Research article Special Issues

Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for $ \left({p}, \mathfrak{J}\right) $-convex fuzzy-interval-valued functions

  • Received: 21 August 2022 Revised: 13 October 2022 Accepted: 17 October 2022 Published: 16 January 2023
  • MSC : 26A33, 26A51, 26D10

  • To create various kinds of inequalities, the idea of convexity is essential. Convexity and integral inequality hence have a significant link. This study's goals are to introduce a new class of generalized convex fuzzy-interval-valued functions (convex 𝘍𝘐𝘝𝘍s) which are known as $ \left(\mathfrak{p}, \mathfrak{J}\right) $-convex 𝘍𝘐𝘝𝘍s and to establish Jensen, Schur and Hermite-Hadamard type inequalities for $ \left(\mathfrak{p}, \mathfrak{J}\right) $-convex 𝘍𝘐𝘝𝘍s using fuzzy order relation. The Kulisch-Miranker order relation, which is based on interval space, is used to define this fuzzy order relation level-wise. Additionally, we have demonstrated that, as special examples, our conclusions encompass a sizable class of both new and well-known inequalities for $ \left(\mathfrak{p}, \mathfrak{J}\right) $-convex 𝘍𝘐𝘝𝘍s. We offer helpful examples that demonstrate the theory created in this study's application. These findings and various methods might point the way in new directions for modeling, interval-valued functions and fuzzy optimization issues.

    Citation: Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman. Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for $ \left({p}, \mathfrak{J}\right) $-convex fuzzy-interval-valued functions[J]. AIMS Mathematics, 2023, 8(3): 7437-7470. doi: 10.3934/math.2023374

    Related Papers:

  • To create various kinds of inequalities, the idea of convexity is essential. Convexity and integral inequality hence have a significant link. This study's goals are to introduce a new class of generalized convex fuzzy-interval-valued functions (convex 𝘍𝘐𝘝𝘍s) which are known as $ \left(\mathfrak{p}, \mathfrak{J}\right) $-convex 𝘍𝘐𝘝𝘍s and to establish Jensen, Schur and Hermite-Hadamard type inequalities for $ \left(\mathfrak{p}, \mathfrak{J}\right) $-convex 𝘍𝘐𝘝𝘍s using fuzzy order relation. The Kulisch-Miranker order relation, which is based on interval space, is used to define this fuzzy order relation level-wise. Additionally, we have demonstrated that, as special examples, our conclusions encompass a sizable class of both new and well-known inequalities for $ \left(\mathfrak{p}, \mathfrak{J}\right) $-convex 𝘍𝘐𝘝𝘍s. We offer helpful examples that demonstrate the theory created in this study's application. These findings and various methods might point the way in new directions for modeling, interval-valued functions and fuzzy optimization issues.



    加载中


    [1] Y. Bai, L. Gasiński, P. Winkert, S. D. Zeng, W1, p versus C1: The nonsmooth case involving critical growth, Bull. Math. Sci., 10 (2020), 2050009. https://doi.org/10.1142/S1664360720500095 doi: 10.1142/S1664360720500095
    [2] Y. Bai, S. Migórski, S. D. Zeng, A class of generalized mixed variational-hemivariational inequalities Ⅰ: Existence and uniqueness result, Comput. Math. Appl., 79 (2020), 2897–2911. https://doi.org/10.1016/j.camwa.2019.12.025 doi: 10.1016/j.camwa.2019.12.025
    [3] H. J. Brascamp, E. H. Lieb, J. M. Luttinger, A general rearrangement inequality for multiple integrals, J. Funct. Anal., 17 (1974), 227–237. https://doi.org/10.1016/0022-1236(74)90013-5 doi: 10.1016/0022-1236(74)90013-5
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
    [5] Z. Lin, Z. Bai, Probability inequalities of random variables, Probability Inequalities, Springer, Berlin, Heidelberg, 2010, 37–50. https://doi.org/10.1007/978-3-642-05261-3_5
    [6] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–176.
    [7] T. H. Zhao, M. K. Wang, Y. M. Chu, On the bounds of the perimeter of an ellipse, Acta Math. Sci., 42B (2022), 491–501. https://doi.org/10.1007/s10473-022-0204-y doi: 10.1007/s10473-022-0204-y
    [8] T. H. Zhao, M. K. Wang, G. J. Hai, Y. M. Chu, Landen inequalities for Gaussian hypergeometric function, RACSAM Rev. R. Acad. A, 116 (2022), 1–23. https://doi.org/10.1007/s13398-021-01197-y doi: 10.1007/s13398-021-01197-y
    [9] M. K. Wang, M. Y. Hong, Y. F. Xu, Z. H. Shen, Y. M. Chu, Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1–21. https://doi.org/10.7153/jmi-2020-14-01 doi: 10.7153/jmi-2020-14-01
    [10] T. H. Zhao, W. M. Qian, Y. M. Chu, Sharp power mean bounds for the tangent and hyperbolic sine means, J. Math. Inequal., 15 (2021), 1459–1472. https://doi.org/10.7153/jmi-2021-15-100 doi: 10.7153/jmi-2021-15-100
    [11] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020). https://doi.org/10.1186/s13660-020-02393-x doi: 10.1186/s13660-020-02393-x
    [12] M. A. Latif, S. Rashi, S. S. Dragomir, Y. M. Chu, Hermite-Hadamard type inequalities for co-ordinated convex and quasi-convex functions and their applications, J. Inequal. Appl., 2019 (2019). https://doi.org/10.1186/s13660-019-2272-7 doi: 10.1186/s13660-019-2272-7
    [13] Y. M. Chu, G. D. Wang, X. H. Zhang, The Schur multiplicative and harmonic convexities of the complete symmetric function, Math. Nachr., 284 (2011), 53–663. https://doi.org/10.1002/mana.200810197 doi: 10.1002/mana.200810197
    [14] Y. M. Chu, W. F. Xia, X. H. Zhang, The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications, J. Multivariate Anal., 105 (2012), 412–42. https://doi.org/10.1016/j.jmva.2011.08.004 doi: 10.1016/j.jmva.2011.08.004
    [15] S. Z. Ullah, M. A. Khan, Z. A. Khan, Y. M. Chu, Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019). https://doi.org/10.1155/2019/9487823 doi: 10.1155/2019/9487823
    [16] S. Z. Ullah, M. A. Khan, Y. M. Chu, Majorization theorems for strongly convex functions, J. Inequal. Appl., 2019 (2019). https://doi.org/10.1186/s13660-019-2007-9 doi: 10.1186/s13660-019-2007-9
    [17] K. S. Zhang, J. P. Wan, p-convex functions and their properties, Pure Appl. Math., 23 (2007), 130–133.
    [18] S. Z. Ullah, M. A. Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019). https://doi.org/10.1186/s13660-019-2242-0 doi: 10.1186/s13660-019-2242-0
    [19] S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multi-step methods for singular fractional q-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093
    [20] F. Jin, Z. S. Qian, Y. M. Chu, M. Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
    [21] F. Z. Wang, M. N. Khan, I. Ahmad, H. Ahmad, H. Abu-Zinadah, Y. M. Chu, Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher's equations, Fractals, 30 (2022), 2240051. https://doi.org/10.1142/S0218348X22400515 doi: 10.1142/S0218348X22400515
    [22] T. H. Zhao, B. A. Bhayo, Y. M. Chu, Inequalities for generalized Grötzsch ring function, Comput. Meth. Funct. Th., 22 (2022), 559–574. https://doi.org/10.1007/s40315-021-00415-3 doi: 10.1007/s40315-021-00415-3
    [23] M. B. Khan, M. A. Noor, M. M. Al-Shomrani, L. Abdullah, Some novel inequalities for LR-h-convex interval-valued functions by means of pseudo order relation, Math. Meth. Appl. Sci., 45 (2022), 1310–1340. https://doi.org/10.1002/mma.7855 doi: 10.1002/mma.7855
    [24] M. B. Khan, J. E. Macías-Díaz, S. Treanta, M. S. Soliman, H. G. Zaini, Hermite-Hadamard inequalities in fractional calculus for left and right harmonically convex functions via interval-valued settings, Fractal Fract., 6 (2022), 178. https://doi.org/10.3390/fractalfract6040178 doi: 10.3390/fractalfract6040178
    [25] M. B. Khan, M. A. Noor, J. E. Macías-Díaz, M. S. Soliman, H. G. Zaini, Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation, Demonstr. Math., 55 (2022), 387–403. https://doi.org/10.1515/dema-2022-0023 doi: 10.1515/dema-2022-0023
    [26] T. H. Zhao, Z. Y. He, Y. M. Chu, Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals, Comput. Meth. Funct. Th., 21 (2021), 413–426. https://doi.org/10.1007/s40315-020-00352-7 doi: 10.1007/s40315-020-00352-7
    [27] T. H. Zhao, M. K. Wang, Y. M. Chu, Concavity and bounds involving generalized elliptic integral of the first kind, J. Math. Inequal., 15 (2021), 701–724. https://doi.org/10.7153/jmi-2021-15-50 doi: 10.7153/jmi-2021-15-50
    [28] T. H. Zhao, M. K. Wang, Y. M. Chu, Monotonicity and convexity involving generalized elliptic integral of the first kind, RACSAM Rev. R. Acad. A, 115 (2021), 1–13. https://doi.org/10.1007/s13398-020-00992-3 doi: 10.1007/s13398-020-00992-3
    [29] H. H. Chu, T. H. Zhao, Y. M. Chu, Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means, Math. Slovaca, 70 (2020), 1097–1112. https://doi.org/10.1515/ms-2017-0417 doi: 10.1515/ms-2017-0417
    [30] T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving zero-balanced hyper geometric function, AIMS Math., 5 (2020), 6479–6495. https://doi.org/10.3934/math.2020418 doi: 10.3934/math.2020418
    [31] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Math., 5 (2020), 4512–4528. https://doi.org/10.3934/math.2020290 doi: 10.3934/math.2020290
    [32] T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM Rev. R. Acad. A, 114 (2020), 1–14. https://doi.org/10.1007/s13398-020-00825-3 doi: 10.1007/s13398-020-00825-3
    [33] T. H. Zhao, B. C. Zhou, M. K. Wang, Y. M. Chu, On approximating the quasi-arithmetic mean, J. Inequal. Appl., 2019 (2019), 42. https://doi.org/10.1186/s13660-019-1991-0 doi: 10.1186/s13660-019-1991-0
    [34] T. H. Zhao, M. K. Wang, W. Zhang, Y. M. Chu, Quadratic transformation inequalities for Gaussian hyper geometric function, J. Inequal. Appl., 2018 (2018), 251. https://doi.org/10.1186/s13660-018-1848-y doi: 10.1186/s13660-018-1848-y
    [35] M. A. Khan, J. Pečarić, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931–4945. https://doi.org/10.3934/math.2020315 doi: 10.3934/math.2020315
    [36] S. Khan, M. A. Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Meth. Appl. Sci., 43 (2020), 2577–2587. https://doi.org/10.1002/mma.6066 doi: 10.1002/mma.6066
    [37] Y. Sawano, H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Orrey space, J. Fourier Anal. Appl., 19 (2013), 20–47. https://doi.org/10.1007/s00041-012-9223-8 doi: 10.1007/s00041-012-9223-8
    [38] P. Ciatti, M. G. Cowling, F. Ricci, Hardy and uncertainty inequalities on stratified Lie groups, Adv. Math., 277 (2015), 365–387. https://doi.org/10.1016/j.aim.2014.12.040 doi: 10.1016/j.aim.2014.12.040
    [39] B. Gavrea, I. Gavrea, On some Ostrowski type inequalities, Gen. Math., 18 (2010), 33–44.
    [40] H. Gunawan, Fractional integrals and generalized Olsen inequalities, Kyungpook Math. J., 49 (2009), 31–39. https://doi.org/10.5666/KMJ.2009.49.1.031 doi: 10.5666/KMJ.2009.49.1.031
    [41] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pure Appl., 58 (1893), 171–215.
    [42] L. Fejér, Uberdie Fourierreihen Ⅱ, Math. Naturwise. Anz Ungar. Akad. Wiss., 24 (1906), 369–390.
    [43] R. E. Moore, Interval analysis, Prentice Hall, Englewood Cliffs, 1966.
    [44] U. Kulish, W. Miranker, Computer arithmetic in theory and practice, Academic Press, New York, 2014.
    [45] D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 1–14. https://doi.org/10.1186/s13660-017-1594-6 doi: 10.1186/s13660-017-1594-6
    [46] B. Bede, Studies in fuzziness and soft computing, Math of fuzzy sets fuzzy logic, Springer, Berlin/Heidelberg, 295 (2013). https://doi.org/10.1007/978-3-642-35221-8
    [47] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen, Pupl. Inst. Math., 23 (1978), 13–20.
    [48] Y. Chalco-Cano, A. Flores-Franulič, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608617 doi: 10.1109/IFSA-NAFIPS.2013.6608617
    [49] Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300. https://doi.org/10.1007/s00500-014-1483-6 doi: 10.1007/s00500-014-1483-6
    [50] T. M. Costa, H. Román-Flores, Y. Chalco-Cano, Opial-type inequalities for interval-valued functions, Fuzzy Set. Syst., 358 (2019), 48–63. https://doi.org/10.1016/j.fss.2018.04.012 doi: 10.1016/j.fss.2018.04.012
    [51] S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [52] Z. B. Fang, R. J. Shi, On the (p, h)-convex function and some integral inequalities, J. Inequal. Appl., 2014 (2014). https://doi.org/10.1186/1029-242X-2014-13 doi: 10.1186/1029-242X-2014-13
    [53] M. Kunt, İ. İşcan, Hermite-Hadamard-Fejer type inequalities for p-convex functions, Arab J. Math. Sci., 23 (2017), 215–230. https://doi.org/10.1016/j.ajmsc.2016.11.001 doi: 10.1016/j.ajmsc.2016.11.001
    [54] H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2018), 1306–1318. https://doi.org/10.1007/s40314-016-0396-7 doi: 10.1007/s40314-016-0396-7
    [55] S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
    [56] Y. M. Chu, T. H. Zhao, Concavity of the error function with respect to Hölder means, Math. Inequal. Appl., 19 (2016), 589–595. https://doi.org/10.7153/mia-19-43 doi: 10.7153/mia-19-43
    [57] W. M. Qian, H. H. Chu, M. K. Wang, Y. M. Chu, Sharp inequalities for the Toader mean of order –1 in terms of other bivariate means, J. Math. Inequal., 16 (2022), 127–141. https://doi.org/10.7153/jmi-2022-16-10 doi: 10.7153/jmi-2022-16-10
    [58] T. H. Zhao, H. H. Chu, Y. M. Chu, Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3, J. Math. Inequal., 16 (2022), 157–168. https://doi.org/10.7153/jmi-2022-16-12 doi: 10.7153/jmi-2022-16-12
    [59] T. H. Zhao, M. K. Wang, Y. Q. Dai, Y. M. Chu, On the generalized power-type Toader mean, J. Math. Inequal., 16 (2022), 247–264. https://doi.org/10.7153/jmi-2022-16-18 doi: 10.7153/jmi-2022-16-18
    [60] M. B. Khan, T. Savin, H. Alrweili, T. Saeed, M. S. Soliman, Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings, AIMS Math., 7 (2022), 15659–15679. https://doi.org/10.3934/math.2022857 doi: 10.3934/math.2022857
    [61] M. B. Khan, O. M. Alsalami, S. Treanțǎ, T. Saeed, K. Nonlaopon, New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities, AIMS Math., 7 (2022), 15497–15519. https://doi.org/10.3934/math.2022849 doi: 10.3934/math.2022849
    [62] T. Saeed, M. B. Khan, S. Treanțǎ, H. H. Alsulami, M. S. Alhodaly, Interval Fejér-type inequalities for left and right-λ-preinvex functions in interval-valued settings, Axioms, 11 (2022), 368. https://doi.org/10.3390/axioms11080368 doi: 10.3390/axioms11080368
    [63] M. B. Khan, A. Cătaş, O. M. Alsalami, Some new estimates on coordinates of generalized convex interval-valued functions, Fractal Fract., 6 (2022), 415. https://doi.org/10.3390/fractalfract6080415 doi: 10.3390/fractalfract6080415
    [64] L. A. Zadeh, Fuzzy sets, Inform. Cont., 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [65] S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets Syst., 48 (1992), 129–132. https://doi.org/10.1016/0165-0114(92)90256-4 doi: 10.1016/0165-0114(92)90256-4
    [66] S. S. Chang, Y. G. Zhu, On variational inequalities for fuzzy mappings, Fuzzy Set. Syst., 32 (1989), 359–367. https://doi.org/10.1016/0165-0114(89)90268-6 doi: 10.1016/0165-0114(89)90268-6
    [67] M. A. Noor, Fuzzy preinvex functions, Fuzzy Set. Syst., 64 (1994), 95–104. https://doi.org/10.1016/0165-0114(94)90011-6 doi: 10.1016/0165-0114(94)90011-6
    [68] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Set. Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001
    [69] A. Ben-Isreal, B. Mond, What is invexity? Anziam J., 1986, 1–9. https://doi.org/10.1017/S0334270000005142 doi: 10.1017/S0334270000005142
    [70] Y. Chalco-Cano, M. A. Rojas-Medar, H. Román-Flores, M-convex fuzzy mappings and fuzzy integral mean, Comput. Math. Appl., 40 (2000), 1117–1126. https://doi.org/10.1016/S0898-1221(00)00226-1 doi: 10.1016/S0898-1221(00)00226-1
    [71] P. Diamond, P. E. Kloeden, Metric spaces of fuzzy sets: Theory and applications, World Scientific, 1994. https://doi.org/10.1142/2326
    [72] J. R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy Set. Syst., 18 (1986), 31–43. https://doi.org/10.1016/0165-0114(86)90026-6 doi: 10.1016/0165-0114(86)90026-6
    [73] O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
    [74] M. L. Puri, D. A. Ralescu, Fuzzy random variables, Read. Fuzzy Set. Intell. Syst., 114 (1986), 409–422. https://doi.org/10.1016/0022-247X(86)90093-4 doi: 10.1016/0022-247X(86)90093-4
    [75] S. A. Iqbal, M. G. Hafez, Y. M. Chu, C. Park, Dynamical analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative, J. Appl. Anal. Comput., 12 (2022), 770–789. https://doi.org/10.11948/20210324 doi: 10.11948/20210324
    [76] T. R. Huang, L. Chen, Y. M. Chu, Asymptotically sharp bounds for the complete p-elliptic integral of the first kind, Hokkaido Math. J., 51 (2022), 189–210. https://doi.org/10.14492/hokmj/2019-212 doi: 10.14492/hokmj/2019-212
    [77] T. H. Zhao, W. M. Qian, Y. M. Chu, On approximating the arc lemniscate functions, Indian J. Pure Appl. Math., 53 (2022), 316–329. https://doi.org/10.1007/s13226-021-00016-9 doi: 10.1007/s13226-021-00016-9
    [78] G. Santos-García, M. B. Khan, H. Alrweili, A. A. Alahmadi, S. S. Ghoneim, Hermite-Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator, Mathematics, 10 (2022), 2756. https://doi.org/10.3390/math10152756 doi: 10.3390/math10152756
    [79] J. E. Macías-Díaz, M. B. Khan, H. Alrweili, M. S. Soliman, Some fuzzy inequalities for harmonically s-convex fuzzy number valued functions in the second sense integral, Symmetry, 14 (2022), 1639. https://doi.org/10.3390/sym14081639 doi: 10.3390/sym14081639
    [80] M. B. Khan, M. A. Noor, H. G. Zaini, G. Santos-García, M. S. Soliman, The new versions of Hermite-Hadamard inequalities for pre-invex fuzzy-interval-valued mappings via fuzzy Riemann integrals, Int. J. Comput. Intell. Syst., 15 (2022), 66. https://doi.org/10.1007/s44196-022-00127-z doi: 10.1007/s44196-022-00127-z
    [81] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 6–20. https://doi.org/10.1186/s13662-020-03166-y doi: 10.1186/s13662-020-03166-y
    [82] M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. https://doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001
    [83] P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex Intell. Syst., 8 (2022), 413–427. https://doi.org/10.1007/s40747-021-00379-w doi: 10.1007/s40747-021-00379-w
    [84] G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001
    [85] M. B. Khan, S. Treanțǎ, H. Budak, Generalized p-convex fuzzy-interval-valued functions and inequalities based upon the fuzzy-order relation, Fractal Fract., 6 (2022), 63. https://doi.org/10.3390/fractalfract6020063 doi: 10.3390/fractalfract6020063
    [86] R. Osuna-Gómez, M. D. Jiménez-Gamero, Y. Chalco-Cano, M. A. Rojas-Medar, Hadamard and Jensen inequalities for s-convex fuzzy processes, Soft Methodology and Random Information Systems, Advances in Soft Computing, Springer, Berlin, Heidelberg, l26 (2004), 1–15. https://doi.org/10.1007/978-3-540-44465-7_80
    [87] T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Set. Syst., 327 (2017), 31–47. https://doi.org/10.1016/j.fss.2017.02.001 doi: 10.1016/j.fss.2017.02.001
    [88] T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci., 420 (2017), 110–125. https://doi.org/10.1016/j.ins.2017.08.055 doi: 10.1016/j.ins.2017.08.055
    [89] M. B. Khan, M. A. Noor, K. I. Noor, K. S. Nisar, K. A. Ismail, A. Elfasakhany, Some inequalities for LR-(h1, h2)-convex interval-valued functions by means of pseudo order relation, Int. J. Comput. Intell. Syst., 14 (2021), 1–15. https://doi.org/10.1007/s44196-021-00032-x doi: 10.1007/s44196-021-00032-x
    [90] M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math., 15 (2021), 459–470. https://doi.org/10.18576/amis/150408 doi: 10.18576/amis/150408
    [91] M. B. Khan, M. A. Noor, T. Abdeljawad, A. A. A. Mousa, B. Abdalla, S. M. Alghamdi, LR-preinvex interval-valued functions and Riemann-Liouville fractional integral inequalities, Fractal Fract., 5 (2021), 243. https://doi.org/10.3390/fractalfract5040243 doi: 10.3390/fractalfract5040243
    [92] J. E. Macías-Díaz, M. B. Khan, M. A. Noor, A. M. A. Allah, S. M. Alghamdi, Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus, AIMS Math., 7 (2022), 4266–4292. https://doi.org/10.3934/math.2022236 doi: 10.3934/math.2022236
    [93] M. B. Khan, H. G. Zaini, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, Riemann-Liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation, Mathematics, 10 (2022), 204. https://doi.org/10.3390/math10020204 doi: 10.3390/math10020204
    [94] M. B. Khan, S. Treanțǎ, M. S. Soliman, K. Nonlaopon, H. G. Zaini, Some Hadamard-Fejér type inequalities for LR-convex interval-valued functions, Fractal Fract., 6 (2022), 6. https://doi.org/10.3390/fractalfract6010006 doi: 10.3390/fractalfract6010006
    [95] M. B. Khan, G. Santos-García, M. A. Noor, M. S. Soliman, Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities, Chaos Soliton. Fract., 164 (2022), 112692. https://doi.org/10.1016/j.chaos.2022.112692 doi: 10.1016/j.chaos.2022.112692
    [96] Z. H. Liu, D. Motreanu, S. D. Zeng, Generalized penalty and regularization method for differential variational- hemivariational inequalities, SIAM J. Optim., 31 (2021), 1158–1183. https://doi.org/10.1137/20M1330221 doi: 10.1137/20M1330221
    [97] Y. J. Liu, Z. H. Liu, C. F. Wen, J. C. Yao, S. D. Zeng, Existence of solutions for a class of noncoercive variational-hemivariational inequalities arising in contact problems, Appl. Math. Optim., 84 (2021), 2037–2059. https://doi.org/10.1007/s00245-020-09703-1 doi: 10.1007/s00245-020-09703-1
    [98] S. D. Zeng, S. Migorski, Z. H. Liu, Well-posedness, optimal control, and sensitivity analysis for a class of differential variational-hemivariational inequalities, SIAM J. Optim., 31 (2021), 2829–2862. https://doi.org/10.1137/20M1351436 doi: 10.1137/20M1351436
    [99] Y. J. Liu, Z. H. Liu, D. Motreanu, Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities, Math. Method. Appl. Sci., 43 (2020), 9543–9556. https://doi.org/10.1002/mma.6622 doi: 10.1002/mma.6622
    [100] Y. J. Liu, Z. H. Liu, C. F. Wen, Existence of solutions for space-fractional parabolic hemivariational inequalities, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 1297–1307. https://doi.org/10.3934/dcdsb.2019017 doi: 10.3934/dcdsb.2019017
    [101] Z. H. Liu, N.V. Loi, V. Obukhovskii, Existence and global bifurcation of periodic solutions to a class of differential variational inequalities, Int. J. Bifurcat. Chaos Appl. Sci. Eng., 23 (2013), 1350125. https://doi.org/10.1142/S0218127413501253 doi: 10.1142/S0218127413501253
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1128) PDF downloads(87) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog