Research article

Allelic Interaction between CRELD1 and VEGFA in the Pathogenesis of Cardiac Atrioventricular Septal Defects

  • Atrioventricular septal defects (AVSD) are highly heritable, clinically significant congenital heart malformations. Genetic and environmental modifiers of risk are thought to work in unknown combinations to cause AVSD. Approximately 5–10% of simplex AVSD cases carry a missense mutation in CRELD1. However, CRELD1 mutations are not fully penetrant and require interactions with other risk factors to result in AVSD. Vascular endothelial growth factor-A (VEGFA) is a well-characterized modulator of heart valve development. A functional VEGFA polymorphism, VEGFA c.-634C, which causes constitutively increased VEGFA expression, has been associated with cardiac septal defects suggesting it may be a genetic risk factor. To determine if there is an allelic association with AVSD we genotyped the VEGFA c.-634 SNP in a simplex AVSD study cohort. Over-representation of the c.-634C allele in the AVSD group suggested that this genotype may increase risk. Correlation of CRELD1 and VEGFA genotypes revealed that potentially pathogenic missense mutations in CRELD1 were always accompanied by the VEGFA c.-634C allele in individuals with AVSD suggesting a potentially pathogenic allelic interaction. We used a Creld1 knockout mouse model to determine the effect of deficiency of Creld1 combined with increased VEGFA on atrioventricular canal development. Morphogenic response to VEGFA was abnormal in Creld1-deficient embryonic hearts, indicating that interaction between CRELD1 and VEGFA has the potential to alter atrioventricular canal morphogenesis. This supports our hypothesis that an additive effect between missense mutations in CRELD1 and a functional SNP in VEGFA contributes to the pathogenesis of AVSD.

    Citation: Jennifer K. Redig, Gameil T. Fouad, Darcie Babcock, Benjamin Reshey, Eleanor Feingold, Roger H. Reeves, Cheryl L. Maslen. Allelic Interaction between CRELD1 and VEGFA in the Pathogenesis of Cardiac Atrioventricular Septal Defects[J]. AIMS Genetics, 2014, 1(1): 1-19. doi: 10.3934/genet.2014.1.1

    Related Papers:

    [1] Swati Shinde, Madhura Kalbhor, Pankaj Wajire . DeepCyto: a hybrid framework for cervical cancer classification by using deep feature fusion of cytology images. Mathematical Biosciences and Engineering, 2022, 19(7): 6415-6434. doi: 10.3934/mbe.2022301
    [2] Kai Zhang, Xinwei Wang, Hua Liu, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Ming Ma . Mathematical analysis of a human papillomavirus transmission model with vaccination and screening. Mathematical Biosciences and Engineering, 2020, 17(5): 5449-5476. doi: 10.3934/mbe.2020294
    [3] Simphiwe M. Simelane, Justin B. Munyakazi, Phumlani G. Dlamini, Oluwaseun F. Egbelowo . Projections of human papillomavirus vaccination and its impact on cervical cancer using the Caputo fractional derivative. Mathematical Biosciences and Engineering, 2023, 20(7): 11605-11626. doi: 10.3934/mbe.2023515
    [4] Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati . Mathematical analysis of a SIPC age-structured model of cervical cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 6013-6039. doi: 10.3934/mbe.2022281
    [5] Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445
    [6] Vitalii V. Akimenko, Fajar Adi-Kusumo . Stability analysis of an age-structured model of cervical cancer cells and HPV dynamics. Mathematical Biosciences and Engineering, 2021, 18(5): 6155-6177. doi: 10.3934/mbe.2021308
    [7] Najat Ziyadi . A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences and Engineering, 2017, 14(1): 339-358. doi: 10.3934/mbe.2017022
    [8] Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045
    [9] Nengkai Wu, Dongyao Jia, Chuanwang Zhang, Ziqi Li . Cervical cell extraction network based on optimized yolo. Mathematical Biosciences and Engineering, 2023, 20(2): 2364-2381. doi: 10.3934/mbe.2023111
    [10] Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019
  • Atrioventricular septal defects (AVSD) are highly heritable, clinically significant congenital heart malformations. Genetic and environmental modifiers of risk are thought to work in unknown combinations to cause AVSD. Approximately 5–10% of simplex AVSD cases carry a missense mutation in CRELD1. However, CRELD1 mutations are not fully penetrant and require interactions with other risk factors to result in AVSD. Vascular endothelial growth factor-A (VEGFA) is a well-characterized modulator of heart valve development. A functional VEGFA polymorphism, VEGFA c.-634C, which causes constitutively increased VEGFA expression, has been associated with cardiac septal defects suggesting it may be a genetic risk factor. To determine if there is an allelic association with AVSD we genotyped the VEGFA c.-634 SNP in a simplex AVSD study cohort. Over-representation of the c.-634C allele in the AVSD group suggested that this genotype may increase risk. Correlation of CRELD1 and VEGFA genotypes revealed that potentially pathogenic missense mutations in CRELD1 were always accompanied by the VEGFA c.-634C allele in individuals with AVSD suggesting a potentially pathogenic allelic interaction. We used a Creld1 knockout mouse model to determine the effect of deficiency of Creld1 combined with increased VEGFA on atrioventricular canal development. Morphogenic response to VEGFA was abnormal in Creld1-deficient embryonic hearts, indicating that interaction between CRELD1 and VEGFA has the potential to alter atrioventricular canal morphogenesis. This supports our hypothesis that an additive effect between missense mutations in CRELD1 and a functional SNP in VEGFA contributes to the pathogenesis of AVSD.


    [1] Hoffman JIE, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39: 1890-1900. doi: 10.1016/S0735-1097(02)01886-7
    [2] Blue GM, Kirk EP, Sholler GF, et al. (2012) Congenital heart disease: current knowledge about causes and inheritance. Med J Aust 197: 155-159. doi: 10.5694/mja12.10811
    [3] Boening A, Scheewe J, Heine K, et al. (2002) Long-term results after surgical correction of atrioventricular septal defects. Eur J Cardiothorac Surg 22: 167-173. doi: 10.1016/S1010-7940(02)00272-5
    [4] Stulak JM, Burkhart HM, Dearani JA, et al. (2010) Reoperations after repair of partial atrioventricular septal defect: a 45-year single-center experience. Annals of Thoracic Surgery 89: 1352-1359. doi: 10.1016/j.athoracsur.2010.01.018
    [5] Ackerman C, Locke AE, Feingold E, et al. (2012) An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am J Hum Genet 91: 646-659.
    [6] Maslen CL, Babcock D, Robinson SW, et al. (2006) CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome. Am J Med Genet A 140: 2501-2505.
    [7] Robinson SW, Morris CD, Goldmuntz E, et al. (2003) Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. American Journal of Human Genetics 72: 1047-1052. doi: 10.1086/374319
    [8] Li H, Cherry S, Klinedinst D, et al. (2012) Genetic Modifiers Predisposing to Congenital Heart Disease in the Sensitized Down Syndrome Population. Circ Cardiovasc Genet 5: 301-308. doi: 10.1161/CIRCGENETICS.111.960872
    [9] de Vlaming A, Sauls K, Hajdu Z, et al. (2012) Atrioventricular valve development: new perspectives on an old theme. Differentiation 84: 103-116. doi: 10.1016/j.diff.2012.04.001
    [10] Snarr BS, Wirrig EE, Phelps AL, et al. (2007) A spatiotemporal evaluation of the contribution of the dorsal mesenchymal protrusion to cardiac development. Dev Dyn 236: 1287-1294. doi: 10.1002/dvdy.21074
    [11] Dor Y, Camenisch TD, Itin A, et al. (2001) A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development 128: 1531-1538.
    [12] Dor Y, Klewer SE, McDonald JA, et al. (2003) VEGF modulates early heart valve formation. Anat Rec A Discov Mol Cell Evol Biol 271: 202-208.
    [13] Stankunas K, Ma GK, Kuhnert FJ, et al. (2010) VEGF signaling has distinct spatiotemporal roles during heart valve development. Developmental Biology 347: 325-336. doi: 10.1016/j.ydbio.2010.08.030
    [14] Stevens A, Soden J, Brenchley PE, et al. (2003) Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter. Cancer Res 63: 812-816.
    [15] Watson CJ, Webb NJ, Bottomley MJ, et al. (2000) Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine 12: 1232-1235. doi: 10.1006/cyto.2000.0692
    [16] Vannay A, Vasarhelyi B, Kornyei M, et al. (2006) Single-nucleotide polymorphisms of VEGF gene are associated with risk of congenital valvuloseptal heart defects. American Heart Journal 151: 878-881. doi: 10.1016/j.ahj.2005.10.012
    [17] Smedts HP, Isaacs A, de Costa D, et al. VEGF polymorphisms are associated with endocardial cushion defects: a family-based case-control study. Pediatric Research 67: 23-28.
    [18] Miquerol L, Langille BL, Nagy A (2000) Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127: 3941-3946.
    [19] Gale NW, Dominguez MG, Noguera I, et al. (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101: 15949-15954. doi: 10.1073/pnas.0407290101
    [20] Pierpont MEM, Markwald RR, Lin AE (2000) Genetic aspects of atrioventricular septal defects. American Journal of Medical Genetics 97: 289-296. doi: 10.1002/1096-8628(200024)97:4<289::AID-AJMG1279>3.0.CO;2-U
    [21] Zhian S, Belmont J, Maslen CL (2012) Specific association of missense mutations in CRELD1 with cardiac atrioventricular septal defects in heterotaxy syndrome. Am J Med Genet A 158A: 2047-2049. doi: 10.1002/ajmg.a.35457
    [22] Enciso JM, Gratzinger D, Camenisch TD, et al. (2003) Elevated glucose inhibits VEGF-A-mediated endocardial cushion formation: modulation by PECAM-1 and MMP-2. Journal of Cell Biology 160: 605-615. doi: 10.1083/jcb.200209014
    [23] Rupp PA, Fouad GT, Egelston CA, et al. (2002) Identification, genomic organization and mRNA expression of CRELD1, the founding member of a unique family of matricellular proteins. Gene 293: 47-57. doi: 10.1016/S0378-1119(02)00696-0
    [24] Camenisch TD, Molin DG, Person A, et al. (2002) Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. Developmental Biology 248: 170-181. doi: 10.1006/dbio.2002.0731
    [25] Camenisch TD, Schroeder JA, Bradley J, et al. (2002) Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nature Medicine 8: 850-855.
  • This article has been cited by:

    1. Oluwaseun Sharomi, Tufail Malik, A model to assess the effect of vaccine compliance on Human Papillomavirus infection and cervical cancer, 2017, 47, 0307904X, 528, 10.1016/j.apm.2017.03.025
    2. Aliya A. Alsaleh, Abba B. Gumel, Analysis of Risk-Structured Vaccination Model for the Dynamics of Oncogenic and Warts-Causing HPV Types, 2014, 76, 0092-8240, 1670, 10.1007/s11538-014-9972-4
    3. Fei Xu, Ross Cressman, Voluntary vaccination strategy and the spread of sexually transmitted diseases, 2016, 274, 00255564, 94, 10.1016/j.mbs.2016.02.004
    4. A. Omame, D. Okuonghae, R.A. Umana, S.C. Inyama, Analysis of a co-infection model for HPV-TB, 2020, 77, 0307904X, 881, 10.1016/j.apm.2019.08.012
    5. A. Omame, R. A. Umana, D. Okuonghae, S. C. Inyama, Mathematical analysis of a two-sex Human Papillomavirus (HPV) model, 2018, 11, 1793-5245, 1850092, 10.1142/S1793524518500924
    6. Raúl Peralta, Cruz Vargas-De-León, Augusto Cabrera, Pedro Miramontes, Dynamics of High-Risk Nonvaccine Human Papillomavirus Types after Actual Vaccination Scheme, 2014, 2014, 1748-670X, 1, 10.1155/2014/542923
    7. Fernando Saldaña, Andrei Korobeinikov, Ignacio Barradas, Optimal Control against the Human Papillomavirus: Protection versus Eradication of the Infection, 2019, 2019, 1085-3375, 1, 10.1155/2019/4567825
    8. Andrew Omame, Daniel Okuonghae, A co‐infection model for oncogenic human papillomavirus and tuberculosis with optimal control and Cost‐Effectiveness Analysis, 2021, 0143-2087, 10.1002/oca.2717
    9. A. Omame, D. Okuonghae, S. C. Inyama, 2020, Chapter 4, 978-981-15-2285-7, 107, 10.1007/978-981-15-2286-4_4
    10. Kai Zhang, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Yong Ye, Hua Liu, Sensitivity analysis and optimal treatment control for a mathematical model of Human Papillomavirus infection, 2020, 5, 2473-6988, 2646, 10.3934/math.2020172
    11. ALIYA A. ALSALEH, ABBA B. GUMEL, DYNAMICS ANALYSIS OF A VACCINATION MODEL FOR HPV TRANSMISSION, 2014, 22, 0218-3390, 555, 10.1142/S0218339014500211
    12. Tufail Malik, Mudassar Imran, Raja Jayaraman, Optimal control with multiple human papillomavirus vaccines, 2016, 393, 00225193, 179, 10.1016/j.jtbi.2016.01.004
    13. Ana Gradíssimo, Robert D. Burk, Molecular tests potentially improving HPV screening and genotyping for cervical cancer prevention, 2017, 17, 1473-7159, 379, 10.1080/14737159.2017.1293525
    14. Abba B. Gumel, Jean M.-S. Lubuma, Oluwaseun Sharomi, Yibeltal Adane Terefe, Mathematics of a sex-structured model for syphilis transmission dynamics, 2018, 41, 01704214, 8488, 10.1002/mma.4734
    15. Shasha Gao, Maia Martcheva, Hongyu Miao, Libin Rong, A two-sex model of human papillomavirus infection: Vaccination strategies and a case study, 2022, 536, 00225193, 111006, 10.1016/j.jtbi.2022.111006
    16. Fernando Saldaña, José A Camacho-Gutiérrez, Geiser Villavicencio-Pulido, Jorge X. Velasco-Hernández, Modeling the transmission dynamics and vaccination strategies for human papillomavirus infection: An optimal control approach, 2022, 112, 0307904X, 767, 10.1016/j.apm.2022.08.017
    17. A. Omame, D. Okuonghae, U. E. Nwafor, B. U. Odionyenma, A co-infection model for HPV and syphilis with optimal control and cost-effectiveness analysis, 2021, 14, 1793-5245, 10.1142/S1793524521500509
    18. Shasha Gao, Maia Martcheva, Hongyu Miao, Libin Rong, The impact of vaccination on human papillomavirus infection with disassortative geographical mixing: a two-patch modeling study, 2022, 84, 0303-6812, 10.1007/s00285-022-01745-z
    19. 丽娜 王, Dynamic Analysis of a Kind of HPV Transmission Model Incorporating Media Impact and Early Screening, 2024, 13, 2324-7991, 3845, 10.12677/aam.2024.138366
    20. Arsène Jaurès Ouemba Tassé, Berge Tsanou, Cletus Kwa Kum, Jean Lubuma, A mathematical model on the impact of awareness and traditional medicine in the control of Ebola: case study of the 2014–2016 outbreaks in Sierra Leone and Liberia, 2024, 0272-4960, 10.1093/imamat/hxae025
    21. Roya Khalili Amirabadi, Omid S. Fard, Mohsen Jalaeian Farimani, Towards optimal control of HPV model using safe reinforcement learning with actor–critic neural networks, 2025, 264, 09574174, 125783, 10.1016/j.eswa.2024.125783
    22. Henok Desalegn Desta, Getachew Teshome Tilahun, Tariku Merga Tolasa, Mulugeta Geremew Geleso, Francisco R. Villatoro, Mathematical Model of Human Papillomavirus (HPV) Dynamics With Double‐Dose Vaccination and Its Impact on Cervical Cancer, 2024, 2024, 1026-0226, 10.1155/ddns/9971859
    23. Sylas Oswald, Eunice Mureithi, Berge Tsanou, Michael Chapwanya, Kijakazi Mashoto, Crispin Kahesa, MCMC-Driven mathematical modeling of the impact of HPV vaccine uptake in reducing cervical cancer, 2025, 24682276, e02633, 10.1016/j.sciaf.2025.e02633
    24. A. El-Mesady, Tareq M. Al-shami, Hegagi Mohamed Ali, Optimal control efforts to reduce the transmission of HPV in a fractional-order mathematical model, 2025, 2025, 1687-2770, 10.1186/s13661-024-01991-8
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5344) PDF downloads(1073) Cited by(12)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog