Processing math: 83%
Research article

Bipartite fixed-time output containment control of heterogeneous linear multi-agent systems

  • This study researches the bipartite fixed-time output containment control problem of heterogeneous linear MASs with signed digraphs. The leaders' states can be estimated by a designed distributed bipartite compensator. Furthermore, each follower is allocated a time-varying coupling weight, an adaptive bipartite fixed-time protocol is raised which can estimate the leader's system matrix but also the leader's state. On the foundation of control protocols, followers' outputs are included by the convex hull constituted by leaders' outputs. In addition, by utilizing the Lyapunov function theory, some abundant speculative knowledges are deduced to guarantee adaptive bipartite fixed-time output containment of multi-agent systems. Finally, the feasibility of the anticipant theoretical results is verified by a set of simulation examples.

    Citation: Zihan Liu, Xisheng Zhan, Jie Wu, Huaicheng Yan. Bipartite fixed-time output containment control of heterogeneous linear multi-agent systems[J]. AIMS Mathematics, 2023, 8(3): 7419-7436. doi: 10.3934/math.2023373

    Related Papers:

    [1] Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562
    [2] Duoduo Zhao, Kai Zhou, Fengming Ye, Xin Xu . A class of time-varying differential equations for vibration research and application. AIMS Mathematics, 2024, 9(10): 28778-28791. doi: 10.3934/math.20241396
    [3] Takumi Washio, Akihiro Fujii, Toshiaki Hisada . On random force correction for large time steps in semi-implicitly discretized overdamped Langevin equations. AIMS Mathematics, 2024, 9(8): 20793-20810. doi: 10.3934/math.20241011
    [4] Omar Bazighifan, Areej A. Al-moneef, Ali Hasan Ali, Thangaraj Raja, Kamsing Nonlaopon, Taher A. Nofal . New oscillation solutions of impulsive conformable partial differential equations. AIMS Mathematics, 2022, 7(9): 16328-16348. doi: 10.3934/math.2022892
    [5] Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon . A novel numerical method for solution of fractional partial differential equations involving the ψ-Caputo fractional derivative. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110
    [6] Ahmad Qazza, Rania Saadeh, Emad Salah . Solving fractional partial differential equations via a new scheme. AIMS Mathematics, 2023, 8(3): 5318-5337. doi: 10.3934/math.2023267
    [7] Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237
    [8] Shaomin Wang, Cunji Yang, Guozhi Cha . On the variational principle and applications for a class of damped vibration systems with a small forcing term. AIMS Mathematics, 2023, 8(9): 22162-22177. doi: 10.3934/math.20231129
    [9] Armin Hadjian, Juan J. Nieto . Existence of solutions of Dirichlet problems for one dimensional fractional equations. AIMS Mathematics, 2022, 7(4): 6034-6049. doi: 10.3934/math.2022336
    [10] Paul Bosch, José M. Rodríguez, José M. Sigarreta . Oscillation results for a nonlinear fractional differential equation. AIMS Mathematics, 2023, 8(5): 12486-12505. doi: 10.3934/math.2023627
  • This study researches the bipartite fixed-time output containment control problem of heterogeneous linear MASs with signed digraphs. The leaders' states can be estimated by a designed distributed bipartite compensator. Furthermore, each follower is allocated a time-varying coupling weight, an adaptive bipartite fixed-time protocol is raised which can estimate the leader's system matrix but also the leader's state. On the foundation of control protocols, followers' outputs are included by the convex hull constituted by leaders' outputs. In addition, by utilizing the Lyapunov function theory, some abundant speculative knowledges are deduced to guarantee adaptive bipartite fixed-time output containment of multi-agent systems. Finally, the feasibility of the anticipant theoretical results is verified by a set of simulation examples.



    The theory of fractional calculus has played an important role in engineering and natural sciences. Currently, the concept of fractional calculus has been effectively used in many social, physical, signal, image processing, biological and engineering problems. Further, it has been realized that a fractional system provides a more accurate interpretation than the integer-order system in many real modeling problems. For more details, one can refer to [1,2,3,4,5,6,7,8,9,10].

    Oscillation phenomena take part in different models of real world applications; see for instance the papers [11,12,13,14,15,16,17] and the papers cited therein. More precisely, we refer the reader to the papers [18,19] on bio-mathematical models where oscillation and/or delay actions may be formulated by means of cross-diffusion terms. Recently and although it is rare, the study on the oscillation of fractional partial differential equations has attracted many researchers. In [20,21,22,23], the researchers have established the requirements of the oscillation for certain kinds of fractional partial differential equations.

    In [24], Luo et al. studied the oscillatory behavior of the fractional partial differential equation of the form

    D1+α+,tu(y,t)+p(t)Dα+,tu(y,t)+q(y,t)t0(t)αu(y,)d=a(t)Δu(y,t)+mi=1ai(t)Δu(y,tτi),(y,t)Q×R+=H

    subject to either of the following boundary conditions

    u(y,t)ν+β(y,t)u(y,t)=0,(y,t)Q×R+,u(y,t)=0,(y,t)Q×R+.

    They have obtained some sufficient conditions for the oscillation of all solutions of this kind of fractional partial differential equations by using the integral averaging technique and Riccati transformations.

    On other hand in [25], Xu and Meng considered a fractional partial differential equation of the form

    Dα+,t(r(t)Dα+,tu(y,t))+p(t)Dα+,tu(y,t)+q(y,t)f(u(y,t))=a(t)Δu(y,t)+mi=1bi(t)Δu(y,tτi),(y,t)Q×R+=H

    with the Robin boundary condition

    u(y,t)N+g(y,t)u(y,t)=0,(y,t)Q×R+,

    they obtained some oscillation criteria using the integral averaging technique and Riccati transformations.

    Prakash et al. [26] considered the oscillation of the fractional differential equation

    t(r(t)Dα+,tu(y,t))+q(y,t)f(t0(tv)αu(y,v)dv)=a(t)Δu(y,t),(y,t)Q×R+

    with the Neumann boundary condition

    u(y,t)N=0,(y,t)Q×R+,

    they obtained some oscillation criteria by using the integral averaging technique and Riccati transformations.

    Furthermore in [27], Ma et al. considered the forced oscillation of the fractional partial differential equation with damping term of the form

    t(r(t)Dα+,tu(y,t))+p(t)Dα+,tu(y,t)+q(y,t)f(u(y,t))=a(t)Δu(y,t)+˜g(y,t),(y,t)Q×R+

    with the boundary condition

    u(y,t)N+β(y,t)u(y,t)=0,(y,t)Q×R+,

    they obtained some oscillation criteria by using the integral averaging technique.

    From the above mentioned literature, one can notice that the Riccati transformation method has been incorporated into the proof of the oscillation results. Unlike previous results, however, we study in this paper the forced oscillation of the fractional partial differential equation with the damping term of the form

    t(a(t)t(r(t)g(Dα+,tu(y,t))))+p(t)t(r(t)g(Dα+,tu(y,t)))=b(t)Δu(y,t)+mi=1ai(t)Δu(y,tτi)q(y,t)t0(t)αu(y,)d+f(y,t),(y,t)Q×R+=H (1.1)

    via the application of the integral averaging technique only. Equation (1.1) is presented under a high degree of generality providing a general platform for many particular cases. Here, Dα+,tu(y,t) is the Riemann-Liouville fractional partial derivative of order α of u,α(0,1), Δ is the Laplacian in Rn, i.e.,

    Δu(y,t)=nr=12u(y,t)y2r,

    Q is a bounded domain of Rn with the piecewise smooth boundary Q and R+:=(0,).

    Further, we assume the Robin and Dirichlet boundary conditions

    u(y,t)N+γ(y,t)u(y,t)=0,(y,t)Q×R+ (1.2)

    and

    u(y,t)=0,(y,t)Q×R+, (1.3)

    where N is the unit outward normal to Q and γ(y,t)>0 is a continuous function on Q×R+. The following conditions are assumed throughout:

    (H1) a(t)C1([t0,);R+) and r(t)C2([t0,);R+);

    (H2) g(t)C2(R;R) is an increasing function and there exists a positive constant k such that yg(y)=k>0, yg(y)0 for y0;

    (H3) p(t)C([t0,);R) and A(t)=tt0p(ζ)a(ζ)dζ;

    (H4) b(t),ai(t)C(R+;R+) and τi are non-negative constants, iIm={1,2,,m};

    (H5) q(y,t)C(H;R+) and q(t)=minyQq(y,t);

    (H6) f(y,t)C(ˉH;R).

    By a solution of the problems (1.1) and (1.2) (or (1.1)–(1.3)), we mean a function u(y,t)C2+α(ˉQ×[0,)), which satisfies (1.1) on H and the boundary condition (1.2) (or (1.3)).

    A solution u(y,t) of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is non-oscillatory.

    The rest of the paper is organized as follows. Some basic definitions and known lemmas are included in Section 2. In Sections 3 and 4, we study the oscillations of (1.1) and (1.2), and (1.1) and (1.3), respectively. Section 5 deals with some applications for the sake of showing the feasibility and effectiveness of our results. Lastly, we add a conclusion in Section 6.

    Before we start the main work, we present some basic lemmas and definitions which are applied in what follows.

    Definition 1. [4] The Riemann-Liouville fractional integral of order α>0 of a function y:R+R on the half-axis R+ is defined by

    (Iα+y)(t):=1Γ(α)t0(tϑ)α1y(ϑ)dϑ,t>0

    provided the right-hand side is pointwise defined on R+, where Γ is the gamma function.

    Definition 2. [4] The Riemann-Liouville fractional derivative of order α>0 of a function y:R+R on the half-axis R+ is defined by

    (Dα+y)(t):=dαdtα(Iαα+y)(t),t>0

    provided the right-hand side is pointwise defined on R+, where α is the ceiling function of α.

    Definition 3. [4] The Riemann-Liouville fractional partial derivative of order 0<α<1 with respect to t of a function u(y,t) is defined by

    (Dα+,tu)(y,t):=1Γ(1α)tt0(tϑ)αu(y,ϑ)dϑ

    provided the right-hand side is pointwise defined on R+.

    Lemma 1. [4] Let y be a solution of (1.1) and

    L(t):=t0(tϑ)αy(ϑ)dϑ

    for α(0,1) and t>0. Then

    L(t)=Γ(1α)(Dα+y)(t).

    Lemma 2. [4] Let α0,mN and D=ddt. If the fractional derivatives (Dαa+y)(t) and (Dα+ma+y)(t) exist, then

    (DmDαa+y)(t)=(Dα+ma+y)(t).

    Lemma 3. [4] If α(0,1), then

    (Iαa+Dαa+y)(t)=y(t)y1α(a)Γ(α)(ta)α1,

    where y1α(t)=(I1αa+y)(t).

    Lemma 4. [5] The smallest eigenvalue β0 of the Dirichlet problem

    Δω(y)+βω(y)=0 in Qω(y)=0 on Q

    is positive and the corresponding eigenfunction ϕ(y) is positive in Q.

    In this section, we establish the oscillation criteria for (1.1) and (1.2).

    Theorem 1. If (H1)(H6) are valid, limtI1α+U(0)=C0 and if

    lim inftt0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ]d<0 (3.1)

    and

    lim suptt0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ]d>0 (3.2)

    for some constants C0,C1 and C2 with F(t)=Qf(y,t)dy, then all solutions of (1.1) and (1.2) are oscillatory.

    Proof. If u(y,t) is a non-oscillatory solution of (1.1) and (1.2) then there exists a t00 such that u(y,t)>0 (or u(y,t)<0),tt0.

    Case 1. Let u(y,t)>0 for tt0. Integrating (1.1) over Q, we get

    ddt(a(t)ddt(r(t)g(Dα+U(t))))+p(t)ddt(r(t)g(Dα+U(t)))=b(t)QΔu(y,t)dy+mi=1ai(t)QΔu(y,tτi)dyQ(q(y,t)t0(t)αu(y,)d)dy+Qf(y,t)dy, (3.3)

    where U(t)=Qu(y,t)dy with U(t)>0. By (1.2) and Green's formula, we have

    QΔu(y,t)dy=QuNdζ=Qγ(y,t)u(y,t)dζ<0 (3.4)

    and

    QΔu(y,tτi)dy<0. (3.5)

    Also, by (H5), one can get

    Q(q(y,t)t0(t)αu(y,)d)dyq(t)t0(t)α(Qu(y,)dy)d=q(t)L(t), (3.6)

    where L(t)=t0(t)αU()d. Because of the inequalities (3.4)–(3.6), (3.3) becomes

    ddt(a(t)ddt(r(t)g(Dα+U(t))))+p(t)ddt(r(t)g(Dα+U(t)))q(t)L(t)+F(t)F(t).

    Thus, we get

    (eA(t)a(t)(r(t)g(Dα+U(t))))=eA(t)((a(t)(r(t)g(Dα+U(t))))+p(t)(r(t)g(Dα+U(t))))eA(t)F(t).

    Integrating the above inequality over [t0,t], one can get

    eA(t)a(t)(r(t)g(Dα+U(t)))tt0eA(ζ)F(ζ)dζ+C1,

    where

    C1=eA(t0)a(t0)(r(t0)g(Dα+U(t0))).

    Again integrating the above inequality over [t0,t], we get

    r(t)g(Dα+U(t))C2+tt0C1eA(τ)a(τ)dτ+tt01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ,

    where C2=r(t0)g(Dα+U(t0)). Then using (H5), we obtain

    Dα+U(t)kC2r(t)+1r(t)tt0C1eA(τ)a(τ)dτ+1r(t)tt01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ.

    Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain

    U(t)I1α0U(0)Γ(α)tα1kΓ(α)t0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ]d.

    Then

    lim inftU(t)lim inftC0Γ(α)tα1+lim inft{kΓ(α)t0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ]d}.

    Therefore, by our hypothesis, as given by (3.1), we get lim inftU(t)0. This leads to a contradiction to U(t)>0.

    Case 2. Let u(y,t)<0 for tt0. Just as in Case 1, we can obtain that (3.3) holds and U(t)<0. By (1.2) and Green's formula, we get

    QΔu(y,t)dy=QuNdζ=Qγ(y,t)u(y,t)dζ>0 (3.7)

    and

    QΔu(y,tτi)dy>0. (3.8)

    Also, by (H5), we have

    Q(q(y,t)t0(t)αu(y,)d)dyq(t)t0(t)α(Qu(y,)dy)d=q(t)L(t). (3.9)

    Because of the inequalities (3.7)–(3.9), (3.3) becomes

    ddt(a(t)ddt(r(t)g(Dα+U(t))))+p(t)ddt(r(t)g(Dα+U(t)))q(t)L(t)+F(t)F(t), (3.10)

    that is,

    (eA(t)a(t)(r(t)g(Dα+U(t))))=eA(t)((a(t)(r(t)g(Dα+U(t))))+p(t)(r(t)g(Dα+U(t))))eA(t)F(t).

    Integrating the above inequality over [t0,t], we have

    eA(t)a(t)(r(t)g(Dα+U(t)))tt0eA(ζ)F(ζ)dζ+C1,

    where

    C1=eA(t0)a(t0)(r(t0)g(Dα+U(t0))).

    Again integrating the above inequality over [t0,t], we obtain

    r(t)g(Dα+U(t))C2+tt0C1eA(τ)a(τ)dτ+tt01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ,

    where C2=r(t0)g(Dα+U(t0)). Then using (H5), we obtain

    Dα+U(t)kC2r(t)+1r(t)tt0C1eA(τ)a(τ)dτ+1r(t)tt01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ.

    Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain

    U(t)I1α0U(0)Γ(α)tα1kΓ(α)t0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ]d.

    Then

    lim suptU(t)lim suptC0Γ(α)tα1+lim supt{kΓ(α)t0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ]d}.

    Therefore, by our hypothesis given by (3.2), we get lim suptU(t)0. This leads to a contradiction to U(t)<0.

    In this section, we establish the oscillation criteria for (1.1) and (1.3).

    Theorem 2. If (H1)(H5) are valid, limtI1α+U1(0)=A1 and if

    lim inftt0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F1(ζ)dζ)dτ]d<0 (4.1)

    and

    lim suptt0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F1(ζ)dζ)dτ]d>0 (4.2)

    for some constants A1,C1 and C2 with

    F1(t)=Qf(y,t)ϕ(y)dyandU1(t)=Qu(y,t)ϕ(y)dy,

    then all solutions of (1.1) and (1.3) are oscillatory.

    Proof. If u(y,t) is a non-oscillatory solution of (1.1) and (1.3) then there exists a t00 such that u(y,t)>0 (or u(y,t)<0) for tt0.

    Case 1. Let u(y,t)>0 for tt0. Multiplying (1.1) by ϕ(y) and then integrating over Q, we get

    Qt(a(t)t(r(t)g(Dα+,tu(y,t))))ϕ(y)dy+Qp(t)t(r(t)g(Dα+,tu(y,t)))ϕ(y)dy=Qb(t)Δu(y,t)ϕ(y)dy+Qmi=1ai(t)Δu(y,tτi)ϕ(y)dyQ(q(y,t)t0(t)αu(y,)d)ϕ(y)dy+Qf(y,t)ϕ(y)dy. (4.3)

    By Lemma 4 and Green's formula, we have

    QΔu(y,t)ϕ(y)dy=Qu(y,t)Δϕ(y)dy=β0Qu(y,t)ϕ(y)dy<0 (4.4)

    and

    QΔu(y,tτi)ϕ(y)dy<0. (4.5)

    Also, by (H5), we get

    Q(q(y,t)t0(t)αu(y,)ϕ(y)d)dyq(t)t0(t)α(Qu(y,)ϕ(y)dy)d=q(t)L1(t), (4.6)

    where

    L1(t)=t0(t)αU1()d>0.

    Because of the inequalities (4.4)–(4.6), (4.3) becomes

    ddt(a(t)ddt(r(t)g(Dα+U1(t))))+p(t)ddt(r(t)g(Dα+U1(t)))q(t)L1(t)+F1(t)F1(t),

    that is,

    (eA(t)a(t)(r(t)g(Dα+U1(t))))=eA(t)[(a(t)(r(t)g(Dα+U1(t))))+p(t)(r(t)g(Dα+U1(t)))]eA(t)F1(t).

    Integrating the above inequality over [t0,t], we have

    eA(t)a(t)(r(t)g(Dα+U1(t)))tt0eA(ζ)F1(ζ)dζ+C1,

    where

    C1=eA(t0)a(t0)(r(t0)g(Dα+U1(t0))).

    Again integrating the above inequality over [t0,t], we have

    r(t)g(Dα+U1(t))C2+tt0C1eA(τ)a(τ)dτ+tt01eA(τ)a(τ)(τt0eA(ζ)F1(ζ)dζ)dτ,

    where C2=r(t0)g(Dα+U1(t0)). Then using (H5), we obtain

    Dα+U1(t)kC2r(t)+1r(t)tt0C1eA(τ)a(τ)dτ+1r(t)tt01eA(τ)a(τ)(τt0eA(ζ)F1(ζ)dζ)dτ.

    Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain

    U1(t)I1α0U1(0)Γ(α)tα1kΓ(α)t0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F1(ζ)dζ)dτ]d.

    Then

    lim inftU1(t)lim inftA1Γ(α)tα1+lim inft{kΓ(α)t0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F1(ζ)dζ)dτ]d}.

    Therefore, by our hypothesis given by (4.1), we get lim inftU1(t)0. This leads to a contradiction to U1(t)>0.

    Case 2. Let u(y,t)<0 for tt0. Multiplying (1.1) by ϕ(y) and then integrating over Q, one can get (4.3). Using Green's formula, we have

    QΔu(y,t)ϕ(y)dy=Qu(y,t)Δϕ(y)dy=β0Qu(y,t)ϕ(y)dy>0 (4.7)

    and

    QΔu(y,tτi)ϕ(y)dy>0. (4.8)

    Also, by (H5), we have

    Q(q(y,t)t0(t)αu(y,)d)ϕ(y)dyq(t)t0(t)α(Qu(y,)ϕ(y)dy)d=q(t)L1(t), (4.9)

    where

    L1(t)=t0(t)αU1()d<0.

    Because of the inequalities (4.7)–(4.9), (4.3) becomes

    ddt(a(t)ddt(r(t)g(Dα+U1(t))))+p(t)ddt(r(t)g(Dα+U1(t)))q(t)L1(t)+F1(t)F1(t), (4.10)

    that is,

    (eA(t)a(t)(r(t)g(Dα+U1(t))))=eA(t)((a(t)(r(t)g(Dα+U1(t))))+p(t)(r(t)g(Dα+U1(t))))eA(t)F1(t).

    Integrating the above inequality over [t0,t], we get

    eA(t)a(t)(r(t)g(Dα+U1(t)))tt0eA(ζ)F1(ζ)dζ+C1,

    where

    C1=eA(t0)a(t0)(r(t0)g(Dα+U1(t0))).

    Again integrating the above inequality over [t0,t], we get

    r(t)g(Dα+U1(t))C2+tt0C1eA(τ)a(τ)dτ+tt01eA(τ)a(τ)(τt0eA(ζ)F1(ζ)dζ)dτ,

    where C2=r(t0)g(Dα+U1(t0)). Then using (H5), we obtain

    Dα+U1(t)kC2r(t)+1r(t)tt0C1eA(τ)a(τ)dτ+1r(t)tt01eA(τ)a(τ)(τt0eA(ζ)F1(ζ)dζ)dτ.

    Applying the Riemann-Liouville fractional integral operator of order α to the above inequality and using Lemma 3, we obtain

    U1(t)I1α0U1(0)Γ(α)tα1kΓ(α)t0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F1(ζ)dζ)dτ]d.

    Then

    lim suptU1(t)lim suptA1Γ(α)tα1+lim supt{kΓ(α)t0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F1(ζ)dζ)dτ]d}.

    Therefore, by our hypothesis given by (4.2), we get lim suptU1(t)0. This leads to a contradiction to U1(t)<0.

    In this section, we give two examples to illustrate our main results.

    Example 1. Let us consider the fractional partial differential system

    D52+,tu(y,t)=1πΔu(y,t)+2tΔu(y,t1)(y2+1t2)t0(t)12u(y,)d+e2tcos(t)sin(y),(y,t)(0,π)×R+ (5.1)

    with the condition

    uy(0,t)=uy(π,t)=0. (5.2)

    In the above, a(t)=1,r(t)=1,g(t)=t,α=1/2,p(t)=0,b(t)=1/π,m=1,a1(t)=2t,τ1=1, q(y,t)=(y2+1t2),f(y,t)=e2tcos(t)sin(y),Q=(0,π),q(t)=miny(0,π)q(y,t)=1/t2 and t0=0.

    Since F(t)=π0e2tcos(t)sin(y)dy=2e2tcos(t) and A(t)=0, we have

    t0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ]d=C2t0(t)1/2d+C1t0(t)1/2(0dτ)d+25t0(t)1/2(20e2τcos(τ)dτ+0e2τsin(τ)dτ20dτ)d=(C26/25)t0(t)1/2d+(C14/5)t0(t)1/2d+6/25t0e2(t)1/2cos()d+8/25t0e2(t)1/2sin()d.

    Fixing y2=t, then

    t0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ]d=2(C26/25)t+4/3(C14/5)t3/2+4/25e2t(3cos(t)t0e2y2cos(y2)dy+3sin(t)t0e2y2sin(y2)dy+4sin(t)t0e2y2cos(y2)dy4cos(t)t0e2y2sin(y2)dy). (5.3)

    Pointing out that

    |e2y2cos(y2)|e2y2,|e2y2sin(y2)|e2y2 and limtt0e2y2dy=2π4,

    we can conclude that

    limtt0e2y2cos(y2)dy and limtt0e2y2sin(y2)dy

    are convergent. Thus, we have that

    limt[cos(t)(3t0e2y2cos(y2)dy4t0e2y2sin(y2)dy)+sint(3t0e2y2sin(y2)dy+4t0e2y2cos(y2)dy)]

    is convergent. Fixing

    limtt0e2y2cos(y2)dy=P,limtt0e2y2sin(y2)dy=Q

    and considering the sequence

    tn=3π2+2nπarctan(3P4Q3Q+4P),

    we get

    limn{cos(tn)(3tn0e2y2cos(y2)dy4tn0e2y2sin(y2)dy)+sin(tn)(3tn0e2y2sin(y2)dy+4tn0e2y2cos(y2)dy)}=(3P4Q)2+(3Q+4P)2sin(3π2+2nπarctan(3P4Q3Q+4P)+arctan(3P4Q3Q+4P))=5P2+Q2sin(3π2+2nπ)=5P2+Q2.

    Since limntn=, from (5.3), we have

    lim inftt0(t)α1r()[C2+t0C1eA(τ)a(τ)dτ+t01eA(τ)a(τ)(τt0eA(ζ)F(ζ)dζ)dτ]d=lim infn{2(C26/25)tn+4/3(e1C14/5)t3/2n+4/25e2tn[cos(tn)(3tn0e2y2cos(y2)dy4tn0e2y2sin(y2)dy)+sin(tn)(3tn0e2y2sin(y2)dy+4tn0e2y2cos(y2)dy)]}=<0.

    Similarly, fixing

    \begin{align*} t_{n} = \frac{\pi}{2}+2n\pi-\arctan \left(\frac{3P-4Q}{3Q+4P}\right), \end{align*}

    we get

    \begin{align*} &\lim\limits_{n\to\infty}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right)\right]\\ & = 5\sqrt{P^{2}+Q^{2}}. \end{align*}

    Thus, from (5.3), we can get

    \limsup\limits_{ t\to\infty}\int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \limsup\limits_{n\to\infty}\\ \left\{2(C_{2}-6/25)\sqrt{ t_{n}}+4/3(e^{-1}C_{1}-4/5) t_{n}^{3/2}+4/25e^{2 t_{n}}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right.\right.\right.\\ \quad\left.\left.\left.-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right) \right]\right\}\\ = \infty > 0.

    Therefore, by referring to Theorem 1, the solutions of (5.1) and (5.2) are oscillatory.

    Example 2. Let us consider the fractional partial differential system

    \frac{1}{1875\sqrt{\pi}}D_{+, t}^{\frac{5}{2}}u(y, t) = \frac{1}{10^{5} t^{\frac{5}{2}}}\Delta u(y, t)+\\ \left(\frac{16}{75\times 10^{2}\pi t^{3}}-\frac{16e^{2 t}\cos (t)}{5\pi t^{3}}\right)\int_{0}^{ t}( t-\hbar)^{-\frac{1}{2}}u(y, \hbar)d\hbar\\ +e^{2 t}\cos (t)\cos(10y), \quad (y, t)\in (0, \pi)\times (0, 1.5) (5.4)

    with the condition

    \begin{align} u(0, t) = u(\pi, t) = 0. \end{align} (5.5)

    In the above, a(t) = 1 , r(t) = \frac{1}{1875\sqrt{\pi}} , g(t) = t , \alpha = 1/2 , p(t) = 0 , b(t) = \frac{1}{2\times 10^{5} t^{\frac{5}{2}}} , m = 1 , a_{1}(t) = \frac{1}{2\times 10^{5} t^{\frac{5}{2}}} , \tau_{1} = 0 , q(y, t) = \frac{-16}{75\times 10^{2}\pi t^{3}}+\frac{16e^{2 t}\cos (t)}{5\pi t^{3}}, f(y, t) = e^{2 t}\cos (t) \sin (y), Q = (0, \pi), q(t) = \min_{y\in(0, \pi)}q(y, t) = \frac{-16}{75\times 10^{2}\pi t^{3}}+\frac{16e^{2 t}\cos (t)}{5\pi t^{3}} and t_{0} = 0 . It is obvious that \beta_{0} = 1 and \phi(y) = \sin (y). Since F_{1}(t) = \int_{0}^{\pi}e^{2 t}\cos (t) \cos(10y) \sin (y) dy = \frac{-2}{99}e^{2 t}\cos (t) and A(t) = 0, we have

    \begin{align*} &\int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left(C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right)d\hbar\\ & = -\frac{3750\sqrt{\pi}}{99}\int_{0}^{ t}( t-\hbar)^{\alpha-1}\left(\int_{ t_{0}}^{\hbar}\left(\int_{ t_{0}}^{\tau}e^{2\zeta}\cos (\zeta) d\zeta\right)d\tau \right)d\hbar\\ & = \frac{50\sqrt{\pi}}{11}\int_{0}^{ t}( t-\hbar)^{-1/2}d\hbar+\frac{500\sqrt{\pi}}{33}\int_{0}^{ t}\hbar( t-\hbar)^{-1/2}d\hbar\\ &\quad-\frac{50\sqrt{\pi}}{33}\left[3\int_{0}^{ t}e^{2\hbar}( t-\hbar)^{-1/2}\cos (\hbar) d\hbar+4\int_{0}^{ t}e^{2\hbar}( t-\hbar)^{-1/2}\sin( \hbar) d\hbar\right]. \end{align*}

    Fixing y^{2} = t-\hbar , then

    \int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \frac{10^{2}\sqrt{\pi t}}{11}+\frac{2\times 10^{3}}{99} t^{3/2}-\frac{10^{2}\sqrt{\pi}}{33}e^{2 t}\left\{3\cos (t) \int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy\right.\\ \left.+3\sin (t)\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy+4\sin (t)\\ \int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy-4\cos (t) \int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy\right\}. (5.6)

    Pointing out that

    |e^{-2y^{2}}\cos (y^{2})|\le e^{-2y^{2}}, \; |e^{-2y^{2}}\sin (y^{2})|\le e^{-2y^{2}}\;\text{ and }\; \lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}dy = \frac{\sqrt{2\pi}}{4},

    we can conclude that

    \lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy\quad\text{ and }\quad\lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy

    are convergent. Thus, we have that

    \begin{align*} \lim\limits_{ t\to\infty}&\left[\cos (t) \left(3\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin t\left(3\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy\right)\right] \end{align*}

    is convergent. Fixing

    \lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\cos (y^{2})dy = P\;\text{ and }\;\lim\limits_{ t\to\infty}\int_{0}^{\sqrt{ t}}e^{-2y^{2}}\sin (y^{2})dy = Q

    and considering the sequence

    t_{n} = \frac{3\pi}{2}+2n\pi-\arctan \biggl(\frac{3P-4Q}{3Q+4P}\biggl),

    we get

    \begin{align*} \lim\limits_{n\to\infty}&\left\{\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right)\right\}\\ & = \sqrt{(3P-4Q)^{2}+(3Q+4P)^{2}}\sin\left(\frac{3\pi}{2}+2n\pi-\arctan \left(\frac{3P-4Q}{3Q+4P}\right)+\arctan \left(\frac{3P-4Q}{3Q+4P}\right)\right)\\ & = 5\sqrt{P^{2}+Q^{2}}\sin\left(\frac{3\pi}{2}+2n\pi\right)\\ & = -5\sqrt{P^{2}+Q^{2}}. \end{align*}

    Since \lim\limits_{n\to\infty} t_{n} = \infty , from (5.6), we have

    \limsup\limits_{ t\to\infty} \int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \limsup\limits_{n\to\infty}\left\{\frac{10^{2}\sqrt{\pi t_{n}}}{11}\sqrt{ t_{n}}+\frac{2\times 10^{3}}{99} t_{n}^{3/2}-\frac{10^{2}\sqrt{\pi}}{33}e^{2 t_{n}}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right.\right.\right.\\ \quad\left.\left.\left.-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy \right)\right]\right\}\\ = \infty > 0.

    Similarly, fixing

    \begin{align*} t_{n} = \frac{\pi}{2}+2n\pi-\arctan \left(\frac{3P-4Q}{3Q+4P}\right), \end{align*}

    we get

    \begin{align*} \lim\limits_{n\to\infty}&\left\{\cos (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy-4\int_{0}^{\sqrt{t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)\right.\\ &\quad\left.+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right)\right\}\\ & = 5\sqrt{P^{2}+Q^{2}}. \end{align*}

    Thus, from (5.6), we get

    \liminf\limits_{ t\to\infty} \int_{0}^{ t}\frac{( t-\hbar)^{\alpha-1}}{r(\hbar)}\left[C_{2}+\int_{ t_{0}}^{\hbar}\frac{C_{1}}{e^{A(\tau)}a(\tau)}d\tau+\int_{ t_{0}}^{\hbar}\frac{1}{e^{A(\tau)}a(\tau)}\left(\int_{ t_{0}}^{\tau}e^{A(\zeta)}F(\zeta)d\zeta\right)d\tau \right]d\hbar\\ = \liminf\limits_{n\to\infty}\left\{\frac{10^{2}\sqrt{\pi t_{n}}}{11}\sqrt{ t_{n}}+\frac{2\times 10^{3}}{99} t_{n}^{3/2}-\frac{10^{2}\sqrt{\pi}}{33}e^{2 t_{n}}\left[\cos (t_{n}) \left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy\right.\right.\right.\\ \quad\left.\left.\left.-4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy\right)+\sin (t_{n})\left(3\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\sin (y^{2})dy+4\int_{0}^{\sqrt{ t_{n}}}e^{-2y^{2}}\cos (y^{2})dy \right)\right]\right\}\\ = -\infty < 0.

    Therefore, by referring to Theorem 2, the solutions of (5.4) and (5.5) are oscillatory. In fact, u(y, t) = t^{5/2}\cos(10y) is a solution of (5.4) and (5.5) and its oscillatory behavior is demonstrated in Figure 1.

    Figure 1.  Oscillatory behavior of u(y, t) = t^{5/2}\cos(10y) .

    In this paper, we have obtained some new oscillation results for the fractional partial differential equation with damping and forcing terms under Robin and Dirichlet boundary conditions. The main results are proved by using only the integral averaging technique and without implementing the Riccati approach. Further, the obtained results are justified by some examples which can not be commented upon by using the previous results. Our results have been obtained for the general equation which may cover other particular cases.

    A. Palanisamy was supported by the University Grants Commission (UGC-Ref. No.: 958/(CSIR-UGC NET JUNE 2018)), New Delhi, India and the third author was partially supported by the DST-FIST Scheme (Grant No. SR/FST/MST-115/2016), New Delhi, India. J. Alzabut is thankful to Prince Sultan University and Ostim Technical University for their endless support. The authors are grateful to the reviewers for their precious help in improving this manuscript.

    The authors declare that they have no conflicts of interest.



    [1] Y. Wang, Z. Zeng, X. Liu, Z. Liu, Input-to-state stability of switched linear systems with unstabilizable modes under DoS attacks, Automatica, 146 (2022), 110607. http://doi.org/10.1016/j.automatica.2022.110607 doi: 10.1016/j.automatica.2022.110607
    [2] X. Zhan, J. Wu, T. Jiang, X. Jiang, Optimal performance of networked control systems under the packet dropouts and channel noise, ISA Trans., 58 (2015), 214–221. http://doi.org/10.1016/j.isatra.2015.05.012 doi: 10.1016/j.isatra.2015.05.012
    [3] M. Li, H. Chen, R. Zhang, An input dead zones considered adaptive fuzzy control approach for double pendulum cranes with variable rope lengths, IEEE ASME Trans. Mech., 27 (2022), 3385–3396. http://doi.org/10.1109/TMECH.2021.3137818 doi: 10.1109/TMECH.2021.3137818
    [4] X. Du, X. Zhan, J. Wu, H. Yan, Performance analysis of MIMO information time-delay system under bandwidth, cyber-attack, and gaussian white noise, IEEE Trans. Syst. Man Cybern. Syst., in press. http://doi.org/10.1109/TSMC.2022.3211620
    [5] W. Zou, P. Shi, Z. Xiang, Y. Shi, Finite-time consensus of second-order switched nonlinear multi-agent systems, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 1757–1762. http://doi.org/10.1109/TNNLS.2019.2920880 doi: 10.1109/TNNLS.2019.2920880
    [6] Z. Xu, C. Li, Y. Han, Impulsive consensus of nonlinear multi-agent systems via edge event-triggered control, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 1995–2004. http://doi.org/10.1109/TNNLS.2019.2927623 doi: 10.1109/TNNLS.2019.2927623
    [7] K. Chen, J. Wang, Y. Zhang, Z. Liu, Leader-following consensus for a class of nonlinear strick-feedback multiagent systems with state timedelays, IEEE Trans. Syst. Man Cybern. Syst., 50 (2020), 2351–2361. http://doi.org/10.1109/TSMC.2018.2813399 doi: 10.1109/TSMC.2018.2813399
    [8] T. Han, W. Zheng, Bipartite output consensus for heterogeneous multi-agent systems via output regulation approach, IEEE Trans. Circuits II, 68 (2021), 281–285. http://doi.org/10.1109/TCSII.2020.2993057 doi: 10.1109/TCSII.2020.2993057
    [9] C. Altafini, Consensus problems on networks with antagonistic interactions, IEEE Trans. Autom. Control, 58 (2013), 935–946. http://doi.org/10.1109/TAC.2012.2224251 doi: 10.1109/TAC.2012.2224251
    [10] Y. Yang, J. Tan, D. Yue, X. Xie, W. Yue, Observer-Based containment control for a class of nonlinear multiagent systems with uncertainties, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 588–600. http://doi.org/10.1109/TSMC.2018.2875515 doi: 10.1109/TSMC.2018.2875515
    [11] W. Wang, H. Liang, Y. Pan, T. Li, Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer, IEEE Trans. Cybern., 50 (2020), 3879–3891. http://doi.org/10.1109/TCYB.2020.2969499 doi: 10.1109/TCYB.2020.2969499
    [12] Y. Zhou, H. Zhang, L. Yu, S. Sun, Cooperative bipartite containment control for heterogeneous networks with structurally balanced graph, IEEE Trans. Circuits II, 68 (2021), 2885–2889. http://doi.org/10.1109/TCSII.2021.3059074 doi: 10.1109/TCSII.2021.3059074
    [13] X. Zhang, J. Wu, X. Zhan, T. Han, H. Yan, Observer-based adaptive time-varying formation-containment tracking for multi-agent system with bounded unknown input, IEEE Trans. Syst. Man Cybern. Syst., in press. http://doi.org/10.1109/TSMC.2022.3199410
    [14] W. Jiang, G. Wen, Z. Peng, T. Huang, A. Rahmani, Fully distributed formation-containment control of heterogeneous linear multiagent systems, IEEE Trans. Autom. Control, 64 (2019), 3889–3896. http://doi.org/10.1109/TAC.2018.2887409 doi: 10.1109/TAC.2018.2887409
    [15] Y. Liu, H. Zhang, Z. Shi, Z. Gao, Neural-network-based finite-time bipartite containment control for fractional-order multi-agent systems, IEEE Trans. Neural Netw. Learn. Syst., in press. http://doi.org/10.1109/TNNLS.2022.3143494
    [16] Z. Liu, X. Zhan, T. Han, H. Yan, Distributed adaptive finite-time bipartite containment control of linear multi-agent systems, IEEE Trans. Circuits II, 69 (2022), 4354–4358. http://doi.org/10.1109/TCSII.2022.3180118 doi: 10.1109/TCSII.2022.3180118
    [17] L. Zhao, J. Yu, Q. Wang, Adaptive finite-time containment control of uncertain multiple manipulator systems, IEEE Trans. Cybern., 52 (2022), 2067–2071. http://doi.org/10.1109/TCYB.2020.2981090 doi: 10.1109/TCYB.2020.2981090
    [18] Y. Li, F. Qu, S. Tong, Observer-based fuzzy adaptive finite-time containment control of nonlinear multiagent systems with input delay, IEEE Trans. Cybern., 51 (2021), 126–137. http://doi.org/10.1109/TCYB.2020.2970454 doi: 10.1109/TCYB.2020.2970454
    [19] W. Xiao, H. Ren, Q. Zhou, H. Li, R. Lu, Distributed finite-time containment control for nonlinear multiagent systems with mismatched disturbances, IEEE Trans. Cybern., 52 (2022), 6939–6948. http://doi.org/10.1109/TCYB.2020.3042168 doi: 10.1109/TCYB.2020.3042168
    [20] C. Yuan, W. Zeng, Output containment control of heterogeneous multi-agent systems with leaders of bounded inputs: An adaptive finite-time observer approach, J. Franklin Inst., 356 (2019), 3419–3442. http://doi.org/10.1016/j.jfranklin.2018.12.022 doi: 10.1016/j.jfranklin.2018.12.022
    [21] T. Xu, G. Lv, Z. Duan, Z. Sun, J. Yu, Distributed fixed-time triggering-based containment control for networked nonlinear agents under directed graphs, IEEE Trans. Circuits I, 67 (2020), 3541–3552. http://doi.org/10.1109/TCSI.2020.2991101 doi: 10.1109/TCSI.2020.2991101
    [22] L. Wang, X. Liu, J. Cao, X. Hu, Fixed-time containment control for nonlinear multi-agent systems with external disturbances, IEEE Trans. Circuits II, 69 (2022), 459–463. http://doi.org/10.1109/TCSII.2021.3091484 doi: 10.1109/TCSII.2021.3091484
    [23] Q. Ma, G. Zhou, E. Li, Adaptive bipartite output consensus of heterogeneous linear multi-agent systems with antagonistic interactions, Neurocomputing, 373 (2020), 50–55. http://doi.org/10.1016/j.neucom.2019.09.067 doi: 10.1016/j.neucom.2019.09.067
    [24] D. Meng, Bipartite containment tracking of signed networks, Automatica, 79 (2017), 282–289. http://doi.org/10.1016/j.automatica.2017.01.044 doi: 10.1016/j.automatica.2017.01.044
    [25] H. Zhang, Y. Zhou, Y. Liu, J. Sun, Cooperative bipartite containment control for multiagent systems based on adaptive distributed observer, IEEE Trans. Cybern., 52 (2022), 5432–5440. http://doi.org/10.1109/TCYB.2020.3031933 doi: 10.1109/TCYB.2020.3031933
    [26] Z. Zhu, B. Hu, Z. Guan, D. Zhang, T. Li, Observer-based bipartite containment control for singular multi-agent systems over signed digraphs, IEEE Trans. Circuits I, 68 (2021), 444–457. http://doi.org/10.1109/TCSI.2020.3026323 doi: 10.1109/TCSI.2020.3026323
    [27] Q. Zhou, W. Wang, H. Liang, M. Basin, B. Wang, Observer-based event-triggered fuzzy adaptive bipartite containment control of multiagent systems with input quantization, IEEE Trans. Fuzzy Syst., 29 (2021), 372–384. http://doi.org/10.1109/TFUZZ.2019.2953573 doi: 10.1109/TFUZZ.2019.2953573
    [28] Y. Wu, D. Meng, Z. Wu, Bipartite containment fluctuation behaviors of cooperative-antagonistic networks with time-varying topologies, IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), 7391–7400. http://doi.org/10.1109/TSMC.2022.3154757 doi: 10.1109/TSMC.2022.3154757
    [29] L. Wang, J. Wu, X. Zhan, T. Han, H. Yan, Fixed-time bipartite containment of multi-agent systems subject to disturbance, IEEE Access, 8 (2020), 77679–77688. http://doi.org/10.1109/ACCESS.2020.2989517 doi: 10.1109/ACCESS.2020.2989517
    [30] Y. Wu, H. Ma, M. Chen, H. Li, Observer-based fixed-time adaptive fuzzy bipartite containment control for multi-agent systems with unknown hysteresis, IEEE Trans. Fuzzy Syst., 30 (2021), 1302–1312. http://doi.org/10.1109/TFUZZ.2021.3057987 doi: 10.1109/TFUZZ.2021.3057987
    [31] Z. Zhu, Z. Guan, Y. Chen, X. Zheng, Finite-time and fixed-time bipartite containment control of cooperative-antagonistic networks: a unified framework, 2022. http://doi.org/10.36227/techrxiv.19212888
    [32] X. Guo, H. Ma, H. Liang, H. Zhang, Command-filter-based fixed-time bipartite containment control for a class of stochastic multiagent systems, IEEE Trans. Syst. Man Cybern. Syst., 52 (2021), 3519–3529. http://doi.org/10.1109/TSMC.2021.3072650 doi: 10.1109/TSMC.2021.3072650
    [33] H. Zhang, J. Duan, Y. Wang, Z. Gao, Bipartite fixed-time output consensus of heterogeneous linear multiagent systems, IEEE Trans. Cybern., 51 (2021), 548–557. http://doi.org/10.1109/TCYB.2019.2936009 doi: 10.1109/TCYB.2019.2936009
  • This article has been cited by:

    1. Jehad Alzabut, Said R. Grace, Jagan Mohan Jonnalagadda, Shyam Sundar Santra, Bahaaeldin Abdalla, Higher-Order Nabla Difference Equations of Arbitrary Order with Forcing, Positive and Negative Terms: Non-Oscillatory Solutions, 2023, 12, 2075-1680, 325, 10.3390/axioms12040325
    2. Abdullah Özbekler, Kübra Uslu İşler, Jehad Alzabut, Sturmian comparison theorem for hyperbolic equations on a rectangular prism, 2024, 9, 2473-6988, 4805, 10.3934/math.2024232
    3. Hasib Khan, Jehad Alzabut, J.F. Gómez-Aguilar, Praveen Agarwal, Piecewise mABC fractional derivative with an application, 2023, 8, 2473-6988, 24345, 10.3934/math.20231241
    4. Jehad Alzabut, Said R. Grace, Shyam Sundar Santra, Mohammad Esmael Samei, Oscillation Criteria for Even-Order Nonlinear Dynamic Equations with Sublinear and Superlinear Neutral Terms on Time Scales, 2024, 23, 1575-5460, 10.1007/s12346-024-00961-w
    5. Osama Moaaz, Asma Al-Jaser, Functional differential equations of the neutral type: Oscillatory features of solutions, 2024, 9, 2473-6988, 16544, 10.3934/math.2024802
    6. S. Sangeetha, S. K. Thamilvanan, S. S. Santra, S. Noeiaghdam, M. Abdollahzadeh, Property \bar{A} of third-order noncanonical functional differential equations with positive and negative terms, 2023, 8, 2473-6988, 14167, 10.3934/math.2023724
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1803) PDF downloads(59) Cited by(1)

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog