An important part of optimization is the consideration of convex and non-convex functions. Furthermore, there is no denying the connection between the ideas of convexity and stochastic processes. Stochastic processes, often known as random processes, are groups of variables created at random and supported by mathematical indicators. Our study introduces a novel stochastic process for center-radius (cr) order based on harmonic h-Godunova-Levin (GL) in the setting of interval-valued functions (IVFS). With some interesting examples, we establish some variants of Hermite-Hadamard (H.H) types inequalities for generalized interval-valued harmonic cr-h-Godunova-Levin stochastic processes.
Citation: Waqar Afzal, Sayed M. Eldin, Waqas Nazeer, Ahmed M. Galal. Some integral inequalities for harmonical cr-h-Godunova-Levin stochastic processes[J]. AIMS Mathematics, 2023, 8(6): 13473-13491. doi: 10.3934/math.2023683
[1] | Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451 |
[2] | Wei Zhang . A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion. AIMS Mathematics, 2023, 8(3): 6074-6094. doi: 10.3934/math.2023307 |
[3] | Zhaoyang Shang . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1 |
[4] | Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16 |
[5] | Xinli Wang, Haiyang Yu, Tianfeng Wu . Global well-posedness and optimal decay rates for the n-D incompressible Boussinesq equations with fractional dissipation and thermal diffusion. AIMS Mathematics, 2024, 9(12): 34863-34885. doi: 10.3934/math.20241660 |
[6] | Feng Cheng . On the dissipative solutions for the inviscid Boussinesq equations. AIMS Mathematics, 2020, 5(4): 2869-2876. doi: 10.3934/math.2020184 |
[7] | Ahmad Mohammad Alghamdi, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion to the 3D micropolar fluid equations. AIMS Mathematics, 2020, 5(1): 359-375. doi: 10.3934/math.2020024 |
[8] | Xuemin Xue, Xiangtuan Xiong, Yuanxiang Zhang . Two fractional regularization methods for identifying the radiogenic source of the Helium production-diffusion equation. AIMS Mathematics, 2021, 6(10): 11425-11448. doi: 10.3934/math.2021662 |
[9] | Oussama Melkemi, Mohammed S. Abdo, Wafa Shammakh, Hadeel Z. Alzumi . Yudovich type solution for the two dimensional Euler-Boussinesq system with critical dissipation and general source term. AIMS Mathematics, 2023, 8(8): 18566-18580. doi: 10.3934/math.2023944 |
[10] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
An important part of optimization is the consideration of convex and non-convex functions. Furthermore, there is no denying the connection between the ideas of convexity and stochastic processes. Stochastic processes, often known as random processes, are groups of variables created at random and supported by mathematical indicators. Our study introduces a novel stochastic process for center-radius (cr) order based on harmonic h-Godunova-Levin (GL) in the setting of interval-valued functions (IVFS). With some interesting examples, we establish some variants of Hermite-Hadamard (H.H) types inequalities for generalized interval-valued harmonic cr-h-Godunova-Levin stochastic processes.
This paper is concerned with the regularity criterion of the 3D Boussinesq equations with the incompressibility condition :
{∂tu+u⋅∇u−Δu+∇π=θe3,∂tθ+u⋅∇θ−Δθ=0,∇⋅u=0,(u,θ)(x,0)=(u0,θ0)(x),x∈R3, | (1.1) |
where u=u(x,t) and θ=θ(x,t) denote the unknown velocity vector field and the scalar function temperature, while u0, θ0 with ∇⋅u0=0 in the sense of distribution are given initial data. e3=(0,0,1)T. π=π(x,t) the pressure of fluid at the point (x,t)∈R3×(0,∞). The Boussinesq equation is one of important subjects for researches in nonlinear sciences [14]. There are a huge literatures on the incompressible Boussinesq equations such as [1,2,3,4,6,8,9,10,17,19,20,21,22] and the references therein.
When θ=0, (1.1) reduces to the well-known incompressible Navier-Stokes equations and many results are available. Besides their physical applications, the Navier-Stokes equations are also mathematically significant. From that time on, much effort has been devoted to establish the global existence and uniqueness of smooth solutions to the Navier-Stokes equations.
However, similar to the classic Navier-Stokes equations, the question of global regularity of the weak solutions of the 3D Boussinesq equations still remains a big open problem and the system (1.1) has received many studies. Based on some analysis technique, some regularity criteria via the velocity of weak solutions in the Lebesgue spaces, multiplier spaces and Besov spaces have been obtained in [5,17,19,20,22,23].
More recently, the authors of the present paper [7] showed that the weak solution becomes regular if
∫T0‖u(⋅,t)‖21−r.B−r∞,∞+‖θ(⋅,t)‖21−r.B−r∞,∞1+log(e+‖u(⋅,t)‖Hs+‖θ(⋅,t)‖Hs)dt<∞ for some 0≤r<1 and s≥12, | (1.2) |
where .B−r∞,∞ denotes the homogeneous Besov space. Definitions and basic properties of the Sobolev spaces and the Besov spaces can be find in [18]. For concision, we omit them here.
The purpose of this paper is to improve the regularity criterion (1.2) in the following form.
Theorem 1.1. Let (u,θ) be a smooth solution to (1.1) in [0,T) with the initial data (u0,θ0)∈H3(R3)×H3(R3) with divu0=0 in R3. Suppose that the solution (u,θ) satisfies
∫T0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞)dt<∞ for some r with 0≤r<1. | (1.3) |
Then it holds
sup0≤t≤T(‖u(⋅,t)‖2H3+‖θ(⋅,t)‖2H3)<∞. |
That is, the solution (u,θ) can be smoothly extended after time t=T. In other word, if T∗ is the maximal time existence of the solution, then
∫T∗0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞)dt<∞. |
Then the solution can be smoothly extended after t=T.
Remark 1.1. The condition (1.3) can be regarded as a logarithmically improved version of the assumption
∫T0‖u(⋅,t)‖21−r.B−r∞,∞dt<∞ for some r with 0≤r<1. |
For the case r=1, we have the following result.
Theorem 1.2. Let (u,θ) be a smooth solution to (1.1) in [0,T) with the initial data (u0,θ0)∈H3(R3)×H3(R3) with divu0=0 in R3. Suppose that there exists a small positive constant η such that
‖u(⋅,t)‖L∞(0,T;.B−1∞,∞(R3))≤η, | (1.4) |
then solution (u,θ) can be smoothly extended after time t=T.
Remark 1.2. Theorem 1.2 can be regarded as improvements and limiting cases of those in [7]. It is worth to point out all conditions are valid for the usual Navier-Stokes equations. We refer to a recent work [7] and references therein.
Remark 1.3. For the case r=0, see [23].
In this section, we will prove Theorem 1.1 by the standard energy method.
Let T>0 be a given fixed time. The existence and uniqueness of local smooth solutions can be obtained as in the case of the Navier-Stokes equations. Hence, for all T>0 we assume that (u,θ) is a smooth solution to (1.1) on [0,T) and we will establish a priori bounds that will allow us to extend (u,θ) beyond time T under the condition (1.3).
Owing to (1.3) holds, one can deduce that for any small ϵ>0, there exists T0=T0(ϵ)<T such that
∫TT0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞) dt≤ϵ<<1. | (2.1) |
Thanks to the divergence-free condition ∇⋅u=0, from (1.1)2, we get immediately the global a priori bound for θ in any Lebesgue space
‖θ(⋅,t)‖Lq≤C‖θ0‖Lq for all q∈[2,∞] and all t∈[0,T]. |
Now, multiplying (1.1)2 by θ and using integration by parts, we get
12ddt‖θ‖2L2+‖∇θ‖2L2=0. |
Hence, we obtain
θ∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)). | (2.2) |
Next, multiplying (1.1)1 by u, we have after integration by part,
12ddt‖u‖2L2+‖∇u‖2L2=∫R3(θe3)⋅udx≤‖θ‖L2‖u‖L2≤C‖u‖L2, |
which yields
u∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)), | (2.3) |
where we used (2.2) and
∫R3(u⋅∇u)⋅udx=12∫R3(u⋅∇)u2dx=−12∫R3(∇⋅u)u2dx=0 |
by incompressibility of u, that is, ∇⋅u=0.
Now, apply ∇ operator to the equation of (1.1)1 and (1.1)2, then taking the inner product with ∇u and ∇θ, respectively and using integration by parts, we get
12ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2=−∫R3∇(u⋅∇)u⋅∇udx+∫R3∇(θe3)⋅∇udx−∫R3∇(u⋅∇)θ⋅∇θdx=I1+I2+I3. | (2.4) |
Employing the Hölder and Young inequalities, we derive the estimation of the first term I1 as
I1=∫R3(u⋅∇)u⋅Δudx≤‖∇⋅(u⊗u)‖L2‖Δu‖L2≤C‖u‖.B−r∞,∞‖∇u‖⋅Hr‖Δu‖L2≤C‖u‖.B−r∞,∞‖∇u‖1−rL2‖Δu‖1+rL2≤12‖Δu‖2L2+C‖u‖21−r.B−r∞,∞‖∇u‖2L2≤12‖Δu‖2L2+C‖u‖21−r.B−r∞,∞(‖∇u‖2L2+‖∇θ‖2L2), |
where we have used the inequality due to [16] :
‖u⊗u‖⋅H1≤C‖u‖.B−r∞,∞‖∇u‖⋅Hr |
and the interpolation inequality
‖w‖.Hs=‖|ξ|sˆw‖L2≤‖w‖1−sL2‖∇w‖sL2 for all 0≤s≤1. |
The term I3 can be estimated as
I3≤C‖∇u‖L2‖∇θ‖2L4≤C‖∇u‖L2‖∇θ‖.B−1∞,∞‖Δθ‖L2≤C‖∇u‖L2‖θ‖.B0∞,∞‖Δθ‖L2≤12‖Δθ‖2L2+C‖θ‖2L∞‖∇u‖2L2≤12‖Δθ‖2L2+C‖θ‖2L∞(‖∇u‖2L2+‖∇θ‖2L2), |
where we have used
‖∇θ‖.B−1∞,∞≤C‖θ‖.B0∞,∞≤C‖θ‖L∞. |
The term I2 can be estimated as
I2≤‖∇u‖L2‖∇θ‖L2≤12(‖∇u‖2L2+‖∇θ‖2L2). |
Plugging all the estimates into (2.4) yields that
ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C(12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞)(‖∇u‖2L2+‖∇θ‖2L2). |
Hence, we obtain
ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+‖u‖.B−r∞,∞)≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+‖u‖H3+‖θ‖H3)≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+κ(t)) |
where κ(t) is defined by
κ(t)=supT0≤τ≤t(‖u(⋅,τ)‖H3+‖θ(⋅,τ)‖H3)forallT0<t<T. |
It should be noted that the function κ(t) is nondecreasing. Moreover, we have used the following fact :
‖u‖.B−r∞,∞≤C‖u‖H3. |
Integrating the above inequality over [T0,t] and applying Gronwall's inequality, we have
‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2+∫tT∗‖Δu(⋅,τ)‖2L2+‖Δθ(⋅,τ)‖2L2dτ≤(‖∇u(⋅,T0)‖2L2+‖∇θ(⋅,T0)‖2L2)×exp(C∫tT0‖u‖21−r.B−r∞,∞log(e+‖u(⋅,τ)‖.B−r∞,∞)log(e+κ(τ))dτ)≤(‖∇u(⋅,T0)‖2L2+‖∇θ(⋅,T0)‖2L2)×exp(Clog(e+κ(t))∫tT0‖u‖21−r.B−r∞,∞log(e+‖u(⋅,τ)‖.B−r∞,∞)dτ)≤˜Cexp(Cϵlog(e+κ(t)))=˜C(e+κ(t))Cϵ | (2.5) |
where ˜C is a positive constant depending on ‖∇u(⋅,T0)‖2L2, ‖∇θ(⋅,T0)‖2L2, T0, T and θ0.
H3−norm. Next, we start to obtain the H3−estimates under the above estimate (2.5). Applying Λ3=(−Δ)32 to (1.1)1, then taking L2 inner product of the resulting equation with Λ3u, and using integration by parts, we obtain
12ddt‖Λ3u(⋅,t)‖2L2+‖Λ4u(⋅,t)‖2L2=−∫R3Λ3(u⋅∇u)⋅Λ3udx+∫R3Λ3(θe3)⋅Λ3udx | (2.6) |
Similarly, applying Λ3=(−Δ)32 to (1.1)2, then taking L2 inner product of the resulting equation with Λ3θ, and using integration by parts, we obtain
12ddt‖Λ3θ(⋅,t)‖2L2+‖Λ4θ(⋅,t)‖2L2=−∫R3Λ3(u⋅∇θ)⋅Λ3θdx, | (2.7) |
Using ∇⋅u=0, we deduce that
12ddt(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)+‖Λ4u(⋅,t)‖2L2+‖Λ4θ(⋅,t)‖2L2=−∫R3[Λ3(u⋅∇u)−u⋅Λ3∇u]⋅Λ3udx+∫R3Λ3(θe3)⋅Λ3udx−∫3R3[Λ3(u⋅∇θ)−u⋅Λ3∇θ]⋅Λ3θdx=Π1+Π2+Π3. | (2.8) |
To bound Π1, we recall the following commutator estimate due to [12]:
‖Λα(fg)−fΛαg‖Lp≤C(‖Λα−1g‖Lq1‖∇f‖Lp1+‖Λαf‖Lp2‖g‖Lq2), | (2.9) |
for α>1, and 1p=1p1+1q1=1p2+1q2. Hence Π1 can be estimated as
Π1≤C‖∇u‖L3‖Λ3u‖2L3≤C‖∇u‖34L2‖Λ3u‖14L2‖∇u‖13L2‖Λ4u‖53L2≤16‖Λ4u‖2L2+C‖∇u‖132L2‖Λ3u‖32L2, | (2.10) |
where we used (2.9) with α=3,p=32, p1=q1=p2=q2=3, and the following Gagliardo-Nirenberg inequalities
{‖∇u‖L3≤C‖∇u‖34L2‖Λ3u‖14L2,‖Λ3u‖L3≤C‖∇u‖16L2‖Λ4u‖56L2. | (2.11) |
If we use the existing estimate (2.1) for T0≤t<T, (2.10) reduces to
Π1≤12‖Λ4u‖2L2+˜C(e+κ(t))32+132Cϵ. | (2.12) |
Using (2.11) again, we get
Π3≤C(‖∇u‖L3‖Λ3θ‖L3+‖∇θ‖L3‖Λ3u‖L3)‖Λ3θ‖L3≤C(‖∇u‖L3+‖∇θ‖L3)(‖Λ3u‖2L3+‖Λ3θ‖2L3)≤16(‖Λ4u‖2L2+‖Λ4θ‖2L2)+˜C(e+κ(t))32+132Cϵ. |
For Π2, we have
Π2≤12(‖Λ3u‖2L2+‖Λ3θ‖2L2)≤˜C(e+κ(t))2. |
Inserting all the inequalities into (2.8) and absorbing the dissipative terms, one finds
ddt(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)≤˜C(e+κ(t))32+132Cϵ+˜C(e+κ(t))2, | (2.13) |
with together with the basic energy (2.2)-([2.3]) yields
ddt(‖u(⋅,t)‖2H3+‖θ(⋅,t)‖2H3)≤˜C(e+κ(t))32+132Cϵ+˜C(e+κ(t))2, | (2.14) |
Choosing ϵ sufficiently small provided that 132Cϵ<12 and applying the Gronwall inequality to (2.14), we derive that
supT0≤τ≤t(‖u(⋅,τ)‖2H3+‖θ(⋅,τ)‖2H3)≤˜C<∞, | (2.15) |
where ˜C depends on ‖∇u(⋅,T0)‖2L2 and ‖∇θ(⋅,T0)‖2L2.
Noting that the right-hand side of (2.15) is independent of t for , we know that (u(⋅,T),θ(⋅,T))∈H3(R3)×H3(R3). Consequently, (u,θ) can be extended smoothly beyond t=T. This completes the proof of Theorem 1.1.
In order to prove Theorem 1.2, we first recall the following local existence theorem of the three-dimensional Boussinesq equations.
Lemma 3.1. Suppose (u,θ)∈Lα(R3), for some α≥3 and ∇⋅u=0. Then, there exists T0>0 and a unique solution of (1.1) on [0,T0) such that
(u,θ)∈BC([0,T0);Lα(R3))∩Ls([0,T0);Lr(R3)),t1su∈BC([0,T0);Lα(R3)) | (3.1) |
Moreover, let (0,T∗) be the maximal interval such that (u,θ) solves (1.1) in C((0,T∗);Lα(R3)), α>3. Then for any t∈(0,T∗)
‖u(⋅,t)‖Lα≥C(T∗−t)α−32α and ‖θ(⋅,t)‖Lα≥C(T∗−t)α−32α, |
with the constant C independent of T∗ and α.
Let (u,θ) be a strong solution satisfying
(u,θ)∈Lα((0,T);Lβ(R3)) for 2α+3β=1 and β>3. |
Then (u,θ) belongs to C∞(R3×(0,T)).
Proof. For all T>0, we assume that (u,θ) is a smooth solution to (1.1) on [0,T) and we will establish a priori bounds that will allow us to extend (u,θ) beyond time T under the condition (1.4).
Similar to the proof of Theorem 1.1, we can show that
(u,θ)∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)). | (3.2) |
The proof of Theorem 1.2 is divided into steps.
Step Ⅰ. H1−estimation. In order to get the H1−estimates, we apply ∇ operator to the equation of (1.1)1 and (1.1)2, multiply by ∇u and ∇θ, respectively to obtain
12ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2=−∫R3∇(u⋅∇)u⋅∇udx+∫R3∇(θe3)⋅∇udx−∫R3∇(u⋅∇)θ⋅∇θdx=I1+I2+I3. | (3.3) |
Next we estimate I1,I2 and I3 in another way. Hence,
I1≤‖∇u‖3L3≤C‖∇u‖.B−2∞,∞‖Δu‖2L2≤C‖u‖.B−1∞,∞‖Δu‖2L2, |
where we have used the following interpolation inequality due to [16] :
‖w‖L3≤C‖∇w‖23L2‖w‖13.B−2∞,∞. |
By means of the Hölder and Young inequalities, the term I3 can be estimated as
I3≤C‖∇u‖L2‖∇θ‖2L4≤C‖∇u‖L2‖∇θ‖.B−1∞,∞‖Δθ‖L2≤C‖θ‖2.B0∞,∞‖Δθ‖2L2+C‖∇u‖2L2≤C‖θ‖2L∞‖Δθ‖2L2+C‖∇u‖2L2, |
where we have used the following interpolation inequality due to [16] :
‖∇θ‖2L4≤C‖∇θ‖.B−1∞,∞‖Δθ‖L2. |
The term I2 can be estimated as
I2≤‖∇u‖L2‖∇θ‖L2≤12(‖∇u‖2L2+‖∇θ‖2L2). |
Plugging all the estimates into (3.3) yields that
12ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2≤C‖u‖.B−1∞,∞‖Δu‖2L2+C‖θ‖2L∞‖Δθ‖2L2+C(‖∇u‖2L2+‖∇θ‖2L2). |
Under the assumption (1.4), we choose η small enough so that
C‖u‖.B−1∞,∞≤12 . |
Hence, we find that
ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C(‖∇u‖2L2+‖∇θ‖2L2). |
Integrating in time and applying the Gronwall inequality, we infer that
‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2+∫T0(‖Δu(⋅,τ)‖2L2+‖Δθ(⋅,τ)‖2L2)dτ≤C. | (3.4) |
Step Ⅱ. H2−estimation. Next, we start to obtain the H2−estimates under the above estimate (3.4). Applying Δ to (1.1)1, then taking L2 inner product of the resulting equation with Δu, and using integration by parts, we obtain
12ddt‖Δu(⋅,t)‖2L2+‖Λ3u(⋅,t)‖2L2=−∫R3Δ(u⋅∇u)⋅Δudx+∫R3Δ(θe3)⋅Δudx | (3.5) |
Similarly, applying Δ to (1.1)2, then taking L2 inner product of the resulting equation with Δθ, and using integration by parts, we obtain
12ddt‖Δθ(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2=−∫R3Δ(u⋅∇θ)⋅Δθdx. | (3.6) |
Adding (3.5) and (3.6), we deduce that
12ddt(‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2)+‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2=−∫R3Δ(u⋅∇u)⋅Δudx+∫R3Δ(θe3)⋅Δudx−∫R3Δ(u⋅∇θ)⋅Δθdx=K1+K2+K3. | (3.7) |
Using Hölder's inequality and Young's inequality, K1 can be estimated as
K1=∫R3Δ(u⊗u)⋅Δ∇udx≤‖Δ(u⊗u)‖L2‖Δ∇u‖L2≤C‖u‖L∞‖Δu‖L2‖Λ3u‖L2≤12‖Λ3u‖2L2+C‖u‖2L∞‖Δu‖2L2. |
Here we have used the bilinear estimates due to Kato-Ponce [12] and Kenig-Ponce-Vega [13]:
‖Λα(fg)‖Lp≤C(‖Λαg‖Lq1‖f‖Lp1+‖Λαf‖Lp2‖g‖Lq2), |
for α>0, and 1p=1p1+1q1=1+1q2.
From the incompressibility condition, Hölder's inequality and Young's inequality, one has
K3=∫R3Δ(uθ)⋅Δ∇θdx≤‖Δ(uθ)‖L2‖Δ∇θ‖L2≤C(‖u‖L∞‖Δθ‖L2+‖θ‖L∞‖Δu‖L2)‖Λ3θ‖L2≤12‖Λ3θ‖2L2+C(‖u‖2L∞+‖θ‖2L∞)(‖Δu‖2L2+‖Δθ‖2L2). |
For K2, we have
K2≤12(‖Δu‖2L2+‖Δθ‖2L2) |
Inserting all the inequalities into (3.7) and absorbing the dissipative terms, one finds
ddt(‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2)+‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2≤C(‖u‖2L∞+‖θ‖2L∞)(‖Δu‖2L2+‖Δθ‖2L2). | (3.8) |
Using the following interpolation inequality
‖f‖L∞≤C‖f‖14L2‖Δf‖34L2, |
together with the key estimate (3.4) yield that
∫T0(‖u(⋅,τ)‖2L∞+‖θ(⋅,τ)‖2L∞)dτ≤C<∞. |
Applying the Gronwall inequality to (3.8), we derive that
‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2+∫T0(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)dt≤C. | (3.9) |
By estimates (3.4) and (3.9) as well as the following Gagliardo-Nirenberg's inequality
‖f‖L6≤C‖f‖12L2‖Δf‖12L2, |
it is easy to see that
(u,θ)∈L4(0,T;L6(R3)), |
from which and Lemma 3.1 the smoothness of (u,θ) follows immediately. This completes the proof of Theorem 1.2.
Part of the work was carried out while the first author was long term visitor at University of Catania. The hospitality and support of Catania University are graciously acknowledged.
All authors would like to thank Professor Bo-Qing Dong for helpful discussion and constant encouragement. They also would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.
All authors declare no conflicts of interest in this paper.
[1] | R. E. Moore, Methods and applications of interval analysis, SIAM, Philadelphia, 1966. |
[2] | D. P. Mitchell, Three applications of interval analysis in computer graphics, Front. Rend. Course Note., 14 (1991). |
[3] |
M. Ramezanadeh, M. Heidari, O. S. Fard, On the interval differential equation: Novel solution methodology, Adv. Differ. Equ., 1 (2015), 1–23. https://doi.org/10.1186/s13662-015-0671-8 doi: 10.1186/s13662-015-0671-8
![]() |
[4] |
E. Rothwell, M. J. Cloud, Automatic error analysis using intervals, IEEE Trans. Educ., 55 (2011), 9–15. https://doi.org/10.1109/TE.2011.2109722 doi: 10.1109/TE.2011.2109722
![]() |
[5] |
S. L. Ho, M. Xie, T. N. Goh, A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction, Comput. Ind. Eng., 42 (2002), 371–375. https://doi.org/10.1016/S0360-8352(02)00036-0 doi: 10.1016/S0360-8352(02)00036-0
![]() |
[6] |
S. Zheng, C. Ding, F. Nie, H. Huang, Harmonic mean linear discriminant analysis, IEEE T. Knowl. Data En., 31 (2018), 1520–1531. https://doi.org/10.1109/TKDE.2018.2861858 doi: 10.1109/TKDE.2018.2861858
![]() |
[7] |
D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 1–14. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
![]() |
[8] |
S. Obeidat, M. A. Latif, S. S. Dragomir, Fejér and Hermite-Hadamard type inequalities for differentiable h-convex and quasi convex functions with applications, Miskolc Math. Notes, 23 (2022), 401–415. http://doi.org/10.18514/MMN.2022.3065 doi: 10.18514/MMN.2022.3065
![]() |
[9] |
P. O. Mohammed, On new trapezoid type inequalities for h-convex functions via generalized fractional integral, Turk. J. Anal. Number Theor., 6 (2018), 125–128. http://doi.org/10.12691/tjant-6-4-5 doi: 10.12691/tjant-6-4-5
![]() |
[10] |
X. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions, J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324
![]() |
[11] |
P. Yang, S. Zhang, Mean square integral inequalities for generalized convex stochastic processes via Beta function, J. Funct. Space., 2021 (2021), 4398901. https://doi.org/10.1155/2021/4398901 doi: 10.1155/2021/4398901
![]() |
[12] |
L. Akin, A characterization of boundedness of fractional maximal operator with variable kernel on Herz-Morrey spaces, Anal. Theory Appl., 36 (2020), 60–68. https://doi.org/10.4208/ata.OA-2018-1006 doi: 10.4208/ata.OA-2018-1006
![]() |
[13] | D. Zhao, T. An, G. Ye, D. F. M. Torres, On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions, Math. Inequal. Appl., 23 (2020), 95–105. |
[14] |
P. Korus, J. E. N. Valdes, q-Hermite-Hadamrd inequalities for functions with convex or h-convex q-derivarive, Math. Inequal. Appl., 25 (2022), 601–610. http://doi.org/10.7153/mia-2022-25-36 doi: 10.7153/mia-2022-25-36
![]() |
[15] |
M. I. Asjad, S. Z. Majid, W. A. Faridi, S. M. Eldin, Sensitive analysis of soliton solutions of nonlinear Landau-Ginzburg-Higgs equation with generalized projective Riccati method, AIMS Math., 8 (2023), 10210–10227. https://doi.org/10.3934/math.2023517 doi: 10.3934/math.2023517
![]() |
[16] |
I. Siddique, K. B. Mehdi, S. M. Eldin, A. Zafar, Diverse optical solitons solutions of the fractional complex Ginzburg-Landau equation via two altered methods, AIMS Math., 5 (2023), 11480–11497. https://doi.org/10.3934/math.2023581 doi: 10.3934/math.2023581
![]() |
[17] |
S. S. Dragomir, Hermite‐Hadamard type inequalities for generalized Riemann‐Liouville fractional integrals of h‐convex functions, Math. Method. Appl. Sci., 44 (2021), 2364–2380. https://doi.org/10.1002/mma.5893 doi: 10.1002/mma.5893
![]() |
[18] |
G. D. Anderson, M. K. Vamanamurthy, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294–1308. https://doi.org/10.1016/j.jmaa.2007.02.016 doi: 10.1016/j.jmaa.2007.02.016
![]() |
[19] |
M. A. Noor, K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform. Sci., 10 (2016), 1811–1814. https://doi.org/10.1016/j.jmaa.2007.02.016 doi: 10.1016/j.jmaa.2007.02.016
![]() |
[20] |
S. I. Butt, S. Rashid, M. Tariq, M. K. Wang, Novel refinements via-polynomial harmonically-type convex functions and application in special functions, J. Funct. Space., 2021 (2021), 6615948. https://doi.org/10.1155/2021/6615948 doi: 10.1155/2021/6615948
![]() |
[21] |
S. I. Butt, A. O. Akdemir, M. Nadeem, N. Mlaiki, I. Iscan, T. Abdeljawad, (m-n)-Harmonically polynomial convex functions and some Hadamard inequalities on co-ordinates, AIMS Math., 6 (2021), 4677–4690. https://doi.org/10.3934/math.2021275 doi: 10.3934/math.2021275
![]() |
[22] |
S. I. Butt, S. Yousaf, K. A. Khan, Fejer-Pachpatte-Mercer-type inequalities for harmonically convex functions involving exponential function in kernel, Math. Probl. Eng., 2022 (2022), 7269033. https://doi.org/10.1155/2022/7269033 doi: 10.1155/2022/7269033
![]() |
[23] |
S. I. Butt, P. Agarwal, S. Yousaf, Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl., 2022 (2022), 1–18. https://doi.org/10.1186/s13660-021-02735-3 doi: 10.1186/s13660-021-02735-3
![]() |
[24] |
M. Tariq, S. I. Butt, Some Ostrowski type integral inequalities via generalized harmonic convex functions, Open J. Math. Sci., 5 (2021), 200–208. https://doi.org/10.30538/oms2021.0157 doi: 10.30538/oms2021.0157
![]() |
[25] |
W. Afzal, K. Shabbir, S. Treanţă, K. Nonlaopon, Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions, AIMS Math., 8 (2022), 3303–3321. https://doi.org/10.3934/math.2023170 doi: 10.3934/math.2023170
![]() |
[26] |
R. Liu, R. Xu, Hermite-Hadamard type inequalities for harmonical (h1,h2)-convex interval-valued functions, Math. Found. Comput., 4 (2021), 89. https://doi.org/10.3934/mfc.2021005 doi: 10.3934/mfc.2021005
![]() |
[27] |
W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical (h1, h2)-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970
![]() |
[28] | W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued (h1, h2)-Godunova-Levin functions, AIMS Math., 7 (2022), 19372–19387. https://doi.org/2010.3934/math.20221064 |
[29] |
K. Nikodem, On convex stochastic processes, Aequationes Math., 20 (1980), 184–197. https://doi.org/10.1007/BF02190513 doi: 10.1007/BF02190513
![]() |
[30] | M. Shaked, J. G. Shanthikumar, Stochastic convexity and its applications, Adv. Appl. Probab., 20 (1988), 427–446. https://doi.org/10.ADA170112 |
[31] |
A. Skowronski, On some properties ofj-convex stochastic processes, Aequationes Math., 44 (1992), 249–258. https://doi.org/10.1007/BF01830983 doi: 10.1007/BF01830983
![]() |
[32] |
D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143–151. https://doi.org/10.1007/s00010-011-0090-1 doi: 10.1007/s00010-011-0090-1
![]() |
[33] |
S. Varoşanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
![]() |
[34] | D. Barraez, L. Gonzalez, N. Merentes, On h-convex stochastic processes, Math. Aeterna., 5 (2015), 571–581. https://doi.org/10.20180421095428id |
[35] |
W. Afzal, E. Y. Prosviryakov, S. M. El-Deeb, Y. Almalki, Some new estimates of Hermite-Hadamard, Ostrowski and Jensen-type inclusions for h-convex stochastic process via interval-valued functions, Symmetry, 15 (2023), 831. https://doi.org/10.3390/sym15040831 doi: 10.3390/sym15040831
![]() |
[36] |
N. Okur, R. Aliyev, Some Hermite-Hadamard type integral inequalities for multidimensional general preinvex stochastic processes, Commun. Stat.-Theor. M., 50 (2021), 3338–3351. https://doi.org/10.1080/03610926.2019.1696976 doi: 10.1080/03610926.2019.1696976
![]() |
[37] |
M. J. Vivas Cortez, Some inequalities via strongly p-harmonic log-convex stochastic processes, Appl. Math. Inform. Sci., 12 (2018), 593–600. https://doi.org/10.23000/5745 doi: 10.23000/5745
![]() |
[38] |
L. Akin, New principles of non-linear integral inequalities on time scales, Appl. Math. Nonlinear Sci., 6 (2021), 387–394. https://doi.org/10.2478/amns.2021.1.00001 doi: 10.2478/amns.2021.1.00001
![]() |
[39] |
O. Almutairi, A. Kilicman, Generalized Fejér-Hermite-Hadamard type via generalized (h−m)-convexity on fractal sets and applications, Chaos Soliton. Fract., 147 (2021), 110938. https://doi.org/10.1016/j.chaos.2021.110938 doi: 10.1016/j.chaos.2021.110938
![]() |
[40] | C. Y. Jung, M. S. Saleem, S. Bilal, W. Nazeer, Some properties of η-convex stochastic processes, AIMS Math., 6 (2021), 726–736. http://doi.org/2010.3934/math.2021044 |
[41] |
H. Agahi, A. Babakhani, On fractional stochastic inequalities related to Hermite-Hadamard and Jensen types for convex stochastic processes, Aequationes Math., 90 (2016), 1035–1043. http://doi.org/10.1007/s00010-016-0425-z doi: 10.1007/s00010-016-0425-z
![]() |
[42] |
L. Akin, On the fractional maximal delta integral type inequalities on time scales, Fractal Fract., 4 (2020), 26. https://doi.org/10.3390/fractalfract4020026 doi: 10.3390/fractalfract4020026
![]() |
[43] |
M. Tunc, Ostrowski-type inequalities via h-convex functions with applications to special means, J. Inequal. Appl., 1 (2013), 1–10. https://doi.org/10.1186/1029-242X-2013-326 doi: 10.1186/1029-242X-2013-326
![]() |
[44] | L. Gonzales, J. Materano, M. V. Lopez, Ostrowski-type inequalities via hconvex stochastic processes, JP J. Math. Sci., 16 (2016), 15–29. https://doi.org/10.5f4e522592851c250b850e30 |
[45] |
A. K. Bhunia, S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178. https://doi.org/10.1016/j.cie.2014.05.014 doi: 10.1016/j.cie.2014.05.014
![]() |
[46] |
W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Math., 8 (2022), 1696–1712. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064
![]() |
[47] |
T. Saeed, W. Afzal, K. Shabbir, S. Treanţă, M. D. L. Sen, Some novel estimates of Hermite-Hadamard and Jensen type inequalities for (h1,h2)-convex functions pertaining to total order relation, Mathematics, 10 (2022), 4770. https://doi.org/10.3390/math10244777 doi: 10.3390/math10244777
![]() |
[48] |
W. Afzal, K. Shabbir, T. Botmart, S. Treanţă, Some new estimates of well known inequalities for (h1,h2)-Godunova-Levin functions by means of center-radius order relation, AIMS Math., 8 (2022), 3101–3119. https://doi.org/10.3934/math.2023160 doi: 10.3934/math.2023160
![]() |
[49] |
W. Afzal, T. Botmart, Some novel estimates of Jensen and Hermite-Hadamard inequalities for h-Godunova-Levin stochastic processes, AIMS Math., 8 (2023), 7277–7291. https://doi.org/10.3934/math.2023366 doi: 10.3934/math.2023366
![]() |
[50] |
T. Saeed, W. Afzal, M. Abbas, S. Treanţă, M. D. L. Sen, Some new generalizations of integral inequalities for harmonical cr-(h1,h2)-Godunova-Levin functions and applications, Mathematics, 10 (2022), 4540. https://doi.org/10.3390/math10234540 doi: 10.3390/math10234540
![]() |
[51] |
W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some H-Godunova-Levin function inequalities using center radius (cr) order, Fractal Fract., 6 (2022), 518. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
![]() |
[52] |
W. C. Qi, Z. P. Qiu, A collocation interval analysis method for interval structural parameters and stochastic excitation, Phys. Mech. Astron., 55 (2012), 66–77. https://doi.org/10.1007/s11433-011-4570-z doi: 10.1007/s11433-011-4570-z
![]() |
[53] |
G. Muscolino, A. Sofi, Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis, Probabilist. Eng. Mech., 28 (2012), 152–163. https://doi.org/10.1016/j.probengmech.2011.08.011 doi: 10.1016/j.probengmech.2011.08.011
![]() |
[54] |
I. Dawoud, M. R. Abonazel, F. A. Awwad, S. M. Eldin, A new Tobit Ridge-type estimator of the censored regression model with multicollinearity problem, Front. Appl. Math. Stat., 8 (2022), 952142. https://doi.org/10.3389/fams.2022.952142 doi: 10.3389/fams.2022.952142
![]() |
[55] |
M. M. A. Aziz, S. M. Eldin, D. K Ibrahim, M. Gilany, A phasor-based double ended fault location scheme for aged power cables, Electr. Pow. Compo. Syst., 34 (2006), 417–432. https://doi.org/10.1109/PES.2005.1489162 doi: 10.1109/PES.2005.1489162
![]() |
[56] |
B. J. Leira, A comparison of stochastic process models for definition of design contours, Struct. Saf., 30 (2008), 493–505. https://doi.org/10.1016/j.strusafe.2007.09.006 doi: 10.1016/j.strusafe.2007.09.006
![]() |
[57] | A. Rakhlin, O. Shamir, K. Sridharan, Making gradient descent optimal for strongly convex stochastic optimization, arXiv: 1109.5647, 30 (2011). https://doi.org/10.48550/arXiv.1109.5647 |
[58] |
H. Jin, Z. Q. Xu, X. Y. Zhou, A convex stochastic optimization problem arising from portfolio selection, Math. Financ., 18 (2008), 171–183. https://doi.org/10.1111/j.1467-9965.2007.00327.x doi: 10.1111/j.1467-9965.2007.00327.x
![]() |
1. | Sadek Gala, Maria Alessandra Ragusa, A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations, 2020, 51, 1678-7544, 513, 10.1007/s00574-019-00162-z | |
2. | Zhouyu Li, Wenjuan Liu, Qi Zhou, Conditional Regularity for the 3D Damped Boussinesq Equations with Zero Thermal Diffusion, 2024, 55, 1678-7544, 10.1007/s00574-024-00411-w |