It is well-known fact that fuzzy interval-valued functions (F-I-V-Fs) are generalizations of interval-valued functions (I-V-Fs), and inclusion relation and fuzzy order relation on interval space and fuzzy space are two different concepts. Therefore, by using fuzzy order relation (FOR), we derive inequalities of Hermite-Hadamard (H·H) and Hermite-Hadamard Fejér (H·H Fejér) like for harmonically convex fuzzy interval-valued functions by applying fuzzy Riemann integrals. Moreover, we establish the relation between fuzzy integral inequalities and fuzzy products of harmonically convex fuzzy interval-valued functions. The outcomes of this study are generalizations of many known results which can be viewed as an application of a defined new version of inequalities.
Citation: Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti. Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions[J]. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
[1] | Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710 |
[2] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa . Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals. AIMS Mathematics, 2022, 7(1): 1507-1535. doi: 10.3934/math.2022089 |
[3] | Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637 |
[4] | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin . Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities. AIMS Mathematics, 2024, 9(7): 17696-17715. doi: 10.3934/math.2024860 |
[5] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[6] | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241 |
[7] | Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman . Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for $ \left({p}, \mathfrak{J}\right) $-convex fuzzy-interval-valued functions. AIMS Mathematics, 2023, 8(3): 7437-7470. doi: 10.3934/math.2023374 |
[8] | Dawood Khan, Saad Ihsan Butt, Asfand Fahad, Yuanheng Wang, Bandar Bin Mohsin . Analysis of superquadratic fuzzy interval valued function and its integral inequalities. AIMS Mathematics, 2025, 10(1): 551-583. doi: 10.3934/math.2025025 |
[9] | Waqar Afzal, Sayed M. Eldin, Waqas Nazeer, Ahmed M. Galal . Some integral inequalities for harmonical $ cr $-$ h $-Godunova-Levin stochastic processes. AIMS Mathematics, 2023, 8(6): 13473-13491. doi: 10.3934/math.2023683 |
[10] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
It is well-known fact that fuzzy interval-valued functions (F-I-V-Fs) are generalizations of interval-valued functions (I-V-Fs), and inclusion relation and fuzzy order relation on interval space and fuzzy space are two different concepts. Therefore, by using fuzzy order relation (FOR), we derive inequalities of Hermite-Hadamard (H·H) and Hermite-Hadamard Fejér (H·H Fejér) like for harmonically convex fuzzy interval-valued functions by applying fuzzy Riemann integrals. Moreover, we establish the relation between fuzzy integral inequalities and fuzzy products of harmonically convex fuzzy interval-valued functions. The outcomes of this study are generalizations of many known results which can be viewed as an application of a defined new version of inequalities.
Hermite and Hadamard's inequality [1,2] is one of the most well-known inequalities in convex function theory, with a geometrical interpretation and numerous applications. The H·H inequality is defined as follows for the convex function Ψ:K→R on an interval K=[u,ν]:
Ψ(u+ν2)≤1ν−u∫νuΨ(x)dx≤Ψ(u)+Ψ(ν)2, | (1) |
for all u,ν∈K.
If f is concave, the inequalities in (1) hold in the reversed direction. We should point out that Hermite-Hadamard inequality is a refinement of the concept of convexity, and it follows naturally from Jensen's inequality. In recent years, the Hermite-Hadamard inequality for convex functions has gotten a lot of attention, and a lot of improvements and generalizations have been examined; see [3,4,5,6,7,8,9,10,11,12] and the references therein.
Interval analysis, on the other hand, is a subset of set-valued analysis, which is the study of sets in the context of mathematical analysis and topology. It was created as a way to deal with interval uncertainty, which can be found in many mathematical or computer models of deterministic real-world phenomena. Archimedes' method, which is used to calculate the circumference of a circle, is a historical example of an interval enclosure. Moore, who is credited with being the first user of intervals in computer mathematics, published the first book on interval analysis in 1966, see [13]. Following the publication of his book, a number of scientists began to research the theory and applications of interval arithmetic. Interval analysis is now a useful technique in a variety of fields that are interested in ambiguous data because of its applications. Computer graphics, experimental and computational physics, error analysis, robotics, and many other fields have applications.
In recent years, several major inequalities (Hermite-Hadamard, Ostrowski, etc.) for interval-valued functions have been studied. Chalco-Cano et al. used the Hukuhara derivative for interval-valued functions to construct Ostrowski type inequalities for interval-valued functions in [14,15]. For interval-valued functions, Román-Flores et al. established Minkowski and Beckenbach's inequalities in [18]. For the rest, see [16,17,18,19,20]. Inequalities, on the other hand, were investigated for the more generic set-valued maps. Sadowska, for example, presented the Hermite-Hadamard inequality in [21]. Other investigations can be found at [22,23].
Recently, Khan et al. [24] introduced the new class of convex fuzzy mappings is known as (h1,h2)-convex F-I-V-Fs by means of FOR such that:
Let h1,h2:[0,1]⊆K=[u,υ]→R+ such that h1,h2≢0. Then F-I-V-F ˜Ψ:K=[u,υ]→FC(R) is said to be (h1,h2)-convex on [u,υ] if
˜Ψ(ξw+(1−ξ)y)≼h1(ξ)h2(1−ξ)˜Ψ(w)˜+h1(1−ξ)h2(ξ)˜Ψ(y), | (2) |
for all w,y∈[u,υ],ξ∈[0,1].
And they also presented the following new version of H·H type inequality for (h1,h2)-convex F-I-V-F involving fuzzy-interval Riemann integrals:
Let ˜Ψ:[u,υ]→F0 be a (h1,h2)-convex F-I-V-F with h1,h2:[0,1]→R+ and h1(12)h2(12)≠0. Then, from θ-levels, we get the collection of I-V-Fs Ψθ:[u,υ]⊂R→K+C are given by Ψθ(ω)=[Ψ∗(ω,θ),Ψ∗(ω,θ)] for all ω∈[u,υ] and for all θ∈[0,1]. If ˜Ψ is fuzzy-interval Riemann integrable (in short, FR-integrable), then
12h1(12)h2(12)˜Ψ(u+υ2)≼1υ−u(FR)∫υu˜Ψ(ω)dω≼[˜Ψ(u)˜+˜Ψ(υ)]∫10h1(ξ)h2(1−ξ)dξ. | (3) |
If h1(ξ)=ξ and h2(ξ)≡1, then from (3), we get following the result for convex F-I-V-F:
˜Ψ(u+υ2)≼1υ−u(FR)∫υu˜Ψ(ω)dω≼˜Ψ(u)˜+˜Ψ(υ)2 |
A one step forward, Khan et al. introduced new classes of convex and generalized convex F-I-V-F, and derived new fractional H·H type and H·H type inequalities for convex F-I-V-F [25], h-convex F-I-V-F [26], (h1,h2)-preinvex F-I-V-F [27], log-s-convex F-I-V-Fs in the second sense [28], LR-log-h-convex I-V-Fs [29], harmonically convex F-I-V-Fs [30], coordinated convex F-I-V-Fs [31] and the references therein. We refer to the readers for further analysis of literature on the applications and properties of fuzzy-interval, and inequalities and generalized convex fuzzy mappings, see [32,33,34,35,36,37,38,39,40,41,42,43,44,45] and the references therein.
The goal of this study is to complete the fuzzy Riemann integrals for interval-valued functions and use these integrals to get the Hermite-Hadamard inequality. These integrals are also used to derive Hermite-Hadamard type inequalities for harmonically convex F-I-V-Fs.
In this section, we recall some basic preliminary notions, definitions and results. With the help of these results, some new basic definitions and results are also discussed.
We begin by recalling the basic notations and definitions. We define interval as,
[ω∗,ω∗]={w∈R:ω∗≤w≤ω∗andω∗,ω∗∈R},whereω∗≤ω∗. |
We write len [ω∗,ω∗]=ω∗−ω∗, If len [ω∗,ω∗]=0 then, [ω∗,ω∗] is called degenerate. In this article, all intervals will be non-degenerate intervals. The collection of all closed and bounded intervals of R is denoted and defined as KC={[ω∗,ω∗]:ω∗,ω∗∈Randω∗≤ω∗}. If ω∗≥0 then, [ω∗,ω∗] is called positive interval. The set of all positive interval is denoted by KC+ and defined as KC+={[ω∗,ω∗]:[ω∗,ω∗]∈KCandω∗≥0}.
We'll now look at some of the properties of intervals using arithmetic operations. Let [ϱ∗,ϱ∗],[s∗,s∗]∈KC and ρ∈R, then we have
[ϱ∗,ϱ∗]+[s∗,s∗]=[ϱ∗+s∗,ϱ∗+s∗], |
[ϱ∗,ϱ∗]×[s∗,s∗]=[min{ϱ∗s∗,ϱ∗s∗,ϱ∗s∗,ϱ∗s∗},max{ϱ∗s∗,ϱ∗s∗,ϱ∗s∗,ϱ∗s∗}], |
ρ.[ϱ∗,ϱ∗]={[ρϱ∗,ρϱ∗]ifρ>0{0}ifρ=0[ρϱ∗,ρϱ∗]ifρ<0. |
For [ϱ∗,ϱ∗],[s∗,s∗]∈KC, the inclusion "⊆" is defined by [ϱ∗,ϱ∗]⊆[s∗,s∗], if and only if s∗≤ϱ∗, ϱ∗≤s∗.
Remark 2.1. The relation "≤I" defined on KC by
[ϱ∗,ϱ∗]≤I[s∗,s∗]if and only ifϱ∗≤s∗,ϱ∗≤s∗, | (4) |
for all [ϱ∗,ϱ∗],[s∗,s∗]∈KC, it is an order relation, see [41]. For given [ϱ∗,ϱ∗],[s∗,s∗]∈KC, we say that [ϱ∗,ϱ∗]≤I[s∗,s∗] if and only if ϱ∗≤s∗,ϱ∗≤s∗ or ϱ∗≤s∗,ϱ∗<s∗.
Moore [13] initially proposed the concept of Riemann integral for I-V-F, which is defined as follows:
Theorem 2.2. [13] If Ψ:[u,ν]⊂R→KC is an I-V-F on such that Ψ(w)=[Ψ∗(w),Ψ∗(w)]. Then Ψ is Riemann integrable over [u,ν] if and only if, Ψ∗ and Ψ∗ both are Riemann integrable over [u,ν] such that
(IR)∫νuΨ(w)dw=[(R)∫νuΨ∗(w)dw,(R)∫νuΨ∗(w)dw]. | (5) |
Let R be the set of real numbers. A mapping ˜ζ:R→[0,1] called the membership function distinguishes a fuzzy subset set A of R. This representation is found to be acceptable in this study. F(R) also stand for the collection of all fuzzy subsets of R.
A real fuzzy interval ˜ζ is a fuzzy set in R with the following properties:
(1) ˜ζ is normal i.e. there exists w∈R such that ˜ζ(w)=1;
(2) ˜ζ is upper semi continuous i.e., for given w∈R, for every w∈R there exist ϵ>0 there exist δ>0 such that ˜ζ(w)−˜ζ(y)<ϵ for all y∈R with |w−y|<δ;
(3) ˜ζ is fuzzy convex i.e., ˜ζ((1−ξ)w+ξy)≥min(˜ζ(w),˜ζ(y)),∀w,y∈R and ξ∈[0,1];
(4) ˜ζ is compactly supported i.e., cl{w∈R|˜ζ(w)>0} is compact.
The collection of all real fuzzy intervals is denoted by F0.
Let ˜ζ∈F0 be real fuzzy interval, if and only if, θ-levels [˜ζ]θ is a nonempty compact convex set of R. This is represented by
[˜ζ]θ={w∈R|˜ζ(w)≥θ}, |
from these definitions, we have
[˜ζ]θ=[ζ∗(θ),ζ∗(θ)], |
where
ζ∗(θ)=inf{w∈R|˜ζ(w)≥θ}, |
ζ∗(θ)=sup{w∈R|˜ζ(w)≥θ}. |
Thus a real fuzzy interval ˜ζ can be identified by a parametrized triples
{(ζ∗(θ),ζ∗(θ),θ):θ∈[0,1]}. |
These two end point functions ζ∗(θ) and ζ∗(θ) are used to characterize a real fuzzy interval as a result.
Proposition 2.3. [18] Let ˜ζ,˜Θ∈F0. Then fuzzy order relation "≼" given on F0 by
˜ζ≼˜Θifandonlyif,[˜ζ]θ≤I[˜Θ]θforallθ∈(0,1], |
it is partial order relation.
We'll now look at some of the properties of fuzzy intervals using arithmetic operations. Let ˜ζ,˜Θ∈F0 and ρ∈R, then we have
[˜ζ˜+˜Θ]θ=[˜ζ]θ+[˜Θ]θ, | (6) |
[˜ζ˜×˜Θ]θ=[˜ζ]θ×[˜Θ]θ, | (7) |
[ρ.˜ζ]θ=ρ.[˜ζ]θ. | (8) |
For ψ∈F0 such that ˜ζ=˜Θ˜+˜ψ, we have the existence of the Hukuhara difference of ˜ζ and ˜Θ, which we call the H-difference of ˜ζ and ˜Θ, and denoted by ˜ζ˜−˜Θ. If H-difference exists, then
(ψ)∗(θ)=(ζ˜−Θ)∗(θ)=ζ∗(θ)−Θ∗(θ),(ψ)∗(θ)=(ζ˜−Θ)∗(θ)=ζ∗(θ)−Θ∗(θ). | (9) |
Definition 2.4. [38] A fuzzy-interval-valued map ˜Ψ:[u,υ]⊂R→F0 is called F-I-V-F. For each θ∈(0,1], whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]⊂R→KC are given by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] for all w∈[u,υ]. Here, for each θ∈(0,1], the end point real functions Ψ∗(.,θ),Ψ∗(.,θ):[u,υ]→R are called lower and upper functions of ˜Ψ.
The following conclusions can be drawn from the preceding literature review [38,39,40]:
Definition 2.5. Let ˜Ψ:[u,ν]⊂R→F0 be an F-I-V-F. Then fuzzy integral of ˜Ψ over [u,ν], denoted by (FR)∫νu˜Ψ(w)dw, it is given level-wise by
[(FR)∫νu˜Ψ(w)dw]θ=(IR)∫νuΨθ(w)dw={∫νuΨ(w,θ)dw:Ψ(w,θ)∈R([u,ν],θ)}, | (10) |
for all θ∈(0,1], where R([u,ν],θ) denotes the collection of Riemannian integrable functions of I-V-Fs. ˜Ψ is FR-integrable over [u,ν] if (FR)∫νu˜Ψ(w)dw∈F0. Note that, if Ψ∗(w,θ),Ψ∗(w,θ) are Lebesgue-integrable, then Ψ is fuzzy Aumann-integrable function over [u,ν], see [18,39,40].
Theorem 2.6. Let ˜Ψ:[u,ν]⊂R→F0 be a F-I-V-F, whose θ-levels define the family of I-V-Fs Ψθ:[u,ν]⊂R→KC are given by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] for all w∈[u,ν] and for all θ∈(0,1]. Then ˜Ψ is FR-integrable over [u,ν] if and only if, Ψ∗(w,θ) and Ψ∗(w,θ) both are R-integrable over [u,ν]. Moreover, if ˜Ψ is FR-integrable over [u,ν], then
[(FR)∫νu˜Ψ(w)dw]θ=[(R)∫νuΨ∗(w,θ)dw,(R)∫νuΨ∗(w,θ)dw]=(IR)∫νuΨθ(w)dw, | (11) |
for all θ∈(0,1]. For all θ∈(0,1],FR([u,ν],θ) denotes the collection of all FR-integrable F-I-V-Fs over [u,ν].
Definition 2.7. [42] A set K=[u,υ]⊂R+=(0,∞) is said to be convex set, if, for all w,y∈K,ξ∈[0,1], we have
wyξw+(1−ξ)y∈K. | (12) |
Definition 2.8. [42] The Ψ:[u,υ]→R+ is called harmonically convex function on [u,υ] if
Ψ(wyξw+(1−ξ)y)≤(1−ξ)Ψ(w)+ξΨ(y), | (13) |
for all w,y∈[u,υ],ξ∈[0,1], where Ψ(w)≥0 for all w∈[u,υ]. If (13) is reversed then, Ψ is called harmonically concave F-I-V-F on [u,υ].
Definition 2.11. [30] The F-I-V-F ˜Ψ:[u,υ]→F0 is called harmonically convex F-I-V-F on [u,υ] if
˜Ψ(wyξw+(1−ξ)y)≼(1−ξ)˜Ψ(w)˜+ξ˜Ψ(y), | (14) |
for all w,y∈[u,υ],ξ∈[0,1], where ˜Ψ(w)≽˜0, for all w∈[u,υ]. If (14) is reversed then, ˜Ψ is called harmonically concave F-I-V-F on [u,υ].
Definition 2.12. The F-I-V-F ˜Ψ:[u,υ]→F0 is called harmonically convex F-I-V-F on [u,υ] if
˜Ψ(wyξw+(1−ξ)y)≼(1−ξ)˜Ψ(w)˜+ξ˜Ψ(y), | (15) |
for all w,y∈[u,υ],ξ∈[0,1], where ˜Ψ(w)≽˜0, for all w∈[u,υ]. If (15) is reversed then, ˜Ψ is called harmonically concave F-I-V-F on [u,υ]. The set of all harmonically convex (harmonically concave) F-I-V-F is denoted by
HFSX([u,υ],F0), |
(HFSV([u,υ],F0)). |
Theorem 2.13. Let [u,υ] be harmonically convex set, and let ˜Ψ:[u,υ]→FC(R) be a F-I-V-F, whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]⊂R→K+C⊂KC are given by
Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)],∀w∈[u,υ]. | (16) |
for all w∈[u,υ], θ∈[0,1]. Then, ˜Ψ∈HFSX([u,υ],F0), if and only if, for all ∈[0,1],Ψ∗(w,θ), Ψ∗(w,θ)∈HSX([u,υ],R+).
Proof. The demonstration of proof is similar to proof of Theorem 2.12, see [26].
Example 2.14. We consider the F-I-V-Fs ˜Ψ:[0,2]→FC(R) defined by,
˜Ψ(w)(∂)={∂√w∂∈[0,√w]2−∂2√w∂∈(√w,2√w]0otherwise. |
Then, for each θ∈[0,1], we have Ψθ(w)=[θ√w,(2−θ)√w]. Since Ψ∗(w,θ), Ψ∗(w,θ)∈HSX([u,υ],R+), for each θ∈[0,1]. Hence ˜Ψ∈HFSX([u,υ],F0).
Remark 2.15. If T∗(u,θ)=T∗(υ,θ) with θ=1, then harmonically convex F-I-V-F reduces to the classical harmonically convex function, see [42].
In this section, we will prove two types of inequalities. First one is 𝐻.𝐻 and their variant forms, and the second one is H·H Fejér inequalities for convex F-I-V-Fs where the integrands are F-I-V-Fs.
Theorem 3.1. Let ˜Ψ∈HFSX([u,υ],F0), whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]⊂R→K+C are given by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] for all w∈[u,υ], θ∈[0,1]. If ˜Ψ∈FR([u,υ],θ), then
˜Ψ(2uυu+υ)≼uυυ−u∫υu˜Ψ(w)w2dw≼˜Ψ(u)˜+˜Ψ(υ)2. | (17) |
If ˜Ψ∈HFSV([u,υ],F0), then
˜Ψ(2uυu+υ)≽uυυ−u∫υu˜Ψ(w)w2dw≽˜Ψ(u)˜+˜Ψ(υ)2. | (18) |
Proof. Let ˜Ψ∈HFSX([u,υ],F0),. Then, by hypothesis, we have
2˜Ψ(2uυu+υ)≼˜Ψ(uυξu+(1−ξ)υ)˜+˜Ψ(uυ(1−ξ)u+ξυ). |
Therefore, for each θ∈[0,1], we have
2Ψ∗(2uυu+υ,θ)≤Ψ∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυ(1−ξ)u+ξυ,θ),2Ψ∗(2uυu+υ,θ)≤Ψ∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυ(1−ξ)u+ξυ,θ). |
Then
2∫10Ψ∗(2uυu+υ,θ)dξ≤∫10Ψ∗(uυξu+(1−ξ)υ,θ)dξ+∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)dξ,2∫10Ψ∗(2uυu+υ,θ)dξ≤∫10Ψ∗(uυξu+(1−ξ)υ,θ)dξ+∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)dξ. |
It follows that
Ψ∗(2uυu+υ,θ)≤uυυ−u∫υuΨ∗(w,θ)w2dw,Ψ∗(2uυu+υ,θ)≤uυυ−u∫υuΨ∗(w,θ)w2dw. |
That is
[Ψ∗(2uυu+υ,θ),Ψ∗(2uυu+υ,θ)]≤Iuυυ−u[∫υuΨ∗(w,θ)w2dw,∫υuΨ∗(w,θ)w2dw]. |
Thus,
˜Ψ(2uυu+υ)≼uυυ−u(FR)∫υu˜Ψ(w)w2dw. | (19) |
In a similar way as above, we have
uυυ−u(FR)∫υu˜Ψ(w)w2dw≼˜Ψ(u)˜+˜Ψ(υ)2. | (20) |
Combining (19) and (20), we have
˜Ψ(2uυu+υ)≼uυυ−u∫υu˜Ψ(w)w2dw≼˜Ψ(u)˜+˜Ψ(υ)2. |
Hence, the required result.
Remark 3.2. If Ψ∗(w,θ)=Ψ∗(w,θ) with θ=1, then Theorem 3.1 reduces to the result for classical harmonically convex function, see [42]:
Ψ(2uυu+υ)≤uυυ−u(R)∫υuΨ(w)w2dw≤Ψ(u)+Ψ(υ)2. |
Example 3.3. We consider the FIVFs ˜Ψ:[0,2]→FC(R), as in Example 2.14. Then, for each θ∈[0,1], we have Ψθ(w)=[θ√w,(2−θ)√w] is harmonically convex FIVF. Since, Ψ∗(w,θ)=θ√w,Ψ∗(w,θ)=(2−θ)√w. We now compute the following:
Ψ∗(2uυu+υ,θ)≤uυυ−u∫υuΨ∗(w,θ)w2dw≤Ψ∗(u,θ)+Ψ∗(υ,θ)2, |
Ψ∗(2uυu+υ,θ)=Ψ∗(0,θ)=0, |
uυυ−u∫υuΨ∗(w,θ)w2dw=02∫20θ√ww2dw=0, |
Ψ∗(u,θ)+Ψ∗(υ,θ)2=θ√2, |
for all θ∈[0,1]. That means
0≤0≤θ√2. |
Similarly, it can be easily show that
Ψ∗(2uυu+υ,θ)≤uυυ−u∫υuΨ∗(w,θ)w2dw≤Ψ∗(u,θ)+Ψ∗(υ,θ)2. |
for all θ∈[0,1], such that
Ψ∗(2uυu+υ,θ)=Ψ∗(0,θ)=0, |
uυυ−u∫υuΨ∗(w,θ)w2dw=02∫20(2−θ)√ww2dw=0, |
Ψ∗(u,θ)+Ψ∗(υ,θ)2=(2−θ)√2. |
From which, we have
0≤0≤(2−θ)√2, |
that is
[0,0]≤I[0,0]≤I1√2[θ,(2−θ)],forallθ∈[0,1]. |
Hence,
˜Ψ(2uυu+υ)≼uυυ−u∫υu˜Ψ(w)w2dw≼˜Ψ(u)˜+˜Ψ(υ)2. |
Theorem 3.4. Let ˜Ψ∈HFSX([u,υ],F0), whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]⊂R→K+C are given by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] for all w∈[u,υ], θ∈[0,1]. If ˜Ψ∈FR([u,υ],θ), then
˜Ψ(2uυu+υ)≼⪧2≼uυυ−u(FR)∫υu˜Ψ(w)w2dw≼⪧1≼˜Ψ(u)˜+˜Ψ(υ)2, | (21) |
where
⪧1=12[˜Ψ(u)˜+˜Ψ(υ)2˜+˜Ψ(2uυu+υ)], |
⪧2=12[˜Ψ(4uυu+3υ)˜+˜Ψ(4uυ3u+υ)], |
and ⪧1=[⪧1∗,⪧1∗], ⪧2=[⪧2∗,⪧2∗]. If ˜Ψ∈HFSV([u,υ],F0), then inequality (21) is reversed.
Proof. Take [u,2uυu+υ], we have
2˜Ψ(u4uυu+υξu+(1−ξ)2uυu+υ+u4uυu+υ(1−ξ)u+ξ2uυu+υ) |
≼˜Ψ(u2uυu+υξu+(1−ξ)2uυu+υ)˜+˜Ψ(u2uυu+υ(1−ξ)u+ξ2uυu+υ). |
Therefore, for every θ∈[0,1], we have
2Ψ∗(u4uυu+υξu+(1−ξ)2uυu+υ+u4uυu+υ(1−ξ)u+ξ2uυu+υ,θ)≤Ψ∗(u2uυu+υξu+(1−ξ)2uυu+υ,θ)+Ψ∗(u2uυu+υ(1−ξ)u+ξ2uυu+υ,θ),2Ψ∗(u4uυu+υξu+(1−ξ)2uυu+υ+u4uυu+υ(1−ξ)u+ξ2uυu+υ,θ)≤Ψ∗(u2uυu+υξu+(1−ξ)2uυu+υ,θ)+Ψ∗(u2uυu+υ(1−ξ)u+ξ2uυu+υ,θ). |
In consequence, we obtain
12Ψ∗(4uυu+3υ,θ)≤uυυ−u∫2uυu+υuΨ∗(w,θ)w2dw,12Ψ∗(4uυu+3υ,θ)≤uυυ−u∫2uυu+υuΨ∗(w,θ)w2dw. |
That is
12[Ψ∗(4uυu+3υ,θ),Ψ∗(4uυu+3υ,θ)]≤Iuυυ−u[∫2uυu+υuΨ∗(w,θ)w2dw,∫2uυu+υuΨ∗(w,θ)w2dw]. |
It follows that
12˜Ψ(4uυu+3υ)≼uυυ−u∫2uυu+υu˜Ψ(w)w2dw. | (22) |
In a similar way as above, we have
12˜Ψ(4uυ3u+υ)≼uυυ−u∫υ2uυu+υ˜Ψ(w)w2dw. | (23) |
Combining (22) and (23), we have
12[˜Ψ(4uυu+3υ)˜+˜Ψ(4uυ3u+υ)]≼uυυ−u∫υu˜Ψ(w)w2dw. | (24) |
Therefore, for every θ∈[0,1], by using Theorem 3.1, we have
Ψ∗(2uυu+υ,θ)≤12[Ψ∗(4uυu+3υ,θ)+Ψ∗(4uυ3u+υ,θ)],Ψ∗(2uυu+υ,θ)≤12[Ψ∗(4uυu+3υ,θ)+Ψ∗(4uυ3u+υ,θ)], |
=⪧2∗,=⪧2∗, |
≤uυυ−u∫υuΨ∗(w,θ)w2dw,≤uυυ−u∫υuΨ∗(w,θ)w2dw, |
≤12[Ψ∗(u,θ)+Ψ∗(υ,θ)2+Ψ∗(2uυu+υ,θ)],≤12[Ψ∗(u,θ)+Ψ∗(υ,θ)2+Ψ∗(2uυu+υ,θ)], |
=⪧1∗,=⪧1∗, |
≤12[Ψ∗(u,θ)+Ψ∗(υ,θ)2+12(Ψ∗(u,θ)+Ψ∗(υ,θ))],≤12[Ψ∗(u,θ)+Ψ∗(υ,θ)2+12(Ψ∗(u,θ)+Ψ∗(υ,θ))], |
=12[Ψ∗(u,θ)+Ψ∗(υ,θ)],=12[Ψ∗(u,θ)+Ψ∗(υ,θ)], |
that is
˜Ψ(2uυu+υ)≼⪧2≼uυυ−u(FR)∫υu˜Ψ(w)w2dw≼⪧1≼12[˜Ψ(u)˜+˜Ψ(υ)]. |
Theorem 3.5. Let ˜Ψ∈HFSX([u,υ],F0) and ˜P∈HFSX([u,υ],F0), whose θ-levels Ψθ,Pθ:[u,υ]⊂R→K+C are defined by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] and Pθ(w)=[P∗(w,θ),P∗(w,θ)] for all w∈[u,υ], θ∈[0,1], respectively. If ˜Ψ˜×˜P∈FR([u,υ],θ), then
uυυ−u(FR)∫υu˜Ψ(w)˜×˜P(w)w2dw≼˜M(u,υ)3˜+˜N(u,υ)6, |
where ˜M(u,υ)=˜Ψ(u)˜×˜P(u)˜+˜Ψ(υ)˜×˜P(υ),˜N(u,υ)=˜Ψ(u)˜×˜P(υ)˜+˜Ψ(υ)˜×˜P(u), and Mθ(u,υ)=[M∗((u,υ),θ),M∗((u,υ),θ)] and Nθ(u,υ)=[N∗((u,υ),θ),N∗((u,υ),θ)].
Proof. Since ˜Ψ,˜P are harmonically convex F-I-V-Fs then, for each θ∈[0,1] we have
Ψ∗(uυ(1−ξ)u+ξυ,θ)≤ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ),Ψ∗(uυ(1−ξ)u+ξυ,θ)≤ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ). |
And
P∗(uυ(1−ξ)u+ξυ,θ)≤ξP∗(u,θ)+(1−ξ)P∗(υ,θ),P∗(uυ(1−ξ)u+ξυ,θ)≤ξP∗(u,θ)+(1−ξ)P∗(υ,θ). |
From the definition of harmonically convexity of F-I-V-Fs it follows that ˜Ψ(w)≽˜0 and ˜P(w)≽˜0, so
Ψ∗(uυ(1−ξ)u+ξυ,θ)×P∗(uυ(1−ξ)u+ξυ,θ)≤(ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ))(ξP∗(u,θ)+(1−ξ)P∗(υ,θ))=Ψ∗(u,θ)×P∗(u,θ)[(ξ)(ξ)]+Ψ∗(υ,θ)×P∗(υ,θ)[(1−ξ)(1−ξ)]+Ψ∗(u,θ)P∗(υ,θ)ξ(1−ξ)+Ψ∗(υ,θ)×P∗(u,θ)ξ(1−ξ), |
Ψ∗(uυ(1−ξ)u+ξυ,θ)×P∗(uυ(1−ξ)u+ξυ,θ)≤(ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ))(ξP∗(u,θ)+(1−ξ)P∗(υ,θ))=Ψ∗(u,θ)×P∗(u,θ)[(ξ)(ξ)]+Ψ∗(υ,θ)×P∗(υ,θ)[(1−ξ)(1−ξ)]+Ψ∗(u,θ)×P∗(υ,θ)ξ(1−ξ)+Ψ∗(υ,θ)×P∗(u,θ)ξ(1−ξ). |
Integrating both sides of above inequality over [0, 1] we get
∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)×P∗(uυ(1−ξ)u+ξυ,θ)=uυυ−u∫υuΨ∗(w,θ)×P∗(w,θ)w2dw≤(Ψ∗(u,θ)×P∗(u,θ)+Ψ∗(υ,θ)×P∗(υ,θ))∫10(ξ)(ξ)dξ+(Ψ∗(u,θ)×P∗(υ,θ)+Ψ∗(υ,θ)×P∗(u,θ))∫10ξ(1−ξ)dξ,∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)×P∗(uυ(1−ξ)u+ξυ,θ)=uυυ−u∫υuΨ∗(w,θ)×P∗(w,θ)w2dw |
≤(Ψ∗(u,θ)×P∗(u,θ)+Ψ∗(υ,θ)×P∗(υ,θ))∫10(ξ)(ξ)dξ |
+(Ψ∗(u,θ)×P∗(υ,θ)+Ψ∗(υ,θ)×P∗(u,θ))∫10ξ(1−ξ)dξ. |
It follows that,
uυυ−u∫υuΨ∗(w,θ)×P∗(w,θ)dw≤M∗((u,υ),θ)3+N∗((u,υ),θ)6uυυ−u∫υuΨ∗(w,θ)×P∗(w,θ)dw≤M∗((u,υ),θ)3+N∗((u,υ),θ)6, |
that is
uυυ−u[∫υuΨ∗(w,θ)×P∗(w,θ)dw,∫υuΨ∗(w,θ)×P∗(w,θ)dw] |
≤I13[M∗((u,υ),θ),M∗((u,υ),θ)]+16[N∗((u,υ),θ),N∗((u,υ),θ)]. |
Thus,
uυυ−u(FR)∫υu˜Ψ(w)˜×˜P(w)w2dw≼˜M(u,υ)3˜+˜N(u,υ)6. |
Theorem 3.6. Let ˜Ψ,˜P∈HFSX([u,υ],F0), whose θ-levels Ψθ,Pθ:[u,υ]⊂R→K+C are defined by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] and Pθ(w)=[P∗(w,θ),P∗(w,θ)] for all w∈[u,υ], θ∈[0,1], respectively. If ˜Ψ˜×˜P∈FR([u,υ],θ), then
2˜Ψ(2uυu+υ)˜×˜P(2uυu+υ)≼uυυ−u(FR)∫υu˜Ψ(w)˜×˜P(w)w2dw+˜M(u,υ)6˜+˜N(u,υ)3, |
where ˜M(u,υ)=˜Ψ(u)˜×˜P(u)˜+˜Ψ(υ)˜×˜P(υ),˜N(u,υ)=˜Ψ(u)˜×˜P(υ)˜+˜Ψ(υ)˜×˜P(u), and Mθ(u,υ)=[M∗((u,υ),θ),M∗((u,υ),θ)] and Nθ(u,υ)=[N∗((u,υ),θ),N∗((u,υ),θ)].
Proof. By hypothesis, for each θ∈[0,1], we have
Ψ∗(2uυu+υ,θ)×J∗(2uυu+υ,θ)Ψ∗(2uυu+υ,θ)×J∗(2uυu+υ,θ) |
≤14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)]+14[Ψ∗(uυ(1−ξ)u+ξυ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυ(1−ξ)u+ξυ,θ)],≤14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)]+14[Ψ∗(uυ(1−ξ)u+ξυ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυ(1−ξ)u+ξυ,θ)], |
≤14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυ(1−ξ)u+ξυ,θ)×J∗(uυξu+(1−ξ)υ,θ)]+14[(ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ))×((1−ξ)J∗(u,θ)+ξJ∗(υ,θ))+((1−ξ)Ψ∗(u,θ)+ξΨ∗(υ,θ))×(ξJ∗(u,θ)+(1−ξ)J∗(υ,θ))],≤14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υθ)×J∗(uυξu+(1−ξ)υ,θ)]+14[(ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ))×((1−ξ)J∗(u,θ)+ξJ∗(υ,θ))+((1−ξ)Ψ∗(u,θ)+ξΨ∗(υ,θ))×(ξJ∗(u,θ)+(1−ξ)J∗(υ,θ))], |
=14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)]+14[{(ξ)(ξ)+(1−ξ)(1−ξ)}N∗((u,υ),θ)+{ξ(1−ξ)+ξ(1−ξ)}M∗((u,υ),θ)],=14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)]+14[{(ξ)(ξ)+(1−ξ)(1−ξ)}N∗((u,υ),θ)+{ξ(1−ξ)+ξ(1−ξ)}M∗((u,υ),θ)]. |
Integrating over [0,1], we have
2Ψ∗(2uυu+υ,θ)×J∗(2uυu+υ,θ)≤1υ−u(R)∫υuΨ∗(w,θ)×J∗(w,θ)dw+M∗((u,υ),θ)∫10ξ(1−ξ)dξ+N∗((u,υ),θ)∫10(ξ)(ξ)dξ,2Ψ∗(2uυu+υ,θ)×J∗(2uυu+υ,θ)≤1υ−u(R)∫υuΨ∗(w,θ)×J∗(w,θ)dw+M∗((u,υ),θ)∫10ξ(1−ξ)dξ+N∗((u,υ),θ)∫10(ξ)(ξ)dξ, |
that is
2˜Ψ(2uυu+υ)˜×˜P(2uυu+υ)≼uυυ−u(FR)∫υu˜Ψ(w)˜×˜P(w)w2dw+˜M(u,υ)6˜+˜N(u,υ)3. |
The theorem has been proved.
First, we will purpose the following inequality linked with the right part of the classical H−H Fejér inequality for harmonically convex F-I-V-Fs through fuzzy order relation, which is said to be 2nd fuzzy H−H Fejér inequality.
Theorem 3.7. (Second fuzzy H−H Fejér inequality) Let ˜Ψ∈HFSX([u,υ],F0), whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]⊂R→K+C are given by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] for all w∈[u,υ], θ∈[0,1]. If ˜Ψ∈FR([u,υ],θ) and ∇:[u,υ]→R,∇(11u+1υ−1w)=∇(w)≥0, then
(FR)∫νu˜Ψ(w)w2∇(w)dw≼˜Ψ(u)˜+˜Ψ(ν)2∫10∇(w)w2dw. | (25) |
If ˜Ψ∈HFSV([u,υ],F0), then inequality (25) is reversed.
Proof. Let Ψ be a harmonically convex F-I-V-F. Then, for each θ∈[0,1], we have
Ψ∗(uυ(1−ξ)u+ξυ,θ)∇(uυ(1−ξ)u+ξυ) |
≤(ξΨ∗(u,θ)+(1−ξ)Ψ∗(ν,θ))∇(uυ(1−ξ)u+ξυ), |
Ψ∗(uυ(1−ξ)u+ξυ,θ)∇(uυ(1−ξ)u+ξυ) |
≤(ξΨ∗(u,θ)+(1−ξ)Ψ∗(ν,θ))∇(uυ(1−ξ)u+ξυ). | (26) |
And
Ψ∗(uυξu+(1−ξ)υ,θ)∇(uυξu+(1−ξ)υ) |
≤((1−ξ)Ψ∗(u,θ)+ξΨ∗(ν,θ))∇(uυξu+(1−ξ)υ), |
Ψ∗(uυξu+(1−ξ)υ,θ)∇(uυξu+(1−ξ)υ) |
≤((1−ξ)Ψ∗(u,θ)+ξΨ∗(ν,θ))∇(uυξu+(1−ξ)υ). | (27) |
After adding (26) and (27), and integrating over [0,1], we get
∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)∇(uυ(1−ξ)u+ξυ)dξ |
+∫10Ψ∗(uυξu+(1−ξ)υ,θ)∇(uυξu+(1−ξ)υ)dξ≤∫10[Ψ∗(u,θ){ξ∇(uυ(1−ξ)u+ξυ)+(1−ξ)∇(uυξu+(1−ξ)υ)}+Ψ∗(ν,θ){(1−ξ)∇(uυ(1−ξ)u+ξυ)+ξ∇(uυξu+(1−ξ)υ)}]dξ,∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)∇(uυ(1−ξ)u+ξυ)dξ+∫10Ψ∗(uυξu+(1−ξ)υ,θ)∇(uυξu+(1−ξ)υ)dξ≤∫10[Ψ∗(u,θ){ξ∇(uυ(1−ξ)u+ξυ)+(1−ξ)∇(uυξu+(1−ξ)υ)}+Ψ∗(ν,θ){(1−ξ)∇(uυ(1−ξ)u+ξυ)+ξ∇(uυξu+(1−ξ)υ)}]dξ. |
=2Ψ∗(u,θ)∫10ξ∇(uυ(1−ξ)u+ξυ)dξ+2Ψ∗(ν,θ)∫10ξ∇(uυξu+(1−ξ)υ)dξ,=2Ψ∗(u,θ)∫10ξ∇(uυ(1−ξ)u+ξυ)dξ+2Ψ∗(ν,θ)∫10ξ∇(uυξu+(1−ξ)υ)dξ. |
Since ∇ is symmetric, then
=2[Ψ∗(u,θ)+Ψ∗(ν,θ)]∫10ξ∇(uυξu+(1−ξ)υ)dξ, |
=2[Ψ∗(u,θ)+Ψ∗(ν,θ)]∫10ξ∇(uυξu+(1−ξ)υ)dξ. | (28) |
Since
∫10Ψ∗(ξu+(1−ξ)ν,θ)∇(uυ(1−ξ)u+ξυ)dξ=∫10Ψ∗((1−ξ)u+ξν,θ)∇(uυξu+(1−ξ)υ)dξ=uυν−u∫νuΨ∗(w,θ)∇(w)dw∫10Ψ∗((1−ξ)u+ξν,θ)∇(uυξu+(1−ξ)υ)dξ=∫10Ψ∗(ξu+(1−ξ)ν,θ)∇(uυξu+(1−ξ)υ)dξ |
=uυν−u∫νuΨ∗(w,θ)∇(w)dw. | (29) |
From (28) and (29), we have
uυν−u∫νuΨ∗(w,θ)∇(w)dw≤[Ψ∗(u,θ)+Ψ∗(ν,θ)]∫10ξ∇(uυξu+(1−ξ)υ)dξ,uυν−u∫νuΨ∗(w,θ)∇(w)dw≤[Ψ∗(u,θ)+Ψ∗(ν,θ)]∫10ξ∇(uυξu+(1−ξ)υ)dξ, |
that is
[uυν−u∫νuΨ∗(w,θ)∇(w)dw,uυν−u∫νuΨ∗(w,θ)∇(w)dw] |
≤I[Ψ∗(u,θ)+Ψ∗(ν,θ),Ψ∗(u,θ)+Ψ∗(ν,θ)]∫10ξ∇(uυξu+(1−ξ)υ)dξ, |
hence
uυν−u(FR)∫νu˜Ψ(w)w2∇(w)dw≼[˜Ψ(u)˜+˜Ψ(ν)]∫10ξ∇(uυξu+(1−ξ)υ)dξ, |
this concludes the proof.
Next, we construct first H·H Fejér inequality for harmonically convex F-I-V-F, which generalizes first H−H Fejér inequality for harmonically convex function.
Theorem 3.8. (First fuzzy fractional H−H Fejér inequality) Let ˜Ψ∈HFSX([u,υ],F0), whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]⊂R→K+C are given by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] for all w∈[u,υ], θ∈[0,1]. If ˜Ψ∈FR([u,ν],θ) and ∇:[u,υ]→R,∇(11u+1υ−1w)=∇(w)≥0, then
˜Ψ(2uνu+ν)∫νu˜Ψ(w)w2dw≼(FR)∫νu˜Ψ(w)w2∇(w)dw. | (30) |
If ˜Ψ∈HFSV([u,υ],F0), then inequality (30) is reversed.
Proof. Since Ψ is a harmonically convex, then for θ∈[0,1], we have
Ψ∗(2uνu+ν,θ)≤12(Ψ∗(uυ(1−ξ)u+ξυ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)) |
Ψ∗(2uνu+ν,θ)≤12(Ψ∗(uυ(1−ξ)u+ξυ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)). | (31) |
By multiplying (31) by ∇(uυ(1−ξ)u+ξυ)=∇(uυξu+(1−ξ)υ) and integrate it by ξ over [0,1], we obtain
Ψ∗(2uνu+ν,θ)∫10∇(uυξu+(1−ξ)υ)dξ |
≤12(∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)∇(uυξu+(1−ξ)υ)dξ+∫10Ψ∗(uυξu+(1−ξ)υ,θ)∇(uυξu+(1−ξ)υ)dξ) |
Ψ∗(2uνu+ν,θ)∫10∇(uυξu+(1−ξ)υ)dξ |
≤12(∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)∇(uυξu+(1−ξ)υ)dξ+∫10Ψ∗(uυξu+(1−ξ)υ,θ)∇(uυξu+(1−ξ)υ)dξ). | (32) |
Since
∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)∇(uυ(1−ξ)u+ξυ)dξ=∫10Ψ∗(uυξu+(1−ξ)υ,θ)∇(uυξu+(1−ξ)υ)dξ=uυν−u∫νuΨ∗(w,θ)∇(w)dw,∫10Ψ∗(uυξu+(1−ξ)υ,θ)∇(uυξu+(1−ξ)υ)dξ=∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)∇(uυ(1−ξ)u+ξυ)dξ |
=uυν−u∫νuΨ∗(w,θ)∇(w)dw. | (33) |
From (32) and (33), we have
Ψ∗(2uνu+ν,θ)≤1∫νu∇(w)dw∫νuΨ∗(w,θ)∇(w)dw,Ψ∗(2uνu+ν,θ)≤1∫νu∇(w)dw∫νuΨ∗(w,θ)∇(w)dw. |
From which, we have
[Ψ∗(2uνu+ν,θ),Ψ∗(2uνu+ν,θ)]≤I1∫νu∇(w)dw[∫νuΨ∗(w,θ)∇(w)dw,∫νuΨ∗(w,θ)∇(w)dw], |
that is
˜Ψ(2uνu+ν)∫νu˜Ψ(w)w2dw≼(FR)∫νu˜Ψ(w)w2∇(w)dw. |
Then we complete the proof.
Remark 3.9. If ∇(w)=1, then from Theorems 3.7 and 3.8, we obtain inequality (17). If Ψ∗(w,θ)=Ψ∗(w,θ) with θ=1, then Theorems 3.7 and 3.8 reduce to classical first and second classical H−H Fejér inequality for classical harmonically convex function.
Several novel conclusions in convex analysis and associated optimization theory can be obtained using this new class of functions known as harmonically convex F-I-V. The main findings include some new bounds with error estimations via fuzzy Riemann integrals. All of these papers aim to provide new estimations and optimal approaches. But, the main motivation of this paper is that we obtained new method by using fuzzy integrals for harmonically convex F-I-V-Fs calculus. The authors anticipate that this study may inspire more research in a variety of pure and applied sciences fields.
The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments and this work was supported by Taif University Researches Supporting Project number (TURSP-2020/326), Taif University, Taif, Saudi Arabia, and the authors T. Abdeljawad and B. Abdalla would like to thank Prince Sultan University for APC and for the support through the TAS research lab.
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
The authors declare that they have no competing interests.
[1] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA monographs, Victoria University, 2004. |
[2] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Elsevier, 1992. |
[3] |
F. X. Chen, A note on Hermite-Hadamard inequalities for products of convex functions, J. Appl. Math., 2013 (2013), 935020. doi: 10.1155/2013/935020. doi: 10.1155/2013/935020
![]() |
[4] |
S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones, 34 (2015), 323-341. doi: 10.4067/S0716-09172015000400002. doi: 10.4067/S0716-09172015000400002
![]() |
[5] |
S. S. Dragomir, Two mappings in connection to Hadamard's inequalities, J. Math. Anal. Appl., 167 (1992), 49-56. doi: 10.1016/0022-247X(92)90233-4. doi: 10.1016/0022-247X(92)90233-4
![]() |
[6] | S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341. |
[7] | B. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Collect., 6 (2003), 1-9. |
[8] |
J. R. Wang, X. Z. Li, C. Zhu, Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 655-666. doi: 10.36045/bbms/1382448186. doi: 10.36045/bbms/1382448186
![]() |
[9] | M. Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craioval Math. Comput. Sci. Ser., 47 (2020), 193-213. |
[10] | M. Z. Sarikaya, H. Yildirim, On generalization of the Riesz potential, Indian J. Math. Math. Sci., 3 (2007), 231-235. |
[11] |
F. Ertugral, M. Z. Sarikaya, Simpson type integral inequalities for generalized fractional integral, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 113 (2019), 3115-3124. doi: 10.1007/s13398-019-00680-x. doi: 10.1007/s13398-019-00680-x
![]() |
[12] |
K. L. Tseng, S. R. Hwang, New Hermite-Hadamard-type inequalities and their applications, Filomat, 30 (2016), 3667-3680. doi: 10.2298/FIL1614667T. doi: 10.2298/FIL1614667T
![]() |
[13] | R. E. Moore, Interval analysis, Prentice Hall, Englewood Cliffs, 1966. |
[14] | Y. Chalco-Cano, A. Flores-Franulič, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457-472. doi: 10.1590/S1807-03022012000300002. |
[15] | Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293-3300. doi: 10.1007/s00500-014-1483-6. |
[16] |
H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2018), 1306-1318. doi: 10.1007/s40314-016-0396-7. doi: 10.1007/s40314-016-0396-7
![]() |
[17] |
T. M. Costa, Jensen's inequality type integral for fuzzy-interval-valued functions, Fuzzy Sets Syst., 327 (2017), 31-47. doi: 10.1016/j.fss.2017.02.001. doi: 10.1016/j.fss.2017.02.001
![]() |
[18] | T. M. Costa, H. Román-Flores, Some integral inequalities for fuzzy-interval-valued functions, Inf. Sci., 420 (2017), 110-125. doi: 10.1016/j.ins.2017.08.055. |
[19] | A. Flores-Franulič, Y. Chalco-Cano, H. Román-Flores, An Ostrowski type inequality for interval-valued functions, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), (2013), 1459-1462. doi: 10.1109/IFSA-NAFIPS.2013.6608617. |
[20] | H. Román-Flores, Y. Chalco-Cano, G. N. Silva, A note on Gronwall type inequality for interval-valued functions, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), (2013), 1455-1458. doi: 10.1109/IFSA-NAFIPS.2013.6608616. |
[21] |
E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set valued functions, Results Math., 32 (1997), 332-337. doi: 10.1007/BF03322144. doi: 10.1007/BF03322144
![]() |
[22] |
F. C. Mitroi, K. Nikodem, S. Wasowicz, Hermite-Hadamard inequalities for convex set-valued functions, Demonstr. Math., 46 (2013), 655-662. doi: 10.1515/dema-2013-0483. doi: 10.1515/dema-2013-0483
![]() |
[23] | K. Nikodem, J. L. Sánchez, L. Sánchez, Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Math. Aeterna, 4 (2014), 979-987. |
[24] |
M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for (h1, h2)-convex fuzzy-interval-valued functions, Adv. Differ. Equations, 2021 (2021), 6-20. doi: 10.1186/s13662-021-03245-8. doi: 10.1186/s13662-021-03245-8
![]() |
[25] |
M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. doi: 10.3390/sym13040673. doi: 10.3390/sym13040673
![]() |
[26] |
M. B. Khan, P. O. Mohammed, M. A. Noor, A. M. Alsharif, K. I. Noor, New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation, AIMS Math., 6 (2021), 10964-10988. doi: 10.3934/math.2021637. doi: 10.3934/math.2021637
![]() |
[27] |
M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403-1418. doi: 10.2991/ijcis.d.210409.001. doi: 10.2991/ijcis.d.210409.001
![]() |
[28] |
M. B. Khan, L. Abdullah, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-h-convex fuzzy-interval-valued functions, Int. J. Comput. Intell. Syst., 14 (2021), 155. doi: 10.1007/s44196-021-00004-1. doi: 10.1007/s44196-021-00004-1
![]() |
[29] |
P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense, Complex Intell. Syst., 2021 (2021), 1-15. doi: 10.1007/s40747-021-00379-w. doi: 10.1007/s40747-021-00379-w
![]() |
[30] |
G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 2021 (2021), 1809-1822. doi: 10.2991/ijcis.d.210620.001. doi: 10.2991/ijcis.d.210620.001
![]() |
[31] |
M. B. Khan, P. O. Mohammed, M. A. Noor, K. M. Abualnaja, Fuzzy integral inequalities on coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552-6580. doi: 10.3934/mbe.2021325. doi: 10.3934/mbe.2021325
![]() |
[32] |
M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for LR-log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math. Inf. Sci., 15 (2021), 459-470. doi: 10.18576/amis/150408
![]() |
[33] |
M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. L. G. Guirao, Some new fractional estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order relation, Axioms, 10 (2021), 175. doi: 10.3390/axioms10030175. doi: 10.3390/axioms10030175
![]() |
[34] |
P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, On strongly generalized preinvex fuzzy mappings, J. Math., 2021 (2021), 6657602. doi: 10.1155/2021/6657602. doi: 10.1155/2021/6657602
![]() |
[35] |
M. B. Khan, M. A. Noor, K. I. Noor, A. T. Ab Ghani, L. Abdullah, Extended perturbed mixed variational-like inequalities for fuzzy mappings, J. Math., 2021 (2021), 6652930. doi: 10.1155/2021/6652930. doi: 10.1155/2021/6652930
![]() |
[36] |
M. B. Khan, M. A. Noor, K. I. Noor, H. Almusawa, K. S. Nisar, Exponentially preinvex fuzzy mappings and fuzzy exponentially mixed variational-like inequalities, Int. J. Anal. Appl., 19 (2021), 518-541. doi: 10.28924/2291-8639-19-2021-518. doi: 10.28924/2291-8639-19-2021-518
![]() |
[37] |
M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1856-1870. doi: 10.2991/ijcis.d.210616.001. doi: 10.2991/ijcis.d.210616.001
![]() |
[38] |
B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581-599. doi: 10.1016/j.fss.2004.08.001. doi: 10.1016/j.fss.2004.08.001
![]() |
[39] | R. Goetschel Jr., W. Voxman, Elementary fuzzy calculus, Fuzzy Sets Syst., 18 (1986), 31-43. doi: 10.1016/0165-0114(86)90026-6. |
[40] | O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301-317. doi: 10.1016/0165-0114(87)90029-7. |
[41] | U. W. Kulish, W. L. Miranker, Computer arithmetic in theory and practice, New York: Academic Press, 1981. |
[42] | İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942. |
[43] | M. A. Noor, K. I. Noor, M. U. Awan, S. Costache, Some integral inequalities for harmonically h-convex functions, U.P.B. Sci. Bull., Seri. A, 77 (2015), 5-16. |
[44] |
M. B. Khan, M. A. Noor, P. O. Mohammed, J. L. G. Guirao, K. I. Noor, Some integral inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, Int. J. Comput. Intell. Syst., 14 (2021), 158. doi: 10.1007/s44196-021-00009-w. doi: 10.1007/s44196-021-00009-w
![]() |
[45] |
M. B. Khan, H. M. Srivastava, P. O. Mohammed, J. L. Guirao, Fuzzy mixed variational-like and integral inequalities for strongly preinvex fuzzy mappings, Symmetry, 13 (2021), 1816. doi: 10.3390/sym13101816. doi: 10.3390/sym13101816
![]() |
1. | Muhammad Bilal Khan, Omar Mutab Alsalami, Savin Treanțǎ, Tareq Saeed, Kamsing Nonlaopon, New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities, 2022, 7, 2473-6988, 15497, 10.3934/math.2022849 | |
2. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some Fuzzy Riemann–Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions, 2022, 14, 2073-8994, 313, 10.3390/sym14020313 | |
3. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Gustavo Santos-García, Pshtiwan Othman Mohammed, Mohamed S. Soliman, Riemann–Liouville Fractional Integral Inequalities for Generalized Harmonically Convex Fuzzy-Interval-Valued Functions, 2022, 15, 1875-6883, 10.1007/s44196-022-00081-w | |
4. | Tareq Saeed, Muhammad Bilal Khan, Savin Treanțǎ, Hamed H. Alsulami, Mohammed Sh. Alhodaly, Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings, 2022, 11, 2075-1680, 368, 10.3390/axioms11080368 | |
5. | Bandar Bin-Mohsin, Sehrish Rafique, Clemente Cesarano, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor, Some General Fractional Integral Inequalities Involving LR–Bi-Convex Fuzzy Interval-Valued Functions, 2022, 6, 2504-3110, 565, 10.3390/fractalfract6100565 | |
6. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Dumitru Baleanu, Taghreed M. Jawa, Fuzzy-interval inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, 2021, 7, 2473-6988, 1507, 10.3934/math.2022089 | |
7. | Muhammad Bilal Khan, Hatim Ghazi Zaini, Jorge E. Macías-Díaz, Savin Treanțǎ, Mohamed S. Soliman, Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions, 2022, 7, 2473-6988, 10454, 10.3934/math.2022583 | |
8. | Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Abd Allah A. Mousa, Bahaaeldin Abdalla, Safar M. Alghamdi, LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities, 2021, 5, 2504-3110, 243, 10.3390/fractalfract5040243 | |
9. | Muhammad Bilal Khan, Savin Treanțǎ, Hüseyin Budak, Generalized p-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation, 2022, 6, 2504-3110, 63, 10.3390/fractalfract6020063 | |
10. | Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Taghreed M. Jawa, Fuzzy-interval inequalities for generalized preinvex fuzzy interval valued functions, 2021, 19, 1551-0018, 812, 10.3934/mbe.2022037 | |
11. | Muhammad Bilal Khan, Željko Stević, Abdulwadoud A. Maash, Muhammad Aslam Noor, Mohamed S. Soliman, Properties of Convex Fuzzy-Number-Valued Functions on Harmonic Convex Set in the Second Sense and Related Inequalities via Up and Down Fuzzy Relation, 2023, 12, 2075-1680, 399, 10.3390/axioms12040399 | |
12. | Xiangting Shi, Ahmad Aziz Al Ahmadi, Sergio Adriani David, Muhammad Bilal Khan, Khalil HadiHakami, Exploring new fuzzy fractional integral operators with applications over fuzzy number convex and harmonic convex mappings, 2024, 12, 2195-268X, 4343, 10.1007/s40435-024-01497-2 | |
13. | Tareq Saeed, Intuitionistic fuzzy variational inequalities and their applications, 2024, 9, 2473-6988, 34289, 10.3934/math.20241634 | |
14. | Hanan Alohali, Muhammad Bilal Khan, Jorge E. Macías-Díaz, Fahad Sikander, On $ \left(\mathit{p}, \mathit{q}\right) $-fractional linear Diophantine fuzzy sets and their applications via MADM approach, 2024, 9, 2473-6988, 35503, 10.3934/math.20241685 |