Research article Special Issues

Some integral inequalities for harmonical $ cr $-$ h $-Godunova-Levin stochastic processes

  • Received: 19 October 2022 Revised: 24 December 2022 Accepted: 29 December 2022 Published: 06 April 2023
  • MSC : 39B62, 52B55, 94B75

  • An important part of optimization is the consideration of convex and non-convex functions. Furthermore, there is no denying the connection between the ideas of convexity and stochastic processes. Stochastic processes, often known as random processes, are groups of variables created at random and supported by mathematical indicators. Our study introduces a novel stochastic process for center-radius (cr) order based on harmonic h-Godunova-Levin ($ \mathcal{GL} $) in the setting of interval-valued functions ($ \mathcal{IVFS} $). With some interesting examples, we establish some variants of Hermite-Hadamard ($ \mathcal{H.H} $) types inequalities for generalized interval-valued harmonic cr-h-Godunova-Levin stochastic processes.

    Citation: Waqar Afzal, Sayed M. Eldin, Waqas Nazeer, Ahmed M. Galal. Some integral inequalities for harmonical $ cr $-$ h $-Godunova-Levin stochastic processes[J]. AIMS Mathematics, 2023, 8(6): 13473-13491. doi: 10.3934/math.2023683

    Related Papers:

  • An important part of optimization is the consideration of convex and non-convex functions. Furthermore, there is no denying the connection between the ideas of convexity and stochastic processes. Stochastic processes, often known as random processes, are groups of variables created at random and supported by mathematical indicators. Our study introduces a novel stochastic process for center-radius (cr) order based on harmonic h-Godunova-Levin ($ \mathcal{GL} $) in the setting of interval-valued functions ($ \mathcal{IVFS} $). With some interesting examples, we establish some variants of Hermite-Hadamard ($ \mathcal{H.H} $) types inequalities for generalized interval-valued harmonic cr-h-Godunova-Levin stochastic processes.



    加载中


    [1] R. E. Moore, Methods and applications of interval analysis, SIAM, Philadelphia, 1966.
    [2] D. P. Mitchell, Three applications of interval analysis in computer graphics, Front. Rend. Course Note., 14 (1991).
    [3] M. Ramezanadeh, M. Heidari, O. S. Fard, On the interval differential equation: Novel solution methodology, Adv. Differ. Equ., 1 (2015), 1–23. https://doi.org/10.1186/s13662-015-0671-8 doi: 10.1186/s13662-015-0671-8
    [4] E. Rothwell, M. J. Cloud, Automatic error analysis using intervals, IEEE Trans. Educ., 55 (2011), 9–15. https://doi.org/10.1109/TE.2011.2109722 doi: 10.1109/TE.2011.2109722
    [5] S. L. Ho, M. Xie, T. N. Goh, A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction, Comput. Ind. Eng., 42 (2002), 371–375. https://doi.org/10.1016/S0360-8352(02)00036-0 doi: 10.1016/S0360-8352(02)00036-0
    [6] S. Zheng, C. Ding, F. Nie, H. Huang, Harmonic mean linear discriminant analysis, IEEE T. Knowl. Data En., 31 (2018), 1520–1531. https://doi.org/10.1109/TKDE.2018.2861858 doi: 10.1109/TKDE.2018.2861858
    [7] D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., 2018 (2018), 1–14. https://doi.org/10.1186/s13660-018-1896-3 doi: 10.1186/s13660-018-1896-3
    [8] S. Obeidat, M. A. Latif, S. S. Dragomir, Fejér and Hermite-Hadamard type inequalities for differentiable h-convex and quasi convex functions with applications, Miskolc Math. Notes, 23 (2022), 401–415. http://doi.org/10.18514/MMN.2022.3065 doi: 10.18514/MMN.2022.3065
    [9] P. O. Mohammed, On new trapezoid type inequalities for h-convex functions via generalized fractional integral, Turk. J. Anal. Number Theor., 6 (2018), 125–128. http://doi.org/10.12691/tjant-6-4-5 doi: 10.12691/tjant-6-4-5
    [10] X. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions, J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324
    [11] P. Yang, S. Zhang, Mean square integral inequalities for generalized convex stochastic processes via Beta function, J. Funct. Space., 2021 (2021), 4398901. https://doi.org/10.1155/2021/4398901 doi: 10.1155/2021/4398901
    [12] L. Akin, A characterization of boundedness of fractional maximal operator with variable kernel on Herz-Morrey spaces, Anal. Theory Appl., 36 (2020), 60–68. https://doi.org/10.4208/ata.OA-2018-1006 doi: 10.4208/ata.OA-2018-1006
    [13] D. Zhao, T. An, G. Ye, D. F. M. Torres, On Hermite-Hadamard type inequalities for harmonical $h$-convex interval-valued functions, Math. Inequal. Appl., 23 (2020), 95–105.
    [14] P. Korus, J. E. N. Valdes, q-Hermite-Hadamrd inequalities for functions with convex or h-convex q-derivarive, Math. Inequal. Appl., 25 (2022), 601–610. http://doi.org/10.7153/mia-2022-25-36 doi: 10.7153/mia-2022-25-36
    [15] M. I. Asjad, S. Z. Majid, W. A. Faridi, S. M. Eldin, Sensitive analysis of soliton solutions of nonlinear Landau-Ginzburg-Higgs equation with generalized projective Riccati method, AIMS Math., 8 (2023), 10210–10227. https://doi.org/10.3934/math.2023517 doi: 10.3934/math.2023517
    [16] I. Siddique, K. B. Mehdi, S. M. Eldin, A. Zafar, Diverse optical solitons solutions of the fractional complex Ginzburg-Landau equation via two altered methods, AIMS Math., 5 (2023), 11480–11497. https://doi.org/10.3934/math.2023581 doi: 10.3934/math.2023581
    [17] S. S. Dragomir, Hermite‐Hadamard type inequalities for generalized Riemann‐Liouville fractional integrals of h‐convex functions, Math. Method. Appl. Sci., 44 (2021), 2364–2380. https://doi.org/10.1002/mma.5893 doi: 10.1002/mma.5893
    [18] G. D. Anderson, M. K. Vamanamurthy, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294–1308. https://doi.org/10.1016/j.jmaa.2007.02.016 doi: 10.1016/j.jmaa.2007.02.016
    [19] M. A. Noor, K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform. Sci., 10 (2016), 1811–1814. https://doi.org/10.1016/j.jmaa.2007.02.016 doi: 10.1016/j.jmaa.2007.02.016
    [20] S. I. Butt, S. Rashid, M. Tariq, M. K. Wang, Novel refinements via-polynomial harmonically-type convex functions and application in special functions, J. Funct. Space., 2021 (2021), 6615948. https://doi.org/10.1155/2021/6615948 doi: 10.1155/2021/6615948
    [21] S. I. Butt, A. O. Akdemir, M. Nadeem, N. Mlaiki, I. Iscan, T. Abdeljawad, $(m$-$n)$-Harmonically polynomial convex functions and some Hadamard inequalities on co-ordinates, AIMS Math., 6 (2021), 4677–4690. https://doi.org/10.3934/math.2021275 doi: 10.3934/math.2021275
    [22] S. I. Butt, S. Yousaf, K. A. Khan, Fejer-Pachpatte-Mercer-type inequalities for harmonically convex functions involving exponential function in kernel, Math. Probl. Eng., 2022 (2022), 7269033. https://doi.org/10.1155/2022/7269033 doi: 10.1155/2022/7269033
    [23] S. I. Butt, P. Agarwal, S. Yousaf, Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl., 2022 (2022), 1–18. https://doi.org/10.1186/s13660-021-02735-3 doi: 10.1186/s13660-021-02735-3
    [24] M. Tariq, S. I. Butt, Some Ostrowski type integral inequalities via generalized harmonic convex functions, Open J. Math. Sci., 5 (2021), 200–208. https://doi.org/10.30538/oms2021.0157 doi: 10.30538/oms2021.0157
    [25] W. Afzal, K. Shabbir, S. Treanţă, K. Nonlaopon, Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions, AIMS Math., 8 (2022), 3303–3321. https://doi.org/10.3934/math.2023170 doi: 10.3934/math.2023170
    [26] R. Liu, R. Xu, Hermite-Hadamard type inequalities for harmonical $(h_1, h_2)$-convex interval-valued functions, Math. Found. Comput., 4 (2021), 89. https://doi.org/10.3934/mfc.2021005 doi: 10.3934/mfc.2021005
    [27] W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical ($h_{1}$, $h_{2}$)-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970
    [28] W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued ($h_{1}$, $h_{2}$)-Godunova-Levin functions, AIMS Math., 7 (2022), 19372–19387. https://doi.org/2010.3934/math.20221064
    [29] K. Nikodem, On convex stochastic processes, Aequationes Math., 20 (1980), 184–197. https://doi.org/10.1007/BF02190513 doi: 10.1007/BF02190513
    [30] M. Shaked, J. G. Shanthikumar, Stochastic convexity and its applications, Adv. Appl. Probab., 20 (1988), 427–446. https://doi.org/10.ADA170112
    [31] A. Skowronski, On some properties ofj-convex stochastic processes, Aequationes Math., 44 (1992), 249–258. https://doi.org/10.1007/BF01830983 doi: 10.1007/BF01830983
    [32] D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143–151. https://doi.org/10.1007/s00010-011-0090-1 doi: 10.1007/s00010-011-0090-1
    [33] S. Varoşanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
    [34] D. Barraez, L. Gonzalez, N. Merentes, On h-convex stochastic processes, Math. Aeterna., 5 (2015), 571–581. https://doi.org/10.20180421095428id
    [35] W. Afzal, E. Y. Prosviryakov, S. M. El-Deeb, Y. Almalki, Some new estimates of Hermite-Hadamard, Ostrowski and Jensen-type inclusions for $h$-convex stochastic process via interval-valued functions, Symmetry, 15 (2023), 831. https://doi.org/10.3390/sym15040831 doi: 10.3390/sym15040831
    [36] N. Okur, R. Aliyev, Some Hermite-Hadamard type integral inequalities for multidimensional general preinvex stochastic processes, Commun. Stat.-Theor. M., 50 (2021), 3338–3351. https://doi.org/10.1080/03610926.2019.1696976 doi: 10.1080/03610926.2019.1696976
    [37] M. J. Vivas Cortez, Some inequalities via strongly p-harmonic log-convex stochastic processes, Appl. Math. Inform. Sci., 12 (2018), 593–600. https://doi.org/10.23000/5745 doi: 10.23000/5745
    [38] L. Akin, New principles of non-linear integral inequalities on time scales, Appl. Math. Nonlinear Sci., 6 (2021), 387–394. https://doi.org/10.2478/amns.2021.1.00001 doi: 10.2478/amns.2021.1.00001
    [39] O. Almutairi, A. Kilicman, Generalized Fejér-Hermite-Hadamard type via generalized $(h-m)$-convexity on fractal sets and applications, Chaos Soliton. Fract., 147 (2021), 110938. https://doi.org/10.1016/j.chaos.2021.110938 doi: 10.1016/j.chaos.2021.110938
    [40] C. Y. Jung, M. S. Saleem, S. Bilal, W. Nazeer, Some properties of $\eta$-convex stochastic processes, AIMS Math., 6 (2021), 726–736. http://doi.org/2010.3934/math.2021044
    [41] H. Agahi, A. Babakhani, On fractional stochastic inequalities related to Hermite-Hadamard and Jensen types for convex stochastic processes, Aequationes Math., 90 (2016), 1035–1043. http://doi.org/10.1007/s00010-016-0425-z doi: 10.1007/s00010-016-0425-z
    [42] L. Akin, On the fractional maximal delta integral type inequalities on time scales, Fractal Fract., 4 (2020), 26. https://doi.org/10.3390/fractalfract4020026 doi: 10.3390/fractalfract4020026
    [43] M. Tunc, Ostrowski-type inequalities via h-convex functions with applications to special means, J. Inequal. Appl., 1 (2013), 1–10. https://doi.org/10.1186/1029-242X-2013-326 doi: 10.1186/1029-242X-2013-326
    [44] L. Gonzales, J. Materano, M. V. Lopez, Ostrowski-type inequalities via hconvex stochastic processes, JP J. Math. Sci., 16 (2016), 15–29. https://doi.org/10.5f4e522592851c250b850e30
    [45] A. K. Bhunia, S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178. https://doi.org/10.1016/j.cie.2014.05.014 doi: 10.1016/j.cie.2014.05.014
    [46] W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Math., 8 (2022), 1696–1712. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064
    [47] T. Saeed, W. Afzal, K. Shabbir, S. Treanţă, M. D. L. Sen, Some novel estimates of Hermite-Hadamard and Jensen type inequalities for $(h_1, h_2)$-convex functions pertaining to total order relation, Mathematics, 10 (2022), 4770. https://doi.org/10.3390/math10244777 doi: 10.3390/math10244777
    [48] W. Afzal, K. Shabbir, T. Botmart, S. Treanţă, Some new estimates of well known inequalities for $(h_1, h_2)$-Godunova-Levin functions by means of center-radius order relation, AIMS Math., 8 (2022), 3101–3119. https://doi.org/10.3934/math.2023160 doi: 10.3934/math.2023160
    [49] W. Afzal, T. Botmart, Some novel estimates of Jensen and Hermite-Hadamard inequalities for $h$-Godunova-Levin stochastic processes, AIMS Math., 8 (2023), 7277–7291. https://doi.org/10.3934/math.2023366 doi: 10.3934/math.2023366
    [50] T. Saeed, W. Afzal, M. Abbas, S. Treanţă, M. D. L. Sen, Some new generalizations of integral inequalities for harmonical $cr$-$(h_1, h_2)$-Godunova-Levin functions and applications, Mathematics, 10 (2022), 4540. https://doi.org/10.3390/math10234540 doi: 10.3390/math10234540
    [51] W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some $H$-Godunova-Levin function inequalities using center radius (cr) order, Fractal Fract., 6 (2022), 518. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
    [52] W. C. Qi, Z. P. Qiu, A collocation interval analysis method for interval structural parameters and stochastic excitation, Phys. Mech. Astron., 55 (2012), 66–77. https://doi.org/10.1007/s11433-011-4570-z doi: 10.1007/s11433-011-4570-z
    [53] G. Muscolino, A. Sofi, Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis, Probabilist. Eng. Mech., 28 (2012), 152–163. https://doi.org/10.1016/j.probengmech.2011.08.011 doi: 10.1016/j.probengmech.2011.08.011
    [54] I. Dawoud, M. R. Abonazel, F. A. Awwad, S. M. Eldin, A new Tobit Ridge-type estimator of the censored regression model with multicollinearity problem, Front. Appl. Math. Stat., 8 (2022), 952142. https://doi.org/10.3389/fams.2022.952142 doi: 10.3389/fams.2022.952142
    [55] M. M. A. Aziz, S. M. Eldin, D. K Ibrahim, M. Gilany, A phasor-based double ended fault location scheme for aged power cables, Electr. Pow. Compo. Syst., 34 (2006), 417–432. https://doi.org/10.1109/PES.2005.1489162 doi: 10.1109/PES.2005.1489162
    [56] B. J. Leira, A comparison of stochastic process models for definition of design contours, Struct. Saf., 30 (2008), 493–505. https://doi.org/10.1016/j.strusafe.2007.09.006 doi: 10.1016/j.strusafe.2007.09.006
    [57] A. Rakhlin, O. Shamir, K. Sridharan, Making gradient descent optimal for strongly convex stochastic optimization, arXiv: 1109.5647, 30 (2011). https://doi.org/10.48550/arXiv.1109.5647
    [58] H. Jin, Z. Q. Xu, X. Y. Zhou, A convex stochastic optimization problem arising from portfolio selection, Math. Financ., 18 (2008), 171–183. https://doi.org/10.1111/j.1467-9965.2007.00327.x doi: 10.1111/j.1467-9965.2007.00327.x
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(864) PDF downloads(82) Cited by(0)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog