutral fractional Volterra-Fredholm integro-differential equations, J. Math. Comput. Sci., 34 (2024), 361–380. https://doi.org/10.22436/jmcs.034.04.04 doi: 10.22436/jmcs.034.04.04
    [22] B. B. Mandelbrot. J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437. https://doi.org/10.1137/1010093 doi: 10.1137/1010093
    [23] A. Truman, J. Wu, Stochastic Burgers equation with Lévy space-time white noise, Probabilist. Method. Fluid., 2003 (2003), 298–323. https://doi.org/10.1142/9789812703989_0020 doi: 10.1142/9789812703989_0020
    [24] L. Bo, Y. Wang, Stochastic Cahn-Hilliard partial differential equations with Lévy spacetime white noises, Stoch. Dynam., 6 (2006), 229–244. https://doi.org/10.1142/S0219493706001736 doi: 10.1142/S0219493706001736
    [25] J. Droniou, C. Imbert, Fractal first-order partial differential equations, Arch. Rational Mech. Anal., 182 (2006), 299–331. http://doi.org/10.1007/s00205-006-0429-2 doi: 10.1007/s00205-006-0429-2
    [26] T. Komatsu, On the martingale problem for generators of stable processes with perturbations, Osaka J. Math., 21 (1984), 113–132.
    [27] J. B. Walsh, An introduction to stochastic partial differential equations, In: École d'Été de Probabilités de Saint Flour XIV - 1984, Berlin: Springer, 1986. http://doi.org/10.1007/BFb0074920
    [28] J. Mémin, Y. Mishura, E. Valkeila, Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion, Stat. Probabil. Lett., 51 (2001), 197–206. https://doi.org/10.1016/S0167-7152(00)00157-7 doi: 10.1016/S0167-7152(00)00157-7
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(976) PDF downloads(64) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog