
Citation: Michael J. Hamilton, Matthew D. Young, Silvia Sauer, Ernest Martinez. The interplay of long non-coding RNAs and MYC in cancer[J]. AIMS Biophysics, 2015, 2(4): 794-809. doi: 10.3934/biophy.2015.4.794
[1] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[2] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[3] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
[4] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241 |
[5] | Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman . Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for $ \left({p}, \mathfrak{J}\right) $-convex fuzzy-interval-valued functions. AIMS Mathematics, 2023, 8(3): 7437-7470. doi: 10.3934/math.2023374 |
[6] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[7] | Fangfang Shi, Guoju Ye, Dafang Zhao, Wei Liu . Some integral inequalities for coordinated log-$ h $-convex interval-valued functions. AIMS Mathematics, 2022, 7(1): 156-170. doi: 10.3934/math.2022009 |
[8] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
[9] | Waqar Afzal, Mujahid Abbas, Sayed M. Eldin, Zareen A. Khan . Some well known inequalities for $ (h_1, h_2) $-convex stochastic process via interval set inclusion relation. AIMS Mathematics, 2023, 8(9): 19913-19932. doi: 10.3934/math.20231015 |
[10] | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024 |
Inequalities are essential and instrumental in dealing with several complex mathematical quantities that appeared in diverse domains of physical sciences. They have been investigated from multiple aspects, including expanding the applicable domain and eliminating the limitations of already proved results and utilizing various approaches from functional analysis, generalized calculus, and convex analysis. Originally, they were pivotal to acquiring bounds for different mappings, integrals, the uniqueness and stability of solutions, error analysis of quadrature algorithms, information theory, etc. Based on these factors, this theory has grown exponentially through convex analysis. Additionally, the impact of concavity is exemplary in inequalities due to plenty of factors, particularly the fact that several inequalities can be derived from the premise of convexity. This suggests that one of the main motives for studying classical inequalities is to characterize convexity and its generalizations. One of the notable classes of convexity depending upon quadratic support is known to us as strong convexity, which generalizes the classical concepts and is highly applied to conclude the novel refinements of already proven results. This class has inspired the development of several new mapping classes in the literature. For comprehensive details on generalizations of strongly convex, consult [1,2,3,4,5,6]. In 2007, Abramovich et al. [7] demonstrated another concept of a super-quadratic mapping incorporated with translations of itself and a support line. It is defined as:
A mapping $ {\Psi}:[0, \infty)\rightarrow \mathbb{R} $ is considered to be a super-quadratic for $ {{\mu}}\geq0 $ if there exist a constant $ C({{\mu}})\in\mathbb{R} $, such that
$ Ψ(μ1)≥Ψ(μ)+C(μ)(μ1−μ)+Ψ(|μ−μ1|),μ1≥0. $ |
It can also be interpreted as:
Definition 1.1 ([7]). A mapping $ {\Psi}:[0, \infty)\rightarrow \mathbb{R} $ is called super-quadratic if, and only if,
$ Ψ((1−φ)μ+φy)≤(1−φ)Ψ(μ)+φΨ(y)−φΨ((1−φ)|μ−y|)−(1−φ)Ψ(φ|μ−y|), $ | (1.1) |
holds $ \forall\, {\mu}, y\geq0 $ and $ 0\leq {{\varphi}}\leq 1 $.
Here, we provide some instrumental results to discuss super-quadratic mappings.
Lemma 1.1 ([7]). If $ {\Psi}:[0, \infty)\rightarrow \mathbb{R} $ is a super-quadratic mapping, then
(1) $ {\Psi}(0)\leq 0 $,
(2) $ C({{\mu}}) = {\Psi}'({{\mu}}) $, when $ {\Psi}({{\mu}}) $ is differentiable with $ {\Psi}(0) = {\Psi}'(0) = 0 $, for all $ {{\mu}}\geq0 $,
(3) for all $ {{\mu}}\geq0 $, if $ {\Psi}({{\mu}})\geq 0 $, then $ {\Psi} $ is convex and $ {\Psi}(0) = {\Psi}'(0) = 0 $.
Kian and his coauthors [8,9] came up with the idea of operator super-quadratic mappings and Jensen's kinds of inequalities that are related to them. Oguntuase and Persson [10] discussed Hardy-like inequalities utilizing the notion of super-quadratic mappings. Study these additional papers for more comprehensive research on super-quadraticity, [11,12,13,14,15].
Varosanec [16] proposed the unified class of convexity through control mapping and provided new insight to conduct research in the following field. Throughout the investigation, let $ {\hslash_{\circ}}:(0, 1)\rightarrow \mathbb{R} $ be a mapping such that $ \hslash_{\circ}\geq0 $.
Definition 1.2 ([16]). A mapping $ {\Psi}:[{s_{3}}, {s_{4}}]\rightarrow \mathbb{R} $ is considered to be a $ {\hslash_{\circ}} $-convex, if
$ Ψ((1−φ)μ+φy)≤ℏ∘(φ)Ψ(μ)+ℏ∘(1−φ)Ψ(y). $ |
Inspired by the idea presented in [16], Alomari and Chesneau [17] developed a general class of super-quadratic mappings and investigated some of their essential properties, defined as:
Definition 1.3 ([17]). Any mapping $ {\Psi}:[{s_{3}}, {s_{4}}]\rightarrow \mathbb{R} $ is regraded as $ {\hslash_{\circ}} $-super-quadratic, If
$ Ψ((1−φ)μ+φy)≤ℏ∘(φ)[Ψ(y)−Ψ((1−φ)|y−μ|)]+ℏ∘(1−φ)[Ψ(μ)−Ψ(φ|μ−y|)]. $ |
Lemma 1.2 ([17]). Suppose $ {\Psi}:[{s_{3}}, {s_{4}}]\rightarrow \mathbb{R} $ is a $ {\hslash_{\circ}} $-super-quadratic mapping, then
(1) $ {\Psi}(0)\leq 0 $,
(2) for all $ {{\mu}}\geq0 $, if $ {\Psi}({{\mu}})\geq 0 $, then $ {\Psi} $ is $ {\hslash_{\circ}} $-convex such that $ {\Psi}(0) = {\Psi}'(0) = 0 $.
The Jensen's inequality for this class of mappings is given as
Theorem 1.1 ([17]). Suppose $ {\Psi}:[{s_{3}}, {s_{4}}]\rightarrow \mathbb{R} $ is a $ {\hslash_{\circ}} $-super-quadratic mapping, then
$ Ψ(1Cϑϑ∑ν=1φνμν)≤ϑ∑ν=1ℏ∘(φνCϑ)Ψ(μν)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ(|μν−1Cϑϑ∑ν=1φνμν|). $ |
Also, they proved the Jensen-Mercer inequality for $ \hslash_{\circ} $-super-quadratic mappings.
Theorem 1.2 ([17]). Let $ {\Psi}:[{s_{3}}, {s_{4}}]\rightarrow \mathbb{R} $ be a $ {\hslash_{\circ}} $-super-quadratic mapping, then
$ Ψ(s3+s4−1Cϑϑ∑ν=1φνμν)≤Ψ(s3)+Ψ(s4)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ(μν)−ϑ∑ν=1ℏ∘(φνCϑ)[Ψ(μν−s3)+Ψ(s4−μν)]−ϑ∑ν=1ℏ∘(φνCϑ)Ψ(|μν−1Cϑϑ∑ν=1φνμν|). $ |
Set-valued analysis and its subdomains are cornerstones in mathematical sciences to generalize the previously obtained results. In this regard, Moore [18] applied the set-valued mappings to establish bounded solutions of differential equations. Recently, researchers have focused on decision-making, multi-objective optimization, numerical analysis, mathematical modeling, and advanced nonlinear analysis through interval-valued mapping. Probabilistic and interval-valued techniques are utilized to extract the results from data having randomness. However, these approaches are not applicable to quantities that possess vagueness. To deal with such problems, Zadeh [19] proposed the idea of a fuzzy set based on generalized indicator mapping and also presented the idea of a fuzzy convex set. This theory emerged as a potential theory in the last few decades. The contribution of these concepts in optimization, decision-making, inequalities, differential equations, mathematical modeling, approximation methodologies, dynamic systems, and computer science is unprecedented. Note that this theory is not statistical in nature but sets new trends in possibility theory. Dubois and Prade [20] researched preliminary terminologies related to area and tangent problems and offered new insights to carry new developments. Nanda and Kar [21] explored diverse groups of fuzzy convex mappings and reported their essential characterization.
As we move ahead, let us go over certain previously laid-out concepts and implications of fuzzy interval analysis. Assume that $ K_c $ symbolizes the space of all closed and bounded intervals in $ \mathbb{R} $, while $ K_c^+ $ represents the space of positive intervals. The interval $ _{1}\chi $ is defined as:
$ [1χ]=[1χ−,−1χ]={μ:1χ−≤μ≤−1χ,μ∈R}. $ |
Given $ \chi, \phi \in K_c $ and $ \delta^{1}\in\mathbb{R} $, Minkowski's operations are given as:
$ δ1.χ:={[δ1χ∗,δ1χ∗]ifδ1≥0,[δ1χ∗,δ1χ∗]ifδ1<0. $ |
Then the Minkowski addition $ {\chi}+{\phi} $ and $ {\chi}\times{\phi} $ for $ {\chi}, {\phi}\in K_c $ are defined by
$ [ϕ∗,ϕ∗]+[χ∗,χ∗]:=[ϕ∗+χ∗,ϕ∗+χ∗], $ |
and
$ [ϕ∗,ϕ∗]×[χ∗,χ∗]:=[min{ϕ∗χ∗,ϕ∗χ∗,ϕ∗χ∗,ϕ∗χ∗},max{ϕ∗χ∗,ϕ∗χ∗,ϕ∗χ∗,ϕ∗χ∗}]. $ |
Definition 1.4 ([22]). For any compact intervals $ A = [s_{3*}, s_{3}^{*}] $, $ B = [s_{4*}, \, s_{4}^{*}] $ and $ C = [c_{*}, \, c^{*}] $, the generalized Hukuhara difference (gH-difference) is explored as:
$ [s3∗,s∗3]⊖g[s4∗,s∗4]=[c∗,c∗]⇔{(i){s3∗=s4∗+c∗s∗3=s∗4+c∗,(ii){s4∗=s3∗−c∗s∗4=s∗3−c∗. $ |
Also, the gH-difference can be illustrated as:
$ [s3∗,s∗3]⊖g[s4∗,s∗4]=[min{s3∗−s4∗,s∗3−s∗4},max{s3∗−s4∗,s∗3−s∗4}]. $ |
Also for $ A\in K_{c} $, the length of interval is computed by $ l(A) = s_{3}^{*}-s_{3*} $. Then, for all $ A, B\in K_{c} $, we have
$ A⊖gB={[s3∗−s4∗,s∗3−s∗4],l(A)≥l(B),[s∗3−s∗4,s3∗−s4∗],l(A)≤l(B). $ |
Definition 1.5 ([23]). The "$ \leq_\rho $" relation over $ K_c $ is provided as:
$ [{\phi}_*, {\phi}^*]\leq_\rho[{\chi}_*, {\chi}^*], $ |
if and only if,
$ {\phi}_*\leq{\chi}_*, \; {\phi}^*\leq{\chi}^*, $ |
for all $ [{\phi}_*, {\phi}^*], [{\chi}_*, {\chi}^*]\in K_c $ is a pseudo-order or left-right (LR) ordering relation.
Theorem 1.3 ([23,24]). Every fuzzy set and $ {{\delta^{1}}}\in(0, 1] $, the representations of $ {{\delta^{1}}} $-level set of $ {{^{1}\pi} } $ are examined in the following order: $ {^{1}\pi} _{{\delta^{1}}} = \{\mu\in\mathbb{R}:{{^{1}\pi} }(\mu)\geq{{\delta^{1}}}\} $ and $ supp({{^{1}\pi} }) = cl\{\mu\in \mathbb{R}: {{^{1}\pi} }(\mu) > 0\} $. The fuzzy sets in $ \mathbb{R} $ are represented by $ \Theta_{\delta^{1}} $ and $ {{^{1}\pi} }\in \Theta_{\delta^{1}} $. A $ {{^{1}\pi} } $ is considered to be a fuzzy number (interval) if it is normal, fuzzy convex, semi-continuous, and has compact support. The space of all real fuzzy numbers are specified by $ \Upsilon_{\delta^{1}} $.
Let $ {^{1}\pi} \in \Upsilon_{\delta^{1}} $ be a fuzzy interval if, and only if, $ {{\delta^{1}}} $-levels $ [{^{1}\pi}]^{{\delta^{1}}} $is a compact convex set of $ \mathbb{R} $. Now, we deliver the representation of fuzzy number:
$ [1π]δ1=[1π∗(δ1),1π∗(δ1)], $ |
where
$ 1π∗(δ1):=inf{μ∈R:1π(μ)≥δ1},1π∗(δ1):=sup{μ∈R:1π(μ)≥δ1}. $ |
Thus, a fuzzy-interval can be investigated and characterized by a parameterized triplet. For more details, see [26].
$ {1π∗(δ1),1π∗(δ1);δ1∈[0,1]}. $ |
These two endpoint mappings $ {^{1}\pi} _{*}({{\delta^{1}}}) $ and $ {^{1}\pi} ^{*}({{\delta^{1}}}) $ play a vital role in exploring the fuzzy numbers.
Proposition 1.1 ([25]). If $ {V}, {\chi}\in \Upsilon_{\delta^{1}} $, then the relation "$ \preceq $" explored on $ \Upsilon_{\delta^{1}} $ by
$ {V} \preceq {\chi} $ if, and only if, $ [{V}]^{{\delta^{1}}} \leq_\rho [{\chi}]^{{\delta^{1}}} $, for all $ {{\delta^{1}}}\in[0, 1] $, this relation is known as a partial order relation.
For $ {V}, {\chi} \in \Upsilon_{\delta^{1}} $ and $ c\in \mathbb{R} $, the scalar product $ c\cdot{\chi} $, sum with constant, the sum $ {V}{\oplus}{\chi} $, and product $ {V}\odot{\chi} $ are defined by:
$ [c⋅V]δ1=c⋅[V]δ1,[c⊕V]δ1=c+[V]δ1.[V⊕χ]δ1=[V]δ1+[χ]δ1,[V⊙χ]δ1=[V]δ1×[χ]δ1. $ |
The level wise difference of the fuzzy number is stated as follows:
Definition 1.6 ([27]). Let $ {V} $, $ {\chi} $ be the two fuzzy numbers. Then the level-wise difference is defined as
$ [V⊖χ]δ1=[V∗(δ1)−χ∗(δ1),V∗(δ1)−χ∗(δ1)]. $ |
To overcome the limitations of Hukuhara difference, the following difference is defined as follows.
Definition 1.7 ([22]). Let $ {V} $, $ {\chi} $ be the two fuzzy numbers. Then the generalized Hukuhara difference (gH-difference) of $ {V}{\ominus_{g}}{\chi} $ is a fuzzy number $ {\xi} $ such that
$ V⊖gχ=ξ⇔{(i)V=χ⊕ξ(ii)χ=V⊕(−1)ξ. $ |
Also the gH-difference based on $ \delta^{1} $ can be illustrated as:
$ [V⊖gχ]δ1=[min{V∗(δ1)−χ∗(δ1),V∗(δ1)−χ∗(δ1)},max{V∗(δ1)−χ∗(δ1),V∗(δ1)−χ∗(δ1)}]. $ |
Also for $ V\in \Upsilon_{\delta^{1}} $, the length of the fuzzy interval is given by $ l(V(\delta^{1})) = V^{*}(\delta^{1})-V_{*}(\delta^{1}) $. Then, for all $ V, \chi\in \Upsilon_{\delta^{1}} $, we have
$ V⊖gχ={[V∗(δ1)−χ∗(δ1),V∗(δ1)−χ∗(δ1)],l(V(δ))≥l(χ(δ)),[V∗(δ1)−χ∗(δ1),V∗(δ1)−χ∗(δ1)],l(V(δ))≤l(χ(δ)). $ | (1.2) |
Note that a function $ \Psi:[{s_{3}}, {s_{4}}]\subseteq\mathbb{R}\rightarrow \Upsilon_{\delta^{1}} $ is said to be $ l $-increasing, if length function $ len\left([\Psi(\mu)]^{\delta^{1}}\right) = {\Psi}^*(\mu, {{\delta^{1}}})-{\Psi}_*(\mu, {{\delta^{1}}}) $ is increasing with respect $ \mu $ for all $ \delta^{1}\in[0, 1] $. Mathematically, for any $ \mu_{1}, \mu_{2}\in[{s_{3}}, {s_{4}}] $ and $ \mu_{1}\leq\mu_{2} $. Then $ len\left([\Psi(\mu_{2})]^{\delta^{1}}\right)\geq len\left([\Psi(\mu_{1})]^{\delta^{1}}\right), \, \, \forall \delta^{1}\in[0, \, 1] $. For more details, see [28].
Proposition 1.2 ([28]). Let $ \Psi: T = ({s_{3}}, {s_{4}})\subseteq\mathbb{R}\rightarrow \Upsilon_{\delta^{1}} $ be a Fuzzy number valued ($ \verb"F".\verb"N".\verb"V" $) mapping. If $ \Psi(\mu+h)\ominus_{g} \Psi(\mu) $ exists for some $ h $ such that $ {\mu}+h\in T $, then one of the following conditions hold:
$ Case (i){len([Ψ(μ+h)]δ1)≥len([Ψ(μ)]δ1),∀δ1∈[0,1]Ψ∗(μ+h,δ1)−Ψ∗(μ,δ1),is a monotonic increasing with respect toδ1Ψ∗(μ+h,δ1)−Ψ∗(μ,δ1),is a monotonic decreasing with respect toδ1. $ |
$ Case (ii){len([Ψ(μ+h)]δ1)≤len([Ψ(μ)]δ1),∀δ1∈[0,1]Ψ∗(μ+h,δ1)−Ψ∗(μ,δ1),is a monotonic decreasing with respect toδ1Ψ∗(μ+h,δ1)−Ψ∗(μ,δ1),is a monotonic increasing with respect toδ1. $ |
Remark 1.1. From Proposition 2.4, the $ \Psi(\mu+h)\ominus_{g} \Psi(\mu) $ can be written by the definition of the fuzzy interval as:
$ Case (i){len([Ψ(μ)]δ1),is a monotonic increasing with respect to μ,∀δ1∈[0,1]Ψ(μ+h)⊖gΨ(μ)=[Ψ∗(μ+h,δ1)−Ψ∗(μ,δ1),Ψ∗(μ+h,δ1)−Ψ∗(μ,δ1)]. $ |
$ Case (ii){len([Ψ(μ)]δ1),is a monotonic decreasing with respect to μ,∀δ1∈[0,1]Ψ(μ+h)⊖gΨ(μ)=[Ψ∗(μ+h,δ1)−Ψ∗(μ,δ1),Ψ∗(μ+h,δ1)−Ψ∗(μ,δ1)]. $ |
Definition 1.8 ([25]). If $ {\Psi}:[{s_{3}}, {s_{4}}]\subset\mathbb{R}\rightarrow \Upsilon_{\delta^{1}} $ is an $ \verb"F".\verb"N".\verb"V" $ mapping. For each $ {{\delta^{1}}}\in[0, 1] $, whose $ {{\delta^{1}}} $-cuts highlight the bundle of $ \verb"I".\verb"V".\verb"F" $, such that $ {\Psi}_{{\delta^{1}}}:[{s_{3}}, {s_{4}}]\subset\mathbb{R}\rightarrow K_c $ is described as $ {\Psi}_{{\delta^{1}}}(\mu) = [{\Psi}_*(\mu, {{\delta^{1}}}), {\Psi}^*(\mu, {{\delta^{1}}})] $, $ \mu\in[{s_{3}}, {s_{4}}] $. Every $ {{\delta^{1}}}\in[0, 1] $, the left and right real valued mappings $ {\Psi}_*(\mu, {{\delta^{1}}}), {\Psi}^*(\mu, {{\delta^{1}}}):[{s_{3}}, {s_{4}}]\rightarrow \mathbb{R} $ are sometimes referred to as $ {\Psi} $ end points.
Definition 1.9 ([29]). Let $ {\Psi}: [{s_{3}}, {s_{4}}]\subset\mathbb{R}\rightarrow \Upsilon_{\delta^{1}} $ be an $ \verb"F".\verb"N".\verb"V" $ mapping. Then, fuzzy integral of $ {\Psi} $ over $ [{s_{3}}, {s_{4}}] $ is projected as $ (FR)\int_{s_{3}}^{s_{4}} {\Psi}(\mu)\mathrm{d}\mu $,
$ [(FR)∫s4s3Ψ(μ)dμ]δ1=(FR)∫s4s3Ψδ1(μ)dμ={∫s4s3Ψ(μ,δ1)dμ:Ψ(μ,δ1)∈R([s3,s4],δ1)}, $ |
for all $ {{\delta^{1}}}\in[0, 1] $, where $ \mathcal{R}_{([{s_{3}}, {s_{4}}], {{\delta^{1}}})} $ describes the space of integrable mappings.
Theorem 1.4 ([26]). If $ {\Psi}:[{s_{3}}, {s_{4}}]\subset\mathbb{R}\rightarrow \Upsilon_{\delta^{1}} $ is an $ \verb"F".\verb"N".\verb"V" $ mapping. For each $ {{\delta^{1}}}\in[0, 1] $, whose $ {{\delta^{1}}} $-cuts highlight the bundle of $ \verb"I".\verb"V".\verb"F" $, such that $ {\Psi}_{{\delta^{1}}}:[{s_{3}}, {s_{4}}]\subset\mathbb{R}\rightarrow K_c $ is described as $ {\Psi}_{{\delta^{1}}}(\mu) = [{\Psi}_*(\mu, {{\delta^{1}}}), {\Psi}^*(\mu, {{\delta^{1}}})] $, $ \mu\in[{s_{3}}, {s_{4}}] $. Then, $ {\Psi} $ is fuzzy Riemann integrable ($ FR $-integrable) over $ [{s_{3}}, {s_{4}}] $, $ \Leftrightarrow $ $ {\Psi}_*(\mu, {{{\delta^{1}}}}), {\Psi}^*(\mu, {{{\delta^{1}}}})\in \mathcal{R}_{([{s_{3}}, {s_{4}}], {{\delta^{1}}})} $, then
$ [(FR)∫s4s3Ψ(μ)dμ]δ1=[(R)∫s4s3Ψ∗(μ,δ1),(R)∫s4s3Ψ∗(μ,δ1)]=(FR)∫s4s3Ψδ1(μ)dμ, $ |
for all $ {{\delta^{1}}}\in[0, 1] $, where $ FR $ represents interval Riemann integration of $ {\Psi}_{{{\delta^{1}}}}(\mu) $. For all $ {{\delta^{1}}}\in [0, 1] $, $ F\mathcal{R}_{([{s_{3}}, {s_{4}}], {{\delta^{1}}})} $ specifies the class of all $ FR $-integrable $ \verb"F".\verb"N".\verb"V" $ mappings over $ [{s_{3}}, {s_{4}}] $.
Definition 1.10 ([21]). A mapping $ {\Psi}:[{s_{3}}, {s_{4}}]\rightarrow \Upsilon_{\delta^{1}} $ is termed as an $ \verb"F".\verb"N".\verb"V" $ LR-convex mapping on $ [{s_{3}}, {s_{4}}] $ if
$ Ψ((1−φ)μ+φY)⪯(1−φ)Ψ(μ)˜+φΨ(Y), $ | (1.3) |
for all $ \mu, {\mathcal{Y}}\in[{s_{3}}, {s_{4}}], {\varrho_{\circ}}\in[0, 1] $, where $ {\Psi}(\mu)\succcurlyeq\tilde{0} $ for all $ \mu\in[{s_{3}}, {s_{4}}] $.
Definition 1.11 ([26]). Let $ {\tau} > 0 $ and $ Ł({s_{3}}, {s_{4}}, \Upsilon_{\delta^{1}}) $ be the space of all Lebesgue measurable $ \verb"F".\verb"N".\verb"V" $ mapping on $ [{s_{3}}, \, {s_{4}}] $. Then, the fuzzy left and right RL-fractional integral operator of $ {\Psi}\in Ł({s_{3}}, {s_{4}}, \Upsilon_{\delta^1}) $ are defined as:
$ Jτa+Ψ(s3)=1Γ(τ)∫s4s3(μ−s3)τ−1Ψ(μ)dμ,μ≥a $ |
and
$ Jτs4−Ψ(s4)=1Γ(τ)∫s4s3(s4−μ)τ−1Ψ(μ)dμ,μ≤s4. $ |
Furthermore, the left and right RL-fractional operator based on left and right endpoint mappings can be defined, that is,
$ [Jτa+Ψ(s3)]δ1=1Γ(τ)∫s4s3(μ−s3)τ−1Ψδ1(ϱ∘)dϱ∘=1Γ(τ)∫s4s3(μ−s3)τ−1Ψδ1[Ψ∗(ϱ∘,δ1),Ψ∗(ϱ∘,δ1)]dϱ∘, $ |
where
$ Jτa+Ψ∗(a,δ1)=1Γ(τ)∫s4s3(μ−s3)τ−1Ψ∗(ϱ∘,δ1)dϱ∘, $ |
and
$ Jτa+Ψ∗(a,δ1)=1Γ(τ)∫s4s3(μ−s3)τ−1Ψ∗(ϱ∘,δ1)dϱ∘. $ |
By similar argument, we can define the right operator.
The authors [30] employed interval-valued unified approximate convexity to examine new refinements of inequalities. Nwaeze et al.[31] proposed the class of interval-valued $ \vartheta $-polynomial convex mappings and reported several interesting inequalities. Abdeljawad et al. [32] utilized the $ p $ mean to develop the idea of interval-valued $ p $ convexity and presented some corresponding general inequalities of Hermite-Hadamard type. Shi and his colleagues [33] studied the totally ordered unified convexity in the perspective of integral inequalities. Through interval-valued log-convexity and $ cr $-harmonic convexity, Liu et al. [34,35] found the trapezium and Jensen's-like inequalities.
Budak et al. [36] implemented the interval-valued RL-fractional operators and convexity to derive the trapezoidal inequalities. Vivas-Cortez [37] introduced the totally ordered $ \tau $-convex mappings and analyzed several Jensen's, Schur's, and fractional Hadamard's and kinds of inequalities. Cheng et al. [38] looked at new kinds of Hadamard-like inequalities using fuzzy-valued mapping and fractional quantum calculus. Bin-Mohsin et al. [39] bridged the harmonic coordinated convexity and fractional operators relying on Raina's special mapping to establish new 2-dimensional inequalities. For comprehensive details, consult [40,41,42,43,44].
Recently, Fahad [45] proposed some novel bounds of classical inequalities pertaining to center-radius ordered geometric-arithmetic convexity and some interesting applications to information theory. Authors [46] explored the unified class of stochastic convex processes relying on quasi-weighted mean and cr ordering relation to conclude new forms of inequalities. For the first time, Khan and Butt established the new counterparts of classical inequalities depending upon partially and totally ordered super-quadraticity, respectively, in [47,48].
Costa et al. [49] implemented the fuzzy-valued mappings to acquire some boundaries in a one-point quadrature scheme. Zhang and his coauthors [50] focused on set-valued Jensen-like inequalities along with some interesting applications. Khan et al. [51] examined fractional analogues of fuzzy interval-valued integral inequalities. In [52], authors discussed fuzzy valued Hadamard-like inequalities associated with log convexity. Abbaszadeh and Eshaghi employed the fuzzy valued $ r $ convex mappings to establish the trapezium type inequalities. Bin-Mohsin [53] introduced the idea of fuzzy bi-convex mappings and derived the various inequalities. For comprehensive details, see [54,55,56,57,58].
The above literature is evidence that theories of inequalities are interlinked with convexity. Several classes of convexity have been introduced to reduce the limitations of classical convexity or to acquire better estimations of existing results. Researchers have applied several techniques to produce better estimations of mathematical quantities. The principle motivation is to explore super-quadratic mappings in fuzzy environments through a unified approach. First, we will propose a new class of fuzzy number-valued super-quadratic mappings based on left and right ordering relations. Further, we will give a detailed description of newly developed concepts along with their potential cases. Most importantly, we will derive classical inequalities like the trapezoidal inequality, the weighted form for symmetric mappings, and Jensen's and its related inequalities. Later on, some fractional inequalities will be presented and graphed. To increase the reliability and accuracy, some visuals and related numerical data will be provided. Finally, we will present applications based on our primary findings. This is the first study regarding super-quadraticity via fuzzy calculus.
This part contains the results related to newly proposed notion of fuzzy super-quadratic mappings.
First, we investigate the fuzzy-valued $ \hslash_{\circ} $-super-quadratic mapping.
Definition 2.1. Suppose $ \hslash_{\circ}\geq0 $. Let $ {\Psi}:[{{s_{3}}}, {{s_{4}}}]\subseteq [0, \infty)\rightarrow \Upsilon_{\delta^{1}} $ be an $ \verb"F".\verb"N".\verb"V" $ mapping such that $ {\Psi}_{\delta^{1}}({\gamma}) = [{\Psi}_{*}(\delta^{1}, {\gamma}), \, {\Psi}^{*}(\delta^{1}, {\gamma})] $, and $ len\left([\Psi(\gamma)]^{\delta^{1}}\right) = {\Psi}^*(\gamma, {{\delta^{1}}})-{\Psi}_*(\gamma, {{\delta^{1}}}) $ is increasing with respect $ \gamma $ for all $ \delta^{1}\in[0, 1] $. Then $ {\Psi} $ is considered to be an $ \verb"F".\verb"N".\verb"V" $ $ \hslash_{\circ} $-super-quadratic mapping if
$ Ψ((1−φ)γ+φy)⪯ℏ∘(φ)[Ψ(y)⊖gΨ((1−φ)|γ−y|)]⊕ℏ∘(1−φ)[Ψ(γ)⊖gΨ(φ|γ−y|)], $ |
holds $ \forall {{\gamma}}, {y}\in[{{s_{3}}}, {{s_{4}}}] $ such that $ \gamma < y $ and $ |y-\gamma| < \gamma $ where $ {{{{\varphi}}}}\in[0, 1] $.
Now, we enlist some potential deductions of Definitions 2.1.
● Inserting $ {\hslash_{\circ}}({{{\varphi}}}) = {{{\varphi}}} $, we recapture the class of $ \verb"F".\verb"N".\verb"V" $ super-quadratic mappings.
● Inserting $ {\hslash_{\circ}}({{{\varphi}}}) = {{{\varphi}}}^s $, we recapture the class of $ \verb"F".\verb"N".\verb"V" $-$ s $-super-quadratic mappings:
$ Ψ((1−φ)γ+φy)⪯φs[Ψ(y)⊖gΨ((1−φ)|γ−y|)]⊕(1−φ)s[Ψ(γ)⊖gΨ(φ|γ−y|)]. $ |
● Inserting $ {\hslash_{\circ}}({{{\varphi}}}) = {{{\varphi}}}^{-s} $, we recapture the class of $ \verb"F".\verb"N".\verb"V" $-$ s $ Godunova super-quadratic mappings:
$ Ψ((1−φ)γ+φy)⪯φ−s[Ψ(y)⊖gΨ((1−φ)|γ−y|)]⊕(1−φ)−s[Ψ(γ)⊖gΨ(φ|γ−y|)]. $ |
● Inserting $ {\hslash_{\circ}}({{{\varphi}}}) = {{{\varphi}}}(1-{{{\varphi}}}) $, we recapture the class of $ \verb"F".\verb"N".\verb"V" $-$ tgs $ super-quadratic mappings:
$ Ψ((1−φ)γ+φy)⪯φ(1−φ)[Ψ(y)⊖gΨ((1−φ)|γ−y|)]⊕φ(1−φ)[Ψ(γ)⊖gΨ(φ|γ−y|)]. $ |
● Inserting $ {\hslash_{\circ}}({{{\varphi}}}) = 1 $, we recapture the class of $ \verb"F".\verb"N".\verb"V" $-$ P $ super-quadratic mappings:
$ Ψ((1−φ)γ+φy)⪯[Ψ(y)⊖gΨ((1−φ)|γ−y|)]⊕[Ψ(γ)⊖gΨ(φ|γ−y|)]. $ |
● Inserting $ {\hslash_{\circ}}({{{\varphi}}}) = \exp({{{\varphi}}})-1 $, we recapture the class of $ \verb"F".\verb"N".\verb"V" $-exponential super-quadratic mappings:
$ Ψ((1−φ)γ+φy)⪯[exp(φ)−1][Ψ(y)⊖gΨ((1−φ)|γ−y|)]⊕[exp(1−φ)−1][Ψ(γ)⊖gΨ(φ|γ−y|)]. $ |
● Selecting $ \Psi_{*}({\gamma}, \delta^{1}) = \Psi_{*}({\gamma}, \delta^{1}) $ and $ \delta^{1} = 1 $, we acquire the notion of $ \hslash_{\circ} $-super-quadratic mapping defined in [17].
The spaces of $ {\hslash_{\circ}} $-super-quadratic mappings and ($ \verb"F".\verb"N".\verb"V" $)–$ {\hslash_{\circ}} $ $ l $-increasing super-quadratic mappings defined over $ [{{s_{3}}}, {{s_{4}}}] $ are represented by $ SSQF([{{s_{3}}}, {{s_{4}}}], \hslash_{\circ}) $ and $ SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $ respectively.
Proposition 2.1. Let $ {\Psi}, g:[{{s_{3}}}, {{s_{4}}}]\rightarrow \Upsilon_{\delta^{1}} $ be two $ \verb"F".\verb"N".\verb"V" $ mappings. If $ {\Psi}, g \in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $, then
● $ {\Psi}+g \in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $.
● $ c{\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $, $ c\geq0 $.
Proof. The proof is obvious.
Proposition 2.2. If $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}^1) $ and $ {\hslash_{\circ}}^{1}({{\varphi}})\leq \hslash_{\circ}^{2}({{\varphi}}) $, then $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}^{2}) $.
Now we prove the criteria to investigate the class of $ \verb"F".\verb"N".\verb"V" $–$ \hslash_{\circ} $ super-quadratic mappings.
Proposition 2.3. If $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}^1) $ and $ {\hslash_{\circ}}^{1}({{\varphi}})\leq \hslash_{\circ}^{2}({{\varphi}}) $, then $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}^{2}) $.
Now we prove the criteria to investigate class of $ \verb"F".\verb"N".\verb"V" $–$ \hslash_{\circ} $ super-quadratic mappings.
Proposition 2.4. Let $ {\Psi}:[{{s_{3}}}, {{s_{4}}}]\subseteq [0, \infty)\rightarrow \Upsilon_{\delta^{1}} $ be an $ \verb"F".\verb"N".\verb"V" $ mapping. For any $ \gamma, y\in [s_{3}, \, s_{4}] $ such that $ {\gamma} < y $ and satisfying the condition that $ |y-\gamma| < \gamma $. Then, $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $ if, and only if, $ {\Psi}_{*}({\gamma}, \delta^{1}), {\Psi}^{*}({\gamma}, \delta^{1})\in SSQF([{{s_{3}}}, {{s_{4}}}], \hslash_{\circ}) $ and $ len\left([\Psi(\gamma)]^{\delta^{1}}\right) = {\Psi}^*(\gamma, {{\delta^{1}}})-{\Psi}_*(\gamma, {{\delta^{1}}}) $ is increasing with respect $ \gamma $ for all $ \delta^{1}\in[0, 1] $.
Proof. Let $ {\Psi}_{*}, {\Psi}^{*}\in SSQF([{{s_{3}}}, {{s_{4}}}], \hslash_{\circ}) $ and $ \forall {{\gamma}}, {y}\in[{{s_{3}}}, {{s_{4}}}] $ such that $ \gamma < y $ and satisfying the condition $ |y-\gamma| < \gamma $. Then:
$ Ψ∗((1−φ)y+φγ,δ1)≤ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)], $ | (2.1) |
and
$ Ψ∗((1−φ)y+φγ,δ1)≤ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)]. $ | (2.2) |
Combining (2.1) and (2.2) by definition of pseudo ordering relation, we have
$ [Ψ∗((1−φ)y+φγ,δ1),Ψ∗((1−φ)y+φγ,δ1)]⪯[ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)],ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)]]. $ |
Then by Case (ⅰ) of Remark (1.1), we have
$ Ψ((1−φ)y+φγ)⪯ℏ∘(1−φ)[Ψ(y)⊖gΨ(φ|y−γ|)]⊕ℏ∘(φ)[Ψ(γ)⊖gΨ((1−φ)|y−γ|)]. $ |
This completes the proof of first part. For the converse part, consider $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $, then
$ Ψ((1−φ)y+φγ)⪯ℏ∘(1−φ)[Ψ(y)⊖gΨ(φ|y−γ|)]⊕ℏ∘(φ)[Ψ(γ)⊖gΨ((1−φ)|y−γ|)]. $ |
The above inequality can be written as
$ [Ψ∗((1−φ)y+φγ,δ1),Ψ∗((1−φ)y+φγ,δ1)]⪯[min{ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)],ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)]},max{ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)],ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)]}]. $ |
From Definition 2.1, it is clear that $ len\left([\Psi(\gamma)]^{\delta^{1}}\right) $ is increasing. Using Case (ⅰ) of Remark 1.1, we have
$ [Ψ∗((1−φ)y+φγ,δ1),Ψ∗((1−φ)y+φγ,δ1)]⪯[ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)],ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)]]. $ | (2.3) |
From (2.3), we can write as
$ Ψ∗((1−φ)y+φγ,δ1)≤ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)], $ | (2.4) |
and
$ Ψ∗((1−φ)y+φγ,δ1)≤ℏ∘(1−φ)[Ψ∗(y,δ1)−Ψ∗(φ|y−γ|,δ1)]+ℏ∘(φ)[Ψ∗(γ,δ1)−Ψ∗((1−φ)|y−γ|,δ1)]. $ | (2.5) |
It is evident from (2.4) and (2.5) that both $ {\Psi}_{*}, {\Psi}^{*}\in SSQF([{{s_{3}}}, {{s_{4}}}], \hslash_{\circ}) $. Hence, the result is proved.
It is noteworthy to mention that Proposition 2.4 provides the necessary and sufficient condition for $ \verb"F".\verb"N".\verb"V" $–$ \hslash_{\circ} $ super-quadratic mapping. It is noteworthy to mention that Proposition 2.4 provides the necessary and sufficient condition for the $ \verb"F".\verb"N".\verb"V" $–$ \hslash_{\circ} $ super-quadratic mapping.
Example 2.1. Let us consider $ \verb"F".\verb"N".\verb"V" $. $ {\Psi}:[{s_{3}}, \, {s_{4}}] = [0, 2]\rightarrow \mathbb{\mathbb{R}}_{\circ} $, which is defined as follows
$ Ψμ(μ1)={μ13μ3,μ1∈[0,3μ3]6μ3−μ13μ3,μ1∈(3μ3,6μ3]. $ |
Then, for $ {\delta^{1}}\in[0, 1] $, we have
$ Ψδ1=[3δ1μ3,(6−3δ1)μ3]. $ |
Notice that both endpoint mappings $ {\Psi}({{\mu}}, {\delta^{1}}) = 3{\delta^{1}}{{\mu}}^3 $ and $ {\Psi}({{\mu}}, {\delta^{1}}) = (6-3 {\delta^{1}}){{\mu}}^3 $ are $ \hslash_{\circ} $-super-quadratic mappings, respectively. So, $ \Psi\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $. Also $ len\left([{\Psi}({{\mu}})]^{\delta^{1}}\right) = (6-6 {\delta^{1}}){{\mu}}^3 $ is increasing with respect to $ \mu $ for all $ \delta^{1}\in[0, 1] $.
Now, we prove an alternative definition of this class of convexity for $ \vartheta $ different points of $ [{{s_{3}}}, {{s_{4}}}] $ known as Jensen's inequality. This inequality is useful for the development of further integral inequalities.
Theorem 2.1. Let $ {\hslash_{\circ}}:(0, 1]:\rightarrow [0, \infty) $ be a nonnegative super-multiplicative mapping. If $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $, then
$ Ψ(1Cϑϑ∑ν=0φν(μν))⪯ϑ∑ν=1ℏ∘(φνCϑ)Ψ(μν)⊖gϑ∑ν=1ℏ∘(φνCϑ)Ψ(|μν−1Cϑϑ∑ν=0φν(μν)|), $ | (2.6) |
for $ {{\mu}}_{\nu}\in[{{s_{3}}}, {{s_{4}}}], {{{{\varphi}}}}_{{\nu}}\in[0, 1] $ such that $ {{\mathcal{C}}_{{\vartheta}}} = \sum_{{\nu} = 1}^{{\vartheta}}{{{\varphi}}}_{{\nu}} $.
Proof. If $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $, then it can be written as:
$ [Ψ∗(1Cϑϑ∑ν=0φν(μν),δ1),Ψ∗(1Cϑϑ∑ν=0φν(μν),δ1)]⪯[ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(μν,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(|μν−1Cϑϑ∑ν=0φν(μν)|,δ1),ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(μν,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(|μν−1Cϑϑ∑ν=0φν(μν)|,δ1)]. $ |
By pseudo order relation, one can resolve the above inequality as:
$ Ψ∗(1Cϑϑ∑ν=0φν(μν),δ1)≤ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(μν,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(|μν−1Cϑϑ∑ν=0φν(μν)|,δ1), $ | (2.7) |
and
$ Ψ∗(1Cϑϑ∑ν=0φν(μν),δ1)≤ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(μν,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(|μν−1Cϑϑ∑ν=0φν(μν)|,δ1). $ | (2.8) |
We employ induction technique to prove both inequalities $ (2.7) $ and $ (2.8) $. Fixing $ {\vartheta} = 2 $ and $ \frac{{{{\varphi}}}_{1}}{{\mathcal{C}}_{2}} = \alpha $ and $ \frac{{{{\varphi}}}_{2}}{{\mathcal{C}}_{2}} = 1-\alpha $ in (2.7), we acquire the definition of $ \hslash_{\circ} $-super-quadratic mapping. To proceed further, we assume that (2.7) holds true for $ \vartheta = {\nu}-1 $, then
$ Ψ∗(ϑ−1∑ν=1φνCϑ−1(μν),δ1)≤ϑ−1∑ν=1ℏ∘(φνCϑ−1)Ψ∗(μν,δ1)−ϑ−1∑ν=1ℏ∘(φνCϑ−1)Ψ∗(|μν−ϑ−1∑ν=1φνCϑ−1(μν)|,δ1). $ | (2.9) |
Next, we prove the validity of (2.6).
$ Ψ∗(1Cϑϑ∑ν=0φν(μν),δ1)=Ψ∗(φnxϑCϑ+Cϑ−1Cϑϑ−1∑ν=1φνCϑ−1(μν),δ1)≤ℏ∘(φϑCϑ)Ψ∗(μϑ,δ1)+ℏ∘(Cϑ−1Cϑ)Ψ∗(ϑ−1∑ν=1(φνμνCϑ−1),δ1)−ℏ∘(φϑCϑ)Ψ∗(Cϑ−1Cϑ|μϑ−ϑ−1∑ν=1(φνμνCϑ−1)|,δ1)−ℏ∘(Cϑ−1Cϑ)Ψ∗(φϑCϑ|μϑ−ϑ−1∑ν=1(φνμνCϑ−1)|,δ1). $ | (2.10) |
Using (2.9) in (2.10) and the super-multiplicative property of $ {\hslash_{\circ}} $, we recapture
$ Ψ∗(1Cϑϑ∑ν=0φν(μν),δ1)≤ℏ∘(φϑCϑ)Ψ∗(μϑ,δ1)+ℏ∘(Cϑ−1Cϑ)[ϑ−1∑ν=1ℏ∘(φνCϑ−1)Ψ∗(μν,δ1)−ϑ−1∑ν=1ℏ∘(φνCϑ−1)Ψ∗(|μν−ϑ−1∑ν=1φνCϑ−1(μν)|,δ1)]−ℏ∘(φϑCϑ)Ψ∗(Cϑ−1Cϑ|μϑ−ϑ−1∑ν=1(φνμνCϑ−1)|,δ1)−ℏ∘(Cϑ−1Cϑ)Ψ∗(φϑCϑ|μϑ−ϑ−1∑ν=1(φνμνCϑ−1)|,δ1). $ |
Thus, we have
$ Ψ∗(1Cϑϑ∑ν=0φνμν,δ1)≤ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(μν,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(|μν−1Cϑϑ∑ν=0φνμν|,δ1), $ | (2.11) |
By similar proceedings, we have
$ Ψ∗(1Cϑϑ∑ν=0φν(μν),δ1)≤ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(μν,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(|μν−1Cϑϑ∑ν=0φνμν|,δ1). $ | (2.12) |
Comparing inequalities (2.11) and (2.12) through Pseudo ordering relation, we have
$ [Ψ∗(1Cϑϑ∑ν=0φνμν,δ1),Ψ∗(1Cϑϑ∑ν=0φν(μν),δ1)]⪯[ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(μν,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(|μν−1Cϑϑ∑ν=0φνμν|,δ1),ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(μν,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(|μν−1Cϑϑ∑ν=0φνμν|,δ1)]. $ |
Finally, it can be transformed as
$ Ψ(1Cϑϑ∑ν=0φν(μν))⪯ϑ∑ν=1ℏ∘(φνCϑ)Ψ(μν)⊖gϑ∑ν=1ℏ∘(φνCϑ)Ψ(|μν−1Cϑϑ∑ν=0φν(μν)|). $ |
Hence, the result is accomplished.
We deliver some corollaries of Theorem 2.1.
● Setting $ \sum_{{{\nu}} = 1}^{\vartheta}{{{\varphi}}}_{{{\nu}}} = {\mathcal{C}}_{{\vartheta}} = 1 $ in Theorem 2.1, we attain the generalized Jensen's inequality:
$ Ψ(ϑ∑ν=0φν(μν))⪯ϑ∑ν=1ℏ∘(φν)Ψ(μν)⊖gϑ∑ν=1ℏ∘(φν)Ψ(|μν−ϑ∑ν=0φν(μν)|). $ |
● To attain Jensen's inequality for the fuzzy interval-valued super-quadratic mapping, we set $ {\hslash_{\circ}}({{{\varphi}}}) = {{{\varphi}}} $ in Theorem 2.1.
$ Ψ(1Cϑϑ∑ν=0φν(μν))⪯ϑ∑ν=1φνCϑΨ(μν)⊖gϑ∑ν=1φνCϑΨ(|μν−1Cϑϑ∑ν=0φν(μν)|). $ |
● To attain Jensen's inequality for the fuzzy interval-valued $ s $-super-quadratic mapping, we set $ {\hslash_{\circ}}({{{\varphi}}}) = {{{\varphi}}}^s $ in Theorem 2.1.
$ Ψ(1Cϑϑ∑ν=0φν(μν))⪯ϑ∑ν=1(φνCϑ)sf(μν)⊖gϑ∑ν=1(φνCϑ)sf(|μν−1Cϑϑ∑ν=0φν(μν)|). $ |
● To attain Jensen's inequality for the fuzzy interval-valued $ s $ Godunova-Levin super-quadratic mapping, we set $ {\hslash_{\circ}}({{{\varphi}}}) = {{{\varphi}}}^{-s} $ in Theorem 2.1.
$ Ψ(1Cϑϑ∑ν=0φν(μν))⪯ϑ∑ν=1(φνCϑ)−sΨ(μν)⊖gϑ∑ν=1(φνCϑ)−sΨ(|μν−1Cϑϑ∑ν=0φν(μν)|). $ |
● To attain Jensen's inequality for the fuzzy interval-valued $ P $-super-quadratic mapping, we set $ {\hslash_{\circ}}({{{\varphi}}}) = 1 $ in Theorem 2.1.
$ Ψ(1Cϑϑ∑ν=0φν(μν))⪯ϑ∑ν=1(φνCϑ)−sΨ(μν)⊖gϑ∑ν=1(φνCϑ)−sΨ(|μν−1Cϑϑ∑ν=0φν(μν)|). $ |
● To attain Jensen's inequality for the fuzzy interval-valued exponential super-quadratic mapping, we set $ {\hslash_{\circ}}({{{\varphi}}}) = \exp({{{\varphi}}})-1 $ in Theorem 2.1.
$ Ψ(1Cϑϑ∑ν=0φν(μν))⪯ϑ∑ν=1[exp(φνCϑ)−1]Ψ(μν)⊖gϑ∑ν=1[exp(φνCϑ)−1]Ψ(|μν−1Cϑϑ∑ν=0φν(μν)|). $ |
● By taking $ \Psi_{*}({\mu}, \delta^{1}) = \Psi_{*}({\mu}, \delta^{1}) $ and $ \delta^{1} $ in Theorem 2.1, we get Theorem 1.1.
Next, the result is the Schur inequality for the fuzzy interval-valued super-quadratic mappings.
Theorem 2.2. If $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $ and $ {{\mu}}, {y}, {{\mu}}_{3}\in [{{s_{3}}}, {{s_{4}}}] $ with $ {{\mu}} < {y} < {{\mu}}_{3} $ such that $ {y}-{{\mu}}, {{\mu}}_{3}-{y} $ and $ {{\mu}}_{3}-{{\mu}}\in [0, 1] $, then
$ ℏ∘(μ3−μ)Ψ(y)⪯ℏ∘(μ3−y)[Ψ(μ)⊖gΨ(y−μ)]⊕ℏ∘(y−μ)[Ψ(μ3)⊖gΨ(μ3−y)]. $ |
Proof. Assume that $ {{\mu}}, {y}, {{\mu}}_{3} \in I $ with $ {{\mu}} < {y} < {{\mu}}_{3} $ such that $ {y}-{{\mu}}, {{\mu}}_{3}-{y} $ and $ {{\mu}}_{3}-{{\mu}}\in [0, 1] $. Since $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $, and $ {\hslash_{\circ}} $ is a super-multiplicative mapping, then
$ Ψ∗(y,δ1)=Ψ∗(μ3−yμ3−μμ+y−μμ3−μy,δ1)≤ℏ∘(μ3−yμ3−μ)[Ψ∗(μ,δ1)−Ψ∗(y−μμ3−μ|μ3−μ|,δ1)]+ℏ∘(y−μμ3−μ)[Ψ∗(μ3,δ1)−Ψ∗(μ3−yμ3−μ|μ3−μ|,δ1)]. $ |
Multiplying both sides of the aforementioned inequality by $ {\hslash_{\circ}}({{\mu}}_{3}-{{\mu}}) $ and utilizing the supermultiplicative property, we recapture
$ ℏ∘(μ3−μ)Ψ∗(y,δ1)≤ℏ∘(μ3−y)[Ψ∗(μ,δ1)−Ψ∗(y−μ,δ1)]+ℏ∘(y−μ)[Ψ∗(μ3,δ1)−Ψ∗(μ3−y,δ1)]. $ | (2.13) |
Likewise, we can prove that
$ ℏ∘(μ3−μ)Ψ∗(y,δ1)≤ℏ∘(μ3−y)[Ψ∗(μ,δ1)−Ψ∗(y−μ,δ1)]+ℏ∘(y−μ)[Ψ∗(μ3,δ1)−Ψ∗(μ3−y,δ1)]. $ | (2.14) |
From (2.13) and (2.14), we get the desired containment.
Remark 2.1. For different substitution of $ \hslash_{\circ}({\varphi}) = {\varphi}, {\varphi}^s, {\varphi}^{-s}, {\varphi}(1-{\varphi}) $, we get a blend of new counterparts for different classes of super-quadraticity. By taking $ \Psi_{*}({\mu}, \delta^{1}) = \Psi_{*}({\mu}, \delta^{1}) $ and $ \delta^{1} = 1 $ in Theorem 2.2, we get the reverse Jensen's inequality, and that is proved in [17].
Through Theorem 2.2, we construct reverse Jensen's inequality leveraging the fuzzy number valued super-quadraticity.
Theorem 2.3. For $ {{{\varphi}}}_{{\nu}}\geq 0 $ and $ (v, V)\subseteq I $. Let $ {\hslash_{\circ}}:(0, 1]\rightarrow [0, \infty) $ be nonnegative super-multiplicative mapping and $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $. Then,
$ ϑ∑ν=1ℏ∘(φνCϑ)Ψ(μν)⪯ϑ∑ν=1ℏ∘(φνCϑ)[ℏ∘(V−μνV−v)Ψ(v)+ℏ∘(μν−vV−v)Ψ(V)]⊖gℏ∘(φνCϑ)[ℏ∘(V−μνV−v)Ψ(μν−v)+ℏ∘(μν−vV−v)Ψ(V−μν)]. $ |
Proof. Substitute $ {{\mu}}_{{\nu}} = v, {y} = {{\mu}}_{{\nu}} $ and $ {{\mu}}_{3} = V $ in Theorem 2.2 and multiply both sides by $ {\hslash_{\circ}}\left(\frac{{{{\varphi}}}_{{\nu}}}{{\mathcal{C}}_{{\vartheta}}}\right) $. Finally, we apply the sum up to $ {\vartheta} $ to acquire the desired estimate.
Now, we prove the Jensen-Mercer inequality pertaining to the fuzzy interval-valued super-quaraticity.
Theorem 2.4. Let $ {\Psi}\in SSQFNF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $ and $ {{\mu}}_{{\nu}}\in ({{s_{3}}}, {{s_{4}}}) $ and $ {{{\varphi}}}_{{\nu}}\geq0 $, then
$ Ψ(s3+s4−1Cϑϑ∑ν=1φνμν)⪯Ψ(s3)⊕Ψ(s4)⊖gϑ∑ν=1ℏ∘(φνCϑ)Ψ(μν)⊖gϑ∑ν=1ℏ∘(φνCϑ)[Ψ(μν−s3)⊕Ψ(s4−μν)]⊖gϑ∑ν=1ℏ∘(φνCϑ)Ψ(|μν−1Cϑϑ∑ν=1φνμν|). $ |
Proof. Let $ {\Psi}_{*}, \Psi^{*}\in SSQF([{{s_{3}}}, {{s_{4}}}], {\hslash_{\circ}}) $, then from Theorem 1.2, we get the following inequalities.
$ Ψ∗(s3+s4−1Cϑϑ∑ν=1φνμν,δ1)⪯Ψ∗(s3,δ1)+Ψ∗(s4,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(μν,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)[Ψ∗(μν−s3,δ1)+Ψ∗(s4−μν,δ1)]−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(|μν−1Cϑϑ∑ν=1φνμν|,δ1), $ | (2.15) |
and
$ Ψ∗(s3+s4−1Cϑϑ∑ν=1φνμν,δ1)⪯Ψ∗(s3,δ1)+Ψ∗(s4,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(μν,δ1)−ϑ∑ν=1ℏ∘(φνCϑ)[Ψ∗(μν−s3,δ1)+Ψ∗(s4−μν,δ1)]−ϑ∑ν=1ℏ∘(φνCϑ)Ψ∗(|μν−1Cϑϑ∑ν=1φνμν|,δ1). $ | (2.16) |
Bridging (2.15) and (2.16) through Pseudo ordering, we acquire the fuzzy-valued Jensen-Mercer inequality.
Remark 2.2. For different substitution of $ \hslash_{\circ}({\varphi}) = {\varphi}, {\varphi}^s, {\varphi}^{-s}, {\varphi}(1-{\varphi}) $, we get fuzzy number-valued Jensen-Mercer inequalities for different classes of super-quadraticity. By taking $ \Psi_{*}({\mu}, \delta^{1}) = \Psi_{*}({\mu}, \delta^{1}) $ and $ \delta^{1} = 1 $ in Theorem 2.2, we get Jensen-Mercer inequality, and that is proved in [17].
Theorem 2.5. If $ {\Psi}\in SSQFNF([{s_{3}}, {s_{4}}], {\hslash_{\circ}}) $, then
$ 12ℏ∘(12)Ψ(s3+s42)⊕1(s4−s3)∫s4s3Ψ(|μ−s3+s42|)dμ⪯1s4−s3∫s4s3Ψ(μ)dμ⪯Ψ(s3)⊕Ψ(s4)2⋅1(s4−s3)∫s4s3(ℏ∘(s4−μs4−s3)+ℏ∘(μ−s3s4−s3))dμ⊖g1s4−s3∫s4s3[ℏ∘(s4−μs4−s3)Ψ(μ−s3)⊕ℏ∘(μ−s3s4−s3)Ψ(s4−μ)]dμ. $ |
Proof. Since $ {\Psi}:[{{s_{3}}}, {{s_{4}}}]\rightarrow \mathbb{R}^+_I $ is a fuzzy interval-valued $ {\hslash_{\circ}} $-super-quadratic mapping, we first consider $ {{{\varphi}}} = \frac{1}{2} $, then we get
$ Ψ∗(μ+y2,δ1)≤ℏ∘(12)[Ψ∗(μ,δ1)+Ψ∗(y,δ1)]−2ℏ∘(12)Ψ∗(12|y−μ|,δ1). $ |
The above inequality can be transformed as
$ Ψ∗(s3+s42,δ1)≤ℏ∘(12)Ψ∗(φs4+(1−φ)s3,δ1)+ℏ∘(12)Ψ∗(φs3+(1−φ)s4,δ1)−2ℏ∘(12)Ψ∗(s4−s32|1−2φ|,δ1). $ | (2.17) |
Integrating with respect to $ {{\varphi}} $ on $ [0, 1] $, we get
$ Ψ∗(s3+s42,δ1)≤ℏ∘(12)∫10Ψ∗(φs4+(1−φ)s3,δ1)dφ+ℏ∘(12)∫10Ψ∗(φs3+(1−φ)s4,δ1)dφ−2ℏ∘(12)∫10Ψ∗(s4−s32|1−2φ|,δ1)dφ12ℏ∘(12)Ψ∗(s3+s42,δ1)+1(s4−s3)∫s4s3Ψ∗(|μ−s3+s42|,δ1)dμ≤1s4+s3∫s4s3Ψ∗(μ,δ1)dμ. $ |
By similar arguments, we have
$ 12ℏ∘(12)Ψ∗(s3+s42,δ1)+1(s4−s3)∫s4s3Ψ∗(|μ−s3+s42|,δ1)dμ≤1s4+s3∫s4s3Ψ∗(μ,δ1)dμ. $ |
This implies that,
$ 12ℏ∘(12)Ψ(s3+s42)⊕1(s4−s3)∫s4s3Ψ(|μ−s3+s42|)dμ≺1s4+s3∫s4s3Ψ(μ)dμ. $ | (2.18) |
Since $ {\Psi}\in SSQFNF([{s_{3}}, {s_{4}}], {\hslash_{\circ}}) $, then
$ Ψ((1−φ)s4+φs3)⪯ℏ∘(1−φ)Ψ(s4)⊕ℏ∘(φ)Ψ(s3)⊖gℏ∘(φ)Ψ((1−φ)|s4−s3|)⊖gℏ∘(1−φ)Ψ(φ|s4−s3|), $ | (2.19) |
and
$ Ψ(φs4+(1−φ)s3)⪯ℏ∘(φ)Ψ(s4)⊕ℏ∘(1−φ)Ψ(s3)⊖gℏ∘(φ)Ψ((1−φ)|s4−s3|)⊖gℏ∘(1−φ)Ψ(φ|s4−s3|). $ | (2.20) |
Adding (2.19) and (2.20), we have
$ Ψ((1−φ)s4+φs3)⊕Ψ(φs4+(1−φ)s3)⪯[ℏ∘(φ)+ℏ∘(1−φ)][Ψ(a)⊕Ψ(s4)]⊖g2ℏ∘(φ)Ψ((1−φ)|s4−s3|)⊖g2ℏ∘(1−φ)Ψ(φ|s4−s3|). $ |
This can be transformed as
$ Ψ∗(φs4+(1−φ)s3,δ1)+Ψ(φs4+(1−φ)s3,δ1)≤[ℏ∘(φ)+ℏ∘(1−φ)][Ψ∗(s4,δ1)+Ψ∗(s3,δ1)]−2ℏ∘(φ)Ψ∗((1−φ)|s4−s3|,δ1)−2ℏ∘(1−φ)Ψ∗(φ|s4−s3|,δ1), $ | (2.21) |
Integrating (2.21) with respect to $ {{\varphi}} $ on $ [0, 1] $,
$ 1s4−s3∫s4s3Ψ∗(μ,δ1)dμ≤Ψ∗(s3,δ1)+Ψ∗(s4,δ1)2⋅1s4−s3∫s4s3(ℏ∘(s4−μs4−s3,δ1)+ℏ∘(μ−s3s4−s3),δ1)dμ−1s4−s3∫s4s3[ℏ∘(s4−μs4−s3)Ψ∗(μ−s3,δ1)+ℏ∘(μ−s3s4−s3)Ψ∗(s4−μ,δ1)]dμ. $ | (2.22) |
Through a similar strategy, we acquire
$ 1s4−s3∫s4s3Ψ∗(μ)dμ≤Ψ∗(s3)+Ψ∗(s4)2⋅1s4−s3∫s4s3(ℏ∘(s4−μs4−s3)+ℏ∘(μ−s3s4−s3))dμ−1s4−s3∫s4s3[ℏ∘(s4−μs4−s3)Ψ∗(μ−s3)+ℏ∘(μ−s3s4−s3)Ψ∗(s4−μ)]dμ. $ | (2.23) |
Combining inequalities (2.25) and (2.26), we recapture the desired result. So, the result is accomplished.
Now, we present some deductions of Theorem 2.5.
● Taking $ {\hslash_{\circ}}({{\varphi}}) = {{\varphi}} $, we recapture
$ Ψ(s3+s42)⊕1(s4−s3)∫s4s3Ψ(|μ−s3+s42|)dμ⪯1s4−s3∫s4s3Ψ(μ)dμ⪯Ψ(s3)⊕Ψ(s4)2⊖g1s4−s3∫s4s3[(s4−μs4−s3)Ψ(μ−s3)⊕(μ−s3s4−s3)Ψ(s4−μ)]dμ. $ |
● Taking $ {\hslash_{\circ}}({{\varphi}}) = {{\varphi}}^s $, we recapture
$ 2s−1Ψ(s3+s42)⊕1(s4−s3)∫s4s3Ψ(|μ−s3+s42|)dμ⪯1s4−s3∫s4s3Ψ(μ)dμ⪯Ψ(s3)⊕Ψ(s4)s+1⊖g1s4−s3∫s4s3[(s4−μs4−s3)sf(μ−s3)⊕(μ−s3s4−s3)sf(s4−μ)]dμ. $ |
● Taking $ {\hslash_{\circ}}({{\varphi}}) = {{\varphi}}^{-s} $, we recapture
$ 2s+1Ψ(s3+s42)⊕1(s4−s3)∫s4s3Ψ(|μ−s3+s42|)dμ⪯1s4−s3∫s4s3Ψ(μ)dμ⪯Ψ(s3)⊕Ψ(s4)1−s⊖g1s4−s3∫s4s3[(s4−μs4−s3)−sΨ(μ−s3)⊕(μ−s3s4−s3)−sΨ(s4−μ)]dμ. $ |
● Taking $ {\hslash_{\circ}}({{\varphi}}) = 1 $, we recapture
$ 2−1Ψ(s3+s42)⊕1(s4−s3)∫s4s3Ψ(|μ−s3+s42|)dμ⪯1s4+s3∫s4s3Ψ(μ)dμ⪯[Ψ(s3)⊕Ψ(s4)]⊖g1s4−s3∫s4s3[Ψ(μ−s3)⊕Ψ(s4−μ)]dμ. $ |
Remark 2.3. We can a get a blend of new Hermite-Hadamard's type inequalities for different values of $ \hslash_{\circ} $ and by taking $ \Psi_{*}({\mu}, \delta^{1}) = \Psi_{*}({\mu}, \delta^{1}) $ and $ \delta^{1} = 1 $ in Theorem 2.5, we get the classical Hermite-Hadamard inequality for super-quadratic mappings, which is derived in [15].
Example 2.2. Let $ {\Psi}:[{s_{3}}, \, {s_{4}}] = [0, 2]\rightarrow \Upsilon_{\delta^{1}} $ be a fuzzy valued super-quadratic mapping, which is defined as
$ Ψμ(μ1)={μ13μ3,μ1∈[0,3μ3]6μ3−μ13μ3,μ1∈(3μ3,6μ3]. $ |
and its level cuts are $ {\Psi}_{{\delta^{1}}} = \left[3{\delta^{1}} {{\mu}}^3, \, (6-3 {\delta^{1}}){{\mu}}^3 \right] $. It fulfils the condition of Theorem 2.5, then
$ Left Term=[15s4364,132(30−152)s43],Middle Term=[3s438,14(6−32)s43],Right Term=[6s4310,25(6−32)s43]. $ |
To visualize the above formulations, we fix $ \delta^{1} $ and vary $ {s_{4}} $.
Note that L.L.F, L.U.F, M.L.F, M.U.F, R.L.F, and R.U.F are specifying the endpoint mappings of left, middle, and right terms of Theorem 2.5.
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 1) $ | 0.140625 | 0.796875 | 0.2250 | 1.2750 | 0.3600 | 2.0400 |
$ (0.4, 1.3) $ | 0.411938 | 1.64775 | 0.6591 | 2.6364 | 1.05456 | 4.21824 |
$ (0.5, 1.5) $ | 0.791016 | 2.37305 | 1.26563 | 3.79688 | 2.025 | 6.0750 |
$ (0.8, 1.8) $ | 0.1870 | 3.2805 | 3.4992 | 5.2488 | 5.59872 | 8.39808 |
Theorem 2.6. If $ {\Psi}\in SSQFNF([{s_{3}}, {s_{4}}], {\hslash_{\circ}}) $ and $ g:[s_{3}, {s_{4}}]\rightarrow \mathbb{R} $ is a symmetric mapping, then
$ 12ℏ∘(12)Ψ(s3+s42)∫s4s3g(μ)dμ⊕∫s4s3Ψ(|μ−s3+s42|)g(μ)dμ⪯∫s4s3Ψ(μ,δ1)g(μ)dμ≤[Ψ(s4)⊕Ψ(s3)]2∫s4s3[ℏ∘(s4−μs4−s3)+ℏ∘(μ−s3s4−s3)]g(μ)dμ⊖g∫s4s3ℏ∘(μ−s3s4−s3)Ψ(s4−μ)g(μ)dμ⊖g∫s4s3ℏ∘(s4−μs4−s3)Ψ(μ−s3)g(μ)dμ. $ |
Proof. Since $ {\Psi}:[{{s_{3}}}, {{s_{4}}}]\rightarrow \mathbb{R}^+_I $ is a fuzzy interval-valued $ {\hslash_{\circ}} $-super-quadratic mapping, then by multiplying (2.17) by $ {g}(\varphi{s_{4}}+(1-{{\varphi}})a) $ and integrating with respect to $ {{\varphi}} $ on $ [0, 1] $, we get
$ Ψ∗(s3+s42,δ1)∫10g(φs4+(1−φ)a)dφ≤ℏ∘(12)∫10Ψ∗(φs4+(1−φ)s3,δ1)g(φs4+(1−φ)a)dφ+ℏ∘(12)∫10Ψ∗(φs3+(1−φ)s4,δ1)g(φs4+(1−φ)a)dφ−2ℏ∘(12)∫10Ψ∗(s4−s32|1−2φ|,δ1)g(φs4+(1−φ)a)dφ. $ |
Since $ g $ is a symmetric mapping about $ \frac{{s_{3}}+{s_{4}}}{2} $, then $ g({{{\varphi}}}{s_{4}}+(1-{{\varphi}}){s_{3}}) = g((1-{{{\varphi}}}){s_{4}}+{{{\varphi}}}{s_{3}}) $. Using this fact in the above inequality, we get
$ Ψ∗(s3+s42,δ1)∫10g(φs4+(1−φ)a)dφ≤ℏ∘(12)∫10Ψ∗(φs4+(1−φ)s3,δ1)g(φs4+(1−φ)a)dφ+ℏ∘(12)∫10Ψ∗(φs3+(1−φ)s4,δ1)g(φs3+(1−φ)s4)dφ−2ℏ∘(12)∫a0Ψ∘∗(s4−s32|1−2φ|,δ1)g(φs4+(1−φ)a)dφ. $ |
This implies that
$ 12ℏ∘(12)Ψ∘∗(s3+s42,δ1)∫s4s3g(μ)dμ+∫s4s3Ψ∘∗(|μ−s3+s42|)g(μ)dμ≤∫s4s3Ψ∘∗(μ)g(μ)dμ. $ |
Similarly, we have
$ 12ℏ∘(12)Ψ∗(s3+s42,δ1)∫s4s3g(μ)dμ+∫s4s3Ψ∗(|μ−s3+s42|,δ1)g(μ)dμ≤∫s4s3Ψ∗(μ,δ1)g(μ)dμ. $ |
Combining the last two inequalities in the Pseudo ordering relation, we have
$ [12ℏ∘(12)Ψ∘∗(s3+s42,δ1)∫s4s3g(μ)dμ+∫s4s3Ψ∘∗(|μ−s3+s42|)g(μ)dμ12ℏ∘(12)Ψ∗(s3+s42,δ1)∫s4s3g(μ)dμ+∫s4s3Ψ∗(|μ−s3+s42|,δ1)g(μ)dμ]⪯[∫s4s3Ψ∗(μ,δ1)g(μ)dμ,∫s4s3Ψ∗(μ,δ1)g(μ)dμ]. $ |
Finally, we can write
$ 12ℏ∘(12)Ψ(s3+s42)∫s4s3g(μ)dμ⊕∫s4s3Ψ(|μ−s3+s42|)g(μ)dμ⪯∫s4s3Ψ(μ)g(μ)dμ. $ | (2.24) |
Multiplying (2.21) by $ {g}({{{\varphi}}}{s_{4}}+(1-{{{\varphi}}}){s_{3}}, \delta^{1}) $ and integrating with respect to $ {{{\varphi}}} $ on $ [0, 1] $, we get
$ ∫10Ψ∗(φs3+(1−φ)s4,δ1)g(φs4+(1−φ)s3)dφ+∫10Ψ∗(φs4+(1−φ)s3,δ1)g(φs4+(1−φ)s3)dφ≤[Ψ∗(s4,δ1)+Ψ∗(s3,δ1)]∫10[ℏ∘(φ)+ℏ∘(1−φ)]g(φs4+(1−φ)s3)dφ−2∫10ℏ∘(φ)Ψ∗((1−φ)|s4−s3|,δ1)g(φs4+(1−φ)s3)dφ−2∫10ℏ∘(1−φ)Ψ∗(φ|s4−s3|,δ1)g(φs4+(1−φ)s3)dφ. $ |
We can write
$ ∫s4s3Ψ∗(μ,δ1)g(μ)dφ≤[Ψ∗(s4,δ1)+Ψ∗(s3,δ1)]2∫s4s3[ℏ∘(s4−μs4−s3)+ℏ∘(μ−s3s4−s3)]g(μ)dμ−∫s4s3ℏ∘(μ−s3s4−s3)Ψ∗(s4−μ,δ1)g(μ)dμ−∫s4s3ℏ∘(s4−μs4−s3)Ψ∗(μ−s3,δ1)g(μ)dμ. $ | (2.25) |
Also,
$ ∫s4s3Ψ∗(μ,δ1)g(μ)dφ≤[Ψ∗(s4,δ1)+Ψ∗(s3,δ1)]2∫s4s3[ℏ∘(s4−μs4−s3)+ℏ∘(μ−s3s4−s3)]g(μ)dμ−∫s4s3ℏ∘(μ−s3s4−s3)Ψ∗(s4−μ,δ1)g(μ)dμ−∫s4s3ℏ∘(s4−μs4−s3)Ψ∗(μ−s3,δ1)g(μ)dμ. $ | (2.26) |
Combining (2.25) and (2.26), we achieve the required inequality. Hence, the result is completed.
Remark 2.4. By selecting $ \hslash_{\circ}({\varphi}) = {\varphi}, {\varphi}^s, {\varphi}^{-s}, {\varphi}(1-{\varphi}) $ in Theorem 2.6, we get $ \verb"F".\verb"N".\verb"V" $ Hermite-Hadamard-Fejer's inequalities for different classes of super-quadraticity. If we take $ g({{\mu}}) = 1 $ in Theorem 2.6, we obtain the Hermite-Hadamard's inequality. Also by taking $ \Psi_{*}({\mu}, \delta^{1}) = \Psi_{*}({\mu}, \delta^{1}) $ and $ \delta^{1} = 1 $ in Theorem 2.6, we obtain the Hermite-Hadamard-Fejer inequality.
Example 2.3. Let $ {\Psi}:[{s_{3}}, \, {s_{4}}] = [0, 2]\rightarrow \Upsilon_{\delta^{1}} $ be fuzzy valued super-quadratic mapping, which is defined as
$ Ψμ(μ1)={μ13μ3,μ1∈[0,3μ3]6μ3−μ13μ3,μ1∈(3μ3,6μ3]. $ |
and its level cuts are $ {\Psi}_{{\delta^{1}}} = \left[3{\delta^{1}} {{\mu}}^3, \, (6-3 {\delta^{1}}){{\mu}}^3 \right] $. Also $ g:[0, 2]\rightarrow \mathbb{R} $ is a symmetric integrable mapping and is defined as $ g({\mu}) = \left\{ μ,μ∈[0,1]2−μ,μ∈(1,2]. \right. $. Both mappings fulfill the condition of Theorem 2.6, then
$ Left Term=[316s43(2−(2−s4)2)δ1,116s43(2−(2−s4)2)(6−3δ1)],Middle Term=[310(s44(5−2s4)−3)δ1+3δ15,110(s44(5−2s4)−3)(6−3δ1)+15(6−3δ1)],Right Term=[34s43(2−(2−s4)2)δ1−(−3s46+12s45−20s43+30s42−24s4+8)(3δ1)60s4,14s43(2−(2−s4)2)(6−3δ1)−(−3s46+12s45−20s43+30s42−24s4+8)(6−3δ1)60s4]. $ |
To visualize the above formulations, we fix $ \delta^{1} $ and vary $ \tau $.
Note that L.L.F, L.U.F, M.L.F, M.U.F, R.L.F, and R.U.F are specifying the endpoint mappings of left, middle, and right terms of Theorem 2.6.
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 1) $ | 0.05625 | 0.31875 | 0.1800 | 1.0200 | 0.1800 | 1.0200 |
$ (0.4, 1.3) $ | 0.24881 | 0.995241 | 0.702557 | 2.81023 | 0.785476 | 3.1419 |
$ (0.5, 1.5) $ | 0.553711 | 1.66113 | 1.36875 | 4.10625 | 1.73229 | 5.19688 |
$ (0.8, 1.8) $ | 1.71461 | 2.57191 | 3.28719 | 4.93079 | 5.30129 | 7.95193 |
This section contains fractional trapezoidal-like inequalities incorporated with $ \verb"F".\verb"N".\verb"V" $-$ \hslash_{\circ} $ super-quadratic mappings.
Lemma 3.1. If $ {\Psi}\in SSQFNF([{s_{3}}, {s_{4}}], {\hslash_{\circ}}) $, then
$ Ψ(s3+s42)⪯ℏ∘(12)Ψ(μ)⊕ℏ∘(12)Ψ(s3+s4−μ)⊖g2ℏ∘(12)Ψ(|s3+s42−μ|). $ |
Proof. Let $ {\Psi}:[{s_{3}}, {s_{4}}]\rightarrow \mathbb{R}^{+}_I $ be $ \verb"F".\verb"N".\verb"V" $ $ \hslash_{\circ} $-super-quadraticity, and we have
$ Ψ((1−φ)y+φμ)⪯ℏ∘(1−φ)Ψ(y)⊕ℏ∘(φ)Ψ(μ)⊖gℏ∘(φ)Ψ((1−φ)|y−μ|)⊖gℏ∘(1−φ)Ψ(φ|y−μ|). $ |
We can break the above inequality as
$ Ψ∗((1−φ)y+φμ,δ1)<ℏ∘(1−φ)Ψ∗(y,δ1)+ℏ∘(φ)Ψ∗(μ,δ1)−ℏ∘(φ)Ψ∗(|y−(tx2+(1−φ)μ|),δ1)−ℏ∘(1−φ)Ψ∗(|μ−((1−φ)μ+φy)|,δ1), $ |
and
$ Ψ∗((1−φ)y+φμ,δ1)<ℏ∘(1−φ)Ψ∗(y,δ1)+ℏ∘(φ)Ψ∗(μ,δ1)−ℏ∘(φ)Ψ∗(|y−(tx2+(1−φ)μ|),δ1)−ℏ∘(1−φ)Ψ∗(|μ−((1−φ)μ+φy)|,δ1). $ |
Furthermore, we can write:
$ Ψ∗(s3+s42,δ1)≤ℏ∘(12)Ψ∗(μ,δ1)+ℏ∘(12)Ψ∗(s3+s4−μ,δ1)−ℏ∘(12)Ψ∗(|μ−(s3+s42)|,δ1)−ℏ∘(12)Ψ∗(|s3+s4−μ−(s3+s42)|,δ1)≤ℏ∘(12)Ψ∗(μ,δ1)+ℏ∘(12)Ψ∗(s3+s4−μ,δ1)−2ℏ∘(12)Ψ∗(|(s3+s42−μ)|,δ1). $ | (3.1) |
Moreover, we have
$ Ψ∗(s3+s42,δ1)≤ℏ∘(12)Ψ∗(μ,δ1)+ℏ∘(12)Ψ∗(s3+s4−μ,δ1)−2ℏ∘(12)Ψ∗(|(s3+s42−μ)|,δ1). $ | (3.2) |
Comparing (3.1) and (3.2), we achieve the final result.
Lemma 3.2. If $ {\Psi}\in SSQFNF([{s_{3}}, {s_{4}}], {\hslash_{\circ}}) $, then
$ Ψ(μ)⊕Ψ(s3+s4−μ)⪯Ψ(s3)⊕Ψ(s4)⊖g2ℏ∘(μ−s3s4−s3)Ψ(s4−μ)⊖g2ℏ∘(s4−μs4−s3)Ψ(μ−s3). $ |
Proof. Assume that $ {\Psi}:[{s_{3}}, {s_{4}}]\rightarrow \mathbb{R}^{+}_I $ is a $ \verb"F".\verb"N".\verb"V" $-$ {\hslash_{\circ}} $ super-quadratic mapping on $ [{s_{3}}, {s_{4}}] $, then
$ Ψ∗((1−φ)s4+φs3,δ1)≤ℏ∘(1−φ)Ψ∗(s4,δ1)+ℏ∘(φ)Ψ∗(s3,δ1)−ℏ∘(φ)Ψ∗((1−φ)|s3−(φs3+(1−φ)s4|,δ1)−ℏ∘(1−φ)Ψ∗(φ|s4−(1−φ)s4+φs3|,δ1). $ |
Substitute $ {{\mu}} = ((1-{{{\varphi}}}){s_{4}}+{{{\varphi}}}{s_{3}}) $, then
$ Ψ∗(μ,δ1)≤ℏ∘(s4−μs4−s3)Ψ∗(s4,δ1)+μ(⋋ $ | (3.3) |
Replacing $ {{\mu}} $ by $ {s_{3}}+{s_{4}}-{{\mu}} $ in (3.3), we get
$ \begin{align} {\Psi}_{*}({s_{3}}+{s_{4}}-{{\mu}}, \delta^{1})&\leq {\hslash_{\circ}}\left(\frac{{s_{4}}-{{\mu}}}{{s_{4}}-{s_{3}}}\right){\Psi}_{*}({s_{4}}, \delta^{1}) +{\hslash_{\circ}}\left(\frac{{{\mu}}-{s_{3}}}{{s_{4}}-{s_{3}}}\right){\Psi}_{*}({s_{3}}, \delta^{1})\\ &\quad -{\hslash_{\circ}}\left(\frac{{s_{4}}-{{\mu}}}{{s_{4}}-{s_{3}}}\right){\Psi}_{*}({{\mu}}-{s_{3}}, \delta^{1}) -{\hslash_{\circ}}\left(\frac{{{\mu}}-{s_{3}}}{{s_{4}}-{s_{3}}}\right){\Psi}_{*}({s_{4}}-{{\mu}}, \delta^{1}). \end{align} $ | (3.4) |
Adding (3.3) and (3.4), we have
$ \begin{align} {\Psi}_{*}({{\mu}}, \delta^{1})+{\Psi}_{*}({s_{3}}+{s_{4}}-{{\mu}}, \delta^{1})&\leq {\Psi}_{*}({s_{3}}, \delta^{1})+{\Psi}_{*}({s_{4}}, \delta^{1})-2{\hslash_{\circ}}\left(\frac{{{\mu}}-{s_{3}}}{{s_{4}}-{s_{3}}}, \delta^{1}\right){\Psi}_{*}({s_{4}}-{{\mu}}, \delta^{1})\\ &\quad -2{\hslash_{\circ}}\left(\frac{{s_{4}}-{{\mu}}}{{s_{4}}-{s_{3}}}\right){\Psi}_{*}({{\mu}}-{s_{3}}, \delta^{1}). \end{align} $ | (3.5) |
Similarly,
$ \begin{align} {\Psi}^{*}({{\mu}})+{\Psi}^{*}({s_{3}}+{s_{4}}-{{\mu}}, \delta^{1})&\leq {\Psi}^{*}({s_{3}}, \delta^{1})+{\Psi}^{*}({s_{4}}, \delta^{1})-2{\hslash_{\circ}}\left(\frac{{{\mu}}-{s_{3}}}{{s_{4}}-{s_{3}}}\right){\Psi}^{*}({s_{4}}-{{\mu}}, \delta^{1})\\ &\quad -2{\hslash_{\circ}}\left(\frac{{s_{4}}-{{\mu}}}{{s_{4}}-{s_{3}}}\right){\Psi}^{*}({{\mu}}-{s_{3}}, \delta^{1}). \end{align} $ | (3.6) |
Comparison of (3.5) and (3.6) through Pseudo ordering relation, we get our final outcome.
Theorem 3.1. If $ {\Psi}\in SSQFNF([{s_{3}}, {s_{4}}], {\hslash_{\circ}}) $, then
$ \begin{align} &\frac{1}{\hslash_{\circ}\left(\frac{1}{2}\right)}{\Psi}\left(\frac{{s_{3}}+{s_{4}}}{2}\right){\oplus}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}} \int^{s_{4}}_{s_{3}} {\Psi}\left(\left|\frac{{s_{3}}+{s_{4}}}{2}-{{\mu}}\right|\right)\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}\\ &\preceq\frac{\Gamma(1+\tau)}{({s_{4}}-{s_{3}})^{\tau}}\biggl(J^{\tau}_{{s_{3}}+}{\Psi}({s_{4}}){\oplus}J^{\tau}_{{s_{4}}-}{\Psi}({s_{3}})\biggr)\\ &\preceq{\Psi}({s_{3}}){\oplus}{\Psi}({s_{4}}){{\ominus}_{g}}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int^{s_{4}}_{s_{3}} \left({\hslash_{\circ}}\left(\frac{{{\mu}}-{s_{3}}}{{s_{4}}-{s_{3}}}\right){\Psi}({s_{4}}-{{\mu}}){\oplus}{\hslash_{\circ}} \left(\frac{{s_{4}}-{{\mu}}}{{s_{4}}-{s_{3}}}\right){\Psi}({{\mu}}-{s_{3}})\right) \end{align} $ | (3.7) |
$ \begin{align} &\quad\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}. \end{align} $ | (3.8) |
Proof. Since $ {\Psi} $ is an $ \verb"F".\verb"N".\verb"V" $ super-quadratic mapping, then
$ \begin{align*} {\Psi}_{*}\left(\frac{{s_{3}}+{s_{4}}}{2}, \delta^{1}\right)& = {\Psi}_{*}\left(\frac{{s_{3}}+{s_{4}}}{2}, \delta^{1}\right)\frac{\tau}{2({s_{4}}-{s_{3}})^{\tau}}\int^{s_{4}}_{s_{3}} \left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}\\ & = \frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int^{\frac{{s_{3}}+{s_{4}}}{2}}_{s_{3}} {\Psi}_{*}\left(\frac{{s_{3}}+{s_{4}}}{2}, \delta^{1}\right)\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}. \end{align*} $ |
Through Lemma 3.1, we can interpret
$ \begin{align} {\Psi}_{*}\left(\frac{{s_{3}}+{s_{4}}}{2}, \delta^{1}\right)&\leq\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}} \int^{\frac{{s_{3}}+{s_{4}}}{2}}_{s_{3}} \left[{\hslash_{\circ}}\left(\frac{1}{2}\right){\Psi}_{*}({{\mu}}, \delta^{1}) +{\hslash_{\circ}}\left(\frac{1}{2}\right){\Psi}_{*}({s_{3}}+{s_{4}}-{{\mu}}, \delta^{1})\right.\\ &\left.\quad-2{\hslash_{\circ}}\left(\frac{1}{2}\right){\Psi}_{*}\left(\left|\frac{{s_{3}}+{s_{4}}}{2}-{{\mu}}\right|, \delta^{1}\right) \left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\right]\mathrm{d}{{\mu}}. \end{align} $ | (3.9) |
From (3.9), we have
$ \begin{align} \frac{1}{{\hslash_{\circ}}\left(\frac{1}{2}\right)}{\Psi}_{*}\left(\frac{{s_{3}}+{s_{4}}}{2}, \delta^{1}\right)&\leq\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int^{\frac{{s_{3}}+{s_{4}}}{2}}_{s_{3}} \left[{\Psi}_{*}({{\mu}}, \delta^{1})+{\Psi}_{*}({s_{3}}+{s_{4}}-{{\mu}}, \delta^{1})\right.\\ &\left.\quad-2{\Psi}_{*}\left(\left|\frac{{s_{3}}+{s_{4}}}{2}-{{\mu}}\right|, \delta^{1}\right) \left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\right]\mathrm{d}{{\mu}}\\ & = \frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\left[\int^{\frac{{s_{3}}+{s_{4}}}{2}}_{s_{3}} {\Psi}_{*}({{\mu}}, \delta^{1}) \left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}\right.\\ &\quad\left.+\int_{\frac{{s_{3}}+{s_{4}}}{2}}^{s_{4}} {\Psi}_{*}({{\mu}}, \delta^{1})\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}\right.\\ &\left.\quad-\int^{\frac{{s_{3}}+{s_{4}}}{2}}_{s_{3}} {\Psi}_{*}\left(\left|\frac{{s_{3}}+{s_{4}}}{2}-{{\mu}}\right|, \delta^{1}\right) \left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}\right.\\ &\left.\quad-\int_{\frac{{s_{3}}+{s_{4}}}{2}}^{s_{4}} {\Psi}_{*}\left(\left|\frac{{s_{3}}+{s_{4}}}{2}-{{\mu}}\right|, \delta^{1}\right)\left(({s_{4}}-{{\mu}})^{\tau-1}+ ({{\mu}}-{s_{3}})^{\tau-1}\right) \mathrm{d}{{\mu}}\right]\\ & = \frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\left[\int_{s_{3}}^{s_{4}} {\Psi}_{*}({{\mu}}, \delta^{1})\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}\right.\\ &\quad\left.-\int_{s_{3}}^{s_{4}} {\Psi}_{*}\left(\left|\frac{{s_{3}}+{s_{4}}}{2}-{{\mu}}\right|, \delta^{1}\right)\left(({s_{4}}-{{\mu}})^{\tau-1}+ ({{\mu}}-{s_{3}})^{\tau-1}\right) \mathrm{d}{{\mu}}\right]\\ & = \frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J^{\tau}_{{s_{3}}+}{\Psi}_{*}({s_{4}}, \delta^{1})+J^{\tau}_{{s_{4}}-}{\Psi}_{*}({s_{3}}, \delta^{1})\right]\\ &-\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}} {\Psi}_{*}\left(\left|\frac{{s_{3}}+{s_{4}}}{2}-{{\mu}}\right|, \delta^{1}\right)\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}. \end{align} $ | (3.10) |
Also,
$ \begin{align} &\frac{1}{{\hslash_{\circ}}\left(\frac{1}{2}\right)}{\Psi}^{*}\left(\frac{{s_{3}}+{s_{4}}}{2}, \delta^{1}\right)\leq\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J^{\tau}_{{s_{3}}+}{\Psi}^{*}({s_{4}}, \delta^{1})+J^{\tau}_{{s_{4}}-} {\Psi}^{*}({s_{3}}, \delta^{1})\right]\\ &-\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}} {\Psi}^{*}\left(\left|\frac{{s_{3}}+{s_{4}}}{2}-{{\mu}}\right|, \delta^{1}\right)\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}. \end{align} $ | (3.11) |
Combining (3.10) and (3.11) via pseudo order relation, we acquire the first inequality of (3.7). From Lemma 3.2, we can write
$ \begin{align} &\frac{\Gamma(1+\tau)}{({s_{4}}-{s_{3}})^{\tau}}\left(J^{\tau}_{{s_{3}}+}{\Psi}_{*}({s_{4}}, \delta^{1}) +J^{\tau}_{{s_{4}}-}{\Psi}_{*}({s_{3}}, \delta^{1})\right)\\ & = \frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int^{\frac{\tau_{1}+\varsigma_{1}}{2}}_{s_{3}} [{\Psi}_{*}({{\mu}}, \delta^{1})+{\Psi}_{*}({s_{3}}+{s_{4}}-{{\mu}}, \delta^{1})]\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}\\ &\leq\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int^{\frac{{s_{3}}+{s_{4}}}{2}}_{s_{3}} \left({\Psi}_{*}({s_{3}}, \delta^{1})+{\Psi}_{*}({s_{4}}, \delta^{1}) -2{\hslash_{\circ}}\left(\frac{{{\mu}}-{s_{3}}}{{s_{4}}-{s_{3}}}\right){\Psi}_{*}({s_{4}}-{{\mu}}, \delta^{1}) \right.\\ &\left.-2{\hslash_{\circ}}\left(\frac{{s_{4}}-{{\mu}}}{{s_{4}}-{s_{3}}}\right){\Psi}_{*}({{\mu}}-{s_{3}}, \delta^{1})\right)\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}\\ & = {\Psi}_{*}({s_{3}})+{\Psi}_{*}({s_{4}})-\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}} \int^{s_{4}}_{s_{3}}\left({\hslash_{\circ}}\left(\frac{{{\mu}}-{s_{3}}}{{s_{4}}-{s_{3}}}\right) {\Psi}_{*}({s_{4}}-{{\mu}})\right.\\ &\left.+{\hslash_{\circ}}\left(\frac{{s_{4}}-{{\mu}}}{{s_{4}}-{s_{3}}}\right) {\Psi}_{*}({{\mu}}-{s_{3}})\right)\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}. \end{align} $ | (3.12) |
Similarly, we have
$ \begin{align} &\frac{\Gamma(1+\tau)}{({s_{4}}-{s_{3}})^{\tau}}\left[J^{\tau}_{{s_{3}}+}{\Psi}^{*}({s_{4}}, \delta^{1}) +J^{\tau}_{{s_{4}}-}{\Psi}^{*}({s_{3}}, \delta^{1})\right]\leq{\Psi}^{*}({s_{3}}, \delta^{1})+{\Psi}^{*}({s_{4}}, \delta^{1})\\&-\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int^{s_{4}}_{s_{3}} \left({\hslash_{\circ}}\left(\frac{{{\mu}}-{s_{3}}}{{s_{4}}-{s_{3}}}\right){\Psi}^{*}({s_{4}}-{{\mu}}, \delta^{1})\right.\\ &\left.+{\hslash_{\circ}} \left(\frac{{s_{4}}-{{\mu}}}{{s_{4}}-{s_{3}}}\right){\Psi}^{*}({{\mu}}-{s_{3}}, \delta^{1})\right)\left(({s_{4}}-{{\mu}})^{\tau-1}+({{\mu}}-{s_{3}})^{\tau-1}\right)\mathrm{d}{{\mu}}. \end{align} $ | (3.13) |
Comparing (3.12) and (3.13) through Pseudo ordering relation, we achieve our desired result.
Remark 3.1. For $ \tau = 1 $, the Theorem 3.1 transformed into Theorem 2.5. By selecting $ \hslash_{\circ}({\varphi}) = {\varphi}, {\varphi}^s, {\varphi}^{-s}, {\varphi}(1-{\varphi}) $ in Theorem 3.1, we get various fractional $ \verb"F".\verb"N".\verb"V" $ Hermite-Hadamard's inequalities for different classes of super-quadraticity. Also by taking $ \Psi_{*}({\mu}, \delta^{1}) = \Psi_{*}({\mu}, \delta^{1}) $ and $ \delta^{1} = 1 $ in Theorem 3.1, we obtain the fractional Hermite-Hadamard's inequality for $ {\hslash_{\circ}} $–super-quadratic mappings, which is given in [59].
Example 3.1. Let $ {\Psi}:[{s_{3}}, \, {s_{4}}] = [0, 2]\rightarrow \Upsilon_{\delta^{1}} $ be a fuzzy valued super-quadratic mapping which is defined as
$ \begin{align*} {\Psi}_{{{\mu}}}({\mu_{1}}) = \left\{ \begin{array}{ll} \frac{{\mu_{1}}}{3{{\mu}}^3}, \quad {\mu_{1}}\in [0, 3{{\mu}}^3]\\ \frac{6{{\mu}}^3-{\mu_{1}}}{3{{\mu}}^3}, \quad {\mu_{1}}\in(3{{\mu}}^3, 6{{\mu}}^3]. \end{array} \right. \end{align*} $ |
and its level cuts are $ {\Psi}_{{\delta^{1}}} = \left[3{\delta^{1}} {{\mu}}^3, \, (6-3 {\delta^{1}}){{\mu}}^3 \right] $. It fulfills the condition of Theorem 3.1, then
$ \begin{align*} {\mathit{\hbox{Left Term}}}& = \left[\frac{\left(2 \left(2^{\tau } \tau ^3+5\ 2^{\tau } \tau -3\ 2^{\tau +1}+12\right)\right) (3 \tau \delta^{1} )}{2^{\tau } (\tau (\tau +1) (\tau +2) (\tau +3))}, \right.\nonumber\\ &\left.\quad +6 \delta^{1}\frac{\left(2 \left(2^{\tau } \tau ^3+5\ 2^{\tau } \tau -3\ 2^{\tau +1}+12\right)\right) (\tau (6-3 \delta^{1} ))}{2^{\tau } (\tau (\tau +1) (\tau +2) (\tau +3))}+(12-6 \delta^{1} )\right], \nonumber\\ {\mathit{\hbox{Middle Term}}}& = \left[\frac{(3 \tau \delta^{1} ) \left(2^{\tau +3} \left(\frac{1}{\tau +3}+\frac{6 \Gamma (\tau )}{\Gamma (\tau +4)}\right)\right)}{2^{\tau }}, \frac{(\tau (6-3 \delta^{1} )) \left(2^{\tau +3} \left(\frac{1}{\tau +3}+\frac{6 \Gamma (\tau )}{\Gamma (\tau +4)}\right)\right)}{2^{\tau }}\right], \nonumber\\ {\mathit{\hbox{Right Term}}}& = \left[24 \delta^{1} -\frac{\left(2^{\tau +5} (\tau (\tau +3)+8)\right) (3 \tau \delta^{1} )}{2^{\tau +1} ((\tau +1) (\tau +2) (\tau +3) (\tau +4))}, \right.\nonumber\\ &\left.\quad(48-24 \delta^{1} )-\frac{\left(2^{\tau +5} (\tau (\tau +3)+8)\right) (\tau (6-3 \delta^{1} ))}{2^{\tau +1} ((\tau +1) (\tau +2) (\tau +3) (\tau +4))}\right]. \end{align*} $ |
To visualize the above formulations, we fix $ \delta^{1} $ and vary $ \tau $.
Note that L.L.F, L.U.F, M.L.F, M.U.F, R.L.F, and R.U.F are specifying the endpoint mappings of left, middle, and right terms of Theorem 3.1.
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 0.5) $ | 2.50084 | 14.1714 | 4.32 | 24.48 | 6.01143 | 34.0648 |
$ (0.4, 1) $ | 3.0000 | 12.0000 | 4.8000 | 19.2000 | 5.7600 | 30.7200 |
$ (0.5, 1.5) $ | 3.69468 | 11.084 | 5.82857 | 17.4857 | 9.54805 | 28.6442 |
$ (0.8, 2) $ | 6.0000 | 9.0000 | 9.6000 | 14.4000 | 15.3600 | 23.0400 |
Now, we prove the weighted Hermite-Hadamard's inequality for symmetric mappings.
Theorem 3.2. If $ {\Psi}\in SSQFNF([{s_{3}}, {s_{4}}], {\hslash_{\circ}}) $ and $ {g}:[{s_{3}}, {s_{4}}]\rightarrow \mathbb{R} $ is a nonnegative integrable symmetric mapping about $ \frac{{s_{3}}+{s_{4}}}{2} $, then
$ \begin{align*} &\frac{1}{2\hslash_{\circ}\left(\frac{1}{2}\right)}{\Psi}\left(\frac{{s_{3}}+{s_{4}}}{2}\right)\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}g({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}g({s_{3}})\right]\nonumber\\ &\quad{\oplus}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}\left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right] {\Psi}\left(\left|{\mu}-\frac{{s_{3}}+{s_{4}}}{2}\right|\right){g}({\mu})\mathrm{d}{\mu}\nonumber\\ &\preceq\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}{\Psi}{g}({s_{4}}){\oplus} J_{{s_{4}}^{-}}^{\tau}{\Psi}{g}({s_{3}})\right]\nonumber\\ &\preceq ({\Psi}({s_{3}}){\oplus}{\Psi}({s_{4}}))\cdot\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}} \left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right]\left[\hslash_{\circ}\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right) +\hslash_{\circ}\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right)\right]{g}({\mu})\mathrm{d}{\mu}\nonumber\\ &\quad{{\ominus}_{g}}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}] \left[\hslash_{\circ}\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right){\Psi}({\mu}-{s_{3}}){\oplus}\hslash_{\circ}\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right){\Psi}({s_{4}}-{\mu})\right]{g}({\mu})\mathrm{d}{\mu}. \end{align*} $ |
Proof. Since $ {\Psi}:[{{s_{3}}}, {{s_{4}}}]\rightarrow \mathbb{R}^+_I $ is a fuzzy interval-valued $ {\hslash_{\circ}} $-super-quadratic mapping, then by multiplying (2.17) by $ {{{\varphi}}}^{\tau-1}{g}(\varphi{s_{4}}+(1-{{\varphi}})a) $ and applying integration with respect to $ {{\varphi}} $ on $ [0, 1] $, we get
$ \begin{align*} &\frac{1}{\hslash_{\circ}\left(\frac{1}{2}\right)}{\Psi}_{*}\left(\frac{{s_{3}}+{s_{4}}}{2}, \delta^{1}\right)\int_0^1 {{{\varphi}}}^{\tau-1} {g}(\varphi{s_{4}}+(1-{{\varphi}})a)\mathrm{d}{{\varphi}}\nonumber\\ &\leq \int^1_0 {{{\varphi}}}^{\tau-1}{\Psi}_{*}({{{\varphi}}}{s_{4}}+(1-{{{\varphi}}}){s_{3}}, \delta^{1}){g}(\varphi{s_{4}}+(1-{{\varphi}})a)\mathrm{d}{{{\varphi}}}\\&+ \int^1_0 {{{\varphi}}}^{\tau-1} {\Psi}_{*}({{{\varphi}}}{s_{3}}+(1-{{{\varphi}}}){s_{4}}, \delta^{1}){g}(\varphi{s_{4}}+(1-{{\varphi}})a)\mathrm{d}{{{\varphi}}}\\ &\quad-2\int_0^1 {{{\varphi}}}^{\tau-1} {\Psi}_{*}\left(\frac{{s_{4}}-{s_{3}}}{2}\left|1-2{{\varphi}}\right|, \delta^{1}\right){g}(\varphi{s_{4}}+(1-{{\varphi}})a)\mathrm{d}{{{\varphi}}}. \end{align*} $ |
Since $ g $ is symmetric mapping about $ \frac{{s_{3}}+{s_{4}}}{2} $, then $ g({{{\varphi}}}{s_{4}}+(1-{{\varphi}}){s_{3}}) = g((1-{{{\varphi}}}){s_{4}}+{{{\varphi}}}{s_{3}}) $. Using this fact in the above inequality, we get
$ \begin{align*} &\frac{1}{2\hslash_{\circ}\left(\frac{1}{2}\right)}{\Psi}_{*}\left(\frac{{s_{3}}+{s_{4}}}{2}, \delta^{1}\right)\int_0^1 {{{\varphi}}}^{\tau-1}[{g}(\varphi{s_{4}}+(1-{{\varphi}})a)+{g}({{{\varphi}}}{s_{3}}+(1-{{{\varphi}}}){s_{4}})]\mathrm{d}{{\varphi}}\nonumber\\ &\leq\int^1_0 {{{\varphi}}}^{\tau-1} {\Psi}_{*}({{{\varphi}}}{s_{4}}+(1-{{{\varphi}}}){s_{3}}, \delta^{1}){g}(\varphi{s_{4}}+(1-{{\varphi}})a)\mathrm{d}{{{\varphi}}}\\ &\, +\int^1_0 {{{\varphi}}}^{\tau-1} {\Psi}_{*}({{{\varphi}}}{s_{3}}+(1-{{{\varphi}}}){s_{4}}, \delta^{1}){g}({{{\varphi}}}{s_{3}}+(1-{{\varphi}}){s_{4}})\mathrm{d}{{{\varphi}}}\\ &\quad-\int_0^1 {{{\varphi}}}^{\tau-1} {\Psi}_{*}\left(\frac{{s_{4}}-{s_{3}}}{2}\left|1-2{{\varphi}}\right|, \delta^{1}\right)[{g}(\varphi{s_{4}}+(1-{{\varphi}})a)+{g}({{{\varphi}}}a+(1-{{{\varphi}}}){s_{4}})]\mathrm{d}{{{\varphi}}}. \end{align*} $ |
After some simple computations, we have the following inequality
$ \begin{align} &\frac{1}{2\hslash_{\circ}\left(\frac{1}{2}\right)}{\Psi}_{*}\left(\frac{{s_{3}}+{s_{4}}}{2}, \delta^{1}\right)\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}g({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}g({s_{3}})\right]\\ &\leq\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}{\Psi}_{*}({s_{4}}, \delta^{1}){g}({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}{\Psi}_{*}({s_{3}}, \delta^{1})g({s_{3}})\right]\\ &\quad-\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}\left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right]{\Psi}_{*}\left(\left|{\mu}-\frac{{s_{3}}+{s_{4}}}{2}\right|, \delta^{1}\right){g}({\mu})\mathrm{d}{\mu}. \end{align} $ | (3.14) |
By following a similar procedure, we get
$ \begin{align} &\frac{1}{2\hslash_{\circ}\left(\frac{1}{2}\right)}{\Psi}^{*}\left(\frac{{s_{3}}+{s_{4}}}{2}, \delta^{1}\right)\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}g({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}g({s_{3}})\right]\\ &\leq\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}{\Psi}^{*}({s_{4}}, \delta^{1}){g}({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}{\Psi}^{*}({s_{3}}, \delta^{1})g({s_{3}})\right]\\ &\quad-\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}\left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right]{\Psi}^{*}\left(\left|{\mu}-\frac{{s_{3}}+{s_{4}}}{2}\right|, \delta^{1}\right){g}({\mu})\mathrm{d}{\mu}. \end{align} $ | (3.15) |
Implementing the pseudo ordering relation on (3.14) and (3.15) results in the following relation
$ \begin{align} &\frac{1}{2\hslash_{\circ}\left(\frac{1}{2}\right)}{\Psi}\left(\frac{{s_{3}}+{s_{4}}}{2}\right)\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}g({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}g({s_{3}})\right]\\ &\quad{\oplus}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}\left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right] {\Psi}\left(\left|{\mu}-\frac{{s_{3}}+{s_{4}}}{2}\right|\right){g}({\mu})\mathrm{d}{\mu}\\ &\preceq\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}{\Psi}{g}({s_{4}}){\oplus} J_{{s_{4}}^{-}}^{\tau}{\Psi}{g}({s_{3}})\right]. \end{align} $ | (3.16) |
Now, we establish our second inequality. Multiplying (2.21) by $ {{{\varphi}}}^{\tau-1}{g}({{{\varphi}}}{s_{4}}+(1-{{{\varphi}}}){s_{3}}) $ and integrating with respect to $ {{{\varphi}}} $ on $ [0, 1] $, we get
$ \begin{align*} &\int_0^1 {{{\varphi}}}^{\tau-1}{\Psi}_{*}({{{\varphi}}}{s_{3}}+(1-{{{\varphi}}}){s_{4}}, \delta^{1}){g}({{{\varphi}}}{s_{4}}+(1-{{{\varphi}}}){s_{3}})\mathrm{d}{{{\varphi}}}\\ &\, \, +\int_0^1{{{\varphi}}}^{\tau-1}{\Psi}_{*}({{{\varphi}}}{s_{4}}+(1-{{{\varphi}}}){s_{3}}, \delta^{1}) {g}({{{\varphi}}}{s_{4}}+(1-{{{\varphi}}}){s_{3}})\mathrm{d}{{{\varphi}}}\nonumber\\ &\leq [{\Psi}_{*}({s_{4}}, \delta^{1})+{\Psi}_{*}({s_{3}}, \delta^{1})]\int_0^1{{{\varphi}}}^{\tau-1}[{\hslash_{\circ}}({{\varphi}})+\hslash_{\circ}(1-{{\varphi}})]{g}({{{\varphi}}}{s_{4}}+(1-{{{\varphi}}}){s_{3}})\mathrm{d}{{{\varphi}}}\nonumber\\ &-2\int_0^1{{{\varphi}}}^{\tau-1}{\hslash_{\circ}}({{\varphi}}){\Psi}_{*}((1-{{{\varphi}}})|{s_{4}}-{s_{3}}|, \delta^{1}) {g}({{{\varphi}}}{s_{4}}+(1-{{{\varphi}}}){s_{3}})\mathrm{d}{{{\varphi}}}\nonumber\\ &-2\int_0^1 {{{\varphi}}}^{\tau-1}{\hslash_{\circ}}(1-{{{\varphi}}}){\Psi}_{*}({{{\varphi}}}|{s_{4}}-{s_{3}}|, \delta^{1}){g}({{{\varphi}}}{s_{4}}+(1-{{{\varphi}}}){s_{3}})\mathrm{d}{{{\varphi}}}. \end{align*} $ |
After performing some computations, we get
$ \begin{align} &\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}{\Psi}_{*}({s_{4}}, \delta^{1}){g}({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}{\Psi}_{*}({s_{3}}, \delta^{1})g({s_{3}})\right]\\ &\leq ({{\Psi}_{*}({s_{3}}, \delta^{1})+{\Psi}_{*}({s_{4}}, \delta^{1})})\cdot\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}} \\ &\times\left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right]\left[\hslash_{\circ}\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right)+\hslash_{\circ}\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right)\right]{g}({\mu})\mathrm{d}{\mu}\\ &\quad-\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}]\\ &\times \left[\hslash_{\circ}\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right){\Psi}_{*}({\mu}-{s_{3}}, \delta^{1})+\hslash_{\circ}\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right){\Psi}_{*}({s_{4}}-{\mu}, \delta^{1})\right]{g}({\mu})\mathrm{d}{\mu}. \end{align} $ | (3.17) |
Similarly, we have
$ \begin{align} &\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}{\Psi}^{*}({s_{4}}, \delta^{1}){g}({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}{\Psi}^{*}({s_{3}}, \delta^{1})g({s_{3}})\right]\\ &\leq ({\Psi}^{*}({s_{3}}, \delta^{1})+{\Psi}^{*}({s_{4}}, \delta^{1}))\cdot\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}} \\ &\, \, \times\left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right]\left[\hslash_{\circ}\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right)+\hslash_{\circ}\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right)\right]{g}({\mu})\mathrm{d}{\mu}\\ &\quad-\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}]\\ &\, \, \times\left[\hslash_{\circ}\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right){\Psi}^{*}({\mu}-{s_{3}}, \delta^{1})+\hslash_{\circ}\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right){\Psi}^{*}({s_{4}}-{\mu}, \delta^{1})\right]{g}({\mu})\mathrm{d}{\mu}. \end{align} $ | (3.18) |
Inequalities (3.17) and (3.18) produce the following relation
$ \begin{align} &\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}{\Psi}{g}({s_{4}}){\oplus} J_{{s_{4}}^{-}}^{\tau}{\Psi}{g}({s_{3}})\right]\\ &\preceq ({\Psi}({s_{3}}){\oplus}{\Psi}({s_{4}}))\cdot\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}} \left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right]\left[\hslash_{\circ}\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right) +\hslash_{\circ}\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right)\right]{g}({\mu})\mathrm{d}{\mu}\\ &\quad{{\ominus}_{g}}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}] \left[\hslash_{\circ}\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right){\Psi}({\mu}-{s_{3}}){\oplus}\hslash_{\circ}\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right){\Psi}({s_{4}}-{\mu})\right]{g}({\mu})\mathrm{d}{\mu}. \end{align} $ | (3.19) |
Finally, bridging inequalities (3.16) and (3.19), we achieve the Hermite-Hadmard-Fejer inequality.
Now we discuss some special scenarios of Theorem 3.2.
● By setting $ \hslash_{\circ}({\varphi}) = {\varphi} $ in Theorem 3.2, we have
$ \begin{align*} &{\Psi}\left(\frac{{s_{3}}+{s_{4}}}{2}\right)\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}g({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}g({s_{3}})\right]\nonumber\\ &\quad{\oplus}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}\left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right] {\Psi}\left(\left|{\mu}-\frac{{s_{3}}+{s_{4}}}{2}\right|\right){g}({\mu})\mathrm{d}{\mu}\nonumber\\ &\preceq\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}{\Psi}{g}({s_{4}}){\oplus} J_{{s_{4}}^{-}}^{\tau}{\Psi}{g}({s_{3}})\right]\nonumber\\ &\preceq ({\Psi}({s_{3}}){\oplus}{\Psi}({s_{4}}))\cdot\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}} \left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right]{g}({\mu})\mathrm{d}{\mu}\nonumber\\ &\quad{{\ominus}_{g}}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}] \left[\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right){\Psi}({\mu}-{s_{3}}){\oplus}\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right) {\Psi}({s_{4}}-{\mu})\right]{g}({\mu})\mathrm{d}{\mu}. \end{align*} $ |
● By setting $ \hslash_{\circ}({\varphi}) = {\varphi}^s $ in Theorem 3.2, we have
$ \begin{align*} &2^{s-1}{\Psi}\left(\frac{{s_{3}}+{s_{4}}}{2}\right)\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}g({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}g({s_{3}})\right]\nonumber\\ &\quad{\oplus}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}\left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right] {\Psi}\left(\left|{\mu}-\frac{{s_{3}}+{s_{4}}}{2}\right|\right){g}({\mu})\mathrm{d}{\mu}\nonumber\\ &\preceq\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}{\Psi}{g}({s_{4}}){\oplus} J_{{s_{4}}^{-}}^{\tau}{\Psi}{g}({s_{3}})\right]\nonumber\\ &\preceq ({\Psi}({s_{3}}){\oplus}{\Psi}({s_{4}}))\cdot\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}} \left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right]\left[\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right)^s +\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right)^s\right]{g}({\mu})\mathrm{d}{\mu}\nonumber\\ &\quad{{\ominus}_{g}}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}] \left[\left(\frac{{s_{4}}-{\mu}}{{s_{4}}-{s_{3}}}\right)^s{\Psi}({\mu}-{s_{3}}){\oplus}\left(\frac{{\mu}-{s_{3}}}{{s_{4}}-{s_{3}}}\right)^s {\Psi}({s_{4}}-{\mu})\right]{g}({\mu})\mathrm{d}{\mu}. \end{align*} $ |
● By setting $ \hslash_{\circ}({\varphi}) = 1 $ in Theorem 3.2, we have
$ \begin{align*} &\frac{1}{2\hslash_{\circ}\left(\frac{1}{2}\right)}{\Psi}\left(\frac{{s_{3}}+{s_{4}}}{2}\right)\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}g({s_{4}})+ J_{{s_{4}}^{-}}^{\tau}g({s_{3}})\right]\nonumber\\ &\quad{\oplus}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}\left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right] {\Psi}\left(\left|{\mu}-\frac{{s_{3}}+{s_{4}}}{2}\right|\right){g}({\mu})\mathrm{d}{\mu}\nonumber\\ &\preceq\frac{\Gamma(\tau+1)}{({s_{4}}-{s_{3}})^{\tau}}\left[J_{{s_{3}}^{+}}^{\tau}{\Psi}{g}({s_{4}}){\oplus} J_{{s_{4}}^{-}}^{\tau}{\Psi}{g}({s_{3}})\right]\nonumber\\ &\preceq 2({\Psi}({s_{3}}){\oplus}{\Psi}({s_{4}}))\cdot\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}} \left[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}\right]{g}({\mu})\mathrm{d}{\mu}\nonumber\\ &\quad{{\ominus}_{g}}\frac{\tau}{({s_{4}}-{s_{3}})^{\tau}}\int_{s_{3}}^{s_{4}}[({s_{4}}-{\mu})^{\tau-1}+({\mu}-{s_{3}})^{\tau-1}] \left[{\Psi}({\mu}-{s_{3}}){\oplus}{\Psi}({s_{4}}-{\mu})\right]{g}({\mu})\mathrm{d}{\mu}. \end{align*} $ |
Remark 3.2. For $ \tau = 1 $, the Theorem 3.2 transformed into Theorem 2.6. By selecting $ \hslash_{\circ}({\varphi}) = {\varphi}^{-s}, {\varphi}(1-{\varphi}), \exp({{{\varphi}}})-1 $ in Theorem 3.1, we get various fractional $ \verb"F".\verb"N".\verb"V" $ Hermite-Hadamard-Fejer's inequalities for different classes of super-quadraticity. Also by taking $ \Psi_{*}({\mu}, \delta^{1}) = \Psi_{*}({\mu}, \delta^{1}) $ and $ \delta^{1} = 1 $ in Theorem 3.2, we obtain the fractional Hermite-Hadamard-Fejer's inequality for $ {\hslash_{\circ}} $–super-quadratic mappings.
Example 3.2. Let $ {\Psi}:[{s_{3}}, \, {s_{4}}] = [0, 2]\rightarrow \Upsilon_{\delta^{1}} $ be a fuzzy valued super-quadratic mapping, which is defined as
$ \begin{align*} {\Psi}_{{{\mu}}}({\mu_{1}}) = \left\{ \begin{array}{ll} \frac{{\mu_{1}}}{3{{\mu}}^3}, \quad {\mu_{1}}\in [0, 3{{\mu}}^3]\\ \frac{6{{\mu}}^3-{\mu_{1}}}{3{{\mu}}^3}, \quad {\mu_{1}}\in(3{{\mu}}^3, 6{{\mu}}^3]. \end{array} \right. \end{align*} $ |
and its level cuts are $ {\Psi}_{{\delta^{1}}} = \left[3{\delta^{1}} {{\mu}}^3, \, (6-3 {\delta^{1}}){{\mu}}^3 \right] $. Also $ g:[0, 2]\rightarrow \mathbb{R} $ is a symmetric integrable mapping and is defined as $ g({\mu}) = ({\mu}-1)^2 $. Both mappings fulfill the condition of Theorem 3.2, then
$ \begin{align*} {\mathit{\hbox{Left Term}}}& = \left[\frac{\left(2 \left(2^{\tau } (\tau -1) (\tau (\tau +1) (\tau (\tau +5)+26)+120)+240\right)\right) (3 \delta^{1} )}{2^{\tau } ((\tau +1) (\tau +2) (\tau +3) (\tau +4) (\tau +5))}, \right.\nonumber\\ &\left.\quad\frac{\left(2 \left(2^{\tau } (\tau -1) (\tau (\tau +1) (\tau (\tau +5)+26)+120)+240\right)\right) (6-3 \delta^{1} )}{2^{\tau } ((\tau +1) (\tau +2) (\tau +3) (\tau +4) (\tau +5))}\right], \nonumber\\ {\mathit{\hbox{Middle Term}}}& = \left[\frac{\left(2^{\tau +3} (\tau (\tau (\tau (\tau +3)+10)-10)+24)\right) (3 \delta^{1} )}{2^{\tau } ((\tau +1) (\tau +2) (\tau +3) (\tau +4))}, \, \frac{\left(2^{\tau +3} (\tau (\tau (\tau (\tau +3)+10)-10)+24)\right) (6-3 \delta^{1} )}{2^{\tau } ((\tau +1) (\tau +2) (\tau +3) (\tau +4))}\right], \nonumber\\ {\mathit{\hbox{Right Term}}}& = \left[\frac{\left(2^{\tau +1} \left(\tau ^6+9 \tau ^5+55 \tau ^4+75 \tau ^3+304 \tau ^2-444 \tau +720\right)\right) (21 \delta^{1} )}{2^{\tau } (\tau (\tau +1) (\tau +2) (\tau +3) (\tau +4) (\tau +5) (\tau +6))}, \right.\nonumber\\ &\left.\quad\frac{\left(2^{\tau +1} \left(\tau ^6+9 \tau ^5+55 \tau ^4+75 \tau ^3+304 \tau ^2-444 \tau +720\right)\right) (48-21 \delta^{1} )}{2^{\tau } (\tau (\tau +1) (\tau +2) (\tau +3) (\tau +4) (\tau +5) (\tau +6))}\right]. \end{align*} $ |
To visualize the above formulations, we fix $ \delta^{1} $ and vary $ \tau $.
Note that L.L.F, L.U.F, M.L.F, M.U.F, R.L.F, and R.U.F are specifying the endpoint mappings of left, middle, and right terms of Theorem 3.2.
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 0.5) $ | 0.548152 | 3.1062 | 2.67429 | 15.1543 | 7.00699 | 46.3796 |
$ (0.4, 1) $ | 0.4000 | 1.6000 | 2.2400 | 8.9600 | 2.4000 | 9.6000 |
$ (0.5, 1.5) $ | 0.451568 | 1.3547 | 2.58701 | 7.76104 | 2.68392 | 8.05175 |
$ (0.8, 2) $ | 0.8000 | 1.2000 | 4.4800 | 6.7200 | 4.8000 | 7.2000 |
Now, we give some applications of our proposed results. First, we recall the binary means of positive real numbers.
$ (1) $ The arithmetic mean:
$ \begin{equation*} A({{{s_{3}}}}, {{{s_{4}}}}) = \frac{{{{s_{3}}}}+{{{s_{4}}}}}{2}, \end{equation*} $ |
$ (2) $ The generalized $ \log $-mean:
$ \begin{equation*} L_{r}({{{s_{3}}}}, {{{s_{4}}}}) = \Bigg[\frac{{{{s_{4}}}}^{r+1}-{{{s_{3}}}}^{r+1}}{(r+1)({{{s_{4}}}}-{{{s_{3}}}})}\Bigg]^{\frac{1}{r}};\;\;r\in \Re\setminus \{-1, 0\}. \end{equation*} $ |
Proposition 4.1. For $ {s_{3}}, {s_{4}}\geq0 $, then
$ \begin{align*} &\left[3\delta^{1}, (6-3\delta^{1})\right]\left[A^3({s_{3}}, {s_{4}})+\frac{({s_{4}}-{s_{3}})^4}{2^5}\right]\preceq\left[3\delta^{1}, (6-3\delta^{1})\right]L_{3}^{3}({s_{3}}, {s_{4}})\nonumber\\ &\preceq \left[3\delta^{1}, (6-3\delta^{1})\right]A({s_{3}}^3, {s_{4}}^3)\ominus_{g}\left[3\delta^{1}, (6-3\delta^{1})\right]\frac{2({s_{4}}-{s_{3}})^3}{20}. \end{align*} $ |
Proof. This result is acquired by applying $ {\Psi}({\mu}) = [3\delta^{1} {{\mu}}^3, (6-3\delta^{1}){{\mu}}^3] $ on Theorem 2.5.
Note that Proposition 4.1 provides the bounds for generalized logarithmic mean. Next, we give the refinements of the triangular inequality.
Proposition 4.2. Let $ \{{{\mu}}_{{\nu}}\}\in [{s}_{3}, {s}_{4}] $ be an increasing positive sequence. Then from Theorem 2.2, we have
$ \begin{align*} \left|\sum\limits_{{\nu} = 1}^{{\vartheta}}{{\mu}}_{{\nu}}\right|\leq {\vartheta}^2 \sum\limits_{{\nu} = 1}^{{\vartheta}}|{{\mu}}_{{\nu}}|- {\vartheta}^2 \sum\limits_{{\nu} = 1}^{{\vartheta}}\left|{{\mu}}_{{\nu}}-\frac{1}{{\vartheta}}\sum\limits_{j = 1}^{{\vartheta}}{{\mu}}_{j}\right|, \end{align*} $ |
and
$ \begin{align*} \|\sum\limits_{{\nu} = 1}^{{\vartheta}}{{\mu}}_{{\nu}}\|\leq {\vartheta}^2 \sum\limits_{{\nu} = 1}^{{\vartheta}}\|{{\mu}}_{{\nu}}\|- {\vartheta}^2 \sum\limits_{{\nu} = 1}^{{\vartheta}}\|{{\mu}}_{{\nu}}-\frac{1}{{\vartheta}}\sum\limits_{j = 1}^{{\vartheta}}{{\mu}}_{j}\|. \end{align*} $ |
Proof. Since $ {\Psi}({{\mu}}) = |{{\mu}}| $ and $ {\Psi}({\mu}) = \|{\mu}\| $ are $ \hslash_{\circ} $ super-quadratic mappings, by applying these mappings on Theorem 2.2 by taking $ \hslash_{\circ}({{\mu}}) = \frac{1}{{{\mu}}} $, $ w_{{\nu}} = 1 $, $ \Psi_{*}({{\mu}}, \delta^{1}) = \Psi^{*}({{\mu}}, \delta^{1}) $, and $ \delta^{1} = 1 $, we acquire our desired inequalities.
Proposition 4.3. Let $ \{{{\mu}}_{{\nu}}\}\in [{s}_{3}, {s}_{4}] $ be an increasing positive sequence. Then, from Theorem 2.2, we have
$ \begin{align*} \left|\sum\limits_{{\nu} = 1}^{{\vartheta}}{{\mu}}_{{\nu}}\right|^r\leq \sum\limits_{{\nu} = 1}^{{\vartheta}}|{{\mu}}_{{\nu}}|^r- \sum\limits_{{\nu} = 1}^{{\vartheta}}\left|{{\mu}}_{{\nu}}-\frac{1}{{\vartheta}}\sum\limits_{j = 1}^{{\vartheta}}{{\mu}}_{j}\right|^r. \end{align*} $ |
Particularly, we have
$ \begin{align*} \left|{{\mu}}_{1}+{{\mu}}_{2}\right|^r\leq |{{\mu}}_{1}|^r+|{{\mu}}_{2}|^r- 2^{1-r}|{{\mu}}_{1}-{{\mu}}_{2}|^r. \end{align*} $ |
Proof. Since $ {\Psi}({{\mu}}) = |{{\mu}}|^r $ where $ r\geq1 $ is $ \hslash_{\circ} $ super-quadratic mapping, by applying $ {\Psi}({{\mu}}) $ on Theorem 2.2, and taking $ \hslash_{\circ}({{\mu}}) = {{{\mu}}} $, $ w_{{\nu}} = 1 $, $ \Psi_{*}({{\mu}}, \delta^{1}) = \Psi^{*}({{\mu}}, \delta^{1}) $, and $ \delta^{1} = 1 $, we acquire our desired inequalities.
Proposition 4.4. Let $ \{{{\mu}}_{{\nu}}\}\in [{s}_{3}, {s}_{4}] $ be an increasing positive sequence. Then, from Theorem 2.4, we have
$ \begin{align*} \sum\limits_{{\nu} = 1}^{{\vartheta}}|{{\mu}}_{{\nu}}|^r &\leq {\vartheta} [|{{\mu}}_{1}|^r+|{{\mu}}_{{\vartheta}}|^r]-{\vartheta}\left|\frac{{{\mu}}_{1}+{{\mu}}_{{\vartheta}}-{\vartheta}^{-1}\sum\limits_{{\nu} = 1}^{{\vartheta}}{{\mu}}_{j}}{{\vartheta}}\right|^r \\ &\, \, -\sum\limits_{{\nu} = 1}^{{\vartheta}}[|{{\mu}}_{{\nu}}-{{\mu}}_{1}|^r+|{{\mu}}_{{\vartheta}}-{{\mu}}_{{\nu}}|^r]- \sum\limits_{{\nu} = 1}^{{\vartheta}}\left|{{\mu}}_{{\nu}}-\frac{1}{{\vartheta}}\sum\limits_{j = 1}^{{\vartheta}}{{\mu}}_{j}\right|^r, \end{align*} $ |
and
$ \begin{align*} \sum\limits_{{\nu} = 1}^{{\vartheta}}\|{{\mu}}_{{\nu}}\|^r &\leq {\vartheta} [\|{{\mu}}_{1}\|^r+\|{{\mu}}_{{\vartheta}}\|^r]-{\vartheta}\left\|\frac{{{\mu}}_{1}+{{\mu}}_{{\vartheta}}-{\vartheta}^{-1}\sum\limits_{{\nu} = 1}^{{\vartheta}}{{\mu}}_{j}}{{\vartheta}}\right\|^r \\ &\, \, -\sum\limits_{{\nu} = 1}^{{\vartheta}}[\|{{\mu}}_{{\nu}}-{{\mu}}_{1}\|^r+\|{{\mu}}_{{\vartheta}}-{{\mu}}_{{\nu}}\|^r]- \sum\limits_{{\nu} = 1}^{{\vartheta}}\left\|{{\mu}}_{{\nu}}-\frac{1}{{\vartheta}}\sum\limits_{j = 1}^{{\vartheta}}{{\mu}}_{j}\right\|^r. \end{align*} $ |
Proof. Since $ {\Psi}({{\mu}}) = |{{\mu}}|^r $ and $ {\Psi}({\mu}) = \|{\mu}\|^r $ for $ r\geq1 $ are $ \hslash_{\circ} $ super-quadratic mappings, by applying these mappings on Theorem 2.4, and taking $ \hslash_{\circ}({\varphi}) = {\varphi} $, $ w_{{\nu}} = 1 $, $ \Psi_{*}({{\mu}}, \delta^{1}) = \Psi^{*}({{\mu}}, \delta^{1}) $, and $ \delta^{1} = 1 $, we acquire our desired inequalities.
The theory of inequalities is the main source used to investigate the various mapping classes. We've talked about the idea of a fuzzy number-valued super-quadratic mapping that works with the LR partially ordered ranking relation, $ \delta^{1} $-levels mappings, and a nonnegative mapping $ \hslash_{\circ} $. This class is novel and new in literature; it reduces to several mapping classes of super-quadraticity, like fuzzy-valued super-quadratic mappings, fuzzy-valued $ s $ super-quadratics, fuzzy-valued Godunova $ s $ super-quadratic mappings, and many more. Also, results obtained from this class of mappings refined classical inequalities. We have developed several Jensen's and Hadamard's-like inequalities pertaining to this class of mappings. This study is significant due to various aspects because the first-time idea of super-quadratic mapping in a fuzzy environment is investigated. The proposed definition is novel due to its unified nature and strengthening the properties of the class of fuzzy numbered valued mappings. Also, this is the first study exploring the fuzzy numbered valued Hermite-Hadamard-Fejer type inequalities for strong convexity. The obtained results provides the better approximation as compared to existing results. In the future, we will try to address these inequalities by leveraging the concepts of generalized fractional operators, quantum, and symmetric quantum calculus to analyze the bounds for error inequalities like the Ostrowski inequality, Simpson's inequality, Bullen's and Boole's inequality, etc. By utilizing this class of mappings, Hausdorff-Pompeiu distance, and generalized differentiability of mappings based on Hukuhara differences as well as adopting a similar technique, one can introduce more general function classes and their applicable aspects in different domains. We will also talk about fuzzy-valued inequalities for totally ordered fuzzy-valued super-quadratic mappings and how they can be used in optimization. We hope the strategy, techniques, and ideas developed in our study will create new sights for research.
Muhammad Zakria Javed: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing-original draft, Writing-review and editing, Visualization; Muhammad Uzair Awan: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing-review and editing, Visualization, Supervision; Loredana Ciurdariu: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Writing-review and editing, Visualization; Omar Mutab Alsalami: Conceptualization, Software, Validation, Formal analysis, Investigation, Writing-review and editing, Visualization. All authors have read and agreed for the publication of this manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was funded by TAIF University, TAIF, Saudi Arabia, Project No. (TU-DSPP-2024-258).
The authors are thankful to the editor and anonymous reviewers for their valuable comments and suggestions. The authors extend their appreciation to TAIF University, Saudi Arabia, for supporting this work through project number (TU-DSPP-2024-258).
The authors declare no conflicts of interest.
[1] |
Volders PJ, Verheggen K, Menschaert G, et al. (2015) An update on LNCipedia: a database for annotated human lncRNA sequences. Nucleic Acids Res 43: D174-180. doi: 10.1093/nar/gku1060
![]() |
[2] | Amati B, Frank SR, Donjerkovic D, et al. (2001) Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim Biophys Acta 1471: M135-145. |
[3] |
Bretones G, Delgado MD, Leon J (2015) Myc and cell cycle control. Biochim Biophys Acta 1849: 506-516. doi: 10.1016/j.bbagrm.2014.03.013
![]() |
[4] | Dang CV (2013) MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 3. |
[5] |
McMahon SB (2014) MYC and the control of apoptosis. Cold Spring Harb Perspect Med 4: a014407. doi: 10.1101/cshperspect.a014407
![]() |
[6] | Vennstrom B, Sheiness D, Zabielski J, et al. (1982) Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42: 773-779. |
[7] |
Zheng GX, Do BT, Webster DE, et al. (2014) Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs. Nat Struct Mol Biol 21: 585-590. doi: 10.1038/nsmb.2842
![]() |
[8] |
Winkle M, van den Berg A, Tayari M, et al. (2015) Long noncoding RNAs as a novel component of the Myc transcriptional network. FASEB J 29: 2338-2346. doi: 10.1096/fj.14-263889
![]() |
[9] |
Xiang JF, Yang L, Chen LL (2015) The long noncoding RNA regulation at the MYC locus. Curr Opin Genet Dev 33: 41-48. doi: 10.1016/j.gde.2015.07.001
![]() |
[10] |
Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81: 145-166. doi: 10.1146/annurev-biochem-051410-092902
![]() |
[11] |
Kapranov P, Cawley SE, Drenkow J, et al. (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296: 916-919. doi: 10.1126/science.1068597
![]() |
[12] |
Rinn JL, Euskirchen G, Bertone P, et al. (2003) The transcriptional activity of human Chromosome 22. Genes Dev 17: 529-540. doi: 10.1101/gad.1055203
![]() |
[13] |
Guttman M, Garber M, Levin JZ, et al. (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28: 503-510. doi: 10.1038/nbt.1633
![]() |
[14] |
Cabili MN, Trapnell C, Goff L, et al. (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25: 1915-1927. doi: 10.1101/gad.17446611
![]() |
[15] |
Wu J, Okada T, Fukushima T, et al. (2012) A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol 9: 302-313. doi: 10.4161/rna.19101
![]() |
[16] |
Derrien T, Johnson R, Bussotti G, et al. (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22: 1775-1789. doi: 10.1101/gr.132159.111
![]() |
[17] |
Gardini A, Shiekhattar R (2015) The many faces of long noncoding RNAs. FEBS J 282: 1647-1657. doi: 10.1111/febs.13101
![]() |
[18] |
Wilusz JE, Spector DL (2010) An unexpected ending: noncanonical 3' end processing mechanisms. RNA 16: 259-266. doi: 10.1261/rna.1907510
![]() |
[19] |
Zhang Y, Yang L, Chen LL (2014) Life without A tail: new formats of long noncoding RNAs. Int J Biochem Cell Biol 54: 338-349. doi: 10.1016/j.biocel.2013.10.009
![]() |
[20] |
Peart N, Sataluri A, Baillat D, et al. (2013) Non-mRNA 3' end formation: how the other half lives. Wiley Interdiscip Rev RNA 4: 491-506. doi: 10.1002/wrna.1174
![]() |
[21] | Ravasi T, Suzuki H, Pang KC, et al. (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16: 11-19. |
[22] |
Djebali S, Davis CA, Merkel A, et al. (2012) Landscape of transcription in human cells. Nature 489: 101-108. doi: 10.1038/nature11233
![]() |
[23] |
He S, Liu S, Zhu H (2011) The sequence, structure and evolutionary features of HOTAIR in mammals. BMC Evol Biol 11: 102. doi: 10.1186/1471-2148-11-102
![]() |
[24] |
Brown JA, Bulkley D, Wang J, et al. (2014) Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol 21: 633-640. doi: 10.1038/nsmb.2844
![]() |
[25] |
Brown JA, Valenstein ML, Yario TA, et al. (2012) Formation of triple-helical structures by the 3'-end sequences of MALAT1 and MENbeta noncoding RNAs. Proc Natl Acad Sci U S A 109: 19202-19207. doi: 10.1073/pnas.1217338109
![]() |
[26] |
Smith MA, Gesell T, Stadler PF, et al. (2013) Widespread purifying selection on RNA structure in mammals. Nucleic Acids Res 41: 8220-8236. doi: 10.1093/nar/gkt596
![]() |
[27] |
Somarowthu S, Legiewicz M, Chillon I, et al. (2015) HOTAIR forms an intricate and modular secondary structure. Mol Cell 58: 353-361. doi: 10.1016/j.molcel.2015.03.006
![]() |
[28] |
Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15: 469-479. doi: 10.1038/nrg3681
![]() |
[29] | Ding Y, Tang Y, Kwok CK, et al. (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505: 696-700. |
[30] |
Kertesz M, Wan Y, Mazor E, et al. (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467: 103-107. doi: 10.1038/nature09322
![]() |
[31] |
Lucks JB, Mortimer SA, Trapnell C, et al. (2011) Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 108: 11063-11068. doi: 10.1073/pnas.1106501108
![]() |
[32] |
Seetin MG, Kladwang W, Bida JP, et al. (2014) Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. Methods Mol Biol 1086: 95-117. doi: 10.1007/978-1-62703-667-2_6
![]() |
[33] |
Underwood JG, Uzilov AV, Katzman S, et al. (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7: 995-1001. doi: 10.1038/nmeth.1529
![]() |
[34] |
Aviran S, Trapnell C, Lucks JB, et al. (2011) Modeling and automation of sequencing-based characterization of RNA structure. Proc Natl Acad Sci U S A 108: 11069-11074. doi: 10.1073/pnas.1106541108
![]() |
[35] | Rouskin S, Zubradt M, Washietl S, et al. (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505: 701-705. |
[36] |
Novikova IV, Hennelly SP, Sanbonmatsu KY (2013) Tackling structures of long noncoding RNAs. Int J Mol Sci 14: 23672-23684. doi: 10.3390/ijms141223672
![]() |
[37] |
Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15: 7-21. doi: 10.1038/nri3777
![]() |
[38] |
Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152: 1298-1307. doi: 10.1016/j.cell.2013.02.012
![]() |
[39] |
Batista PJ, Chang HY (2013) Cytotopic localization by long noncoding RNAs. Curr Opin Cell Biol 25: 195-199. doi: 10.1016/j.ceb.2012.12.001
![]() |
[40] |
Han X, Yang F, Cao H, et al. (2015) Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis. FASEB J 29: 3054-3064. doi: 10.1096/fj.14-259952
![]() |
[41] | Yoon JH, Abdelmohsen K, Kim J, et al. (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4: 2939. |
[42] |
McHugh CA, Chen CK, Chow A, et al. (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521: 232-236. doi: 10.1038/nature14443
![]() |
[43] |
Deng K, Guo X, Wang H, et al. (2014) The lncRNA-MYC regulatory network in cancer. Tumour Biol 35: 9497-9503. doi: 10.1007/s13277-014-2511-y
![]() |
[44] |
Beroukhim R, Mermel CH, Porter D, et al. (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463: 899-905. doi: 10.1038/nature08822
![]() |
[45] | Colombo T, Farina L, Macino G, et al. (2015) PVT1: a rising star among oncogenic long noncoding RNAs. Biomed Res Int 2015: 304208. |
[46] |
Walz S, Lorenzin F, Morton J, et al. (2014) Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 511: 483-487. doi: 10.1038/nature13473
![]() |
[47] |
Carramusa L, Contino F, Ferro A, et al. (2007) The PVT-1 oncogene is a Myc protein target that is overexpressed in transformed cells. J Cell Physiol 213: 511-518. doi: 10.1002/jcp.21133
![]() |
[48] | Tseng YY, Moriarity BS, Gong W, et al. (2014) PVT1 dependence in cancer with MYC copy-number increase. Nature 512: 82-86. |
[49] |
Zanke BW, Greenwood CM, Rangrej J, et al. (2007) Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 39: 989-994. doi: 10.1038/ng2089
![]() |
[50] |
Tenesa A, Farrington SM, Prendergast JG, et al. (2008) Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40: 631-637. doi: 10.1038/ng.133
![]() |
[51] |
Tomlinson I, Webb E, Carvajal-Carmona L, et al. (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 39: 984-988. doi: 10.1038/ng2085
![]() |
[52] |
Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, et al. (2012) Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer 130: 1598-1606. doi: 10.1002/ijc.26170
![]() |
[53] |
Ahmadiyeh N, Pomerantz MM, Grisanzio C, et al. (2010) 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci U S A 107: 9742-9746. doi: 10.1073/pnas.0910668107
![]() |
[54] |
Kim T, Cui R, Jeon YJ, et al. (2014) Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proc Natl Acad Sci U S A 111: 4173-4178. doi: 10.1073/pnas.1400350111
![]() |
[55] |
Pomerantz MM, Ahmadiyeh N, Jia L, et al. (2009) The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet 41: 882-884. doi: 10.1038/ng.403
![]() |
[56] |
Sur IK, Hallikas O, Vaharautio A, et al. (2012) Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science 338: 1360-1363. doi: 10.1126/science.1228606
![]() |
[57] |
Tuupanen S, Turunen M, Lehtonen R, et al. (2009) The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 41: 885-890. doi: 10.1038/ng.406
![]() |
[58] |
Xiang JF, Yin QF, Chen T, et al. (2014) Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24: 513-531. doi: 10.1038/cr.2014.35
![]() |
[59] |
Deng L, Yang SB, Xu FF, et al. (2015) Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. J Exp Clin Cancer Res 34: 18. doi: 10.1186/s13046-015-0136-7
![]() |
[60] |
He X, Tan X, Wang X, et al. (2014) C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumour Biol 35: 12181-12188. doi: 10.1007/s13277-014-2526-4
![]() |
[61] |
Yang F, Xue X, Bi J, et al. (2013) Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol 139: 437-445. doi: 10.1007/s00432-012-1324-x
![]() |
[62] |
Ling H, Spizzo R, Atlasi Y, et al. (2013) CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res 23: 1446-1461. doi: 10.1101/gr.152942.112
![]() |
[63] | Kim T, Jeon YJ, Cui R, et al. (2015) Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. J Natl Cancer Inst 107. |
[64] | Ye Z, Zhou M, Tian B, et al. (2015) Expression of lncRNA-CCAT1, E-cadherin and N-cadherin in colorectal cancer and its clinical significance. Int J Clin Exp Med 8: 3707-3715. |
[65] |
Alaiyan B, Ilyayev N, Stojadinovic A, et al. (2013) Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence. BMC Cancer 13: 196. doi: 10.1186/1471-2407-13-196
![]() |
[66] | Kim T, Cui R, Jeon YJ, et al. (2015) MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression. Oncotarget. |
[67] |
Prensner JR, Chen W, Han S, et al. (2014) The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 16: 900-908. doi: 10.1016/j.neo.2014.09.001
![]() |
[68] |
Yamamura S, Saini S, Majid S, et al. (2012) MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One 7: e29722. doi: 10.1371/journal.pone.0029722
![]() |
[69] |
Siemens H, Jackstadt R, Hunten S, et al. (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10: 4256-4271. doi: 10.4161/cc.10.24.18552
![]() |
[70] |
Benassi B, Flavin R, Marchionni L, et al. (2012) MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov 2: 236-247. doi: 10.1158/2159-8290.CD-11-0219
![]() |
[71] |
Poliseno L, Salmena L, Zhang J, et al. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465: 1033-1038. doi: 10.1038/nature09144
![]() |
[72] |
Salmena L, Poliseno L, Tay Y, et al. (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146: 353-358. doi: 10.1016/j.cell.2011.07.014
![]() |
[73] |
Ge X, Chen Y, Liao X, et al. (2013) Overexpression of long noncoding RNA PCAT-1 is a novel biomarker of poor prognosis in patients with colorectal cancer. Med Oncol 30: 588. doi: 10.1007/s12032-013-0588-6
![]() |
[74] |
Chung S, Nakagawa H, Uemura M, et al. (2011) Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 102: 245-252. doi: 10.1111/j.1349-7006.2010.01737.x
![]() |
[75] |
Hung CL, Wang LY, Yu YL, et al. (2014) A long noncoding RNA connects c-Myc to tumor metabolism. Proc Natl Acad Sci U S A 111: 18697-18702. doi: 10.1073/pnas.1415669112
![]() |
[76] |
Chu C, Qu K, Zhong FL, et al. (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44: 667-678. doi: 10.1016/j.molcel.2011.08.027
![]() |
[77] | Pickard MR, Williams GT (2015) Molecular and Cellular Mechanisms of Action of Tumour Suppressor GAS5 LncRNA. Genes (Basel) 6: 484-499. |
[78] |
Hu G, Lou Z, Gupta M (2014) The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS One 9: e107016. doi: 10.1371/journal.pone.0107016
![]() |
[79] |
Mourtada-Maarabouni M, Pickard MR, Hedge VL, et al. (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28: 195-208. doi: 10.1038/onc.2008.373
![]() |
[80] |
Pickard MR, Mourtada-Maarabouni M, Williams GT (2013) Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta 1832: 1613-1623. doi: 10.1016/j.bbadis.2013.05.005
![]() |
[81] |
Sun M, Jin FY, Xia R, et al. (2014) Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer 14: 319. doi: 10.1186/1471-2407-14-319
![]() |
[82] | Tu ZQ, Li RJ, Mei JZ, et al. (2014) Down-regulation of long non-coding RNA GAS5 is associated with the prognosis of hepatocellular carcinoma. Int J Clin Exp Pathol 7: 4303-4309. |
[83] | Li LJ, Zhu JL, Bao WS, et al. (2014) Long noncoding RNA GHET1 promotes the development of bladder cancer. Int J Clin Exp Pathol 7: 7196-7205. |
[84] |
Yang F, Xue X, Zheng L, et al. (2014) Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J 281: 802-813. doi: 10.1111/febs.12625
![]() |
[85] |
Lemm I, Ross J (2002) Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol Cell Biol 22: 3959-3969. doi: 10.1128/MCB.22.12.3959-3969.2002
![]() |
[86] | Weidensdorfer D, Stohr N, Baude A, et al. (2009) Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA 15: 104-115. |
[87] |
Matouk IJ, DeGroot N, Mezan S, et al. (2007) The H19 non-coding RNA is essential for human tumor growth. PLoS One 2: e845. doi: 10.1371/journal.pone.0000845
![]() |
[88] |
Matouk IJ, Raveh E, Abu-lail R, et al. (2014) Oncofetal H19 RNA promotes tumor metastasis. Biochim Biophys Acta 1843: 1414-1426. doi: 10.1016/j.bbamcr.2014.03.023
![]() |
[89] | Jiang X, Yan Y, Hu M, et al. (2015) Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells. J Neurosurg: 1-8. |
[90] |
Lottin S, Adriaenssens E, Dupressoir T, et al. (2002) Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 23: 1885-1895. doi: 10.1093/carcin/23.11.1885
![]() |
[91] |
Luo M, Li Z, Wang W, et al. (2013) Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333: 213-221. doi: 10.1016/j.canlet.2013.01.033
![]() |
[92] |
Ma C, Nong K, Zhu H, et al. (2014) H19 promotes pancreatic cancer metastasis by derepressing let-7's suppression on its target HMGA2-mediated EMT. Tumour Biol 35: 9163-9169. doi: 10.1007/s13277-014-2185-5
![]() |
[93] |
Zhang EB, Han L, Yin DD, et al. (2014) c-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med Oncol 31: 914. doi: 10.1007/s12032-014-0914-7
![]() |
[94] |
Barsyte-Lovejoy D, Lau SK, Boutros PC, et al. (2006) The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 66: 5330-5337. doi: 10.1158/0008-5472.CAN-06-0037
![]() |
[95] |
Shi Y, Wang Y, Luan W, et al. (2014) Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One 9: e86295. doi: 10.1371/journal.pone.0086295
![]() |
[96] |
Kallen AN, Zhou XB, Xu J, et al. (2013) The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 52: 101-112. doi: 10.1016/j.molcel.2013.08.027
![]() |
[97] |
Yan L, Zhou J, Gao Y, et al. (2015) Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene 34: 3076-3084. doi: 10.1038/onc.2014.236
![]() |
[98] |
Liao LM, Sun XY, Liu AW, et al. (2014) Low expression of long noncoding XLOC_010588 indicates a poor prognosis and promotes proliferation through upregulation of c-Myc in cervical cancer. Gynecol Oncol 133: 616-623. doi: 10.1016/j.ygyno.2014.03.555
![]() |
[99] |
Mestdagh P, Fredlund E, Pattyn F, et al. (2010) An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene 29: 3583-3592. doi: 10.1038/onc.2010.106
![]() |
[100] |
Atmadibrata B, Liu PY, Sokolowski N, et al. (2014) The novel long noncoding RNA linc00467 promotes cell survival but is down-regulated by N-Myc. PLoS One 9: e88112. doi: 10.1371/journal.pone.0088112
![]() |
[101] |
Tee AE, Ling D, Nelson C, et al. (2014) The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. Oncotarget 5: 1793-1804. doi: 10.18632/oncotarget.1785
![]() |
[102] | Liu PY, Erriquez D, Marshall GM, et al. (2014) Effects of a novel long noncoding RNA, lncUSMycN, on N-Myc expression and neuroblastoma progression. J Natl Cancer Inst 106. |
[103] |
Vadie N, Saayman S, Lenox A, et al. (2015) MYCNOS functions as an antisense RNA regulating MYCN. RNA Biol 12: 893-899. doi: 10.1080/15476286.2015.1063773
![]() |
[104] |
Stanton BR, Perkins AS, Tessarollo L, et al. (1992) Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. Genes Dev 6: 2235-2247. doi: 10.1101/gad.6.12a.2235
![]() |
[105] | Stanton BR, Parada LF (1992) The N-myc proto-oncogene: developmental expression and in vivo site-directed mutagenesis. Brain Pathol 2: 71-83. |
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 1) $ | 0.140625 | 0.796875 | 0.2250 | 1.2750 | 0.3600 | 2.0400 |
$ (0.4, 1.3) $ | 0.411938 | 1.64775 | 0.6591 | 2.6364 | 1.05456 | 4.21824 |
$ (0.5, 1.5) $ | 0.791016 | 2.37305 | 1.26563 | 3.79688 | 2.025 | 6.0750 |
$ (0.8, 1.8) $ | 0.1870 | 3.2805 | 3.4992 | 5.2488 | 5.59872 | 8.39808 |
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 1) $ | 0.05625 | 0.31875 | 0.1800 | 1.0200 | 0.1800 | 1.0200 |
$ (0.4, 1.3) $ | 0.24881 | 0.995241 | 0.702557 | 2.81023 | 0.785476 | 3.1419 |
$ (0.5, 1.5) $ | 0.553711 | 1.66113 | 1.36875 | 4.10625 | 1.73229 | 5.19688 |
$ (0.8, 1.8) $ | 1.71461 | 2.57191 | 3.28719 | 4.93079 | 5.30129 | 7.95193 |
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 0.5) $ | 2.50084 | 14.1714 | 4.32 | 24.48 | 6.01143 | 34.0648 |
$ (0.4, 1) $ | 3.0000 | 12.0000 | 4.8000 | 19.2000 | 5.7600 | 30.7200 |
$ (0.5, 1.5) $ | 3.69468 | 11.084 | 5.82857 | 17.4857 | 9.54805 | 28.6442 |
$ (0.8, 2) $ | 6.0000 | 9.0000 | 9.6000 | 14.4000 | 15.3600 | 23.0400 |
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 0.5) $ | 0.548152 | 3.1062 | 2.67429 | 15.1543 | 7.00699 | 46.3796 |
$ (0.4, 1) $ | 0.4000 | 1.6000 | 2.2400 | 8.9600 | 2.4000 | 9.6000 |
$ (0.5, 1.5) $ | 0.451568 | 1.3547 | 2.58701 | 7.76104 | 2.68392 | 8.05175 |
$ (0.8, 2) $ | 0.8000 | 1.2000 | 4.4800 | 6.7200 | 4.8000 | 7.2000 |
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 1) $ | 0.140625 | 0.796875 | 0.2250 | 1.2750 | 0.3600 | 2.0400 |
$ (0.4, 1.3) $ | 0.411938 | 1.64775 | 0.6591 | 2.6364 | 1.05456 | 4.21824 |
$ (0.5, 1.5) $ | 0.791016 | 2.37305 | 1.26563 | 3.79688 | 2.025 | 6.0750 |
$ (0.8, 1.8) $ | 0.1870 | 3.2805 | 3.4992 | 5.2488 | 5.59872 | 8.39808 |
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 1) $ | 0.05625 | 0.31875 | 0.1800 | 1.0200 | 0.1800 | 1.0200 |
$ (0.4, 1.3) $ | 0.24881 | 0.995241 | 0.702557 | 2.81023 | 0.785476 | 3.1419 |
$ (0.5, 1.5) $ | 0.553711 | 1.66113 | 1.36875 | 4.10625 | 1.73229 | 5.19688 |
$ (0.8, 1.8) $ | 1.71461 | 2.57191 | 3.28719 | 4.93079 | 5.30129 | 7.95193 |
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 0.5) $ | 2.50084 | 14.1714 | 4.32 | 24.48 | 6.01143 | 34.0648 |
$ (0.4, 1) $ | 3.0000 | 12.0000 | 4.8000 | 19.2000 | 5.7600 | 30.7200 |
$ (0.5, 1.5) $ | 3.69468 | 11.084 | 5.82857 | 17.4857 | 9.54805 | 28.6442 |
$ (0.8, 2) $ | 6.0000 | 9.0000 | 9.6000 | 14.4000 | 15.3600 | 23.0400 |
$ (\delta^{1}, {s_{4}}) $ | $ L_*(\delta^{1}, {s_{4}}) $ | $ L^*(\delta^{1}, {s_{4}}) $ | $ M_*(\delta^{1}, {s_{4}}) $ | $ M^*(\delta^{1}, {s_{4}}) $ | $ R_*(\delta^{1}, {s_{4}}) $ | $ R^*(\delta^{1}, {s_{4}}) $ |
$ (0.3, 0.5) $ | 0.548152 | 3.1062 | 2.67429 | 15.1543 | 7.00699 | 46.3796 |
$ (0.4, 1) $ | 0.4000 | 1.6000 | 2.2400 | 8.9600 | 2.4000 | 9.6000 |
$ (0.5, 1.5) $ | 0.451568 | 1.3547 | 2.58701 | 7.76104 | 2.68392 | 8.05175 |
$ (0.8, 2) $ | 0.8000 | 1.2000 | 4.4800 | 6.7200 | 4.8000 | 7.2000 |