
Citation: Feng Cheng. On the dissipative solutions for the inviscid Boussinesq equations[J]. AIMS Mathematics, 2020, 5(4): 2869-2876. doi: 10.3934/math.2020184
[1] | Mohamed S. Eliwa, Essam A. Ahmed . Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002 |
[2] | Neama Salah Youssef Temraz . Analysis of stress-strength reliability with m-step strength levels under type I censoring and Gompertz distribution. AIMS Mathematics, 2024, 9(11): 30728-30744. doi: 10.3934/math.20241484 |
[3] | A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310 |
[4] | Veronica Kariuki, Anthony Wanjoya, Oscar Ngesa, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify . The accelerated failure time regression model under the extended-exponential distribution with survival analysis. AIMS Mathematics, 2024, 9(6): 15610-15638. doi: 10.3934/math.2024754 |
[5] | Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784 |
[6] | Tahani A. Abushal, Alaa H. Abdel-Hamid . Inference on a new distribution under progressive-stress accelerated life tests and progressive type-II censoring based on a series-parallel system. AIMS Mathematics, 2022, 7(1): 425-454. doi: 10.3934/math.2022028 |
[7] | H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550 |
[8] | Ahmed R. El-Saeed, Ahmed T. Ramadan, Najwan Alsadat, Hanan Alohali, Ahlam H. Tolba . Analysis of progressive Type-Ⅱ censoring schemes for generalized power unit half-logistic geometric distribution. AIMS Mathematics, 2023, 8(12): 30846-30874. doi: 10.3934/math.20231577 |
[9] | Hanan Haj Ahmad, Ehab M. Almetwally, Dina A. Ramadan . A comparative inference on reliability estimation for a multi-component stress-strength model under power Lomax distribution with applications. AIMS Mathematics, 2022, 7(10): 18050-18079. doi: 10.3934/math.2022994 |
[10] | Mazen Nassar, Refah Alotaibi, Ahmed Elshahhat . Reliability analysis at usual operating settings for Weibull Constant-stress model with improved adaptive Type-Ⅱ progressively censored samples. AIMS Mathematics, 2024, 9(7): 16931-16965. doi: 10.3934/math.2024823 |
Statistical models can be used to describe and forecast real-world occurrences. Several extended distributions have been widely employed in data modeling throughout the last few decades. Recent advances have focused on establishing new families that expand well-known distributions while providing tremendous flexibility in modeling data in practice [62,63]. A large field of statistics aims at developing distributions with innovative characteristics to create flexible models for data interpretation. In reality, a new distribution can provide a new modeling perspective and a deeper description of the underlying mechanisms establishing the data. A more robust family of distributions is produced by these phenomena of parameter addition, which is effectively used to model data sets from the fields of engineering, economics, biological research, and environmental sciences. Consequently, several well-known generating families of distributions in this respect include the generalized odd Burr III-G [31], truncated Cauchy power Weibull-G [8], the generalized transmuted-G [50], generalized inverted Kumaraswamy-G [35], truncated Burr X-G [16], odd generalized N-H-G [3], sine extended odd Fréchet-G [36], generalized odd log-logistic [26], arcsine exponentiated-X family [33], generalized truncated Fréchet [61], tan-G [56], extended cosine-G [46], type II exponentiated half logistic-G [4], logistic-G [59], sine-G [40], cosine-G [57], alpha power transformed family of distributions [41], and for more detail see [4,5,17,43,51]. In 2020, Ijaz [34] presented a new family of generalized distributions called the GAP family of distributions and they defined its cumulative distribution function (CDF), probability density function (PDF) as
F(x)=τ1−G(x)G(x),τ>0,x∈R | (1.1) |
and
f(x)=τ1−G(x)g(x)[1−log(τ)G(x)],τ>0,x∈R. | (1.2) |
Many authors used the CDF (1.1) and PDF (1.2) to get new generalizations and new sub-models of the Gull alpha power (GAP) family of distributions as the exponentiated generalized Gull alpha power family of distributions [39], Gull alpha power Ampadu family of distributions [12], Kumaraswamy-Gull alpha power Rayleigh distribution [42], and exponentiated Gull alpha power exponential distribution [38].
The exponentiated exponential (EE) distribution has been demonstrated to be useful in a variety of applications such as life testing, survival analysis, and dependability. This distribution, which is a particular case of the exponentiated Weibull distribution [44,45], was studied in [29]. The CDF and PDF of the EE distribution with scale parameter a and shape parameter b are provided via
G(x;a,b)=(1−e−ax)b,x,a,b>0 | (1.3) |
and
g(x;a,b)=abe−ax(1−e−ax)b−1,x,a,b>0. | (1.4) |
According to the flexibility of the EE distribution, many statisticians utilized it to create new generalizations of the EE distribution, like the beta EE distribution [19], Marshall-Olkin EE distribution [52], half-Cauchy EE distribution [22], odd Lomax EE distribution [54], and modified slashed EE distribution [14].
When investigations, including the lifespan of test units, must end before full observation, censored data emerges in real-world testing trials. For a number of reasons, including time constraints and financial considerations, censoring is a frequent and necessary routine action. The many forms of censorship have been well studied; types I and II censorship are the most common. A generalized censorship technique known as progressive censored schemes has lately garnered significant attention in the literature compared to standard censorship designs because of its effective use of available resources. The (PTIC) is one of several progressive censored Type-II systems. When a specific number of lifetime test units are consistently removed from the test at the end of each post-test interval, this pattern is seen. According to a study by Balakrishnan et al. [15], it can realistically predict the termination time and provides additional design freedom by permitting test units to be terminated during non-terminal time periods.
We now talk about accelerated life tests (ALTs), which are ways to get more data in a shorter amount of time by stressing out items more than they would under normal operating settings. Time and money can be significantly saved with such testing. Hakamipour [30] describes the step-stress accelerated life test (SSALT) as one form of ALT. Typically, the researcher starts with a stress level that is slightly over normal condition and gradually increases it at pre-specified time intervals during the test. The test goes on until the time limit is achieved and censoring takes place, or until the full sample of things fails. For more information about SSALT under PTIC, see [9,10].
The major goal of this paper is to add to the literature by introducing the Gull alpha power exponentiated exponential distribution (GAPEED) as a novel three-parameter model based on the GAP family of distributions. The subsequent points give adequate cause for examining it:
(1) The GAPEED is a very flexible model whose PDF can be asymmetric (decreasing, unimodal, and right-skewed).
(2) The hazard function (hrf) shape of the GAPEED includes increasing, upside-down and decreasing shapes.
(3) The GAPEED has a closed-form quantile function; it is easy to compute numerous properties and generate random numbers using it.
(4) The parameters of the GAPEED can be estimated utilizing eight different methods of estimation: The maximum likelihood (ML), Anderson-Darling (AD), right-tail Anderson-Darling (RTAD), left-tailed Anderson-Darling (LTAD), Cramér-von Mises (CVM), least-squares (LS), weighted least-squares (WLS), and maximum product of spacing (MPS).
(5) The importance and the flexibility of the GAPEED is discussed using three real datasets, and the GAPEED gives a better fit than well-known distributions such as the Topp-Leone modified Weibull (TLMW), Type II exponentiated half logistic power Lomax (TIIEHLPL), exponential Lomax (EL), Kumaraswamy Weibull (KW), generalized modified Weibull (GMW), Marshall- Olkin alpha power extended Weibull (MOAPEW), exponential Weibull (EW), exponentiated generalized alpha power exponential (EGAPEx), Kavya-Manoharan generalized exponential (KMGEx), exponentiated half logistic inverted Nadarajah- Haghighi (EHLINH), exponentiated exponential (ExEx), and odd Weibull inverse Topp-Leone (OWITL).
(6) We suggest utilizing the GAPEED model to create bivariate SSALTs under PTIC. The optimal test strategy for our suggested bivariate SSALT under PTIC is found by minimizing the asymptotic variance of the MLEs of the scale parameter's.
The remainder of this article is structured as follows: In Section 2, a new three-parameter model utilizing the EE distribution as the parent distribution in the GAP family is presented and discussed. Some important statistical features of the GAPEED are demonstrated in Section 3. Eight different estimation methods, ML, AD, CVM, MPS, LS, RTAD, WLS, and LTAD for the distribution parameters, are proposed in Section 4. In Section 5, we use a Monte Carlo technique to evaluate the quality of different estimators. To illustrate the importance of the GAPEED, we employed three real datasets in Section 6. In Section 7, the bivariate SSALT under the progressive type-I censoring (PTIC) model is discussed. Finally, the paper with concluding remarks.
The GAPEED can be formulated by inserting (1.3) and (1.4) into (1.1) and (1.2), and then the CDF of the new suggested model is defined as
F(x;a,b,τ)=(1−e−ax)bτ1−(1−e−ax)b,x>0,a,b,τ>0 | (2.1) |
and its PDF is defined as follows
f(x;a,b,τ)=abe−ax(1−e−ax)b−1τ1−(1−e−ax)b[1−log(τ)(1−e−ax)b]. | (2.2) |
The survival function, hazard rate function (hrf), reversed hrf, and cumulative hrf are provided as
s(x;a,b,τ)=1−(1−e−ax)bτ1−(1−e−ax)b, |
h(x;a,b,τ)=abe−ax(1−e−ax)b−1τ1−(1−e−ax)b[1−log(τ)(1−e−ax)b]1−(1−e−ax)bτ1−(1−e−ax)b, |
ς(x;a,b,τ)=ab[1−log(τ)(1−e−ax)b]eax−1 |
and
H(x;a,b,τ)=−log[1−(1−e−ax)bτ1−(1−e−ax)b]. |
Figure 1 shows the plots of the PDF and hrf for the GAPEED for different values of parameters. From Figure 1, we can note that the PDF of the GAPEED can be decreasing, unimodal, and right skewed but the hrf can be decreasing, increasing, and up-side-down.
The quantile function, defined as Q(p;a,b,τ)=F−1(p;a,b,τ),p∈(0, 1), is computed by inverting Eq (1.1) as
p=τG(x)τG(x). |
Then, we can rewrite the above equation as
−plog(τ)τ=−G(x)log(τ)e−G(x)log(τ). |
As a result, through the use of the negative Lambert W function, represented by W−1(.), we obtain the quantile function of the GAPEED as
Q(p;a,b,τ)=−1alog[1−(−W−1[−plog(τ)τ]log(τ))1b]. |
Specifically, by inserting p=0.25, 0.5, and 0.75, we obtain the first, second (median), and third quantiles. Furthermore, relying on the quantiles, Bowley's skewness (α1) and Moor's kurtosis (α2) are provided via
α1=Q(0.75;a,b,τ)−2Q(0.5;a,b,τ)+Q(0.25;a,b,τ)Q(0.75;a,b,τ)−Q(0.25;a,b,τ) |
and
α2=Q(0.875;a,b,τ)−Q(0.625;a,b,τ)+Q(0.375;a,b,τ)−Q(0.125;a,b,τ)Q(0.75;a,b,τ)−Q(0.25;a,b,τ), |
respectively. These metrics provide helpful details about the GAPEED skewness and kurtosis modeling capabilities and have the benefit of being specified for all parameter values. The plots of α1 and α2 for the GAPEED are given in Figure 2.
The rth ordinary moments are essential statistics for determining the measures of dispersion for any distribution. Assume that X∼ GAPEED (a,b,τ) for x>0, then the rth ordinary moments of X can computed via
μ′r=∫∞0xrf(x)dx=ab∫∞0xre−ax(1−e−ax)b−1τ1−(1−e−ax)b[1−log(τ)(1−e−ax)b]dx | (3.1) |
by using the power series
τm=∞∑i=0(log(τ))ii!mi. | (3.2) |
Inserting (3.2) into (3.1), then
μ′r=ab∞∑i=0(log(τ))ii!∫∞0xre−ax(1−e−ax)b−1[1−(1−e−ax)b]i[1−log(τ)(1−e−ax)b]dx. | (3.3) |
Employing the binomial expansion
(1−x)β=∞∑j=0(−1)j(βj)xj | (3.4) |
and inserting (3.4) into (3.3), we get
μ′r=ab∞∑i,j=0(−1)j(ij)(log(τ))ii!∫∞0xre−ax(1−e−ax)b(j+1)−1[1−log(τ)(1−e−ax)b]dx. | (3.5) |
We can rewrite the above Eq (3.5) as
μ′r=∞∑i,j=0πi,j∫∞0xr[e−ax(1−e−ax)b(j+1)−1−log(τ)e−ax(1−e−ax)b(j+2)−1]dx, | (3.6) |
where πi,j=ab(−1)j(ij)(log(τ))ii!. Again, using the binomial expansion (3.4) in (3.6), then the rth ordinary moments of the GAPEED are given by
μ′r=∞∑i,j,k=0πi,j,k∫∞0xre−a(k+1)xdx=∞∑i,j,k=0πi,j,kΓ(r+1)[a(k+1)]r+1, | (3.7) |
where πi,j,k=(−1)kπi,j[(b(j+1)−1k)−(b(j+2)−1k)log(τ)].
Table 1 shows some numerical values of μ′1, μ′2, μ′3, μ′4, variance (σ2), coefficient of variation (CV), skewness, and kurtosis. Also, some 3D plots of moments are provided in Figure 3.
Parameters | Measures | |||||||||
a | b | τ | μ′1 | μ′2 | μ′3 | μ′4 | σ2 | CV | skewness | kurtosis |
0.5 | 0.75 | 0.25 | 2.68979 | 12.4088 | 79.9101 | 662.52 | 5.17387 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.74385 | 6.75901 | 40.1156 | 319.514 | 3.71799 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 2.0773 | 7.90377 | 45.4087 | 353.528 | 3.5886 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.68603 | 5.38955 | 27.4263 | 198.4 | 2.54684 | 0.94653 | 5.75592 | 12.5055 | ||
0.75 | 0.75 | 0.25 | 1.79319 | 5.51503 | 23.6771 | 130.868 | 2.2995 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.16257 | 3.004 | 11.8861 | 63.1139 | 1.65244 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 1.38487 | 3.51279 | 13.4544 | 69.8326 | 1.59493 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.12402 | 2.39536 | 8.12631 | 39.1901 | 1.13193 | 0.94653 | 5.75592 | 12.5055 | ||
1.5 | 0.75 | 0.25 | 0.896596 | 1.37876 | 2.95963 | 8.17926 | 0.574874 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.581283 | 0.751001 | 1.48576 | 3.94462 | 0.41311 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.692433 | 0.878196 | 1.68181 | 4.36454 | 0.398733 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.562011 | 0.598839 | 1.01579 | 2.44938 | 0.282982 | 0.94653 | 5.75592 | 12.5055 | ||
2.5 | 0.75 | 0.25 | 0.537958 | 0.496353 | 0.63928 | 1.06003 | 0.206955 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.34877 | 0.27036 | 0.320925 | 0.511223 | 0.14872 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.41546 | 0.316151 | 0.36327 | 0.565644 | 0.143544 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.337207 | 0.215582 | 0.21941 | 0.31744 | 0.101874 | 0.94653 | 5.75592 | 12.5055 |
The moment-generating function for the GAPEED can be computed from (3.7) as
Mx(t)=∫∞0etxf(x)dx=∞∑i,j,k=0πi,j,k∫∞0xre−[a(k+1)−t]xdx=∞∑i,j,k=0πi,j,kΓ(r+1)[a(k+1)−t]r+1. |
The sth lower and upper incomplete moments of the GAPEED are computed as
ωs(t)=∞∑i,j,k=0πi,j,k∫t0xse−a(k+1)xdx=∞∑i,j,k=0πi,j,kγ(s+1,a(k+1)t)[a(k+1)]s+1, |
and
υs(t)=∞∑i,j,k=0πi,j,k∫∞txse−a(k+1)xdx=∞∑i,j,k=0πi,j,kΓ(s+1,a(k+1)t)[a(k+1)]s+1, |
where γ(.,.) and Γ(.,.) are the lower and upper incomplete gamma functions.
This section introduces traditional estimation methods specifically designed for estimating the parameters of the GAPEED. These methods are applied in a simulation setting to assess their effectiveness and performance. A total of eight estimation methods are considered for this purpose. Each method involves deriving an estimate by optimizing an objective function to either maximize or minimize a specific value. The estimation setting and the definitions of the functions to be optimized are provided in detail below.
Suppose we have a random sample of values, denoted as x1,x2,…,xn, drawn from a random variable that follows the GAPEED. In order to estimate the parameters of the GAPEED, we employ various estimation methods. The first method is maximum likelihood estimation (MLE), where the estimators are obtained by maximizing a specific function which is defined as
logL=n∑i=1log(τ1−(1−e−axi)b)+n∑i=1log(1−log(τ)(1−e−axi)b)+bn∑i=1log(1−e−axi)−n∑i=1log(eaxi−1)+nlog(ab). |
Next, we utilize Anderson-Darling estimation (ADE) [13] technique for estimating the GAPEED parameters. By considering an ordered sample of values, denoted as x(1),x(2),…,x(n), we minimize a certain function to derive the estimators, which is defined as
A=−n−1nn∑i=1(2i−1)[log(τ)(1−(1−e−ax(i))b)+blog(1−e−ax(i))+log(1−(1−e−ax(i))bτ1−(1−e−ax(i))b)]. |
Similarly, we employ the right-tail Anderson-Darling estimation (RADE) [13] by minimizing a specific function, defined as
R=n2−2n∑i=1(1−e−ax(i))bτ1−(1−e−ax(i))b−1nn∑i=1(2i−1)log(1−(1−e−ax(i))bτ1−(1−e−ax(i))b). |
Additionally, the left-tailed Anderson-Darling estimation (LTADE) [47] is utilized to estimate the GAPEED parameters. This estimation method involves minimizing a particular function to obtain the estimators and is defined as
L=−32n+2n∑i=1(1−e−ax(i))bτ1−(1−e−ax(i))b−1nn∑i=1(2i−1)[log(τ)(1−(1−e−ax(i))b)+blog(1−e−ax(i))]. |
Furthermore, we consider Cramér-von Mises estimation (CVME) [23], where the estimators are obtained by minimizing a specific function defined as
C=112n+n∑i=1[(1−e−ax(i))bτ1−(1−e−ax(i))b−2i−12n]2. |
Another estimation method employed is least-squares estimation (LSE) [58], which involves minimizing a certain function to derive the estimators. This function is defined as follows
V=n∑i=1[(1−e−ax(i))bτ1−(1−e−ax(i))b−in+1]2. |
Additionally, we employ weighted least-squares estimation (WLSE) [58] by minimizing a particular function, and it is defined as
W=n∑i=1(n+1)2(n+2)i(n−i+1)[(1−e−ax(i))bτ1−(1−e−ax(i))b−in+1]2. |
Lastly, the maximum product of spacing estimation (MPSE) [37] method is utilized, where the estimators are obtained by maximizing a specific function. This function is defined as
Υ=1n+1n+1∑i=1log(ϑi), |
where
ϑi=(1−e−ax(i))bτ1−(1−e−ax(i))b−(1−e−ax(i−1))bτ1−(1−e−ax(i−1))b. |
One frequently employed technique for creating confidence intervals (CIs) for parameters relies on the asymptotic normality of MLE and MPS. This method employs the Fisher information matrix, represented as I(θθ), where θθ=(τ,a,b), which is obtained from the second derivatives of the natural logarithm of the likelihood function or product spacing function, calculated at the estimated parameter values ^θθ=(ˆτ,ˆa,ˆb). The asymptotic variance-covariance matrix of the parameter vector θθ can be articulated as follows:
I(^θθ)=−[IˆaˆaIˆbˆaIˆbˆbIˆηˆaIˆηˆbIˆηˆη,]. | (4.1) |
The matrix representing the variances and covariances of the estimated parameters, identified as V(^θθ), is determined by taking the inverse of the Fisher information matrix, denoted as I−1(^θθ). To create CIs for the parameter vector θθ based on the MLE's asymptotic normality, one can calculate a 100(1−α)% confidence interval for each parameter using the following procedure:
To calculate the CI for a use this formula: ˆa±Z0.025√Vˆaˆa.
To calculate the CI for b use this formula: ˆb±Z0.025√Vˆbˆb.
To calculate the CI for η use this formula: ˆη±Z0.025√Vˆaˆa.
In this context, Z0.025 denotes the critical value from the standard normal distribution's right tail, with a probability of α2. The values Vˆaˆa, Vˆbˆb, and Vˆηˆη correspond to the diagonal components of the variance-covariance matrix V(^θθ).
In our comprehensive simulation study, we investigate the performance of our proposed model using various sample sizes: n=35, 70, 150, 300 and 600. To generate representative datasets, we employ the inversion of the CDF of our proposed model. For each sample size, we randomly generate datasets based on the following parameter values: θθ=(τ,a,b)={(τ=0.5,a=0.25,b=0.75),(τ=1.5,a=0.75,b=0.5), (τ=2,a=0.5,b=1.5),(τ=2,a=1.5,b=2),(τ=0.75,a=2,b=3),(τ=0.25,a=3,b=0.25)}. This process is repeated five thousand of times. By varying the sample sizes and incorporating diverse parameter combinations, our simulation study aims to comprehensively evaluate the performance of the proposed model across different data scenarios.
To thoroughly examine the effectiveness of the considered estimation methods, we employ a range of measures that comprehensively evaluate their performance. These measures serve as valuable benchmarks in assessing the quality of the estimators and provide insights into their accuracy, efficiency, and robustness. The following measures are employed to assess the effectiveness of the estimation methods [20,53,60]:
● Average of bias:
Bias=1nn∑m=1|^θθi−θθ|, |
where L represents the number of iterations and ^θθi is the considered estimate for θθ at the m-th iteration sample.
● Mean squared error:
MSE=1nn∑m=1(^θθ−θθ)2. |
● Mean relative error:
MRE=1nn∑m=1|^θθ−θθ|θθ. |
● Average absolute difference:
Dabs=1nkk∑m=1n∑j=1|F(xij;θθ)−F(xij;^θθ)|, |
where F(x;θθ)=F(x) and xij denotes the values obtained at the m-th iteration sample and j-th component of this sample.
● Maximum absolute difference
Dmax=1nn∑m=1maxj=1,…,n|F(xij;θθ)−F(xij;^θθ)|. |
● Average squared absolute error:
ASAE=1nn∑m=1|x(i)−ˆx(i)|x(L)−x(1), |
where x(i) are the ascending ordered observations. The results of simulating the proposed model parameters using different estimation techniques are presented in Tables 2–7. A graphical representation for some numerical values is presented in Figures 4 and 5. A comprehensive analysis of these tables reveals the following key observations:
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.32671{1} | 0.58371{5} | 0.56143{2} | 0.57133{3} | 0.60648{6} | 0.63277{8} | 0.5738{4} | 0.61215{7} |
ˆa | 0.04966{1} | 0.06013{4} | 0.0625{6} | 0.05958{3} | 0.06715{8} | 0.06343{7} | 0.05815{2} | 0.06028{5} | ||
ˆb | 0.24844{1} | 0.28129{4} | 0.28515{5} | 0.29203{6} | 0.27907{2} | 0.29342{7} | 0.28051{3} | 0.31435{8} | ||
MSE | ˆτ | 0.16299{1} | 0.59664{5} | 0.52583{2} | 0.58252{4} | 0.61607{6} | 0.721{7} | 0.55021{3} | 0.93333{8} | |
ˆa | 0.00411{1} | 0.00549{4} | 0.00611{6} | 0.0054{3} | 0.00663{7.5} | 0.00663{7.5} | 0.00519{2} | 0.00574{5} | ||
ˆb | 0.10323{1} | 0.11811{4} | 0.12803{6} | 0.11815{5} | 0.1178{3} | 0.14159{8} | 0.11156{2} | 0.14151{7} | ||
MRE | ˆτ | 0.65343{1} | 1.16742{5} | 1.12285{2} | 1.14267{3} | 1.21295{6} | 1.26554{8} | 1.1476{4} | 1.22429{7} | |
ˆa | 0.19865{1} | 0.24052{4} | 0.25{6} | 0.23833{3} | 0.2686{8} | 0.2537{7} | 0.23258{2} | 0.2411{5} | ||
ˆb | 0.33126{1} | 0.37506{4} | 0.3802{5} | 0.38937{6} | 0.37209{2} | 0.39123{7} | 0.37402{3} | 0.41913{8} | ||
Dabs | 0.04372{2} | 0.04281{1} | 0.04653{7} | 0.04411{3} | 0.04606{5} | 0.04624{6} | 0.0448{4} | 0.04683{8} | ||
Dmax | 0.07294{3} | 0.07168{2} | 0.07905{8} | 0.07157{1} | 0.0766{5} | 0.07807{6} | 0.07418{4} | 0.07819{7} | ||
ASAE | 0.02941{7} | 0.02686{2} | 0.02879{5} | 0.02748{4} | 0.02895{6} | 0.02682{1} | 0.02728{3} | 0.03173{8} | ||
∑Ranks | 21{1} | 44{3.5} | 60{5} | 44{3.5} | 64.5{6} | 79.5{7} | 36{2} | 83{8} | ||
70 | BIAS | ˆτ | 0.31314{1} | 0.47069{3} | 0.48998{5} | 0.49062{6} | 0.50913{7} | 0.54111{8} | 0.47654{4} | 0.46785{2} |
ˆa | 0.03421{1} | 0.04143{2} | 0.04746{6} | 0.04299{3} | 0.04804{7} | 0.04809{8} | 0.04356{4} | 0.04532{5} | ||
ˆb | 0.21631{1} | 0.2507{5} | 0.23911{2} | 0.27064{7} | 0.24898{3} | 0.24985{4} | 0.25229{6} | 0.2829{8} | ||
MSE | ˆτ | 0.1496{1} | 0.41058{4} | 0.43118{5} | 0.45507{7} | 0.44542{6} | 0.55159{8} | 0.40366{3} | 0.39192{2} | |
ˆa | 0.00191{1} | 0.00286{2} | 0.0034{6} | 0.00317{4} | 0.00368{8} | 0.00366{7} | 0.00308{3} | 0.00328{5} | ||
ˆb | 0.07529{1} | 0.08986{4} | 0.0849{2} | 0.10267{7} | 0.08698{3} | 0.09562{6} | 0.09{5} | 0.11517{8} | ||
MRE | ˆτ | 0.62627{1} | 0.94139{3} | 0.97995{5} | 0.98124{6} | 1.01826{7} | 1.08221{8} | 0.95309{4} | 0.93571{2} | |
ˆa | 0.13684{1} | 0.16572{2} | 0.18984{6} | 0.17197{3} | 0.19217{7} | 0.19238{8} | 0.17425{4} | 0.18128{5} | ||
ˆb | 0.28842{1} | 0.33426{5} | 0.31881{2} | 0.36085{7} | 0.33197{3} | 0.33314{4} | 0.33638{6} | 0.3772{8} | ||
Dabs | 0.03037{1} | 0.03108{3} | 0.03275{8} | 0.03089{2} | 0.03226{5} | 0.03245{6} | 0.03186{4} | 0.03262{7} | ||
Dmax | 0.05103{2} | 0.05227{3} | 0.05581{8} | 0.05055{1} | 0.05432{5} | 0.05561{7} | 0.0531{4} | 0.05469{6} | ||
ASAE | 0.01852{7} | 0.01764{3} | 0.01828{5} | 0.01771{4} | 0.0183{6} | 0.01677{1} | 0.01726{2} | 0.02027{8} | ||
∑Ranks | 19{1} | 39{2} | 60{5} | 57{4} | 67{7} | 75{8} | 49{3} | 66{6} | ||
150 | BIAS | ˆτ | 0.27897{1} | 0.33896{2} | 0.4218{7} | 0.37504{5} | 0.40603{6} | 0.43235{8} | 0.36118{4} | 0.33952{3} |
ˆa | 0.02475{1} | 0.02809{2} | 0.03377{8} | 0.02817{3} | 0.03358{7} | 0.03171{6} | 0.0292{4} | 0.03094{5} | ||
ˆb | 0.17834{1} | 0.19969{2} | 0.22885{6} | 0.23606{8} | 0.21943{4} | 0.23111{7} | 0.20646{3} | 0.22692{5} | ||
MSE | ˆτ | 0.12003{1} | 0.21771{3} | 0.32049{7} | 0.26977{5} | 0.2889{6} | 0.35196{8} | 0.2381{4} | 0.18081{2} | |
ˆa | 0.00097{1} | 0.00137{2} | 0.00186{7} | 0.00155{5} | 0.00189{8} | 0.00175{6} | 0.00149{3} | 0.00151{4} | ||
ˆb | 0.05034{1} | 0.05811{2} | 0.07333{5} | 0.08301{8} | 0.06651{4} | 0.07845{7} | 0.06122{3} | 0.07669{6} | ||
MRE | ˆτ | 0.55795{1} | 0.67793{2} | 0.84359{7} | 0.75008{5} | 0.81206{6} | 0.86469{8} | 0.72235{4} | 0.67904{3} | |
ˆa | 0.09901{1} | 0.11236{2} | 0.1351{8} | 0.11269{3} | 0.13434{7} | 0.12685{6} | 0.11682{4} | 0.12378{5} | ||
ˆb | 0.23779{1} | 0.26626{2} | 0.30514{6} | 0.31475{8} | 0.29257{4} | 0.30814{7} | 0.27529{3} | 0.30257{5} | ||
Dabs | 0.02145{2} | 0.02295{7} | 0.0217{3} | 0.02129{1} | 0.02288{6} | 0.023{8} | 0.02213{4} | 0.0225{5} | ||
Dmax | 0.03601{2} | 0.03845{6} | 0.03771{4} | 0.03525{1} | 0.03891{7} | 0.03973{8} | 0.03688{3} | 0.03798{5} | ||
ASAE | 0.011{5} | 0.01062{3} | 0.01139{6} | 0.01092{4} | 0.01146{7} | 0.01039{1} | 0.01045{2} | 0.01269{8} | ||
∑Ranks | 18{1} | 35{2} | 74{7} | 56{4.5} | 72{6} | 80{8} | 41{3} | 56{4.5} | ||
300 | BIAS | ˆτ | 0.20018{1} | 0.243{4} | 0.29528{6} | 0.23781{3} | 0.31369{7} | 0.33876{8} | 0.23778{2} | 0.25695{5} |
ˆa | 0.01707{1} | 0.01972{4} | 0.02215{6} | 0.01893{3} | 0.02216{7} | 0.02177{5} | 0.01829{2} | 0.02228{8} | ||
ˆb | 0.13506{1} | 0.15636{3} | 0.18002{6} | 0.17262{5} | 0.19427{7} | 0.20028{8} | 0.15561{2} | 0.16985{4} | ||
MSE | ˆτ | 0.0643{1} | 0.1019{4} | 0.14664{6} | 0.08922{2} | 0.16416{7} | 0.21518{8} | 0.08995{3} | 0.10932{5} | |
ˆa | 0.00047{1} | 0.00066{4} | 0.00082{6} | 0.00056{2.5} | 0.00088{8} | 0.00087{7} | 0.00056{2.5} | 0.00081{5} | ||
ˆb | 0.03228{1} | 0.03756{3} | 0.0464{4} | 0.05353{7} | 0.05263{6} | 0.05765{8} | 0.03636{2} | 0.04878{5} | ||
MRE | ˆτ | 0.40037{1} | 0.486{4} | 0.59055{6} | 0.47561{3} | 0.62739{7} | 0.67751{8} | 0.47557{2} | 0.5139{5} | |
ˆa | 0.06829{1} | 0.07887{4} | 0.08859{6} | 0.0757{3} | 0.08866{7} | 0.0871{5} | 0.07315{2} | 0.08912{8} | ||
ˆb | 0.18008{1} | 0.20848{3} | 0.24002{6} | 0.23017{5} | 0.25903{7} | 0.26704{8} | 0.20748{2} | 0.22646{4} | ||
Dabs | 0.01493{1} | 0.01579{5} | 0.0158{6} | 0.0154{3} | 0.01595{7} | 0.01566{4} | 0.01501{2} | 0.01623{8} | ||
Dmax | 0.02495{1} | 0.02657{4} | 0.0273{6} | 0.02576{3} | 0.02745{7} | 0.02722{5} | 0.02546{2} | 0.02772{8} | ||
ASAE | 0.00711{5} | 0.00685{2} | 0.00726{6} | 0.007{4} | 0.00737{7} | 0.0066{1} | 0.00688{3} | 0.008{8} | ||
∑Ranks | 16{1} | 44{4} | 70{5} | 43.5{3} | 84{8} | 75{7} | 26.5{2} | 73{6} | ||
600 | BIAS | ˆτ | 0.14883{1} | 0.18347{4} | 0.22873{7} | 0.16341{2} | 0.2235{6} | 0.23795{8} | 0.17744{3} | 0.18749{5} |
ˆa | 0.01222{1} | 0.01372{4} | 0.01577{7} | 0.01259{2} | 0.01528{6} | 0.01437{5} | 0.01333{3} | 0.01579{8} | ||
ˆb | 0.09866{1} | 0.12057{3} | 0.14941{7} | 0.12377{5} | 0.14754{6} | 0.15886{8} | 0.11439{2} | 0.12134{4} | ||
MSE | ˆτ | 0.03594{1} | 0.05294{4} | 0.07897{7} | 0.04896{2} | 0.07454{6} | 0.08434{8} | 0.04983{3} | 0.05618{5} | |
ˆa | 0.00024{1} | 3e−04{4} | 0.00039{7} | 0.00025{2} | 0.00038{6} | 0.00033{5} | 0.00028{3} | 4e−04{8} | ||
ˆb | 0.01685{1} | 0.02314{3} | 0.03354{7} | 0.03316{6} | 0.03195{5} | 0.03586{8} | 0.02149{2} | 0.02667{4} | ||
MRE | ˆτ | 0.29767{1} | 0.36695{4} | 0.45746{7} | 0.32682{2} | 0.447{6} | 0.47591{8} | 0.35489{3} | 0.37498{5} | |
ˆa | 0.04889{1} | 0.05487{4} | 0.06308{7} | 0.05037{2} | 0.0611{6} | 0.05747{5} | 0.05332{3} | 0.06316{8} | ||
ˆb | 0.13154{1} | 0.16077{3} | 0.19922{7} | 0.16503{5} | 0.19672{6} | 0.21182{8} | 0.15252{2} | 0.16179{4} | ||
Dabs | 0.0111{4.5} | 0.01086{2} | 0.01153{8} | 0.01074{1} | 0.01151{7} | 0.0111{4.5} | 0.011{3} | 0.01132{6} | ||
Dmax | 0.01861{3} | 0.01858{2} | 0.02{8} | 0.01805{1} | 0.01977{7} | 0.01944{5} | 0.01862{4} | 0.01945{6} | ||
ASAE | 0.00463{5} | 0.00449{2} | 0.00477{7} | 0.00458{4} | 0.00468{6} | 0.00423{1} | 0.00453{3} | 0.0053{8} | ||
∑Ranks | 21.5{1} | 42{4} | 85{8} | 34{2.5} | 72{6} | 72.5{7} | 34{2.5} | 71{5} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.52028{1} | 0.68928{3} | 0.70994{5} | 0.69622{4} | 0.75178{7} | 0.67815{2} | 0.72398{6} | 1.13877{8} |
ˆa | 0.31117{5} | 0.30596{4} | 0.34262{7} | 0.29874{2} | 0.32249{6} | 0.29648{1} | 0.30057{3} | 0.40126{8} | ||
ˆb | 0.10184{1} | 0.12191{2} | 0.12619{4} | 0.12737{5} | 0.14134{8} | 0.12264{3} | 0.13027{7} | 0.12801{6} | ||
MSE | ˆτ | 0.39328{1} | 0.62488{3} | 0.63359{4} | 0.64832{5} | 0.70817{7} | 0.59038{2} | 0.6678{6} | 5.81642{8} | |
ˆa | 0.19077{6} | 0.16766{4} | 0.21757{7} | 0.13867{1} | 0.1814{5} | 0.15924{3} | 0.14761{2} | 0.28201{8} | ||
ˆb | 0.01765{1} | 0.02526{3} | 0.02541{4} | 0.02837{7} | 0.03057{8} | 0.02415{2} | 0.02725{5} | 0.02764{6} | ||
MRE | ˆτ | 0.34685{1} | 0.45952{3} | 0.47329{5} | 0.46415{4} | 0.50118{7} | 0.4521{2} | 0.48266{6} | 0.75918{8} | |
ˆa | 0.41489{5} | 0.40795{4} | 0.45682{7} | 0.39832{2} | 0.42998{6} | 0.39531{1} | 0.40076{3} | 0.53502{8} | ||
ˆb | 0.20368{1} | 0.24381{2} | 0.25237{4} | 0.25474{5} | 0.28267{8} | 0.24528{3} | 0.26055{7} | 0.25601{6} | ||
Dabs | 0.04223{1} | 0.04403{2} | 0.04672{8} | 0.04455{3} | 0.04648{7} | 0.04513{4} | 0.04515{5} | 0.04614{6} | ||
Dmax | 0.07079{1} | 0.07367{3} | 0.07922{8} | 0.07196{2} | 0.07766{6} | 0.07539{5} | 0.07491{4} | 0.07795{7} | ||
ASAE | 0.02942{7} | 0.02673{4} | 0.02904{5} | 0.02425{1} | 0.02924{6} | 0.02505{2} | 0.02572{3} | 0.03359{8} | ||
∑Ranks | 31{2} | 37{3} | 68{6} | 41{4} | 81{7} | 30{1} | 57{5} | 87{8} | ||
70 | BIAS | ˆτ | 0.44843{1} | 0.55647{2} | 0.60703{6} | 0.59899{5} | 0.61789{7} | 0.59399{4} | 0.5885{3} | 0.81136{8} |
ˆa | 0.21823{1} | 0.23547{2} | 0.28101{7} | 0.24595{4} | 0.27126{6} | 0.24022{3} | 0.25611{5} | 0.34138{8} | ||
ˆb | 0.07119{1} | 0.07899{2} | 0.09493{7} | 0.09127{4} | 0.09464{6} | 0.09441{5} | 0.08918{3} | 0.09618{8} | ||
MSE | ˆτ | 0.29594{1} | 0.41655{2} | 0.47968{5} | 0.50918{7} | 0.49378{6} | 0.47083{4} | 0.46093{3} | 1.11606{8} | |
ˆa | 0.08284{1} | 0.08655{2} | 0.13227{7} | 0.08818{3} | 0.12046{6} | 0.09121{4} | 0.10373{5} | 0.1922{8} | ||
ˆb | 0.00891{1} | 0.01107{2} | 0.01553{5.5} | 0.01731{8} | 0.01553{5.5} | 0.01424{4} | 0.01391{3} | 0.01668{7} | ||
MRE | ˆτ | 0.29895{1} | 0.37098{2} | 0.40469{6} | 0.39933{5} | 0.41193{7} | 0.39599{4} | 0.39233{3} | 0.5409{8} | |
ˆa | 0.29097{1} | 0.31396{2} | 0.37468{7} | 0.32794{4} | 0.36168{6} | 0.32029{3} | 0.34148{5} | 0.45517{8} | ||
ˆb | 0.14238{1} | 0.15797{2} | 0.18985{7} | 0.18254{4} | 0.18928{6} | 0.18881{5} | 0.17837{3} | 0.19237{8} | ||
Dabs | 0.03152{2.5} | 0.03098{1} | 0.03327{6} | 0.03152{2.5} | 0.03365{7} | 0.03254{5} | 0.0324{4} | 0.03395{8} | ||
Dmax | 0.05225{3} | 0.05176{1} | 0.0565{6} | 0.05216{2} | 0.05677{7} | 0.05497{5} | 0.05425{4} | 0.05832{8} | ||
ASAE | 0.01684{5} | 0.0164{4} | 0.01827{7} | 0.01516{2} | 0.01819{6} | 0.01497{1} | 0.01597{3} | 0.02063{8} | ||
∑Ranks | 19.5{1} | 24{2} | 76.5{7} | 50.5{5} | 75.5{6} | 47{4} | 44{3} | 95{8} | ||
150 | BIAS | ˆτ | 0.35036{1} | 0.41902{2} | 0.48817{6} | 0.48135{5} | 0.50235{7} | 0.47052{4} | 0.45634{3} | 0.61217{8} |
ˆa | 0.15767{1} | 0.18619{2} | 0.21414{6} | 0.20254{5} | 0.22223{7} | 0.18666{3} | 0.18946{4} | 0.26043{8} | ||
ˆb | 0.04827{1} | 0.05232{3} | 0.06485{7} | 0.05135{2} | 0.06782{8} | 0.06386{6} | 0.05683{4} | 0.06102{5} | ||
MSE | ˆτ | 0.18777{1} | 0.25158{2} | 0.32527{5} | 0.352{7} | 0.34253{6} | 0.31557{4} | 0.28732{3} | 0.5778{8} | |
ˆa | 0.04089{1} | 0.05247{3} | 0.07072{6} | 0.06092{5} | 0.07443{7} | 0.05186{2} | 0.05349{4} | 0.10477{8} | ||
ˆb | 0.00404{1} | 0.00479{2} | 0.00774{7} | 0.00548{3} | 0.00827{8} | 0.00696{6} | 0.00551{4} | 0.00665{5} | ||
MRE | ˆτ | 0.23357{1} | 0.27934{2} | 0.32544{6} | 0.3209{5} | 0.3349{7} | 0.31368{4} | 0.30422{3} | 0.40811{8} | |
ˆa | 0.21023{1} | 0.24825{2} | 0.28552{6} | 0.27005{5} | 0.29631{7} | 0.24888{3} | 0.25261{4} | 0.34723{8} | ||
ˆb | 0.09655{1} | 0.10464{3} | 0.12969{7} | 0.1027{2} | 0.13565{8} | 0.12772{6} | 0.11365{4} | 0.12204{5} | ||
Dabs | 0.02102{1} | 0.02184{3} | 0.02231{5} | 0.02208{4} | 0.02368{8} | 0.02251{6} | 0.02177{2} | 0.02282{7} | ||
Dmax | 0.03532{1} | 0.03657{2} | 0.03853{6} | 0.0366{3} | 0.04015{8} | 0.03831{5} | 0.03668{4} | 0.03957{7} | ||
ASAE | 0.00991{5} | 0.0094{3} | 0.0108{7} | 0.00918{2} | 0.01075{6} | 0.00871{1} | 0.00976{4} | 0.01271{8} | ||
∑Ranks | 16{1} | 29{2} | 74{6} | 48{4} | 87{8} | 50{5} | 43{3} | 85{7} | ||
300 | BIAS | ˆτ | 0.26655{1} | 0.33434{3} | 0.37325{6} | 0.34711{4} | 0.39467{7} | 0.36499{5} | 0.33138{2} | 0.48508{8} |
ˆa | 0.12193{1} | 0.14744{4} | 0.16883{6} | 0.15015{5} | 0.17776{7} | 0.14515{2} | 0.14696{3} | 0.21805{8} | ||
ˆb | 0.03505{1} | 0.03905{4} | 0.04169{5} | 0.03599{2} | 0.04485{7} | 0.04629{8} | 0.03769{3} | 0.04173{6} | ||
MSE | ˆτ | 0.11494{1} | 0.16891{3} | 0.19839{4} | 0.22068{7} | 0.21592{6} | 0.20154{5} | 0.16587{2} | 0.37566{8} | |
ˆa | 0.0244{1} | 0.03273{4} | 0.0429{6} | 0.03661{5} | 0.04653{7} | 0.03141{2} | 0.03249{3} | 0.07079{8} | ||
ˆb | 0.00192{1} | 0.00236{4} | 0.00295{6} | 0.00211{2} | 0.00333{7} | 0.00349{8} | 0.00226{3} | 0.00285{5} | ||
MRE | ˆτ | 0.1777{1} | 0.22289{3} | 0.24883{6} | 0.23141{4} | 0.26311{7} | 0.24333{5} | 0.22092{2} | 0.32339{8} | |
ˆa | 0.16257{1} | 0.19658{4} | 0.2251{6} | 0.2002{5} | 0.23701{7} | 0.19353{2} | 0.19595{3} | 0.29074{8} | ||
ˆb | 0.0701{1} | 0.07811{4} | 0.08338{5} | 0.07198{2} | 0.08971{7} | 0.09259{8} | 0.07539{3} | 0.08345{6} | ||
Dabs | 0.0149{1} | 0.01559{4} | 0.0158{5} | 0.01556{3} | 0.01608{7} | 0.01621{8} | 0.01505{2} | 0.01595{6} | ||
Dmax | 0.02507{1} | 0.02657{4} | 0.02735{5} | 0.02614{3} | 0.02778{7} | 0.02768{6} | 0.02561{2} | 0.02806{8} | ||
ASAE | 0.00607{5} | 0.00598{4} | 0.0069{7} | 0.00571{2} | 0.00682{6} | 0.00559{1} | 0.00593{3} | 0.00804{8} | ||
∑Ranks | 16{1} | 45{4} | 67{6} | 44{3} | 82{7} | 60{5} | 31{2} | 87{8} | ||
600 | BIAS | ˆτ | 0.19544{1} | 0.23541{3} | 0.30543{6} | 0.22954{2} | 0.30719{7} | 0.2498{5} | 0.24212{4} | 0.36224{8} |
ˆa | 0.08322{1} | 0.10415{4} | 0.13813{6} | 0.10194{2} | 0.13953{7} | 0.1021{3} | 0.10419{5} | 0.1712{8} | ||
ˆb | 0.02563{2} | 0.02682{3} | 0.03267{8} | 0.02544{1} | 0.03225{7} | 0.03151{6} | 0.0275{4} | 0.02908{5} | ||
MSE | ˆτ | 0.06188{1} | 0.09047{2} | 0.14058{7} | 0.12175{5} | 0.13924{6} | 0.10305{4} | 0.09293{3} | 0.21849{8} | |
ˆa | 0.01115{1} | 0.01707{3} | 0.02836{6} | 0.01967{5} | 0.02862{7} | 0.01637{2} | 0.01746{4} | 0.04409{8} | ||
ˆb | 0.00105{2} | 0.00116{3} | 0.00174{8} | 0.00103{1} | 0.00162{7} | 0.00159{6} | 0.00118{4} | 0.00135{5} | ||
MRE | ˆτ | 0.13029{1} | 0.15694{3} | 0.20362{6} | 0.15302{2} | 0.20479{7} | 0.16653{5} | 0.16141{4} | 0.24149{8} | |
ˆa | 0.11096{1} | 0.13886{4} | 0.18417{6} | 0.13592{2} | 0.18604{7} | 0.13613{3} | 0.13892{5} | 0.22827{8} | ||
ˆb | 0.05126{2} | 0.05365{3} | 0.06534{8} | 0.05088{1} | 0.06449{7} | 0.06302{6} | 0.055{4} | 0.05817{5} | ||
Dabs | 0.01057{1} | 0.01082{3} | 0.01131{7} | 0.0107{2} | 0.01154{8} | 0.01116{5} | 0.01097{4} | 0.01124{6} | ||
Dmax | 0.01792{1} | 0.01849{3} | 0.01965{6} | 0.01801{2} | 0.02001{8} | 0.01931{5} | 0.01869{4} | 0.01979{7} | ||
ASAE | 0.00367{3} | 0.00378{5} | 0.00448{7} | 0.00364{2} | 0.00445{6} | 0.0035{1} | 0.00376{4} | 0.0053{8} | ||
∑Ranks | 17{1} | 39{3} | 81{6} | 27{2} | 84{7.5} | 51{5} | 49{4} | 84{7.5} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.53211{2} | 0.62026{4} | 0.75084{7} | 0.47271{1} | 0.63274{6} | 0.62076{5} | 0.55091{3} | 0.88774{8} |
ˆa | 0.17954{7} | 0.14419{3} | 0.15786{5} | 0.13798{1} | 0.16003{6} | 0.14116{2} | 0.14743{4} | 0.20721{8} | ||
ˆb | 0.29362{3} | 0.2843{2} | 0.33553{5} | 0.27643{1} | 0.34292{7} | 0.34139{6} | 0.29688{4} | 0.35737{8} | ||
MSE | ˆτ | 0.48119{1} | 3.73487{7} | 5.47953{8} | 0.75293{2} | 1.38498{5} | 1.30859{4} | 0.81897{3} | 1.74615{6} | |
ˆa | 0.05597{7} | 0.03354{3} | 0.04117{5} | 0.02854{1} | 0.04153{6} | 0.03226{2} | 0.03661{4} | 0.06468{8} | ||
ˆb | 0.15312{3} | 0.13705{2} | 0.20378{7} | 0.11466{1} | 0.19627{6} | 0.19503{5} | 0.16026{4} | 0.25206{8} | ||
MRE | ˆτ | 0.26605{2} | 0.31013{4} | 0.37542{7} | 0.23636{1} | 0.31637{6} | 0.31038{5} | 0.27546{3} | 0.44387{8} | |
ˆa | 0.35909{7} | 0.28838{3} | 0.31573{5} | 0.27597{1} | 0.32006{6} | 0.28232{2} | 0.29486{4} | 0.41442{8} | ||
ˆb | 0.19574{3} | 0.18953{2} | 0.22369{5} | 0.18428{1} | 0.22862{7} | 0.2276{6} | 0.19792{4} | 0.23825{8} | ||
Dabs | 0.04307{1} | 0.0449{4} | 0.04669{7} | 0.04388{2} | 0.04491{5} | 0.04571{6} | 0.04461{3} | 0.04673{8} | ||
Dmax | 0.07024{1} | 0.07378{3} | 0.07974{7} | 0.07148{2} | 0.07603{5} | 0.07639{6} | 0.07422{4} | 0.08325{8} | ||
ASAE | 0.03049{7} | 0.02701{3} | 0.02932{6} | 0.02714{4} | 0.02773{5} | 0.0261{1} | 0.02631{2} | 0.03283{8} | ||
∑Ranks | 44{4} | 40{2} | 74{7} | 18{1} | 70{6} | 50{5} | 42{3} | 94{8} | ||
70 | BIAS | ˆτ | 0.51021{6} | 0.46181{3} | 0.55823{7} | 0.32583{1} | 0.50722{5} | 0.4729{4} | 0.44219{2} | 0.72147{8} |
ˆa | 0.14444{7} | 0.11709{3} | 0.12932{6} | 0.10479{1} | 0.12807{5} | 0.10663{2} | 0.11767{4} | 0.16304{8} | ||
ˆb | 0.21298{4} | 0.19057{1} | 0.22769{7} | 0.19871{2} | 0.22471{5} | 0.22894{8} | 0.20491{3} | 0.22533{6} | ||
MSE | ˆτ | 0.42994{5} | 0.35419{2} | 0.59732{7} | 0.22679{1} | 0.51238{6} | 0.42894{4} | 0.35475{3} | 0.92497{8} | |
ˆa | 0.03539{7} | 0.02113{4} | 0.02531{5} | 0.01663{1} | 0.02539{6} | 0.01784{2} | 0.02057{3} | 0.0383{8} | ||
ˆb | 0.07882{5} | 0.06102{2} | 0.08373{6} | 0.05998{1} | 0.07835{4} | 0.08602{7} | 0.07017{3} | 0.08803{8} | ||
MRE | ˆτ | 0.25511{6} | 0.2309{3} | 0.27912{7} | 0.16292{1} | 0.25361{5} | 0.23645{4} | 0.2211{2} | 0.36073{8} | |
ˆa | 0.28889{7} | 0.23418{3} | 0.25864{6} | 0.20958{1} | 0.25613{5} | 0.21326{2} | 0.23534{4} | 0.32609{8} | ||
ˆb | 0.14198{4} | 0.12705{1} | 0.15179{7} | 0.13248{2} | 0.14981{5} | 0.15263{8} | 0.13661{3} | 0.15022{6} | ||
Dabs | 0.03036{2} | 0.03145{4} | 0.03273{6} | 0.02999{1} | 0.03228{5} | 0.03339{8} | 0.03132{3} | 0.03284{7} | ||
Dmax | 0.05009{2} | 0.05184{3} | 0.05627{7} | 0.04922{1} | 0.05469{5} | 0.05545{6} | 0.05225{4} | 0.0576{8} | ||
ASAE | 0.01841{6} | 0.01732{3} | 0.0189{7} | 0.01759{4} | 0.01822{5} | 0.01671{1} | 0.01717{2} | 0.0212{8} | ||
∑Ranks | 61{5.5} | 32{2} | 78{7} | 17{1} | 61{5.5} | 56{4} | 36{3} | 91{8} | ||
150 | BIAS | ˆτ | 0.43313{5} | 0.38216{3} | 0.4568{6} | 0.2421{1} | 0.46034{7} | 0.38646{4} | 0.36914{2} | 0.55156{8} |
ˆa | 0.11342{7} | 0.09493{4} | 0.10673{5} | 0.07841{1} | 0.10869{6} | 0.09064{2} | 0.09329{3} | 0.13012{8} | ||
ˆb | 0.13544{3} | 0.13508{2} | 0.15218{6} | 0.12937{1} | 0.15998{8} | 0.14971{5} | 0.13655{4} | 0.15561{7} | ||
MSE | ˆτ | 0.3042{5} | 0.23781{3} | 0.35945{6} | 0.11844{1} | 0.37455{7} | 0.26349{4} | 0.23662{2} | 0.47541{8} | |
ˆa | 0.02075{7} | 0.01375{4} | 0.01716{5} | 0.00947{1} | 0.01836{6} | 0.013{2} | 0.01327{3} | 0.02369{8} | ||
ˆb | 0.03131{4} | 0.02853{2} | 0.03592{5} | 0.02519{1} | 0.03888{8} | 0.03726{7} | 0.03049{3} | 0.03632{6} | ||
MRE | ˆτ | 0.21657{5} | 0.19108{3} | 0.2284{6} | 0.12105{1} | 0.23017{7} | 0.19323{4} | 0.18457{2} | 0.27578{8} | |
ˆa | 0.22685{7} | 0.18986{4} | 0.21346{5} | 0.15681{1} | 0.21737{6} | 0.18128{2} | 0.18657{3} | 0.26023{8} | ||
ˆb | 0.0903{3} | 0.09005{2} | 0.10145{6} | 0.08625{1} | 0.10665{8} | 0.09981{5} | 0.09104{4} | 0.10374{7} | ||
Dabs | 0.02029{1} | 0.02158{4} | 0.02244{8} | 0.02061{2} | 0.02192{6} | 0.02201{7} | 0.0213{3} | 0.02178{5} | ||
Dmax | 0.0336{1} | 0.0357{4} | 0.0381{8} | 0.03368{2} | 0.03725{6} | 0.03676{5} | 0.03557{3} | 0.03761{7} | ||
ASAE | 0.01084{5} | 0.01034{2} | 0.01173{7} | 0.01071{4} | 0.01128{6} | 0.00996{1} | 0.01055{3} | 0.01309{8} | ||
∑Ranks | 53{5} | 37{3} | 73{6} | 17{1} | 81{7} | 48{4} | 35{2} | 88{8} | ||
300 | BIAS | ˆτ | 0.38726{6} | 0.33359{2} | 0.38992{7} | 0.18992{1} | 0.37128{5} | 0.35983{4} | 0.34388{3} | 0.46204{8} |
ˆa | 0.09738{7} | 0.0794{2} | 0.09391{6} | 0.06178{1} | 0.08945{5} | 0.08286{3} | 0.08352{4} | 0.11042{8} | ||
ˆb | 0.09272{1} | 0.10093{4} | 0.11688{7} | 0.09282{2} | 0.11978{8} | 0.10638{5} | 0.10064{3} | 0.11367{6} | ||
MSE | ˆτ | 0.23046{6} | 0.1782{2} | 0.24446{7} | 0.08426{1} | 0.2303{5} | 0.21335{4} | 0.19028{3} | 0.31359{8} | |
ˆa | 0.01471{7} | 0.00985{2} | 0.01326{6} | 0.0063{1} | 0.01233{5} | 0.01072{4} | 0.01051{3} | 0.01694{8} | ||
ˆb | 0.01347{2} | 0.0154{3} | 0.02142{7} | 0.0127{1} | 0.02166{8} | 0.01781{5} | 0.01588{4} | 0.02005{6} | ||
MRE | ˆτ | 0.19363{6} | 0.16679{2} | 0.19496{7} | 0.09496{1} | 0.18564{5} | 0.17992{4} | 0.17194{3} | 0.23102{8} | |
ˆa | 0.19476{7} | 0.1588{2} | 0.18781{6} | 0.12356{1} | 0.17891{5} | 0.16573{3} | 0.16703{4} | 0.22084{8} | ||
ˆb | 0.06181{1} | 0.06728{4} | 0.07792{7} | 0.06188{2} | 0.07985{8} | 0.07092{5} | 0.0671{3} | 0.07578{6} | ||
Dabs | 0.01458{2} | 0.01466{3} | 0.01637{8} | 0.01442{1} | 0.01585{5} | 0.01586{6} | 0.01526{4} | 0.01617{7} | ||
Dmax | 0.02429{2} | 0.02455{3} | 0.02772{8} | 0.0237{1} | 0.02703{6} | 0.02665{5} | 0.0255{4} | 0.02769{7} | ||
ASAE | 0.00677{5} | 0.0067{3} | 0.00736{7} | 0.00671{4} | 0.00725{6} | 0.00629{1} | 0.00664{2} | 0.00836{8} | ||
∑Ranks | 52{5} | 32{2} | 83{7} | 17{1} | 71{6} | 49{4} | 40{3} | 88{8} | ||
600 | BIAS | ˆτ | 0.33439{6} | 0.29901{2} | 0.33425{5} | 0.12434{1} | 0.34928{7} | 0.307{3} | 0.31014{4} | 0.38531{8} |
ˆa | 0.08166{6} | 0.0727{3} | 0.07959{5} | 0.04277{1} | 0.08482{7} | 0.07253{2} | 0.0737{4} | 0.09209{8} | ||
ˆb | 0.0686{2} | 0.07273{4} | 0.0851{7} | 0.06697{1} | 0.08853{8} | 0.07975{5} | 0.07184{3} | 0.08318{6} | ||
MSE | ˆτ | 0.16634{5} | 0.13955{2} | 0.17655{6} | 0.05129{1} | 0.18951{7} | 0.15596{4} | 0.1493{3} | 0.20575{8} | |
ˆa | 0.01011{6} | 0.00794{2} | 0.00965{5} | 0.0035{1} | 0.01076{7} | 0.00839{4} | 0.00828{3} | 0.01148{8} | ||
ˆb | 0.00734{2} | 0.00804{3} | 0.01118{7} | 0.00685{1} | 0.01207{8} | 0.00953{5} | 0.00809{4} | 0.01058{6} | ||
MRE | ˆτ | 0.1672{6} | 0.14951{2} | 0.16712{5} | 0.06217{1} | 0.17464{7} | 0.1535{3} | 0.15507{4} | 0.19266{8} | |
ˆa | 0.16331{6} | 0.1454{3} | 0.15918{5} | 0.08554{1} | 0.16963{7} | 0.14506{2} | 0.14741{4} | 0.18418{8} | ||
ˆb | 0.04573{2} | 0.04849{4} | 0.05674{7} | 0.04465{1} | 0.05902{8} | 0.05317{5} | 0.0479{3} | 0.05545{6} | ||
Dabs | 0.01052{1} | 0.01059{3} | 0.01098{5} | 0.01057{2} | 0.01117{7} | 0.0113{8} | 0.01068{4} | 0.01106{6} | ||
Dmax | 0.01751{2} | 0.01784{3} | 0.01888{5} | 0.01736{1} | 0.01914{7} | 0.01915{8} | 0.01798{4} | 0.01898{6} | ||
ASAE | 0.00424{4} | 0.0042{2} | 0.00469{7} | 0.00438{5} | 0.00466{6} | 0.00396{1} | 0.00422{3} | 0.00525{8} | ||
∑Ranks | 48{4} | 33{2} | 69{6} | 17{1} | 86{7.5} | 50{5} | 43{3} | 86{7.5} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.51619{2} | 0.63113{6} | 0.67423{7} | 0.51172{1} | 0.61334{4} | 0.62651{5} | 0.55707{3} | 0.88577{8} |
ˆa | 0.4211{6} | 0.39524{5} | 0.43673{7} | 0.34427{1} | 0.38438{3} | 0.36625{2} | 0.38901{4} | 0.57667{8} | ||
ˆb | 0.42122{2} | 0.42702{3} | 0.52173{8} | 0.40397{1} | 0.48285{6} | 0.45722{5} | 0.44181{4} | 0.4914{7} | ||
MSE | ˆτ | 0.44269{1} | 1.40915{6} | 0.97253{5} | 0.79973{4} | 0.78856{3} | 4.65109{8} | 0.70986{2} | 1.63292{7} | |
ˆa | 0.28044{6} | 0.24296{5} | 0.31317{7} | 0.18465{1} | 0.23352{4} | 0.21626{2} | 0.23222{3} | 0.50968{8} | ||
ˆb | 0.32216{2} | 0.33661{4} | 0.5635{8} | 0.25378{1} | 0.4679{6} | 0.37052{5} | 0.3353{3} | 0.47121{7} | ||
MRE | ˆτ | 0.2581{2} | 0.31556{6} | 0.33711{7} | 0.25586{1} | 0.30667{4} | 0.31326{5} | 0.27853{3} | 0.44288{8} | |
ˆa | 0.28073{6} | 0.26349{5} | 0.29115{7} | 0.22951{1} | 0.25625{3} | 0.24417{2} | 0.25934{4} | 0.38445{8} | ||
ˆb | 0.21061{2} | 0.21351{3} | 0.26087{8} | 0.20198{1} | 0.24143{6} | 0.22861{5} | 0.2209{4} | 0.2457{7} | ||
Dabs | 0.04173{1} | 0.04563{4} | 0.04698{8} | 0.04308{2} | 0.0467{7} | 0.04585{5} | 0.04476{3} | 0.04629{6} | ||
Dmax | 0.06876{1} | 0.07601{4} | 0.08059{7} | 0.07069{2} | 0.07795{6} | 0.07656{5} | 0.07406{3} | 0.08173{8} | ||
ASAE | 0.03095{7} | 0.02759{4} | 0.02937{6} | 0.02711{3} | 0.02798{5} | 0.02651{1} | 0.02653{2} | 0.03252{8} | ||
∑Ranks | 38{2.5} | 55{5} | 85{7} | 19{1} | 57{6} | 50{4} | 38{2.5} | 90{8} | ||
70 | BIAS | ˆτ | 0.47926{5} | 0.46754{4} | 0.5632{7} | 0.3673{1} | 0.55214{6} | 0.46172{2} | 0.46383{3} | 0.67025{8} |
ˆa | 0.36435{7} | 0.30602{3} | 0.3521{6} | 0.27605{1} | 0.33303{5} | 0.29119{2} | 0.31509{4} | 0.43801{8} | ||
ˆb | 0.29223{3} | 0.29115{2} | 0.3284{7} | 0.28673{1} | 0.33862{8} | 0.31389{5} | 0.30284{4} | 0.31591{6} | ||
MSE | ˆτ | 0.37454{3} | 0.36448{2} | 0.56211{7} | 0.2657{1} | 0.53431{6} | 0.39635{5} | 0.37914{4} | 0.72289{8} | |
ˆa | 0.20482{7} | 0.14296{3} | 0.18606{6} | 0.11389{1} | 0.17027{5} | 0.1266{2} | 0.15246{4} | 0.27299{8} | ||
ˆb | 0.14415{3} | 0.13708{2} | 0.17917{7} | 0.13026{1} | 0.19342{8} | 0.16635{5} | 0.15758{4} | 0.1689{6} | ||
MRE | ˆτ | 0.23963{5} | 0.23377{4} | 0.2816{7} | 0.18365{1} | 0.27607{6} | 0.23086{2} | 0.23191{3} | 0.33512{8} | |
ˆa | 0.2429{7} | 0.20401{3} | 0.23473{6} | 0.18403{1} | 0.22202{5} | 0.19413{2} | 0.21006{4} | 0.29201{8} | ||
ˆb | 0.14612{3} | 0.14557{2} | 0.1642{7} | 0.14337{1} | 0.16931{8} | 0.15694{5} | 0.15142{4} | 0.15796{6} | ||
Dabs | 0.03043{1} | 0.03146{3} | 0.03257{5} | 0.03117{2} | 0.03291{7} | 0.03307{8} | 0.03149{4} | 0.03263{6} | ||
Dmax | 0.04996{1} | 0.05229{4} | 0.0556{7} | 0.05107{2} | 0.05559{6} | 0.05467{5} | 0.05214{3} | 0.05719{8} | ||
ASAE | 0.01855{6} | 0.01739{3} | 0.01871{7} | 0.01758{4} | 0.01813{5} | 0.01678{1} | 0.01729{2} | 0.02109{8} | ||
∑Ranks | 51{5} | 35{2} | 79{7} | 17{1} | 75{6} | 44{4} | 43{3} | 88{8} | ||
150 | BIAS | ˆτ | 0.4392{5} | 0.39379{3} | 0.45566{7} | 0.27549{1} | 0.44834{6} | 0.38128{2} | 0.41046{4} | 0.54089{8} |
ˆa | 0.31014{7} | 0.26139{3} | 0.28645{5} | 0.21856{1} | 0.28762{6} | 0.24802{2} | 0.26741{4} | 0.3628{8} | ||
ˆb | 0.19985{3} | 0.19591{1} | 0.21751{6} | 0.19621{2} | 0.22876{8} | 0.21446{5} | 0.20679{4} | 0.2256{7} | ||
MSE | ˆτ | 0.31057{5} | 0.2424{2} | 0.33171{7} | 0.13533{1} | 0.32597{6} | 0.25702{3} | 0.26429{4} | 0.43436{8} | |
ˆa | 0.15063{7} | 0.10087{3} | 0.12317{6} | 0.07577{1} | 0.12274{5} | 0.09392{2} | 0.10589{4} | 0.18107{8} | ||
ˆb | 0.06714{4} | 0.05805{1} | 0.07483{6} | 0.05816{2} | 0.08113{7} | 0.07187{5} | 0.06713{3} | 0.08227{8} | ||
MRE | ˆτ | 0.2196{5} | 0.19689{3} | 0.22783{7} | 0.13775{1} | 0.22417{6} | 0.19064{2} | 0.20523{4} | 0.27044{8} | |
ˆa | 0.20676{7} | 0.17426{3} | 0.19097{5} | 0.14571{1} | 0.19175{6} | 0.16535{2} | 0.17827{4} | 0.24186{8} | ||
ˆb | 0.09993{3} | 0.09795{1} | 0.10875{6} | 0.09811{2} | 0.11438{8} | 0.10723{5} | 0.10339{4} | 0.1128{7} | ||
Dabs | 0.02083{1} | 0.02159{4} | 0.02178{5} | 0.02125{2.5} | 0.02218{6} | 0.02294{8} | 0.02125{2.5} | 0.02263{7} | ||
Dmax | 0.03432{1} | 0.03586{4} | 0.03724{5} | 0.03487{2} | 0.03795{6} | 0.03803{7} | 0.03566{3} | 0.03867{8} | ||
ASAE | 0.0109{5} | 0.01075{3.5} | 0.01143{7} | 0.01075{3.5} | 0.0111{6} | 0.01011{1} | 0.01051{2} | 0.01296{8} | ||
∑Ranks | 53{5} | 31.5{2} | 72{6} | 20{1} | 76{7} | 44{4} | 42.5{3} | 93{8} | ||
300 | BIAS | ˆτ | 0.38358{5} | 0.35025{3} | 0.40996{7} | 0.20918{1} | 0.38933{6} | 0.35514{4} | 0.34544{2} | 0.47301{8} |
ˆa | 0.25949{7} | 0.22513{3} | 0.25895{6} | 0.15794{1} | 0.25286{5} | 0.2244{2} | 0.23092{4} | 0.31424{8} | ||
ˆb | 0.14384{3} | 0.14219{2} | 0.16653{7} | 0.13428{1} | 0.16744{8} | 0.15275{5} | 0.14455{4} | 0.16515{6} | ||
MSE | ˆτ | 0.22395{5} | 0.18899{3} | 0.25726{7} | 0.08634{1} | 0.23811{6} | 0.21275{4} | 0.18524{2} | 0.31153{8} | |
ˆa | 0.10146{7} | 0.07569{2} | 0.0982{6} | 0.04298{1} | 0.09473{5} | 0.07846{3} | 0.07943{4} | 0.13087{8} | ||
ˆb | 0.03255{4} | 0.0313{2} | 0.04249{7} | 0.02688{1} | 0.04388{8} | 0.03491{5} | 0.03196{3} | 0.04248{6} | ||
MRE | ˆτ | 0.19179{5} | 0.17513{3} | 0.20498{7} | 0.10459{1} | 0.19466{6} | 0.17757{4} | 0.17272{2} | 0.2365{8} | |
ˆa | 0.17299{7} | 0.15009{3} | 0.17264{6} | 0.10529{1} | 0.16858{5} | 0.1496{2} | 0.15394{4} | 0.20949{8} | ||
ˆb | 0.07192{3} | 0.07109{2} | 0.08327{7} | 0.06714{1} | 0.08372{8} | 0.07638{5} | 0.07227{4} | 0.08258{6} | ||
Dabs | 0.01502{2} | 0.01519{4} | 0.01582{6} | 0.01471{1} | 0.01536{5} | 0.01593{7} | 0.01513{3} | 0.01595{8} | ||
Dmax | 0.02487{2} | 0.02543{4} | 0.02719{7} | 0.02418{1} | 0.02652{5} | 0.02678{6} | 0.02539{3} | 0.02738{8} | ||
ASAE | 0.00687{5} | 0.00666{2} | 0.00739{7} | 0.00686{4} | 0.00722{6} | 0.00639{1} | 0.0067{3} | 0.00837{8} | ||
∑Ranks | 55{5} | 33{2} | 80{7} | 15{1} | 73{6} | 48{4} | 38{3} | 90{8} | ||
600 | BIAS | ˆτ | 0.34337{5} | 0.29599{2} | 0.35608{7} | 0.12837{1} | 0.34858{6} | 0.30958{4} | 0.30911{3} | 0.4042{8} |
ˆa | 0.22922{7} | 0.19345{3} | 0.22519{5} | 0.09817{1} | 0.22778{6} | 0.19235{2} | 0.20261{4} | 0.27243{8} | ||
ˆb | 0.10161{2} | 0.10663{3} | 0.12649{8} | 0.09413{1} | 0.12277{6} | 0.11287{5} | 0.10742{4} | 0.12442{7} | ||
MSE | ˆτ | 0.17598{6} | 0.13529{2} | 0.18281{7} | 0.04448{1} | 0.17429{5} | 0.15427{4} | 0.14265{3} | 0.22018{8} | |
ˆa | 0.07869{7} | 0.05647{2} | 0.07356{6} | 0.02176{1} | 0.07329{5} | 0.05829{3} | 0.06038{4} | 0.09527{8} | ||
ˆb | 0.01627{2} | 0.01766{3} | 0.02538{8} | 0.01352{1} | 0.02319{6} | 0.01936{5} | 0.01824{4} | 0.02403{7} | ||
MRE | ˆτ | 0.17169{5} | 0.14799{2} | 0.17804{7} | 0.06418{1} | 0.17429{6} | 0.15479{4} | 0.15455{3} | 0.2021{8} | |
ˆa | 0.15282{7} | 0.12897{3} | 0.15012{5} | 0.06545{1} | 0.15185{6} | 0.12823{2} | 0.13507{4} | 0.18162{8} | ||
ˆb | 0.0508{2} | 0.05331{3} | 0.06325{8} | 0.04706{1} | 0.06139{6} | 0.05644{5} | 0.05371{4} | 0.06221{7} | ||
Dabs | 0.01056{2} | 0.0106{3} | 0.01125{7} | 0.0103{1} | 0.01164{8} | 0.01124{6} | 0.0107{4} | 0.01089{5} | ||
Dmax | 0.01782{2} | 0.01801{3} | 0.01931{7} | 0.017{1} | 0.01973{8} | 0.01893{6} | 0.01812{4} | 0.01874{5} | ||
ASAE | 0.00429{2} | 0.0043{3} | 0.00478{7} | 0.0045{5} | 0.00457{6} | 0.00406{1} | 0.00431{4} | 0.00534{8} | ||
∑Ranks | 49{5} | 32{2} | 82{7} | 16{1} | 74{6} | 47{4} | 45{3} | 87{8} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.41263{1} | 0.63117{3} | 0.61646{2} | 0.68971{6} | 0.66123{4} | 0.69605{7} | 0.6614{5} | 0.73592{8} |
ˆa | 0.3458{1} | 0.40339{3} | 0.40077{2} | 0.43258{6} | 0.43443{7} | 0.46564{8} | 0.41928{5} | 0.40721{4} | ||
ˆb | 0.90474{2} | 0.95946{6} | 0.95309{4} | 0.95489{5} | 0.92977{3} | 0.88{1} | 0.96175{7} | 1.06824{8} | ||
MSE | ˆτ | 0.23196{1} | 0.53768{3} | 0.47197{2} | 0.65139{7} | 0.55116{4} | 0.64812{6} | 0.57172{5} | 0.87411{8} | |
ˆa | 0.19495{1} | 0.25654{3} | 0.25032{2} | 0.28251{5} | 0.28292{6} | 0.33262{8} | 0.27497{4} | 0.28509{7} | ||
ˆb | 1.40385{7} | 1.37779{5} | 1.33026{3} | 1.37841{6} | 1.24057{1} | 1.28937{2} | 1.33079{4} | 1.7756{8} | ||
MRE | ˆτ | 0.55017{1} | 0.84156{3} | 0.82195{2} | 0.91961{6} | 0.88164{4} | 0.92807{7} | 0.88187{5} | 0.98123{8} | |
ˆa | 0.1729{1} | 0.20169{3} | 0.20039{2} | 0.21629{6} | 0.21721{7} | 0.23282{8} | 0.20964{5} | 0.20361{4} | ||
ˆb | 0.30158{2} | 0.31982{6} | 0.3177{4} | 0.3183{5} | 0.30992{3} | 0.29333{1} | 0.32058{7} | 0.35608{8} | ||
Dabs | 0.04253{1} | 0.04336{2} | 0.04718{8} | 0.04338{3} | 0.04551{5} | 0.04671{7} | 0.04479{4} | 0.04664{6} | ||
Dmax | 0.07112{2} | 0.07194{3} | 0.0792{8} | 0.07007{1} | 0.07453{5} | 0.07777{6} | 0.07355{4} | 0.07787{7} | ||
ASAE | 0.02959{7} | 0.02756{3} | 0.02928{6} | 0.02713{2} | 0.02829{5} | 0.02772{4} | 0.02691{1} | 0.03129{8} | ||
∑Ranks | 27{1} | 43{2} | 45{3} | 58{6} | 54{4} | 65{7} | 56{5} | 84{8} | ||
70 | BIAS | ˆτ | 0.37728{1} | 0.57428{3} | 0.57379{2} | 0.61526{7} | 0.60356{5} | 0.60726{6} | 0.58819{4} | 0.61897{8} |
ˆa | 0.25016{1} | 0.31949{2} | 0.33757{4} | 0.35113{7} | 0.34537{6} | 0.35421{8} | 0.33813{5} | 0.3285{3} | ||
ˆb | 0.68242{1} | 0.79998{5} | 0.77034{3} | 0.82325{6} | 0.83417{8} | 0.69139{2} | 0.78972{4} | 0.82557{7} | ||
MSE | ˆτ | 0.20498{1} | 0.47839{4} | 0.45179{2} | 0.57434{7} | 0.47675{3} | 0.53826{6} | 0.48684{5} | 0.5989{8} | |
ˆa | 0.09985{1} | 0.15258{2} | 0.17907{4} | 0.20305{8} | 0.18005{5} | 0.18882{7} | 0.17375{3} | 0.18104{6} | ||
ˆb | 0.77461{2} | 1.01864{6} | 0.8902{3} | 1.13061{8} | 1.01306{5} | 0.74376{1} | 0.95657{4} | 1.08045{7} | ||
MRE | ˆτ | 0.50303{1} | 0.76571{3} | 0.76505{2} | 0.82035{7} | 0.80474{5} | 0.80968{6} | 0.78426{4} | 0.8253{8} | |
ˆa | 0.12508{1} | 0.15974{2} | 0.16879{4} | 0.17557{7} | 0.17268{6} | 0.1771{8} | 0.16906{5} | 0.16425{3} | ||
ˆb | 0.22747{1} | 0.26666{5} | 0.25678{3} | 0.27442{6} | 0.27806{8} | 0.23046{2} | 0.26324{4} | 0.27519{7} | ||
Dabs | 0.03062{2} | 0.03064{3} | 0.03404{8} | 0.03001{1} | 0.03304{7} | 0.03289{6} | 0.03251{4} | 0.03252{5} | ||
Dmax | 0.05131{2} | 0.05151{3} | 0.05754{8} | 0.04967{1} | 0.05555{7} | 0.05553{6} | 0.05366{4} | 0.0546{5} | ||
ASAE | 0.01854{7} | 0.01731{4} | 0.01828{6} | 0.01722{2} | 0.01814{5} | 0.01725{3} | 0.01692{1} | 0.01936{8} | ||
∑Ranks | 21{1} | 42{2} | 49{4} | 67{6} | 70{7} | 61{5} | 47{3} | 75{8} | ||
150 | BIAS | ˆτ | 0.31212{1} | 0.45159{2} | 0.49391{4} | 0.50158{6} | 0.49767{5} | 0.51173{8} | 0.47926{3} | 0.50467{7} |
ˆa | 0.18389{1} | 0.24619{2} | 0.26366{5} | 0.26623{6} | 0.27263{8} | 0.26155{3} | 0.26205{4} | 0.26637{7} | ||
ˆb | 0.51055{1} | 0.58914{2} | 0.64746{7} | 0.59531{4} | 0.65501{8} | 0.62579{5} | 0.59382{3} | 0.63847{6} | ||
MSE | ˆτ | 0.14708{1} | 0.33233{2} | 0.35351{3} | 0.44757{8} | 0.36746{5} | 0.41305{7} | 0.36255{4} | 0.4025{6} | |
ˆa | 0.05157{1} | 0.09975{2} | 0.10789{3} | 0.12791{8} | 0.11535{6} | 0.1123{5} | 0.11096{4} | 0.1174{7} | ||
ˆb | 0.47277{1} | 0.61572{4} | 0.6529{5} | 0.7086{8} | 0.67921{6} | 0.59584{2} | 0.60046{3} | 0.70453{7} | ||
MRE | ˆτ | 0.41616{1} | 0.60212{2} | 0.65854{4} | 0.66877{6} | 0.66356{5} | 0.68231{8} | 0.63901{3} | 0.67289{7} | |
ˆa | 0.09195{1} | 0.1231{2} | 0.13183{5} | 0.13311{6} | 0.13632{8} | 0.13078{3} | 0.13102{4} | 0.13318{7} | ||
ˆb | 0.17018{1} | 0.19638{2} | 0.21582{7} | 0.19844{4} | 0.21834{8} | 0.2086{5} | 0.19794{3} | 0.21282{6} | ||
Dabs | 0.02081{1} | 0.02156{3} | 0.02279{7.5} | 0.02171{4} | 0.02269{6} | 0.02221{5} | 0.02123{2} | 0.02279{7.5} | ||
Dmax | 0.03496{1} | 0.0362{4} | 0.0389{8} | 0.03607{3} | 0.03834{5} | 0.03836{6} | 0.03583{2} | 0.03862{7} | ||
ASAE | 0.01105{5} | 0.0105{3} | 0.0111{7} | 0.01079{4} | 0.01108{6} | 0.01049{2} | 0.01039{1} | 0.01196{8} | ||
∑Ranks | 16{1} | 30{2} | 65.5{5} | 67{6} | 76{7} | 59{4} | 36{3} | 82.5{8} | ||
300 | BIAS | ˆτ | 0.26159{1} | 0.33734{2} | 0.40449{6} | 0.3744{4} | 0.41347{7} | 0.42097{8} | 0.34325{3} | 0.37827{5} |
ˆa | 0.14993{1} | 0.18532{3} | 0.20625{7} | 0.19513{4} | 0.20695{8} | 0.19719{5} | 0.18169{2} | 0.20501{6} | ||
ˆb | 0.37223{1} | 0.41779{2} | 0.508{7} | 0.44601{4} | 0.50594{6} | 0.52145{8} | 0.42076{3} | 0.45303{5} | ||
MSE | ˆτ | 0.10953{1} | 0.20094{2} | 0.26331{5} | 0.29301{7} | 0.28568{6} | 0.30513{8} | 0.20537{3} | 0.24655{4} | |
ˆa | 0.03556{1} | 0.05977{3} | 0.06975{4} | 0.07768{8} | 0.07525{7} | 0.07119{5} | 0.05699{2} | 0.07212{6} | ||
ˆb | 0.29126{1} | 0.31942{2} | 0.43464{6} | 0.48268{8} | 0.44893{7} | 0.43375{5} | 0.32104{3} | 0.39031{4} | ||
MRE | ˆτ | 0.34879{1} | 0.44978{2} | 0.53932{6} | 0.49921{4} | 0.5513{7} | 0.56129{8} | 0.45767{3} | 0.50436{5} | |
ˆa | 0.07496{1} | 0.09266{3} | 0.10313{7} | 0.09757{4} | 0.10347{8} | 0.09859{5} | 0.09085{2} | 0.1025{6} | ||
ˆb | 0.12408{1} | 0.13926{2} | 0.16933{7} | 0.14867{4} | 0.16865{6} | 0.17382{8} | 0.14025{3} | 0.15101{5} | ||
Dabs | 0.01478{1} | 0.01563{4} | 0.01625{8} | 0.01541{3} | 0.01591{6} | 0.01623{7} | 0.01493{2} | 0.01584{5} | ||
Dmax | 0.02519{1} | 0.02694{4} | 0.02821{8} | 0.02592{3} | 0.02751{6} | 0.02814{7} | 0.02552{2} | 0.0274{5} | ||
ASAE | 0.00695{4} | 0.00682{3} | 0.00721{7} | 0.00697{5} | 0.00704{6} | 0.00671{1} | 0.0068{2} | 0.00775{8} | ||
∑Ranks | 15{1} | 32{3} | 78{7} | 58{4} | 80{8} | 75{6} | 30{2} | 64{5} | ||
600 | BIAS | ˆτ | 0.19336{1} | 0.23349{2} | 0.28978{6} | 0.23372{3} | 0.30777{7} | 0.30949{8} | 0.23507{4} | 0.2662{5} |
ˆa | 0.10937{1} | 0.12304{2} | 0.14902{6} | 0.12842{4} | 0.15724{8} | 0.13825{5} | 0.12621{3} | 0.15464{7} | ||
ˆb | 0.26801{1} | 0.30194{4} | 0.37263{6} | 0.27088{2} | 0.38556{7} | 0.42662{8} | 0.29441{3} | 0.30703{5} | ||
MSE | ˆτ | 0.06126{1} | 0.10127{2} | 0.15044{6} | 0.13095{4} | 0.16716{8} | 0.16478{7} | 0.10547{3} | 0.13164{5} | |
ˆa | 0.0189{1} | 0.02821{2} | 0.04017{6} | 0.03537{4} | 0.04408{8} | 0.03582{5} | 0.02981{3} | 0.04188{7} | ||
ˆb | 0.12688{1} | 0.15549{2} | 0.25123{6} | 0.18801{4} | 0.28486{7} | 0.29794{8} | 0.15848{3} | 0.18934{5} | ||
MRE | ˆτ | 0.25781{1} | 0.31131{2} | 0.38638{6} | 0.31162{3} | 0.41036{7} | 0.41265{8} | 0.31343{4} | 0.35494{5} | |
ˆa | 0.05468{1} | 0.06152{2} | 0.07451{6} | 0.06421{4} | 0.07862{8} | 0.06912{5} | 0.06311{3} | 0.07732{7} | ||
ˆb | 0.08934{1} | 0.10065{4} | 0.12421{6} | 0.09029{2} | 0.12852{7} | 0.14221{8} | 0.09814{3} | 0.10234{5} | ||
Dabs | 0.01062{2} | 0.01055{1} | 0.01157{7} | 0.01098{3} | 0.01158{8} | 0.01113{5} | 0.01112{4} | 0.0113{6} | ||
Dmax | 0.0181{1} | 0.01823{2} | 0.02019{8} | 0.01873{3} | 0.0201{7} | 0.01976{6} | 0.01902{4} | 0.01972{5} | ||
ASAE | 0.00457{5} | 0.00443{3} | 0.00471{6} | 0.00456{4} | 0.00473{7} | 0.0044{2} | 0.00435{1} | 0.00516{8} | ||
∑Ranks | 17{1} | 28{2} | 75{6.5} | 40{4} | 89{8} | 75{6.5} | 38{3} | 70{5} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.28261{2} | 0.4647{5} | 0.48379{7} | 0.41025{3} | 0.42315{4} | 0.51017{8} | 0.47272{6} | 0.26393{1} |
ˆa | 0.70395{1} | 0.78929{3} | 0.91784{8} | 0.77174{2} | 0.90659{7} | 0.82398{4} | 0.83444{5} | 0.84481{6} | ||
ˆb | 0.11892{2} | 0.13452{6} | 0.13845{7} | 0.12898{4} | 0.11407{1} | 0.14639{8} | 0.13051{5} | 0.12794{3} | ||
MSE | ˆτ | 0.14259{1} | 0.54086{5} | 0.58623{6} | 0.45928{3} | 0.52049{4} | 0.67661{8} | 0.60141{7} | 0.18215{2} | |
ˆa | 0.92929{2} | 0.99608{3} | 1.35102{8} | 0.89166{1} | 1.27505{7} | 1.08694{4} | 1.10922{5} | 1.17679{6} | ||
ˆb | 0.02632{3} | 0.03369{6} | 0.03609{7} | 0.02757{4} | 0.02515{2} | 0.03881{8} | 0.03305{5} | 0.02449{1} | ||
MRE | ˆτ | 1.13045{2} | 1.85879{5} | 1.93515{7} | 1.64101{3} | 1.6926{4} | 2.04067{8} | 1.8909{6} | 1.05573{1} | |
ˆa | 0.23465{1} | 0.2631{3} | 0.30595{8} | 0.25725{2} | 0.3022{7} | 0.27466{4} | 0.27815{5} | 0.2816{6} | ||
ˆb | 0.47569{2} | 0.53808{6} | 0.5538{7} | 0.5159{4} | 0.45626{1} | 0.58556{8} | 0.52205{5} | 0.51177{3} | ||
Dabs | 0.04268{1} | 0.04508{3} | 0.04693{8} | 0.04333{2} | 0.04525{4} | 0.04586{6} | 0.0455{5} | 0.04675{7} | ||
Dmax | 0.0706{1} | 0.07457{3} | 0.07976{8} | 0.0712{2} | 0.07566{5} | 0.07738{7} | 0.07522{4} | 0.07734{6} | ||
ASAE | 0.02998{6} | 0.02782{4} | 0.02947{5} | 0.02765{3} | 0.03091{7} | 0.02581{1} | 0.02751{2} | 0.03566{8} | ||
∑Ranks | 24{1} | 52{4} | 86{8} | 33{2} | 53{5} | 74{7} | 60{6} | 50{3} | ||
70 | BIAS | ˆτ | 0.26535{2} | 0.35171{5} | 0.40366{7} | 0.29134{3} | 0.35289{6} | 0.42263{8} | 0.34207{4} | 0.24784{1} |
ˆa | 0.47336{1} | 0.55386{3} | 0.64736{7} | 0.55627{4} | 0.64889{8} | 0.61187{6} | 0.54143{2} | 0.59785{5} | ||
ˆb | 0.09971{1} | 0.11155{5} | 0.11542{6} | 0.10741{3} | 0.10532{2} | 0.12794{8} | 0.10844{4} | 0.11607{7} | ||
MSE | ˆτ | 0.12711{1} | 0.28471{4} | 0.4177{7} | 0.22138{3} | 0.33996{6} | 0.48266{8} | 0.30172{5} | 0.13702{2} | |
ˆa | 0.36529{1} | 0.48714{4} | 0.68965{8} | 0.48295{2} | 0.66234{7} | 0.6146{6} | 0.48359{3} | 0.58995{5} | ||
ˆb | 0.01575{1} | 0.02146{5} | 0.02598{7} | 0.01737{2} | 0.02098{4} | 0.03058{8} | 0.02191{6} | 0.01909{3} | ||
MRE | ˆτ | 1.06141{2} | 1.40685{5} | 1.61465{7} | 1.16535{3} | 1.41156{6} | 1.6905{8} | 1.3683{4} | 0.99135{1} | |
ˆa | 0.15779{1} | 0.18462{3} | 0.21579{7} | 0.18542{4} | 0.2163{8} | 0.20396{6} | 0.18048{2} | 0.19928{5} | ||
ˆb | 0.39883{1} | 0.44619{5} | 0.46169{6} | 0.42965{3} | 0.42127{2} | 0.51178{8} | 0.43376{4} | 0.46429{7} | ||
Dabs | 0.02997{1} | 0.03175{4} | 0.03324{8} | 0.03081{2} | 0.03247{5} | 0.0327{7} | 0.03127{3} | 0.03251{6} | ||
Dmax | 0.0499{1} | 0.05326{4} | 0.05658{8} | 0.05081{2} | 0.05486{6} | 0.05572{7} | 0.05218{3} | 0.05438{5} | ||
ASAE | 0.01808{5} | 0.0179{4} | 0.01884{6} | 0.01751{3} | 0.0192{7} | 0.01618{1} | 0.01733{2} | 0.02197{8} | ||
∑Ranks | 18{1} | 51{4} | 84{8} | 34{2} | 67{6} | 81{7} | 42{3} | 55{5} | ||
150 | BIAS | ˆτ | 0.20572{2} | 0.23878{4} | 0.31697{8} | 0.216{3} | 0.29435{7} | 0.28901{6} | 0.25867{5} | 0.20305{1} |
ˆa | 0.30956{1} | 0.34668{2} | 0.42934{7} | 0.34894{3} | 0.4327{8} | 0.39302{5} | 0.36418{4} | 0.41109{6} | ||
ˆb | 0.07839{1} | 0.08716{2} | 0.09845{8} | 0.08897{3} | 0.09366{5} | 0.09844{7} | 0.09049{4} | 0.09505{6} | ||
MSE | ˆτ | 0.0763{2} | 0.11584{4} | 0.24604{8} | 0.08934{3} | 0.21433{6} | 0.22492{7} | 0.14363{5} | 0.07388{1} | |
ˆa | 0.15388{1} | 0.18414{2} | 0.29541{8} | 0.19105{3} | 0.29359{7} | 0.25171{5} | 0.20937{4} | 0.26876{6} | ||
ˆb | 0.00994{1} | 0.01226{3} | 0.01875{7} | 0.01132{2} | 0.01714{6} | 0.01897{8} | 0.014{5} | 0.01332{4} | ||
MRE | ˆτ | 0.82287{2} | 0.95511{4} | 1.26786{8} | 0.86398{3} | 1.17741{7} | 1.15604{6} | 1.03466{5} | 0.81219{1} | |
ˆa | 0.10319{1} | 0.11556{2} | 0.14311{7} | 0.11631{3} | 0.14423{8} | 0.13101{5} | 0.12139{4} | 0.13703{6} | ||
ˆb | 0.31354{1} | 0.34864{2} | 0.39378{8} | 0.35589{3} | 0.37463{5} | 0.39376{7} | 0.36195{4} | 0.38019{6} | ||
Dabs | 0.02072{1} | 0.02107{2} | 0.0225{7} | 0.02189{4} | 0.02263{8} | 0.02228{6} | 0.02197{5} | 0.02181{3} | ||
Dmax | 0.03401{1} | 0.03512{2} | 0.03847{8} | 0.03585{3} | 0.03844{7} | 0.038{6} | 0.0367{4} | 0.03682{5} | ||
ASAE | 0.01108{5} | 0.0106{3} | 0.01135{6} | 0.01106{4} | 0.01179{7} | 0.00992{1} | 0.01047{2} | 0.01254{8} | ||
∑Ranks | 19{1} | 32{2} | 90{8} | 37{3} | 81{7} | 69{6} | 51{4} | 53{5} | ||
300 | BIAS | ˆτ | 0.16066{1} | 0.18134{3} | 0.23938{8} | 0.17022{2} | 0.22051{6} | 0.23877{7} | 0.1881{4} | 0.18849{5} |
ˆa | 0.22654{2} | 0.24264{3} | 0.2944{7} | 0.22178{1} | 0.28817{6} | 0.26568{5} | 0.25777{4} | 0.30304{8} | ||
ˆb | 0.06214{1} | 0.07012{2} | 0.08156{6} | 0.07737{4} | 0.07758{5} | 0.08871{8} | 0.07058{3} | 0.08471{7} | ||
MSE | ˆτ | 0.04415{2} | 0.05978{4} | 0.11788{7} | 0.04234{1} | 0.10883{6} | 0.13383{8} | 0.06789{5} | 0.05456{3} | |
ˆa | 0.08313{2} | 0.09201{3} | 0.14205{8} | 0.07858{1} | 0.13512{6} | 0.11565{5} | 0.10225{4} | 0.13876{7} | ||
ˆb | 0.00617{1} | 0.00773{2} | 0.01181{7} | 0.00837{4} | 0.01107{6} | 0.015{8} | 0.00814{3} | 0.01064{5} | ||
MRE | ˆτ | 0.64263{1} | 0.72534{3} | 0.95752{8} | 0.68088{2} | 0.88205{6} | 0.95509{7} | 0.75242{4} | 0.75394{5} | |
ˆa | 0.07551{2} | 0.08088{3} | 0.09813{7} | 0.07393{1} | 0.09606{6} | 0.08856{5} | 0.08592{4} | 0.10101{8} | ||
ˆb | 0.24856{1} | 0.28049{2} | 0.32624{6} | 0.30949{4} | 0.31033{5} | 0.35482{8} | 0.2823{3} | 0.33885{7} | ||
Dabs | 0.01473{2} | 0.01494{3} | 0.01581{6} | 0.01432{1} | 0.01598{7} | 0.01578{5} | 0.01551{4} | 0.01624{8} | ||
Dmax | 0.02441{2} | 0.02498{3} | 0.02726{8} | 0.02345{1} | 0.027{5} | 0.02708{6} | 0.02606{4} | 0.02724{7} | ||
ASAE | 0.00706{5} | 0.00686{3} | 0.00722{6} | 0.00694{4} | 0.00749{7} | 0.00632{1} | 0.00684{2} | 0.0084{8} | ||
∑Ranks | 22{1} | 34{3} | 84{8} | 26{2} | 71{5} | 73{6} | 44{4} | 78{7} | ||
600 | BIAS | ˆτ | 0.13045{1} | 0.14467{4} | 0.1922{7} | 0.13076{2} | 0.18277{6} | 0.19589{8} | 0.15452{5} | 0.14197{3} |
ˆa | 0.1464{1} | 0.17091{3} | 0.19656{6} | 0.15933{2} | 0.20011{7} | 0.18356{5} | 0.17299{4} | 0.21255{8} | ||
ˆb | 0.05408{1} | 0.05771{2} | 0.0699{7} | 0.06108{4} | 0.06848{6} | 0.07427{8} | 0.06095{3} | 0.06422{5} | ||
MSE | ˆτ | 0.02716{2} | 0.03419{4} | 0.06868{7} | 0.02593{1} | 0.0615{6} | 0.08038{8} | 0.03947{5} | 0.03024{3} | |
ˆa | 0.03481{1} | 0.04524{3} | 0.06127{6} | 0.04288{2} | 0.06229{7} | 0.05226{5} | 0.04678{4} | 0.06879{8} | ||
ˆb | 0.00463{1} | 0.00511{2} | 0.00825{7} | 0.00581{4} | 0.00774{6} | 0.01049{8} | 0.0057{3} | 0.00661{5} | ||
MRE | ˆτ | 0.52182{1} | 0.57868{4} | 0.76881{7} | 0.52302{2} | 0.73109{6} | 0.78357{8} | 0.61806{5} | 0.56786{3} | |
ˆa | 0.0488{1} | 0.05697{3} | 0.06552{6} | 0.05311{2} | 0.0667{7} | 0.06119{5} | 0.05766{4} | 0.07085{8} | ||
ˆb | 0.21631{1} | 0.23082{2} | 0.27958{7} | 0.24431{4} | 0.27392{6} | 0.29709{8} | 0.24381{3} | 0.25689{5} | ||
Dabs | 0.00998{1} | 0.01059{3} | 0.01162{8} | 0.01045{2} | 0.01138{7} | 0.01125{6} | 0.01098{4} | 0.01118{5} | ||
Dmax | 0.01645{1} | 0.01762{3} | 0.01993{8} | 0.01726{2} | 0.01949{7} | 0.01935{6} | 0.01833{4} | 0.01893{5} | ||
ASAE | 0.00442{3} | 0.00443{4} | 0.00475{7} | 0.00444{5} | 0.00472{6} | 0.00408{1} | 0.00436{2} | 0.00545{8} | ||
∑Ranks | 15{1} | 37{3} | 83{8} | 32{2} | 77{7} | 76{6} | 46{4} | 66{5} |
First, it is important to note that all the parameter estimation methods for the proposed model demonstrate a high level of reliability, with estimated values that are very close to the actual values. This indicates the precision and accuracy of the estimation techniques employed in capturing the underlying characteristics of the proposed model.
Second, as the sample size n increases, each scenario's calculated measures exhibit a decreasing trend. This observation highlights the influence of sample size on the performance of the estimation methods. Larger sample sizes tend to lead to more precise and accurate parameter estimates. In CIs, Asymptotic CI (ACI) approaches are used for MLE and MPS. The length of ACIs can be denoted as LACI. The confidence level is 95%. Also, the coverage probability (CP) are obtained for MLE and MPS methods. See Tables 9 and 10.
Parameter | n | MLE | ADE | CVME | MPSE | OLSE | RTADE | WLSE | LTADE |
τ=0.5, a=0.25, b=0.75 | 35 | 4 | 2 | 7 | 1 | 6 | 5 | 3 | 8 |
70 | 5.5 | 2 | 7 | 1 | 5.5 | 4 | 3 | 8 | |
150 | 5 | 3 | 6 | 1 | 7 | 4 | 2 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 4 | 2 | 6 | 1 | 7.5 | 5 | 3 | 7.5 | |
τ=1.5, a=0.75, b=0.5 | 35 | 2.5 | 5 | 7 | 1 | 6 | 4 | 2.5 | 8 |
70 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
150 | 5 | 2 | 6 | 1 | 7 | 4 | 3 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
τ=2, a=0.5, b=1.5 | 35 | 1 | 3.5 | 5 | 3.5 | 6 | 7 | 2 | 8 |
70 | 1 | 2 | 5 | 4 | 7 | 8 | 3 | 6 | |
150 | 1 | 2 | 7 | 4.5 | 6 | 8 | 3 | 4.5 | |
300 | 1 | 4 | 5 | 3 | 8 | 7 | 2 | 6 | |
600 | 1 | 4 | 8 | 2.5 | 6 | 7 | 2.5 | 5 | |
τ=2, a=1.5, b=2 | 35 | 2 | 3 | 6 | 4 | 7 | 1 | 5 | 8 |
70 | 1 | 2 | 7 | 5 | 6 | 4 | 3 | 8 | |
150 | 1 | 2 | 6 | 4 | 8 | 5 | 3 | 7 | |
300 | 1 | 4 | 6 | 3 | 7 | 5 | 2 | 8 | |
600 | 1 | 3 | 6 | 2 | 7.5 | 5 | 4 | 7.5 | |
τ=0.75, a=2, b=3 | 35 | 1 | 2 | 3 | 6 | 4 | 7 | 5 | 8 |
70 | 1 | 2 | 4 | 6 | 7 | 5 | 3 | 8 | |
150 | 1 | 2 | 5 | 6 | 7 | 4 | 3 | 8 | |
300 | 1 | 3 | 7 | 4 | 8 | 6 | 2 | 5 | |
600 | 1 | 2 | 6.5 | 4 | 8 | 6.5 | 3 | 5 | |
τ=0.25, a=3, b=0.25 | 35 | 1 | 4 | 8 | 2 | 5 | 7 | 6 | 3 |
70 | 1 | 4 | 8 | 2 | 6 | 7 | 3 | 5 | |
150 | 1 | 2 | 8 | 3 | 7 | 6 | 4 | 5 | |
300 | 1 | 3 | 8 | 2 | 5 | 6 | 4 | 7 | |
600 | 1 | 3 | 8 | 2 | 7 | 6 | 4 | 5 | |
∑ Ranks | 67.0 | 80.5 | 193.5 | 82.5 | 195.5 | 159.5 | 95.0 | 206.5 | |
Overall Rank | 1 | 2 | 6 | 3 | 7 | 5 | 4 | 8 |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=0.25 | 35 | a | 0.1424 | 0.3840 | 0.2416 | 95.2% | 0.1240 | 0.3716 | 0.2475 | 97.4% |
b | 0.3074 | 1.3956 | 1.0881 | 96.2% | 0.1761 | 1.3511 | 1.1751 | 98.6% | ||
τ | -0.1474 | 1.3940 | 1.5415 | 94.6% | -0.2409 | 1.3937 | 1.6346 | 95.6% | ||
70 | a | 0.1680 | 0.3336 | 0.1655 | 95.8% | 0.1571 | 0.3300 | 0.1730 | 96.0% | |
b | 0.3442 | 1.2438 | 0.8996 | 94.6% | 0.2876 | 1.1783 | 0.8907 | 96.8% | ||
τ | -0.0981 | 1.3002 | 1.3983 | 94.2% | -0.0982 | 1.1923 | 1.2906 | 96.8% | ||
b=0.75 | 150 | a | 0.1940 | 0.3084 | 0.1144 | 94.2% | 0.1890 | 0.3050 | 0.1160 | 96.4% |
b | 0.4466 | 1.0598 | 0.6132 | 93.2% | 0.4220 | 1.0220 | 0.6001 | 96.4% | ||
τ | 0.0900 | 0.9525 | 0.8625 | 94.0% | 0.1039 | 0.8881 | 0.7841 | 95.0% | ||
τ=0.5 | 300 | a | 0.2082 | 0.2896 | 0.0814 | 95.2% | 0.2092 | 0.2852 | 0.0761 | 96.4% |
b | 0.4659 | 1.0316 | 0.5657 | 94.8% | 0.5239 | 0.9391 | 0.4153 | 96.2% | ||
τ | 0.0907 | 0.9503 | 0.8596 | 93.6% | 0.2218 | 0.7761 | 0.5543 | 95.8% | ||
600 | a | 0.2172 | 0.2825 | 0.0654 | 94.2% | 0.2162 | 0.2805 | 0.0643 | 95.4% | |
b | 0.5764 | 0.9262 | 0.3498 | 93.6% | 0.5853 | 0.8925 | 0.3073 | 95.2% | ||
τ | 0.2346 | 0.7904 | 0.5559 | 94.6% | 0.2858 | 0.7160 | 0.4302 | 96.0% | ||
a=0.75 | 35 | a | 0.3749 | 1.7629 | 1.3880 | 96.8% | 0.2215 | 1.6978 | 1.4762 | 98.2% |
b | 0.1733 | 0.7843 | 0.6110 | 91.0% | 0.1273 | 0.7737 | 0.6464 | 92.8% | ||
τ | 0.0167 | 2.3436 | 2.3269 | 99.8% | -0.1434 | 2.5520 | 2.6954 | 100.0% | ||
70 | a | 0.5547 | 1.4283 | 0.8736 | 95.2% | 0.4283 | 1.4450 | 1.0167 | 97.8% | |
b | 0.1933 | 0.7132 | 0.5198 | 92.0% | 0.1226 | 0.7452 | 0.6226 | 93.8% | ||
τ | 0.1180 | 2.1860 | 2.0680 | 94.2% | -0.1264 | 2.4289 | 2.5553 | 100.0% | ||
b=0.5 | 150 | a | 0.6664 | 1.3496 | 0.6831 | 94.8% | 0.5957 | 1.3420 | 0.7462 | 97.8% |
b | 0.2169 | 0.6506 | 0.4337 | 93.0% | 0.2726 | 0.6031 | 0.3306 | 93.2% | ||
τ | 0.1519 | 1.9431 | 1.7911 | 94.4% | 0.3050 | 1.8915 | 1.5865 | 93.0% | ||
τ=1.5 | 300 | a | 0.7354 | 1.2244 | 0.4890 | 95.2% | 0.6828 | 1.2239 | 0.5411 | 96.6% |
b | 0.3296 | 0.5786 | 0.2489 | 95.4% | 0.3910 | 0.5441 | 0.1531 | 89.8% | ||
τ | 0.5329 | 1.7045 | 1.1716 | 95.6% | 0.7327 | 1.6352 | 0.9025 | 90.8% | ||
600 | a | 0.8075 | 1.1805 | 0.3730 | 95.2% | 0.7656 | 1.1558 | 0.3902 | 98.6% | |
b | 0.3372 | 0.5607 | 0.2236 | 97.4% | 0.4507 | 0.4944 | 0.0438 | 49.6% | ||
τ | 0.5921 | 1.5764 | 0.9843 | 96.6% | 0.9952 | 1.3684 | 0.3732 | 65.0% | ||
a=0.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
τ | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
τ | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=1.5 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
τ | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
τ=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
τ | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
τ | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=1.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
τ | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
τ | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=2 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
τ | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
τ=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
τ | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
τ | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% | ||
a=2 | 35 | a | 1.4516 | 3.0180 | 1.5664 | 95.2% | 1.2272 | 3.0073 | 1.7800 | 98.6% |
b | 1.2482 | 5.2132 | 3.9651 | 95.8% | 0.8513 | 4.9181 | 4.0668 | 99.2% | ||
τ | -0.2282 | 1.6153 | 1.8435 | 95.6% | -0.4111 | 1.7960 | 2.2071 | 94.0% | ||
70 | a | 1.6144 | 2.7305 | 1.1160 | 95.0% | 1.4843 | 2.7390 | 1.2547 | 97.6% | |
b | 1.4910 | 4.6090 | 3.1180 | 96.2% | 1.1561 | 4.5050 | 3.3489 | 99.0% | ||
τ | -0.0943 | 1.4316 | 1.5259 | 95.2% | -0.2493 | 1.5585 | 1.8078 | 94.8% | ||
b=3 | 150 | a | 1.7896 | 2.5391 | 0.7496 | 95.4% | 1.7365 | 2.5418 | 0.8053 | 96.2% |
b | 1.7926 | 4.1551 | 2.3625 | 96.2% | 1.6447 | 4.0422 | 2.3974 | 96.8% | ||
τ | 0.0645 | 1.1806 | 1.1161 | 96.6% | 0.0097 | 1.1917 | 1.1821 | 97.0% | ||
τ=0.75 | 300 | a | 1.9039 | 2.4287 | 0.5249 | 95.8% | 1.8799 | 2.4292 | 0.5493 | 97.4% |
b | 2.1524 | 3.7909 | 1.6385 | 94.2% | 1.9889 | 3.7889 | 1.8000 | 97.2% | ||
τ | 0.1813 | 1.0293 | 0.8480 | 95.4% | 0.1349 | 1.0399 | 0.9050 | 97.0% | ||
600 | a | 1.9724 | 2.3730 | 0.4006 | 95.6% | 1.9612 | 2.3715 | 0.4103 | 96.0% | |
b | 2.3438 | 3.5541 | 1.2102 | 94.2% | 2.3352 | 3.4916 | 1.1564 | 95.4% | ||
τ | 0.2739 | 0.9082 | 0.6344 | 95.0% | 0.2774 | 0.8905 | 0.6131 | 96.2% | ||
a=3 | 35 | a | 1.9729 | 4.6161 | 2.6432 | 95.8% | 1.8782 | 4.3354 | 2.4572 | 97.0% |
b | -0.0293 | 0.7353 | 0.7646 | 97.0% | -0.0398 | 0.6755 | 0.7154 | 98.0% | ||
τ | -0.4116 | 1.4397 | 1.8512 | 94.0% | -0.4786 | 1.4140 | 1.8926 | 95.4% | ||
70 | a | 2.4063 | 3.9743 | 1.5680 | 94.2% | 2.2750 | 3.9640 | 1.6890 | 94.2% | |
b | -0.0284 | 0.5486 | 0.5770 | 94.8% | -0.0534 | 0.5696 | 0.6230 | 97.4% | ||
τ | -0.3834 | 1.0028 | 1.3862 | 93.4% | -0.4462 | 1.0793 | 1.5255 | 93.6% | ||
b=0.25 | 150 | a | 2.6660 | 3.7299 | 1.0639 | 93.4% | 2.6852 | 3.6862 | 1.0010 | 94.4% |
b | 0.0336 | 0.4138 | 0.3803 | 94.2% | -0.0209 | 0.5050 | 0.5260 | 91.6% | ||
τ | -0.2258 | 0.6358 | 0.8616 | 93.8% | -0.3280 | 0.8359 | 1.1640 | 88.4% | ||
τ=0.25 | 300 | a | 2.8201 | 3.5448 | 0.7248 | 94.0% | 2.9279 | 3.5496 | 0.6216 | 93.8% |
b | 0.0642 | 0.3265 | 0.2624 | 92.6% | 0.2438 | 0.3026 | 0.0587 | 98.2% | ||
τ | -0.1524 | 0.4342 | 0.5866 | 92.8% | 0.3140 | 0.3670 | 0.0530 | 97.3% | ||
600 | a | 2.9387 | 3.4003 | 0.4616 | 94.8% | 2.9697 | 3.1695 | 0.1998 | 98.1% | |
b | 0.1070 | 0.2593 | 0.1523 | 95.4% | 0.3550 | 0.1831 | -0.1719 | 96.9% | ||
τ | -0.0465 | 0.2697 | 0.3162 | 95.4% | 0.4718 | 0.1116 | -0.3601 | 97.5% |
Considering the results derived from the simulation analysis and the subsequent evaluations of rankings in Tables 2–8, we can identify several significant conclusions:
● The property of consistency among the estimators was observed in this investigation. This property signifies that, as the sample size, denoted as n, expands, the estimators tend to approach the true parameter values. This convergence not only reaffirms the robustness of these estimators but also underscores their appropriateness for various statistical inference purposes.
● As the sample size "n" increased, a noticeable trend in bias reduction was evident across all the estimating techniques under investigation. This observation highlights larger sample sizes' positive influence on the parameter estimation's precision and impartiality. This phenomenon can be attributed to the decreasing impact of random variations within more extensive datasets.
● With the expansion of the sample size "n", another significant observation pertaining to the consistent reduction is the MSE across all the estimators. The MSE is a comprehensive estimation performance indicator, encompassing bias and variance. The evident decline in the MSE underscores the enhancement in overall estimation accuracy with larger sample sizes.
● For the other measures (MRE,Dabs,Dmax,ASAE), we can see that, as the sample size increases, all of these methods' values decrease.
● Based on the overall evaluation of the estimation strategies, the MLE technique emerges as the most effective method for estimating the parameters of the proposed model. As shown in Table 8, which presents the overall ranks for all estimation strategies, the MLE achieves the lowest total score of 67.0. This result further emphasizes the superiority of the MLE technique in accurately estimating the parameters of the proposed model in the context of this study.
To prove that the proposed model is better than previous distributions, a comparison must be made using some data from previous studies. From the previous studies, we note that the basic distribution under study focused on the data of medical field. The three datasets under study have a basic relationship with the medical field in various ways. The GAPEED was applied to the various three datasets, and the outcomes of this comparison were produced with the TLMW [11], TIIEHLPL [32], EL [27], KW [25], GMW [21], MOAPEW [6], EW [24], EGAPEx [28], KMGEx [1], EHLINH [1], ExEx [48], and OWITL [7].
Furthermore, in order to assess the EGAPE model's validity in comparison to other competing models, we utilized various goodness-of-fit metrics, including the Kolmogorov-Smirnov (K-S) statistic with its p-value, Cramer-von Mises (CVM), and Anderson-Darling (AD), as well as other criteria measures like Bayesian information (BI), Akaike information (AI), corrected AI (CAI), and Hannan-Quinn information (HQI). All goodness-of-fit metrics are all taken into account when comparing the fits of all models. We utilize R software and the Maximum Likelihood Estimation (MLE) method to estimate the parameters of the specified distributions and to assess the goodness-of-fit metrics.
Data I: This data set was utilized as "1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0" by Barco et al. [18], and the data shows how quickly 20 people felt better after taking an analgesic.
Data II: The most recent data cited by [2,11], showing the number of daily confirmed death cases linked to COVID-19. The data consists of 89 observed values with an average daily death rate of 18.72. The data set is given as follows: "1, 1, 2, 4, 5, 1, 1, 3, 6, 6, 4, 1, 5, 6, 6, 8, 5, 7, 7, 9, 9, 15, 17, 11, 13, 5, 14, 5, 13, 9, 19, 15, 11, 14, 12, 11, 7, 13, 10, 20, 22, 21, 12, 14, 9, 14, 7, 16, 17, 13, 21, 11, 11, 8, 11, 12, 15, 21, 20, 18, 15, 14, 21, 16, 11, 28, 29, 19, 14, 19, 29, 34, 34, 46, 46, 47, 36, 38, 40, 32, 39, 34, 35, 36, 35, 45, 62." Recently, papers [2,11] used this data, for which the Topp-Leone modified Weibull (TLMW) [11] has the best results where the KSPV reached 0.7280, while in this paper the KSPV reached 0.7453, and this is better than the another comparative models.
Data III: Survival rates for Guinea pigs infected with virulent tubercle bacilli are shown in the set of data [55]. Guinea pigs were chosen for this experiment for a number of reasons, one of which is that it is believed that they are extremely vulnerable to human tuberculosis. The information set is as follows: 0.10, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24 1.30, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.
Tables 11–Tables 16 present the MLE of the parameters for the GAPEED as well as other distributions, together with standard error (SE) values of the parameters and goodness of fit metrics for each distribution. In order to obtain the likelihood with SE, we first used the "maxLik" package, which implements the Newton Raphson (NR) method of maximization, and the variance covariance matrix. Second, we compare the fits with other distributions to determine if the relevant datasets genuinely fit the GAPEED or not using the goodness-of-fit test. Among all the models that have been fitted to these datasets, the GAPEED provides the lowest values for the KSD, AI, BI, CAI, HAI, CVM, and AD statistics. It also provides the highest value for the P-value when compared to other distributions. Figures 6–14 have been discussed for GAPEED.
α | β | τ | θ | λ | ||
EGAPE | Estimates | 1.8897 | 29.0863 | 1.7697 | ||
SE | 0.5609 | 21.0642 | 0.8618 | |||
EL | Estimates | 77.2175 | 12.0930 | 3.6927 | ||
SE | 116.8405 | 17.6372 | 7.7470 | |||
KW | Estimates | 30.4293 | 0.3994 | 1.7768 | 1.4045 | |
SE | 35.9424 | 0.4654 | 0.8620 | 0.6895 | ||
EW | Estimates | 2.757653 | 13.05099 | 11.26919 | ||
SE | 0.425237 | 16.18943 | 25.32466 | |||
MOAPEW | Estimates | 0.0048 | 0.4068 | 0.1943 | 0.4860 | 0.0038 |
SE | 0.0070 | 0.1936 | 0.0756 | 0.2005 | 0.0011 | |
KMGE | Estimates | 32.4295 | 2.0003 | |||
SE | 20.6526 | 0.4056 | ||||
EHLINH | Estimates | 6.7046 | 28.4439 | 0.0674 | ||
SE | 2.0967 | 65.6860 | 0.1601 | |||
ExEx | Estimates | 133.3134 | 0.0028 | |||
SE | 78.3222 | 0.0015 | ||||
OWITL | Estimates | 2.9015 | 79.0976 | 0.3261 | ||
SE | 0.4311 | 115.5561 | 0.1408 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.1163 | 0.9495 | 37.8850 | 40.8722 | 39.3850 | 38.4682 | 0.0427 | 0.2510 |
EL | 0.1211 | 0.9308 | 37.5124 | 40.4996 | 39.0124 | 38.0955 | 0.0391 | 0.2260 |
KW | 0.1392 | 0.8329 | 39.9867 | 43.9696 | 42.6534 | 40.7642 | 0.0498 | 0.2913 |
MOAPEW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
EW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
KMGE | 0.1206 | 0.9330 | 35.9024 | 37.8938 | 36.6082 | 36.2911 | 0.0438 | 0.2576 |
EHLINH | 0.1294 | 0.8912 | 37.9113 | 40.8985 | 39.4113 | 38.4944 | 0.0457 | 0.2641 |
ExEx | 0.4041 | 0.0029 | 59.5574 | 61.5489 | 60.2633 | 59.9461 | 0.1761 | 1.0400 |
OWITL | 0.1783 | 0.5481 | 44.5537 | 47.5409 | 46.0537 | 45.1369 | 0.1441 | 0.8519 |
α | β | τ | θ | λ | ||
EGAPE | Estimates | 0.0886 | 1.4401 | 0.6050 | ||
SE | 0.0157 | 0.5555 | 0.6115 | |||
TLMW | Estimates | 0.0106 | 0.0101 | 1.2689 | 1.2680 | |
SE | 0.0740 | 0.0276 | 0.2493 | 1.0647 | ||
TIIEHLPL | Estimates | 1.7143 | 0.1844 | 28.8074 | 166.7427 | |
SE | 2.9734 | 0.2303 | 71.7154 | 27.4533 | ||
EL | Estimates | 1.8125 | 11.2464 | 123.1732 | ||
SE | 0.3163 | 8.1168 | 102.2685 | |||
KW | Estimates | 1.2083 | 2.3127 | 0.0326 | 1.1786 | |
SE | 0.9050 | 6.4453 | 0.0641 | 0.6493 | ||
GMW | Estimates | 0.0370 | 1.2290 | 0.0015 | 1.1750 | |
SE | 0.0939 | 0.9993 | 0.0140 | 0.7523 | ||
MOAPEW | Estimates | 0.3553 | 0.2575 | 0.1384 | 0.0058 | 0.0087 |
SE | 0.5066 | 0.0104 | 0.1008 | 0.0018 | 0.0078 | |
EW | Estimates | 0.2312 | 0.0085 | 0.2914 | ||
SE | 0.0152 | 0.0058 | 0.1531 | |||
KMGE | Estimates | 1.8212 | 0.0675 | |||
SE | 0.2588 | 0.0091 | ||||
EHLINH | Estimates | 19.5686 | 0.2837 | 1589.2263 | ||
SE | 15.3431 | 0.0490 | 237.2804 | |||
ExEx | Estimates | 3.4494 | 0.0117 | |||
SE | 1.9636 | 0.0079 | ||||
OWITL | Estimates | 1.1721 | 0.0508 | 1.1382 | ||
SE | 0.4598 | 0.0350 | 0.5937 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0728 | 0.7453 | 662.0716 | 669.4693 | 662.3608 | 665.0504 | 0.0869 | 0.5958 |
TLMW | 0.0740 | 0.7280 | 663.9288 | 673.7924 | 664.4166 | 667.9005 | 0.0901 | 0.6041 |
TIIEHLPL | 0.0816 | 0.6084 | 665.4572 | 675.3208 | 665.9450 | 669.4290 | 0.0814 | 0.6494 |
EL | 0.0845 | 0.5635 | 663.7241 | 671.1218 | 664.0132 | 666.7029 | 0.0761 | 0.6190 |
KW | 0.0752 | 0.7090 | 663.9278 | 673.7914 | 664.4156 | 667.8996 | 0.0920 | 0.6121 |
GMW | 0.0768 | 0.6834 | 663.8639 | 673.7276 | 664.3517 | 667.8357 | 0.0943 | 0.6201 |
MOAPEW | 0.0762 | 0.6929 | 665.7249 | 678.0545 | 666.4657 | 670.6897 | 0.0879 | 0.5993 |
EW | 0.1110 | 0.2336 | 667.4458 | 674.8435 | 667.7349 | 670.4246 | 0.2186 | 1.2041 |
KMGE | 0.0861 | 0.5389 | 662.3907 | 669.8323 | 662.5335 | 665.3766 | 0.0763 | 0.6177 |
EHLINH | 0.0864 | 0.5345 | 664.3826 | 671.7803 | 664.6718 | 667.3615 | 0.0853 | 0.7083 |
ExEx | 0.0919 | 0.4547 | 662.8435 | 669.7753 | 662.9863 | 665.8294 | 0.1603 | 0.9021 |
OWITL | 0.0771 | 0.6787 | 662.6932 | 669.5910 | 662.9824 | 665.6721 | 0.0996 | 0.6511 |
α | β | τ | θ | ||
EGAPE | Estimates | 1.2948 | 0.9091 | 0.0079 | |
SE | 0.1631 | 0.6367 | 0.0242 | ||
TLMW | Estimates | 0.2497 | 0.2004 | 1.2916 | 2.7723 |
SE | 0.9087 | 0.7554 | 0.7622 | 1.5924 | |
TIIEHLPL | Estimates | 0.0927 | 1.3381 | 2.4967 | 138.0944 |
SE | 0.2557 | 0.8698 | 1.5475 | 532.9272 | |
EL | Estimates | 3.8657 | 36.6762 | 30.4730 | |
SE | 0.8248 | 61.0255 | 53.2398 | ||
KW | Estimates | 3.9049 | 3.8098 | 0.6329 | 0.7832 |
SE | 9.9178 | 25.2951 | 0.8289 | 1.7951 | |
GMW | Estimates | 1.4999 | 7.0403 | 0.1177 | 0.5813 |
SE | 0.7081 | 2.0431 | 0.0250 | 0.1381 | |
EW | Estimates | 1.8162 | 36.6594 | 5.3695 | |
SE | 0.1607 | 70.2187 | 9.0321 | ||
EGAPEx | Estimates | 2.2303 | 3.0157 | 3.0038 | 0.4497 |
SE | 4.3322 | 1.7338 | 3.8605 | 0.5913 | |
KMGE | Estimates | 3.7890 | 0.9720 | ||
SE | 0.7019 | 0.1221 | |||
EHLINH | Estimates | 34.1057 | 0.3627 | 94.1204 | |
SE | 38.2904 | 0.0934 | 165.6271 | ||
ExEx | Estimates | 70.0000 | 0.0051 | ||
SE | 81.8420 | 0.0059 | |||
OWITL | Estimates | 1.8011 | 19.0880 | 0.3149 | |
SE | 0.1713 | 23.2625 | 0.1740 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0826 | 0.7094 | 192.5995 | 199.4295 | 192.9524 | 195.3185 | 0.0881 | 0.5118 |
TLMW | 0.0885 | 0.6253 | 196.1265 | 205.2332 | 196.7235 | 199.7519 | 0.0915 | 0.5657 |
TIIEHLPL | 0.0874 | 0.6408 | 196.0386 | 205.1453 | 196.6356 | 199.6640 | 0.0747 | 0.4823 |
EL | 0.0944 | 0.5429 | 194.7195 | 201.5495 | 195.0725 | 197.4386 | 0.0770 | 0.5188 |
KW | 0.0896 | 0.6103 | 196.1880 | 205.2947 | 196.7850 | 199.8134 | 0.0933 | 0.5735 |
GMW | 0.0905 | 0.5967 | 197.2302 | 206.3369 | 197.8272 | 200.8556 | 0.1064 | 0.6601 |
EW | 0.1056 | 0.3984 | 197.6848 | 204.5148 | 198.0377 | 200.4038 | 0.1662 | 0.9792 |
EGAPEx | 0.0874 | 0.6411 | 196.1340 | 205.2406 | 196.7310 | 199.7594 | 0.0917 | 0.5652 |
KMGE | 0.0906 | 0.5961 | 193.4319 | 200.9853 | 193.6058 | 196.2446 | 0.0970 | 0.5771 |
EHLINH | 0.1011 | 0.4537 | 195.7417 | 202.5717 | 196.0946 | 198.4607 | 0.0976 | 0.6161 |
ExEx | 0.2118 | 0.0031 | 210.6588 | 215.2121 | 210.8327 | 212.4715 | 0.2429 | 1.4240 |
OWITL | 0.0929 | 0.5634 | 194.6419 | 201.4719 | 194.9949 | 197.3610 | 0.0921 | 0.5773 |
Profile likelihood and uniqueness proof of GAPEED parameters have been discussed in Figures 7, 8, 10, 11, 13, and 14. The results in Tables 12, 14, and 16 show that the GAPEED is the most effective model to fit these datasets when compared to the other distributions indicated in Tables 12, 14, and 16. Graphical representations in Figures 6, 9, and 12 reflect these findings.
The majority of research employs just one accelerating stress variable. There are situations when increasing one stress variable does not produce enough failure data. For further acceleration, two stress factors might be required. Two stress variables are examined in this paper. It will be possible to better comprehend the impact of two stress variables functioning simultaneously if two stress variables are included in a test design. Furthermore, the test units' failure time is assumed by the author to follow a GAPEED model. The bivariate SSALT under PTIC is discussed in this section. The MLE of the model parameters is also examined.
The bivariate SSALT under PTIC is as follows: Each stress variable (SV) has two levels when using the bivariate SSALT. Let Hs represent the variable l's stress level (SL) s, where l=1,2 and s=0,1,2. H10 and H20 illustrate typical operational scenarios. Allow the experiment to run for T1, during which n1 failures will be logged, with all n units starting at the 1st step with SLs (K11,K21).
The 1st SV is raised from H11 to H12 at time T1, c1 units are removed at random from the remaining N−n1 units, and the 1st SV is raised from H11 to H12. Until the predetermined time tau2 is calculated at time tau2 from the remaining N−n1−c1−n2 units, the second phase is repeated.
The other SV is increased from H21 to H22 at the conclusion of the 2nd step. Up until when T is reached, at which point n2 units fail this stage, the test is repeated. All of the surviving units c3=N−n1−c1−n2−c2−n3 are taken out of the test at time T.
In the first phase, GAPEED with cdf in Eq (2.1) is used to calculate the life of test units. A log-linear function of SLs exists for the scale parameter αi at test step i for i=1, 2, and 3.
Step 1. ln(α1)=B0+B1H11+B2H21;
Step 2. ln(α2)=B0+B1H12+B2H21;
Step 3. ln(α3)=B0+B1H12+B2H22,
where B0, B1, and B2 are unidentified parameters that vary based on the test technique and the product. The two pressures are thought to be unrelated to one another.
The model of cumulative exposure is also considered. Regardless of how the chance is calculated, the remaining life in this model is completely based on the current cumulative failure probability and the current SL [49].
The shape parameter β is constant for all SLs. The cumulative distribution function (cdf) of the test unit lifespan for the bivariate SSALT and cumulative exposure models is then:
Fi(x)={(1−e−a1x)bτ1−(1−e−a1x)b0≤x≤T1,(1−e−[a1T1+a2(x−T1)])bτ1−(1−e−[a1T1+a2(x−T1)])bT1≤x≤T2,(1−e−[a1T1+a2(T2−T1)+a3(x−T2)])bτ1−(1−e−[a1T1+a2(T2−T1)+a3(x−T2)])bT2≤x≤T, | (7.1) |
where i=1,2,3. The pdf of bivariate SSALT for this can be written as
f1(x)=1ea1x−1{a1b(1−e−a1x)bτ1−(1−e−a1x)b[1−log(τ)(1−e−a1x)b]},0≤x≤T1, | (7.2) |
f2(x)=1e(a1T1+a2(x−T1))−1{a2b(1−e−(a1T1+a2(x−T1)))bτ1−(1−e−(a1T1+a2(x−T1)))b[1−log(τ)(1−e−(a1T1+a2(x−T1)))b]},T1≤x≤T2, | (7.3) |
and
f3(x)=1e(a1T1+a2(T2−T1)+a3(x−T2))−1{a3b(1−e−(a1T1+a2(T2−T1)+a3(x−T2)))bτ1−(1−e−(a1T1+a2(T2−T1)+a3(x−T2)))b[1−log(τ)(1−e−(a1T1+a2(T2−T1)+a3(x−T2)))b]}T2≤x≤T3. | (7.4) |
Assume that in a bivariate SSALT, xij represents the observations produced from a PTIC sample with random deletions, where i=1,2,3,j=1,2,...,ni. Each unit is excluded from the test with the same probability p, and the number of items removed from the test at any one time is distributed binomially. In other words,
Ci={c1≈binomial(N−n1,p),c2|c1=c2≈binomial(N−n1−n2−c1,p),c3=N−n1−n2−n3−c1−c2. | (7.5) |
The joint log-LLF of the bivariate SSALT model under the PTIC sample is as follows if Ci is independent of xij for all i.
L(Θ,p|C)=L1(Θ)P(c1,p)P(c2|c1,p), | (7.6) |
where
L1(Θ)=3∏i=1ni∏j=1fi(xij)[1−Fi(xij)]ci, | (7.7) |
where in (7.1)–(7.4), Fi(xij) and fi(xij) will be replaced for Fi(xij) and fi(xij), respectively.
The ML estimators of the model under bivariate SSALT based on the PTIC sample are shown in Tables 17 and 18, respectively, when p = 0 and p = 0.2. The results in Tables 17 and 18 indicate that the model's effectiveness rises as the probability of binomial elimination rises and the AINC and BINC values fall.
Data | T1 | T2 | T3 | n1 | n2 | n3 | α1 | α2 | α3 | β | τ | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 5 | 2.5353 | 4.2746 | 3.3228 | 1.8354 | 0.0020 | -7.2028 | 24.4055 | 29.3842 |
3.5 | 6 | 2.4710 | 3.8668 | 2.3909 | 2.0295 | 0.0031 | -10.4644 | 30.9287 | 35.9074 | |||||
2.2 | 3 | 9 | 3 | 2.5416 | 3.5990 | 5.0954 | 1.9838 | 0.0026 | -7.1745 | 24.3490 | 29.3277 | |||
3.5 | 4 | 2.5352 | 3.0753 | 2.9460 | 1.9840 | 0.0008 | -10.8706 | 31.7412 | 36.7198 | |||||
1.8 | 1.9 | 3 | 11 | 2 | 5 | 2.8502 | 4.7026 | 3.3463 | 1.4596 | 0.0034 | -7.6071 | 25.2142 | 30.1929 | |
3.5 | 6 | 2.7474 | 4.0312 | 2.4071 | 1.7368 | 0.0024 | -10.7940 | 31.5879 | 36.5666 | |||||
2.2 | 3 | 4 | 3 | 2.9864 | 3.0214 | 5.1299 | 1.3835 | 0.0007 | -7.4430 | 24.8859 | 29.8646 | |||
3.5 | 4 | 2.8427 | 2.4470 | 2.9661 | 1.9249 | 0.0025 | -10.9378 | 31.8756 | 36.8543 | |||||
II | 8 | 14 | 22 | 22 | 21 | 24 | 0.0842 | 0.1251 | 0.3435 | 1.4147 | 0.8461 | -207.0863 | 424.1727 | 436.5022 |
38 | 36 | 0.0463 | 0.0689 | 0.1152 | 1.3591 | 1.4858 | -278.0608 | 566.1216 | 578.4511 | |||||
18 | 30 | 35 | 14 | 0.1071 | 0.1562 | 0.2666 | 1.2760 | 0.3879 | -231.5655 | 473.1311 | 485.4606 | |||
38 | 22 | 0.0929 | 0.1258 | 0.1248 | 1.2874 | 0.4486 | -278.8941 | 567.7881 | 580.1177 | |||||
10 | 14 | 30 | 28 | 15 | 28 | 0.0546 | 0.0970 | 0.2060 | 1.4255 | 1.5355 | -229.6798 | 469.3596 | 481.6891 | |
38 | 36 | 0.0473 | 0.0790 | 0.1146 | 1.3702 | 1.5078 | -277.6793 | 565.3585 | 577.6881 | |||||
18 | 30 | 29 | 14 | 0.0908 | 0.1687 | 0.2639 | 1.3715 | 0.6488 | -230.6346 | 471.2691 | 483.5987 | |||
38 | 22 | 0.0642 | 0.1176 | 0.1199 | 1.4065 | 1.0223 | -278.2243 | 566.4487 | 578.7782 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 17 | 18 | 1.9285 | 1.9888 | 3.3652 | 2.1804 | 0.0428 | -42.3850 | 94.7701 | 106.1534 |
3 | 26 | 1.8135 | 1.6050 | 2.1656 | 2.1324 | 0.0408 | -61.6277 | 133.2554 | 144.6387 | |||||
1.9 | 2.4 | 25 | 10 | 1.9262 | 2.1187 | 4.8965 | 2.1808 | 0.0427 | -41.3863 | 92.7727 | 104.1560 | |||
3 | 18 | 1.8140 | 1.6102 | 2.5898 | 2.1043 | 0.0396 | -60.9120 | 131.8240 | 143.2073 | |||||
1.3 | 1.6 | 2.4 | 30 | 8 | 18 | 2.0586 | 1.6644 | 3.3873 | 2.4176 | 0.0402 | -42.2304 | 94.4608 | 105.8442 | |
3 | 26 | 1.8815 | 1.2926 | 2.1763 | 2.2743 | 0.0399 | -61.2000 | 132.4000 | 143.7833 | |||||
1.9 | 2.4 | 16 | 10 | 2.0571 | 1.9902 | 4.9177 | 2.4155 | 0.0401 | -41.4372 | 92.8744 | 104.2577 | |||
3 | 18 | 1.8835 | 1.4376 | 2.6025 | 2.2621 | 0.0392 | -60.5813 | 131.1625 | 142.5459 |
Data | T1 | T2 | T3 | n1 | n2 | n3 | α1 | α2 | α3 | β | τ | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 2 | 2.7800 | 6.6237 | 5.1808 | 1.5332 | 0.0019 | -1.3345 | 12.6689 | 17.6476 |
3.5 | 3 | 2.6606 | 5.5631 | 2.0821 | 1.5061 | 0.0026 | -5.5431 | 21.0862 | 26.0648 | |||||
2.2 | 3.1 | 9 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0021 | -6.6903 | 23.3806 | 28.3592 | |||
3.5 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0001 | -6.6903 | 23.3806 | 28.3592 | |||||
1.8 | 1.9 | 3 | 11 | 1 | 2 | 3.3879 | 5.5803 | 2.5550 | 1.4507 | 0.0012 | -4.0139 | 18.0277 | 23.0064 | |
3.5 | 3 | 3.5248 | 3.7242 | 1.6542 | 2.0645 | 0.0018 | -7.1073 | 24.2145 | 29.1932 | |||||
2.2 | 3 | 3 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0019 | -3.0837 | 16.1675 | 21.1461 | |||
3.5 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0029 | -3.0837 | 16.1675 | 21.1461 | |||||
II | 8 | 14 | 22 | 22 | 18 | 16 | 0.1221 | 0.1552 | 0.3637 | 1.3846 | 0.5564 | -171.7641 | 353.5283 | 365.8578 |
38 | 25 | 0.0621 | 0.0835 | 0.1128 | 1.4401 | 1.4256 | -226.8644 | 463.7287 | 476.0583 | |||||
18 | 22 | 29 | 5 | 0.1362 | 0.2049 | 0.5140 | 1.3076 | 0.3588 | -171.8571 | 353.7143 | 366.0438 | |||
38 | 15 | 0.1127 | 0.1369 | 0.1093 | 1.2970 | 0.4134 | -230.3447 | 470.6895 | 483.0190 | |||||
10 | 14 | 22 | 28 | 12 | 16 | 0.0711 | 0.1187 | 0.3461 | 1.5427 | 1.6947 | -169.7180 | 349.4361 | 361.7656 | |
38 | 24 | 0.0584 | 0.0858 | 0.1120 | 1.4557 | 1.6740 | -220.9976 | 451.9953 | 464.3248 | |||||
18 | 22 | 24 | 5 | 0.1297 | 0.2358 | 0.5680 | 1.3375 | 0.4332 | -173.7040 | 357.4080 | 369.7376 | |||
38 | 13 | 0.1069 | 0.1581 | 0.1051 | 1.3487 | 0.5302 | -224.0241 | 458.0481 | 470.3777 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 13 | 9 | 2.2016 | 2.4738 | 4.1560 | 2.3470 | 0.0482 | -27.9595 | 65.9191 | 77.3024 |
3 | 13 | 2.1023 | 2.0038 | 2.3040 | 2.2828 | 0.0463 | -39.9871 | 89.9742 | 101.3575 | |||||
1.9 | 2.4 | 21 | 5 | 2.0900 | 2.4406 | 5.7452 | 2.3197 | 0.0480 | -32.3110 | 74.6221 | 86.0054 | |||
3 | 9 | 2.0104 | 1.9690 | 2.9062 | 2.2560 | 0.0457 | -43.2342 | 96.4684 | 107.8517 | |||||
1.3 | 1.6 | 2.4 | 30 | 6 | 10 | 2.3723 | 1.9721 | 3.2473 | 2.7184 | 0.0406 | -32.2770 | 74.5541 | 85.9374 | |
3 | 14 | 2.2271 | 1.5491 | 2.2233 | 2.5817 | 0.0408 | -42.5040 | 95.0080 | 106.3914 | |||||
1.9 | 2.4 | 12 | 8 | 2.2277 | 1.8942 | 4.5920 | 2.5778 | 0.0406 | -36.5661 | 83.1323 | 94.5156 | |||
3 | 10 | 2.1666 | 1.6701 | 3.5295 | 2.5178 | 0.0404 | -41.6866 | 93.3732 | 104.7565 |
In this article, we derived and studied a new three-parameter lifetime distribution called the GAPEED. Some important statistical and mathematical features (quantile function, ordinary moments, incomplete moments, and moment generating function) were computed. Eight different estimation methods for the distribution parameters, ML, AD, CVM, MPS, LS, RTAD, WLS, and LTAD, were proposed. The Monte Carlo technique was employed to evaluate the quality of different estimators. The importance and flexibility of the GAPEED were demonstrated by utilizing three real datasets. For the GAPEED model, a bivariate SSALT based on PTIC was presented. An optimal test plan under PTIC is expressed by minimizing the asymptotic variance of the MLE of the log of the scale parameter at design stress. Tables 17 and 18 compare the approaches based on various binomial removal values. We conclude from these findings that the effectiveness of this model increases as the value of the binomial removals rises.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23142).
This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23142).
The authors declare no conflict of interest.
[1] |
T. Buckmaster, Onsager's conjecture almost everywhere in time, Commun. Math. Phys., 333 (2015), 1175-1198. doi: 10.1007/s00220-014-2262-z
![]() |
[2] |
T. Buckmaster, C. De Lellis, P. Isett, et al. Anomalous dissipation for 1/5-Hölder Euler flows, Ann. Math., 182 (2015), 127-172. doi: 10.4007/annals.2015.182.1.3
![]() |
[3] |
T. Buckmaster, C. De Lellis, L. Székelyhidi Jr, Dissipative Euler flows with Onsager critical spatial regularity, Commun. Pur. Appl. Math., 69 (2016), 1613-1670. doi: 10.1002/cpa.21586
![]() |
[4] |
F. Cheng, C. J. Xu, Analytical smoothing effect of solution for the Boussinesq equations, Acta Math. Sci., 39 (2019), 165-179. doi: 10.1007/s10473-019-0114-9
![]() |
[5] |
A. Cheskidov, P. Constantin, S. Friedlander, et al. Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252. doi: 10.1088/0951-7715/21/6/005
![]() |
[6] |
P. Constantin, E. Weinan, E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207-209. doi: 10.1007/BF02099744
![]() |
[7] | A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982. |
[8] | A. Larios, E. Lunasin, E. S. Titi, Global well-posedness for the 2D Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid Voigt-α regularization, arXiv:1010.5024. |
[9] |
C. De Lellis, L. Székelyhidi Jr, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. An., 195 (2010), 225-260. doi: 10.1007/s00205-008-0201-x
![]() |
[10] |
C. De Lellis, L. Székelyhidi Jr, Dissipative continuous Euler flows, Invent. Math., 193 (2013), 377-407. doi: 10.1007/s00222-012-0429-9
![]() |
[11] |
C. De Lellis, L. Székelyhidi Jr, Dissipative Euler flows and Onsager's conjecture, J. Eur. Math. Soc., 16 (2014), 1467-1505. doi: 10.4171/JEMS/466
![]() |
[12] | P. L. Lions, Mathematical Topics in Fluid Mechanics, New York: The Clarendon Press Oxford University Press, 1996. |
[13] | A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002. |
[14] | A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, 2003. |
[15] | J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987. |
[16] |
L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration Mech. An., 166 (2003), 47-80. doi: 10.1007/s00205-002-0228-3
![]() |
[17] |
L. Saint-Raymond, Hydrodynamic limits: some improvements of the relative entropy method, Annales de l'IHP Analyse non linéaire, 26 (2009), 705-744. doi: 10.1016/j.anihpc.2008.01.001
![]() |
[18] |
A. Shnirelman, Weak solutions with decreasing energy of incompressible Euler equations, Commun. Math. Phys., 210 (2000), 541-603. doi: 10.1007/s002200050791
![]() |
[19] |
T. Tao, L. Zhang, Hölder continuous solutions of Boussinesq equation with compact support, J. Funct. Anal., 272 (2017), 4334-4402. doi: 10.1016/j.jfa.2017.01.013
![]() |
[20] |
T. Tao, L. Zhang, On the continuous periodic weak solutions of Boussinesq equations, SIAM J. Math. Anal., 50 (2018), 1120-1162. doi: 10.1137/17M1115526
![]() |
[21] |
T. Tao, L. Zhang, Hölder continuous solutions of Boussinesq equations, Acta Math. Sci., 38 (2018), 1591-1616. doi: 10.1016/S0252-9602(18)30834-8
![]() |
1. | M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr, Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields, 2024, 9, 2473-6988, 17634, 10.3934/math.2024857 | |
2. | Ronghua Wang, Beiqing Gu, Xiaoling Xu, RELIABILITY STATISTICAL ANALYSIS OF TWO-PARAMETER EXPONENTIAL DISTRIBUTION UNDER CONSTANT STRESS ACCELERATED LIFE TEST WITH INVERSE POWER LAW MODEL, 2024, 14, 2156-907X, 2993, 10.11948/20240017 | |
3. | Naif Alotaibi, Actuarial and various entropy measures for a new extended log Kumaraswamy model: Properties and applications, 2025, 126, 11100168, 377, 10.1016/j.aej.2025.04.039 |
Parameters | Measures | |||||||||
a | b | τ | μ′1 | μ′2 | μ′3 | μ′4 | σ2 | CV | skewness | kurtosis |
0.5 | 0.75 | 0.25 | 2.68979 | 12.4088 | 79.9101 | 662.52 | 5.17387 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.74385 | 6.75901 | 40.1156 | 319.514 | 3.71799 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 2.0773 | 7.90377 | 45.4087 | 353.528 | 3.5886 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.68603 | 5.38955 | 27.4263 | 198.4 | 2.54684 | 0.94653 | 5.75592 | 12.5055 | ||
0.75 | 0.75 | 0.25 | 1.79319 | 5.51503 | 23.6771 | 130.868 | 2.2995 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.16257 | 3.004 | 11.8861 | 63.1139 | 1.65244 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 1.38487 | 3.51279 | 13.4544 | 69.8326 | 1.59493 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.12402 | 2.39536 | 8.12631 | 39.1901 | 1.13193 | 0.94653 | 5.75592 | 12.5055 | ||
1.5 | 0.75 | 0.25 | 0.896596 | 1.37876 | 2.95963 | 8.17926 | 0.574874 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.581283 | 0.751001 | 1.48576 | 3.94462 | 0.41311 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.692433 | 0.878196 | 1.68181 | 4.36454 | 0.398733 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.562011 | 0.598839 | 1.01579 | 2.44938 | 0.282982 | 0.94653 | 5.75592 | 12.5055 | ||
2.5 | 0.75 | 0.25 | 0.537958 | 0.496353 | 0.63928 | 1.06003 | 0.206955 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.34877 | 0.27036 | 0.320925 | 0.511223 | 0.14872 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.41546 | 0.316151 | 0.36327 | 0.565644 | 0.143544 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.337207 | 0.215582 | 0.21941 | 0.31744 | 0.101874 | 0.94653 | 5.75592 | 12.5055 |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | ˆτ | 0.32671{1} | 0.58371{5} | 0.56143{2} | 0.57133{3} | 0.60648{6} | 0.63277{8} | 0.5738{4} | 0.61215{7} |
ˆa | 0.04966{1} | 0.06013{4} | 0.0625{6} | 0.05958{3} | 0.06715{8} | 0.06343{7} | 0.05815{2} | 0.06028{5} | ||
ˆb | 0.24844{1} | 0.28129{4} | 0.28515{5} | 0.29203{6} | 0.27907{2} | 0.29342{7} | 0.28051{3} | 0.31435{8} | ||
MSE | ˆτ | 0.16299{1} | 0.59664{5} | 0.52583{2} | 0.58252{4} | 0.61607{6} | 0.721{7} | 0.55021{3} | 0.93333{8} | |
ˆa | 0.00411{1} | 0.00549{4} | 0.00611{6} | 0.0054{3} | 0.00663{7.5} | 0.00663{7.5} | 0.00519{2} | 0.00574{5} | ||
ˆb | 0.10323{1} | 0.11811{4} | 0.12803{6} | 0.11815{5} | 0.1178{3} | 0.14159{8} | 0.11156{2} | 0.14151{7} | ||
MRE | ˆτ | 0.65343{1} | 1.16742{5} | 1.12285{2} | 1.14267{3} | 1.21295{6} | 1.26554{8} | 1.1476{4} | 1.22429{7} | |
ˆa | 0.19865{1} | 0.24052{4} | 0.25{6} | 0.23833{3} | 0.2686{8} | 0.2537{7} | 0.23258{2} | 0.2411{5} | ||
ˆb | 0.33126{1} | 0.37506{4} | 0.3802{5} | 0.38937{6} | 0.37209{2} | 0.39123{7} | 0.37402{3} | 0.41913{8} | ||
Dabs | 0.04372{2} | 0.04281{1} | 0.04653{7} | 0.04411{3} | 0.04606{5} | 0.04624{6} | 0.0448{4} | 0.04683{8} | ||
Dmax | 0.07294{3} | 0.07168{2} | 0.07905{8} | 0.07157{1} | 0.0766{5} | 0.07807{6} | 0.07418{4} | 0.07819{7} | ||
ASAE | 0.02941{7} | 0.02686{2} | 0.02879{5} | 0.02748{4} | 0.02895{6} | 0.02682{1} | 0.02728{3} | 0.03173{8} | ||
∑Ranks | 21{1} | 44{3.5} | 60{5} | 44{3.5} | 64.5{6} | 79.5{7} | 36{2} | 83{8} | ||
70 | BIAS | ˆτ | 0.31314{1} | 0.47069{3} | 0.48998{5} | 0.49062{6} | 0.50913{7} | 0.54111{8} | 0.47654{4} | 0.46785{2} |
ˆa | 0.03421{1} | 0.04143{2} | 0.04746{6} | 0.04299{3} | 0.04804{7} | 0.04809{8} | 0.04356{4} | 0.04532{5} | ||
ˆb | 0.21631{1} | 0.2507{5} | 0.23911{2} | 0.27064{7} | 0.24898{3} | 0.24985{4} | 0.25229{6} | 0.2829{8} | ||
MSE | ˆτ | 0.1496{1} | 0.41058{4} | 0.43118{5} | 0.45507{7} | 0.44542{6} | 0.55159{8} | 0.40366{3} | 0.39192{2} | |
ˆa | 0.00191{1} | 0.00286{2} | 0.0034{6} | 0.00317{4} | 0.00368{8} | 0.00366{7} | 0.00308{3} | 0.00328{5} | ||
ˆb | 0.07529{1} | 0.08986{4} | 0.0849{2} | 0.10267{7} | 0.08698{3} | 0.09562{6} | 0.09{5} | 0.11517{8} | ||
MRE | ˆτ | 0.62627{1} | 0.94139{3} | 0.97995{5} | 0.98124{6} | 1.01826{7} | 1.08221{8} | 0.95309{4} | 0.93571{2} | |
ˆa | 0.13684{1} | 0.16572{2} | 0.18984{6} | 0.17197{3} | 0.19217{7} | 0.19238{8} | 0.17425{4} | 0.18128{5} | ||
ˆb | 0.28842{1} | 0.33426{5} | 0.31881{2} | 0.36085{7} | 0.33197{3} | 0.33314{4} | 0.33638{6} | 0.3772{8} | ||
Dabs | 0.03037{1} | 0.03108{3} | 0.03275{8} | 0.03089{2} | 0.03226{5} | 0.03245{6} | 0.03186{4} | 0.03262{7} | ||
Dmax | 0.05103{2} | 0.05227{3} | 0.05581{8} | 0.05055{1} | 0.05432{5} | 0.05561{7} | 0.0531{4} | 0.05469{6} | ||
ASAE | 0.01852{7} | 0.01764{3} | 0.01828{5} | 0.01771{4} | 0.0183{6} | 0.01677{1} | 0.01726{2} | 0.02027{8} | ||
∑Ranks | 19{1} | 39{2} | 60{5} | 57{4} | 67{7} | 75{8} | 49{3} | 66{6} | ||
150 | BIAS | ˆτ | 0.27897{1} | 0.33896{2} | 0.4218{7} | 0.37504{5} | 0.40603{6} | 0.43235{8} | 0.36118{4} | 0.33952{3} |
ˆa | 0.02475{1} | 0.02809{2} | 0.03377{8} | 0.02817{3} | 0.03358{7} | 0.03171{6} | 0.0292{4} | 0.03094{5} | ||
ˆb | 0.17834{1} | 0.19969{2} | 0.22885{6} | 0.23606{8} | 0.21943{4} | 0.23111{7} | 0.20646{3} | 0.22692{5} | ||
MSE | ˆτ | 0.12003{1} | 0.21771{3} | 0.32049{7} | 0.26977{5} | 0.2889{6} | 0.35196{8} | 0.2381{4} | 0.18081{2} | |
ˆa | 0.00097{1} | 0.00137{2} | 0.00186{7} | 0.00155{5} | 0.00189{8} | 0.00175{6} | 0.00149{3} | 0.00151{4} | ||
ˆb | 0.05034{1} | 0.05811{2} | 0.07333{5} | 0.08301{8} | 0.06651{4} | 0.07845{7} | 0.06122{3} | 0.07669{6} | ||
MRE | ˆτ | 0.55795{1} | 0.67793{2} | 0.84359{7} | 0.75008{5} | 0.81206{6} | 0.86469{8} | 0.72235{4} | 0.67904{3} | |
ˆa | 0.09901{1} | 0.11236{2} | 0.1351{8} | 0.11269{3} | 0.13434{7} | 0.12685{6} | 0.11682{4} | 0.12378{5} | ||
ˆb | 0.23779{1} | 0.26626{2} | 0.30514{6} | 0.31475{8} | 0.29257{4} | 0.30814{7} | 0.27529{3} | 0.30257{5} | ||
Dabs | 0.02145{2} | 0.02295{7} | 0.0217{3} | 0.02129{1} | 0.02288{6} | 0.023{8} | 0.02213{4} | 0.0225{5} | ||
Dmax | 0.03601{2} | 0.03845{6} | 0.03771{4} | 0.03525{1} | 0.03891{7} | 0.03973{8} | 0.03688{3} | 0.03798{5} | ||
ASAE | 0.011{5} | 0.01062{3} | 0.01139{6} | 0.01092{4} | 0.01146{7} | 0.01039{1} | 0.01045{2} | 0.01269{8} | ||
∑Ranks | 18{1} | 35{2} | 74{7} | 56{4.5} | 72{6} | 80{8} | 41{3} | 56{4.5} | ||
300 | BIAS | ˆτ | 0.20018{1} | 0.243{4} | 0.29528{6} | 0.23781{3} | 0.31369{7} | 0.33876{8} | 0.23778{2} | 0.25695{5} |
ˆa | 0.01707{1} | 0.01972{4} | 0.02215{6} | 0.01893{3} | 0.02216{7} | 0.02177{5} | 0.01829{2} | 0.02228{8} | ||
\hat{b} | 0.13506 ^{\{ 1 \}} | 0.15636 ^{\{ 3 \}} | 0.18002 ^{\{ 6 \}} | 0.17262 ^{\{ 5 \}} | 0.19427 ^{\{ 7 \}} | 0.20028 ^{\{ 8 \}} | 0.15561 ^{\{ 2 \}} | 0.16985 ^{\{ 4 \}} | ||
MSE | \hat{\tau} | 0.0643 ^{\{ 1 \}} | 0.1019 ^{\{ 4 \}} | 0.14664 ^{\{ 6 \}} | 0.08922 ^{\{ 2 \}} | 0.16416 ^{\{ 7 \}} | 0.21518 ^{\{ 8 \}} | 0.08995 ^{\{ 3 \}} | 0.10932 ^{\{ 5 \}} | |
\hat{a} | 0.00047 ^{\{ 1 \}} | 0.00066 ^{\{ 4 \}} | 0.00082 ^{\{ 6 \}} | 0.00056 ^{\{ 2.5 \}} | 0.00088 ^{\{ 8 \}} | 0.00087 ^{\{ 7 \}} | 0.00056 ^{\{ 2.5 \}} | 0.00081 ^{\{ 5 \}} | ||
\hat{b} | 0.03228 ^{\{ 1 \}} | 0.03756 ^{\{ 3 \}} | 0.0464 ^{\{ 4 \}} | 0.05353 ^{\{ 7 \}} | 0.05263 ^{\{ 6 \}} | 0.05765 ^{\{ 8 \}} | 0.03636 ^{\{ 2 \}} | 0.04878 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.40037 ^{\{ 1 \}} | 0.486 ^{\{ 4 \}} | 0.59055 ^{\{ 6 \}} | 0.47561 ^{\{ 3 \}} | 0.62739 ^{\{ 7 \}} | 0.67751 ^{\{ 8 \}} | 0.47557 ^{\{ 2 \}} | 0.5139 ^{\{ 5 \}} | |
\hat{a} | 0.06829 ^{\{ 1 \}} | 0.07887 ^{\{ 4 \}} | 0.08859 ^{\{ 6 \}} | 0.0757 ^{\{ 3 \}} | 0.08866 ^{\{ 7 \}} | 0.0871 ^{\{ 5 \}} | 0.07315 ^{\{ 2 \}} | 0.08912 ^{\{ 8 \}} | ||
\hat{b} | 0.18008 ^{\{ 1 \}} | 0.20848 ^{\{ 3 \}} | 0.24002 ^{\{ 6 \}} | 0.23017 ^{\{ 5 \}} | 0.25903 ^{\{ 7 \}} | 0.26704 ^{\{ 8 \}} | 0.20748 ^{\{ 2 \}} | 0.22646 ^{\{ 4 \}} | ||
D_{abs} | 0.01493 ^{\{ 1 \}} | 0.01579 ^{\{ 5 \}} | 0.0158 ^{\{ 6 \}} | 0.0154 ^{\{ 3 \}} | 0.01595 ^{\{ 7 \}} | 0.01566 ^{\{ 4 \}} | 0.01501 ^{\{ 2 \}} | 0.01623 ^{\{ 8 \}} | ||
D_{max} | 0.02495 ^{\{ 1 \}} | 0.02657 ^{\{ 4 \}} | 0.0273 ^{\{ 6 \}} | 0.02576 ^{\{ 3 \}} | 0.02745 ^{\{ 7 \}} | 0.02722 ^{\{ 5 \}} | 0.02546 ^{\{ 2 \}} | 0.02772 ^{\{ 8 \}} | ||
ASAE | 0.00711 ^{\{ 5 \}} | 0.00685 ^{\{ 2 \}} | 0.00726 ^{\{ 6 \}} | 0.007 ^{\{ 4 \}} | 0.00737 ^{\{ 7 \}} | 0.0066 ^{\{ 1 \}} | 0.00688 ^{\{ 3 \}} | 0.008 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 44 ^{\{ 4 \}} | 70 ^{\{ 5 \}} | 43.5 ^{\{ 3 \}} | 84 ^{\{ 8 \}} | 75 ^{\{ 7 \}} | 26.5 ^{\{ 2 \}} | 73 ^{\{ 6 \}} | ||
600 | BIAS | \hat{\tau} | 0.14883 ^{\{ 1 \}} | 0.18347 ^{\{ 4 \}} | 0.22873 ^{\{ 7 \}} | 0.16341 ^{\{ 2 \}} | 0.2235 ^{\{ 6 \}} | 0.23795 ^{\{ 8 \}} | 0.17744 ^{\{ 3 \}} | 0.18749 ^{\{ 5 \}} |
\hat{a} | 0.01222 ^{\{ 1 \}} | 0.01372 ^{\{ 4 \}} | 0.01577 ^{\{ 7 \}} | 0.01259 ^{\{ 2 \}} | 0.01528 ^{\{ 6 \}} | 0.01437 ^{\{ 5 \}} | 0.01333 ^{\{ 3 \}} | 0.01579 ^{\{ 8 \}} | ||
\hat{b} | 0.09866 ^{\{ 1 \}} | 0.12057 ^{\{ 3 \}} | 0.14941 ^{\{ 7 \}} | 0.12377 ^{\{ 5 \}} | 0.14754 ^{\{ 6 \}} | 0.15886 ^{\{ 8 \}} | 0.11439 ^{\{ 2 \}} | 0.12134 ^{\{ 4 \}} | ||
MSE | \hat{\tau} | 0.03594 ^{\{ 1 \}} | 0.05294 ^{\{ 4 \}} | 0.07897 ^{\{ 7 \}} | 0.04896 ^{\{ 2 \}} | 0.07454 ^{\{ 6 \}} | 0.08434 ^{\{ 8 \}} | 0.04983 ^{\{ 3 \}} | 0.05618 ^{\{ 5 \}} | |
\hat{a} | 0.00024 ^{\{ 1 \}} | 3e-04 ^{\{ 4 \}} | 0.00039 ^{\{ 7 \}} | 0.00025 ^{\{ 2 \}} | 0.00038 ^{\{ 6 \}} | 0.00033 ^{\{ 5 \}} | 0.00028 ^{\{ 3 \}} | 4e-04 ^{\{ 8 \}} | ||
\hat{b} | 0.01685 ^{\{ 1 \}} | 0.02314 ^{\{ 3 \}} | 0.03354 ^{\{ 7 \}} | 0.03316 ^{\{ 6 \}} | 0.03195 ^{\{ 5 \}} | 0.03586 ^{\{ 8 \}} | 0.02149 ^{\{ 2 \}} | 0.02667 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.29767 ^{\{ 1 \}} | 0.36695 ^{\{ 4 \}} | 0.45746 ^{\{ 7 \}} | 0.32682 ^{\{ 2 \}} | 0.447 ^{\{ 6 \}} | 0.47591 ^{\{ 8 \}} | 0.35489 ^{\{ 3 \}} | 0.37498 ^{\{ 5 \}} | |
\hat{a} | 0.04889 ^{\{ 1 \}} | 0.05487 ^{\{ 4 \}} | 0.06308 ^{\{ 7 \}} | 0.05037 ^{\{ 2 \}} | 0.0611 ^{\{ 6 \}} | 0.05747 ^{\{ 5 \}} | 0.05332 ^{\{ 3 \}} | 0.06316 ^{\{ 8 \}} | ||
\hat{b} | 0.13154 ^{\{ 1 \}} | 0.16077 ^{\{ 3 \}} | 0.19922 ^{\{ 7 \}} | 0.16503 ^{\{ 5 \}} | 0.19672 ^{\{ 6 \}} | 0.21182 ^{\{ 8 \}} | 0.15252 ^{\{ 2 \}} | 0.16179 ^{\{ 4 \}} | ||
D_{abs} | 0.0111 ^{\{ 4.5 \}} | 0.01086 ^{\{ 2 \}} | 0.01153 ^{\{ 8 \}} | 0.01074 ^{\{ 1 \}} | 0.01151 ^{\{ 7 \}} | 0.0111 ^{\{ 4.5 \}} | 0.011 ^{\{ 3 \}} | 0.01132 ^{\{ 6 \}} | ||
D_{max} | 0.01861 ^{\{ 3 \}} | 0.01858 ^{\{ 2 \}} | 0.02 ^{\{ 8 \}} | 0.01805 ^{\{ 1 \}} | 0.01977 ^{\{ 7 \}} | 0.01944 ^{\{ 5 \}} | 0.01862 ^{\{ 4 \}} | 0.01945 ^{\{ 6 \}} | ||
ASAE | 0.00463 ^{\{ 5 \}} | 0.00449 ^{\{ 2 \}} | 0.00477 ^{\{ 7 \}} | 0.00458 ^{\{ 4 \}} | 0.00468 ^{\{ 6 \}} | 0.00423 ^{\{ 1 \}} | 0.00453 ^{\{ 3 \}} | 0.0053 ^{\{ 8 \}} | ||
\sum Ranks | 21.5 ^{\{ 1 \}} | 42 ^{\{ 4 \}} | 85 ^{\{ 8 \}} | 34 ^{\{ 2.5 \}} | 72 ^{\{ 6 \}} | 72.5 ^{\{ 7 \}} | 34 ^{\{ 2.5 \}} | 71 ^{\{ 5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.52028 ^{\{ 1 \}} | 0.68928 ^{\{ 3 \}} | 0.70994 ^{\{ 5 \}} | 0.69622 ^{\{ 4 \}} | 0.75178 ^{\{ 7 \}} | 0.67815 ^{\{ 2 \}} | 0.72398 ^{\{ 6 \}} | 1.13877 ^{\{ 8 \}} |
\hat{a} | 0.31117 ^{\{ 5 \}} | 0.30596 ^{\{ 4 \}} | 0.34262 ^{\{ 7 \}} | 0.29874 ^{\{ 2 \}} | 0.32249 ^{\{ 6 \}} | 0.29648 ^{\{ 1 \}} | 0.30057 ^{\{ 3 \}} | 0.40126 ^{\{ 8 \}} | ||
\hat{b} | 0.10184 ^{\{ 1 \}} | 0.12191 ^{\{ 2 \}} | 0.12619 ^{\{ 4 \}} | 0.12737 ^{\{ 5 \}} | 0.14134 ^{\{ 8 \}} | 0.12264 ^{\{ 3 \}} | 0.13027 ^{\{ 7 \}} | 0.12801 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.39328 ^{\{ 1 \}} | 0.62488 ^{\{ 3 \}} | 0.63359 ^{\{ 4 \}} | 0.64832 ^{\{ 5 \}} | 0.70817 ^{\{ 7 \}} | 0.59038 ^{\{ 2 \}} | 0.6678 ^{\{ 6 \}} | 5.81642 ^{\{ 8 \}} | |
\hat{a} | 0.19077 ^{\{ 6 \}} | 0.16766 ^{\{ 4 \}} | 0.21757 ^{\{ 7 \}} | 0.13867 ^{\{ 1 \}} | 0.1814 ^{\{ 5 \}} | 0.15924 ^{\{ 3 \}} | 0.14761 ^{\{ 2 \}} | 0.28201 ^{\{ 8 \}} | ||
\hat{b} | 0.01765 ^{\{ 1 \}} | 0.02526 ^{\{ 3 \}} | 0.02541 ^{\{ 4 \}} | 0.02837 ^{\{ 7 \}} | 0.03057 ^{\{ 8 \}} | 0.02415 ^{\{ 2 \}} | 0.02725 ^{\{ 5 \}} | 0.02764 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.34685 ^{\{ 1 \}} | 0.45952 ^{\{ 3 \}} | 0.47329 ^{\{ 5 \}} | 0.46415 ^{\{ 4 \}} | 0.50118 ^{\{ 7 \}} | 0.4521 ^{\{ 2 \}} | 0.48266 ^{\{ 6 \}} | 0.75918 ^{\{ 8 \}} | |
\hat{a} | 0.41489 ^{\{ 5 \}} | 0.40795 ^{\{ 4 \}} | 0.45682 ^{\{ 7 \}} | 0.39832 ^{\{ 2 \}} | 0.42998 ^{\{ 6 \}} | 0.39531 ^{\{ 1 \}} | 0.40076 ^{\{ 3 \}} | 0.53502 ^{\{ 8 \}} | ||
\hat{b} | 0.20368 ^{\{ 1 \}} | 0.24381 ^{\{ 2 \}} | 0.25237 ^{\{ 4 \}} | 0.25474 ^{\{ 5 \}} | 0.28267 ^{\{ 8 \}} | 0.24528 ^{\{ 3 \}} | 0.26055 ^{\{ 7 \}} | 0.25601 ^{\{ 6 \}} | ||
D_{abs} | 0.04223 ^{\{ 1 \}} | 0.04403 ^{\{ 2 \}} | 0.04672 ^{\{ 8 \}} | 0.04455 ^{\{ 3 \}} | 0.04648 ^{\{ 7 \}} | 0.04513 ^{\{ 4 \}} | 0.04515 ^{\{ 5 \}} | 0.04614 ^{\{ 6 \}} | ||
D_{max} | 0.07079 ^{\{ 1 \}} | 0.07367 ^{\{ 3 \}} | 0.07922 ^{\{ 8 \}} | 0.07196 ^{\{ 2 \}} | 0.07766 ^{\{ 6 \}} | 0.07539 ^{\{ 5 \}} | 0.07491 ^{\{ 4 \}} | 0.07795 ^{\{ 7 \}} | ||
ASAE | 0.02942 ^{\{ 7 \}} | 0.02673 ^{\{ 4 \}} | 0.02904 ^{\{ 5 \}} | 0.02425 ^{\{ 1 \}} | 0.02924 ^{\{ 6 \}} | 0.02505 ^{\{ 2 \}} | 0.02572 ^{\{ 3 \}} | 0.03359 ^{\{ 8 \}} | ||
\sum Ranks | 31 ^{\{ 2 \}} | 37 ^{\{ 3 \}} | 68 ^{\{ 6 \}} | 41 ^{\{ 4 \}} | 81 ^{\{ 7 \}} | 30 ^{\{ 1 \}} | 57 ^{\{ 5 \}} | 87 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.44843 ^{\{ 1 \}} | 0.55647 ^{\{ 2 \}} | 0.60703 ^{\{ 6 \}} | 0.59899 ^{\{ 5 \}} | 0.61789 ^{\{ 7 \}} | 0.59399 ^{\{ 4 \}} | 0.5885 ^{\{ 3 \}} | 0.81136 ^{\{ 8 \}} |
\hat{a} | 0.21823 ^{\{ 1 \}} | 0.23547 ^{\{ 2 \}} | 0.28101 ^{\{ 7 \}} | 0.24595 ^{\{ 4 \}} | 0.27126 ^{\{ 6 \}} | 0.24022 ^{\{ 3 \}} | 0.25611 ^{\{ 5 \}} | 0.34138 ^{\{ 8 \}} | ||
\hat{b} | 0.07119 ^{\{ 1 \}} | 0.07899 ^{\{ 2 \}} | 0.09493 ^{\{ 7 \}} | 0.09127 ^{\{ 4 \}} | 0.09464 ^{\{ 6 \}} | 0.09441 ^{\{ 5 \}} | 0.08918 ^{\{ 3 \}} | 0.09618 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.29594 ^{\{ 1 \}} | 0.41655 ^{\{ 2 \}} | 0.47968 ^{\{ 5 \}} | 0.50918 ^{\{ 7 \}} | 0.49378 ^{\{ 6 \}} | 0.47083 ^{\{ 4 \}} | 0.46093 ^{\{ 3 \}} | 1.11606 ^{\{ 8 \}} | |
\hat{a} | 0.08284 ^{\{ 1 \}} | 0.08655 ^{\{ 2 \}} | 0.13227 ^{\{ 7 \}} | 0.08818 ^{\{ 3 \}} | 0.12046 ^{\{ 6 \}} | 0.09121 ^{\{ 4 \}} | 0.10373 ^{\{ 5 \}} | 0.1922 ^{\{ 8 \}} | ||
\hat{b} | 0.00891 ^{\{ 1 \}} | 0.01107 ^{\{ 2 \}} | 0.01553 ^{\{ 5.5 \}} | 0.01731 ^{\{ 8 \}} | 0.01553 ^{\{ 5.5 \}} | 0.01424 ^{\{ 4 \}} | 0.01391 ^{\{ 3 \}} | 0.01668 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.29895 ^{\{ 1 \}} | 0.37098 ^{\{ 2 \}} | 0.40469 ^{\{ 6 \}} | 0.39933 ^{\{ 5 \}} | 0.41193 ^{\{ 7 \}} | 0.39599 ^{\{ 4 \}} | 0.39233 ^{\{ 3 \}} | 0.5409 ^{\{ 8 \}} | |
\hat{a} | 0.29097 ^{\{ 1 \}} | 0.31396 ^{\{ 2 \}} | 0.37468 ^{\{ 7 \}} | 0.32794 ^{\{ 4 \}} | 0.36168 ^{\{ 6 \}} | 0.32029 ^{\{ 3 \}} | 0.34148 ^{\{ 5 \}} | 0.45517 ^{\{ 8 \}} | ||
\hat{b} | 0.14238 ^{\{ 1 \}} | 0.15797 ^{\{ 2 \}} | 0.18985 ^{\{ 7 \}} | 0.18254 ^{\{ 4 \}} | 0.18928 ^{\{ 6 \}} | 0.18881 ^{\{ 5 \}} | 0.17837 ^{\{ 3 \}} | 0.19237 ^{\{ 8 \}} | ||
D_{abs} | 0.03152 ^{\{ 2.5 \}} | 0.03098 ^{\{ 1 \}} | 0.03327 ^{\{ 6 \}} | 0.03152 ^{\{ 2.5 \}} | 0.03365 ^{\{ 7 \}} | 0.03254 ^{\{ 5 \}} | 0.0324 ^{\{ 4 \}} | 0.03395 ^{\{ 8 \}} | ||
D_{max} | 0.05225 ^{\{ 3 \}} | 0.05176 ^{\{ 1 \}} | 0.0565 ^{\{ 6 \}} | 0.05216 ^{\{ 2 \}} | 0.05677 ^{\{ 7 \}} | 0.05497 ^{\{ 5 \}} | 0.05425 ^{\{ 4 \}} | 0.05832 ^{\{ 8 \}} | ||
ASAE | 0.01684 ^{\{ 5 \}} | 0.0164 ^{\{ 4 \}} | 0.01827 ^{\{ 7 \}} | 0.01516 ^{\{ 2 \}} | 0.01819 ^{\{ 6 \}} | 0.01497 ^{\{ 1 \}} | 0.01597 ^{\{ 3 \}} | 0.02063 ^{\{ 8 \}} | ||
\sum Ranks | 19.5 ^{\{ 1 \}} | 24 ^{\{ 2 \}} | 76.5 ^{\{ 7 \}} | 50.5 ^{\{ 5 \}} | 75.5 ^{\{ 6 \}} | 47 ^{\{ 4 \}} | 44 ^{\{ 3 \}} | 95 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.35036 ^{\{ 1 \}} | 0.41902 ^{\{ 2 \}} | 0.48817 ^{\{ 6 \}} | 0.48135 ^{\{ 5 \}} | 0.50235 ^{\{ 7 \}} | 0.47052 ^{\{ 4 \}} | 0.45634 ^{\{ 3 \}} | 0.61217 ^{\{ 8 \}} |
\hat{a} | 0.15767 ^{\{ 1 \}} | 0.18619 ^{\{ 2 \}} | 0.21414 ^{\{ 6 \}} | 0.20254 ^{\{ 5 \}} | 0.22223 ^{\{ 7 \}} | 0.18666 ^{\{ 3 \}} | 0.18946 ^{\{ 4 \}} | 0.26043 ^{\{ 8 \}} | ||
\hat{b} | 0.04827 ^{\{ 1 \}} | 0.05232 ^{\{ 3 \}} | 0.06485 ^{\{ 7 \}} | 0.05135 ^{\{ 2 \}} | 0.06782 ^{\{ 8 \}} | 0.06386 ^{\{ 6 \}} | 0.05683 ^{\{ 4 \}} | 0.06102 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.18777 ^{\{ 1 \}} | 0.25158 ^{\{ 2 \}} | 0.32527 ^{\{ 5 \}} | 0.352 ^{\{ 7 \}} | 0.34253 ^{\{ 6 \}} | 0.31557 ^{\{ 4 \}} | 0.28732 ^{\{ 3 \}} | 0.5778 ^{\{ 8 \}} | |
\hat{a} | 0.04089 ^{\{ 1 \}} | 0.05247 ^{\{ 3 \}} | 0.07072 ^{\{ 6 \}} | 0.06092 ^{\{ 5 \}} | 0.07443 ^{\{ 7 \}} | 0.05186 ^{\{ 2 \}} | 0.05349 ^{\{ 4 \}} | 0.10477 ^{\{ 8 \}} | ||
\hat{b} | 0.00404 ^{\{ 1 \}} | 0.00479 ^{\{ 2 \}} | 0.00774 ^{\{ 7 \}} | 0.00548 ^{\{ 3 \}} | 0.00827 ^{\{ 8 \}} | 0.00696 ^{\{ 6 \}} | 0.00551 ^{\{ 4 \}} | 0.00665 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.23357 ^{\{ 1 \}} | 0.27934 ^{\{ 2 \}} | 0.32544 ^{\{ 6 \}} | 0.3209 ^{\{ 5 \}} | 0.3349 ^{\{ 7 \}} | 0.31368 ^{\{ 4 \}} | 0.30422 ^{\{ 3 \}} | 0.40811 ^{\{ 8 \}} | |
\hat{a} | 0.21023 ^{\{ 1 \}} | 0.24825 ^{\{ 2 \}} | 0.28552 ^{\{ 6 \}} | 0.27005 ^{\{ 5 \}} | 0.29631 ^{\{ 7 \}} | 0.24888 ^{\{ 3 \}} | 0.25261 ^{\{ 4 \}} | 0.34723 ^{\{ 8 \}} | ||
\hat{b} | 0.09655 ^{\{ 1 \}} | 0.10464 ^{\{ 3 \}} | 0.12969 ^{\{ 7 \}} | 0.1027 ^{\{ 2 \}} | 0.13565 ^{\{ 8 \}} | 0.12772 ^{\{ 6 \}} | 0.11365 ^{\{ 4 \}} | 0.12204 ^{\{ 5 \}} | ||
D_{abs} | 0.02102 ^{\{ 1 \}} | 0.02184 ^{\{ 3 \}} | 0.02231 ^{\{ 5 \}} | 0.02208 ^{\{ 4 \}} | 0.02368 ^{\{ 8 \}} | 0.02251 ^{\{ 6 \}} | 0.02177 ^{\{ 2 \}} | 0.02282 ^{\{ 7 \}} | ||
D_{max} | 0.03532 ^{\{ 1 \}} | 0.03657 ^{\{ 2 \}} | 0.03853 ^{\{ 6 \}} | 0.0366 ^{\{ 3 \}} | 0.04015 ^{\{ 8 \}} | 0.03831 ^{\{ 5 \}} | 0.03668 ^{\{ 4 \}} | 0.03957 ^{\{ 7 \}} | ||
ASAE | 0.00991 ^{\{ 5 \}} | 0.0094 ^{\{ 3 \}} | 0.0108 ^{\{ 7 \}} | 0.00918 ^{\{ 2 \}} | 0.01075 ^{\{ 6 \}} | 0.00871 ^{\{ 1 \}} | 0.00976 ^{\{ 4 \}} | 0.01271 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 29 ^{\{ 2 \}} | 74 ^{\{ 6 \}} | 48 ^{\{ 4 \}} | 87 ^{\{ 8 \}} | 50 ^{\{ 5 \}} | 43 ^{\{ 3 \}} | 85 ^{\{ 7 \}} | ||
300 | BIAS | \hat{\tau} | 0.26655 ^{\{ 1 \}} | 0.33434 ^{\{ 3 \}} | 0.37325 ^{\{ 6 \}} | 0.34711 ^{\{ 4 \}} | 0.39467 ^{\{ 7 \}} | 0.36499 ^{\{ 5 \}} | 0.33138 ^{\{ 2 \}} | 0.48508 ^{\{ 8 \}} |
\hat{a} | 0.12193 ^{\{ 1 \}} | 0.14744 ^{\{ 4 \}} | 0.16883 ^{\{ 6 \}} | 0.15015 ^{\{ 5 \}} | 0.17776 ^{\{ 7 \}} | 0.14515 ^{\{ 2 \}} | 0.14696 ^{\{ 3 \}} | 0.21805 ^{\{ 8 \}} | ||
\hat{b} | 0.03505 ^{\{ 1 \}} | 0.03905 ^{\{ 4 \}} | 0.04169 ^{\{ 5 \}} | 0.03599 ^{\{ 2 \}} | 0.04485 ^{\{ 7 \}} | 0.04629 ^{\{ 8 \}} | 0.03769 ^{\{ 3 \}} | 0.04173 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.11494 ^{\{ 1 \}} | 0.16891 ^{\{ 3 \}} | 0.19839 ^{\{ 4 \}} | 0.22068 ^{\{ 7 \}} | 0.21592 ^{\{ 6 \}} | 0.20154 ^{\{ 5 \}} | 0.16587 ^{\{ 2 \}} | 0.37566 ^{\{ 8 \}} | |
\hat{a} | 0.0244 ^{\{ 1 \}} | 0.03273 ^{\{ 4 \}} | 0.0429 ^{\{ 6 \}} | 0.03661 ^{\{ 5 \}} | 0.04653 ^{\{ 7 \}} | 0.03141 ^{\{ 2 \}} | 0.03249 ^{\{ 3 \}} | 0.07079 ^{\{ 8 \}} | ||
\hat{b} | 0.00192 ^{\{ 1 \}} | 0.00236 ^{\{ 4 \}} | 0.00295 ^{\{ 6 \}} | 0.00211 ^{\{ 2 \}} | 0.00333 ^{\{ 7 \}} | 0.00349 ^{\{ 8 \}} | 0.00226 ^{\{ 3 \}} | 0.00285 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.1777 ^{\{ 1 \}} | 0.22289 ^{\{ 3 \}} | 0.24883 ^{\{ 6 \}} | 0.23141 ^{\{ 4 \}} | 0.26311 ^{\{ 7 \}} | 0.24333 ^{\{ 5 \}} | 0.22092 ^{\{ 2 \}} | 0.32339 ^{\{ 8 \}} | |
\hat{a} | 0.16257 ^{\{ 1 \}} | 0.19658 ^{\{ 4 \}} | 0.2251 ^{\{ 6 \}} | 0.2002 ^{\{ 5 \}} | 0.23701 ^{\{ 7 \}} | 0.19353 ^{\{ 2 \}} | 0.19595 ^{\{ 3 \}} | 0.29074 ^{\{ 8 \}} | ||
\hat{b} | 0.0701 ^{\{ 1 \}} | 0.07811 ^{\{ 4 \}} | 0.08338 ^{\{ 5 \}} | 0.07198 ^{\{ 2 \}} | 0.08971 ^{\{ 7 \}} | 0.09259 ^{\{ 8 \}} | 0.07539 ^{\{ 3 \}} | 0.08345 ^{\{ 6 \}} | ||
D_{abs} | 0.0149 ^{\{ 1 \}} | 0.01559 ^{\{ 4 \}} | 0.0158 ^{\{ 5 \}} | 0.01556 ^{\{ 3 \}} | 0.01608 ^{\{ 7 \}} | 0.01621 ^{\{ 8 \}} | 0.01505 ^{\{ 2 \}} | 0.01595 ^{\{ 6 \}} | ||
D_{max} | 0.02507 ^{\{ 1 \}} | 0.02657 ^{\{ 4 \}} | 0.02735 ^{\{ 5 \}} | 0.02614 ^{\{ 3 \}} | 0.02778 ^{\{ 7 \}} | 0.02768 ^{\{ 6 \}} | 0.02561 ^{\{ 2 \}} | 0.02806 ^{\{ 8 \}} | ||
ASAE | 0.00607 ^{\{ 5 \}} | 0.00598 ^{\{ 4 \}} | 0.0069 ^{\{ 7 \}} | 0.00571 ^{\{ 2 \}} | 0.00682 ^{\{ 6 \}} | 0.00559 ^{\{ 1 \}} | 0.00593 ^{\{ 3 \}} | 0.00804 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 45 ^{\{ 4 \}} | 67 ^{\{ 6 \}} | 44 ^{\{ 3 \}} | 82 ^{\{ 7 \}} | 60 ^{\{ 5 \}} | 31 ^{\{ 2 \}} | 87 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.19544 ^{\{ 1 \}} | 0.23541 ^{\{ 3 \}} | 0.30543 ^{\{ 6 \}} | 0.22954 ^{\{ 2 \}} | 0.30719 ^{\{ 7 \}} | 0.2498 ^{\{ 5 \}} | 0.24212 ^{\{ 4 \}} | 0.36224 ^{\{ 8 \}} |
\hat{a} | 0.08322 ^{\{ 1 \}} | 0.10415 ^{\{ 4 \}} | 0.13813 ^{\{ 6 \}} | 0.10194 ^{\{ 2 \}} | 0.13953 ^{\{ 7 \}} | 0.1021 ^{\{ 3 \}} | 0.10419 ^{\{ 5 \}} | 0.1712 ^{\{ 8 \}} | ||
\hat{b} | 0.02563 ^{\{ 2 \}} | 0.02682 ^{\{ 3 \}} | 0.03267 ^{\{ 8 \}} | 0.02544 ^{\{ 1 \}} | 0.03225 ^{\{ 7 \}} | 0.03151 ^{\{ 6 \}} | 0.0275 ^{\{ 4 \}} | 0.02908 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.06188 ^{\{ 1 \}} | 0.09047 ^{\{ 2 \}} | 0.14058 ^{\{ 7 \}} | 0.12175 ^{\{ 5 \}} | 0.13924 ^{\{ 6 \}} | 0.10305 ^{\{ 4 \}} | 0.09293 ^{\{ 3 \}} | 0.21849 ^{\{ 8 \}} | |
\hat{a} | 0.01115 ^{\{ 1 \}} | 0.01707 ^{\{ 3 \}} | 0.02836 ^{\{ 6 \}} | 0.01967 ^{\{ 5 \}} | 0.02862 ^{\{ 7 \}} | 0.01637 ^{\{ 2 \}} | 0.01746 ^{\{ 4 \}} | 0.04409 ^{\{ 8 \}} | ||
\hat{b} | 0.00105 ^{\{ 2 \}} | 0.00116 ^{\{ 3 \}} | 0.00174 ^{\{ 8 \}} | 0.00103 ^{\{ 1 \}} | 0.00162 ^{\{ 7 \}} | 0.00159 ^{\{ 6 \}} | 0.00118 ^{\{ 4 \}} | 0.00135 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.13029 ^{\{ 1 \}} | 0.15694 ^{\{ 3 \}} | 0.20362 ^{\{ 6 \}} | 0.15302 ^{\{ 2 \}} | 0.20479 ^{\{ 7 \}} | 0.16653 ^{\{ 5 \}} | 0.16141 ^{\{ 4 \}} | 0.24149 ^{\{ 8 \}} | |
\hat{a} | 0.11096 ^{\{ 1 \}} | 0.13886 ^{\{ 4 \}} | 0.18417 ^{\{ 6 \}} | 0.13592 ^{\{ 2 \}} | 0.18604 ^{\{ 7 \}} | 0.13613 ^{\{ 3 \}} | 0.13892 ^{\{ 5 \}} | 0.22827 ^{\{ 8 \}} | ||
\hat{b} | 0.05126 ^{\{ 2 \}} | 0.05365 ^{\{ 3 \}} | 0.06534 ^{\{ 8 \}} | 0.05088 ^{\{ 1 \}} | 0.06449 ^{\{ 7 \}} | 0.06302 ^{\{ 6 \}} | 0.055 ^{\{ 4 \}} | 0.05817 ^{\{ 5 \}} | ||
D_{abs} | 0.01057 ^{\{ 1 \}} | 0.01082 ^{\{ 3 \}} | 0.01131 ^{\{ 7 \}} | 0.0107 ^{\{ 2 \}} | 0.01154 ^{\{ 8 \}} | 0.01116 ^{\{ 5 \}} | 0.01097 ^{\{ 4 \}} | 0.01124 ^{\{ 6 \}} | ||
D_{max} | 0.01792 ^{\{ 1 \}} | 0.01849 ^{\{ 3 \}} | 0.01965 ^{\{ 6 \}} | 0.01801 ^{\{ 2 \}} | 0.02001 ^{\{ 8 \}} | 0.01931 ^{\{ 5 \}} | 0.01869 ^{\{ 4 \}} | 0.01979 ^{\{ 7 \}} | ||
ASAE | 0.00367 ^{\{ 3 \}} | 0.00378 ^{\{ 5 \}} | 0.00448 ^{\{ 7 \}} | 0.00364 ^{\{ 2 \}} | 0.00445 ^{\{ 6 \}} | 0.0035 ^{\{ 1 \}} | 0.00376 ^{\{ 4 \}} | 0.0053 ^{\{ 8 \}} | ||
\sum Ranks | 17 ^{\{ 1 \}} | 39 ^{\{ 3 \}} | 81 ^{\{ 6 \}} | 27 ^{\{ 2 \}} | 84 ^{\{ 7.5 \}} | 51 ^{\{ 5 \}} | 49 ^{\{ 4 \}} | 84 ^{\{ 7.5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.53211 ^{\{ 2 \}} | 0.62026 ^{\{ 4 \}} | 0.75084 ^{\{ 7 \}} | 0.47271 ^{\{ 1 \}} | 0.63274 ^{\{ 6 \}} | 0.62076 ^{\{ 5 \}} | 0.55091 ^{\{ 3 \}} | 0.88774 ^{\{ 8 \}} |
\hat{a} | 0.17954 ^{\{ 7 \}} | 0.14419 ^{\{ 3 \}} | 0.15786 ^{\{ 5 \}} | 0.13798 ^{\{ 1 \}} | 0.16003 ^{\{ 6 \}} | 0.14116 ^{\{ 2 \}} | 0.14743 ^{\{ 4 \}} | 0.20721 ^{\{ 8 \}} | ||
\hat{b} | 0.29362 ^{\{ 3 \}} | 0.2843 ^{\{ 2 \}} | 0.33553 ^{\{ 5 \}} | 0.27643 ^{\{ 1 \}} | 0.34292 ^{\{ 7 \}} | 0.34139 ^{\{ 6 \}} | 0.29688 ^{\{ 4 \}} | 0.35737 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.48119 ^{\{ 1 \}} | 3.73487 ^{\{ 7 \}} | 5.47953 ^{\{ 8 \}} | 0.75293 ^{\{ 2 \}} | 1.38498 ^{\{ 5 \}} | 1.30859 ^{\{ 4 \}} | 0.81897 ^{\{ 3 \}} | 1.74615 ^{\{ 6 \}} | |
\hat{a} | 0.05597 ^{\{ 7 \}} | 0.03354 ^{\{ 3 \}} | 0.04117 ^{\{ 5 \}} | 0.02854 ^{\{ 1 \}} | 0.04153 ^{\{ 6 \}} | 0.03226 ^{\{ 2 \}} | 0.03661 ^{\{ 4 \}} | 0.06468 ^{\{ 8 \}} | ||
\hat{b} | 0.15312 ^{\{ 3 \}} | 0.13705 ^{\{ 2 \}} | 0.20378 ^{\{ 7 \}} | 0.11466 ^{\{ 1 \}} | 0.19627 ^{\{ 6 \}} | 0.19503 ^{\{ 5 \}} | 0.16026 ^{\{ 4 \}} | 0.25206 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.26605 ^{\{ 2 \}} | 0.31013 ^{\{ 4 \}} | 0.37542 ^{\{ 7 \}} | 0.23636 ^{\{ 1 \}} | 0.31637 ^{\{ 6 \}} | 0.31038 ^{\{ 5 \}} | 0.27546 ^{\{ 3 \}} | 0.44387 ^{\{ 8 \}} | |
\hat{a} | 0.35909 ^{\{ 7 \}} | 0.28838 ^{\{ 3 \}} | 0.31573 ^{\{ 5 \}} | 0.27597 ^{\{ 1 \}} | 0.32006 ^{\{ 6 \}} | 0.28232 ^{\{ 2 \}} | 0.29486 ^{\{ 4 \}} | 0.41442 ^{\{ 8 \}} | ||
\hat{b} | 0.19574 ^{\{ 3 \}} | 0.18953 ^{\{ 2 \}} | 0.22369 ^{\{ 5 \}} | 0.18428 ^{\{ 1 \}} | 0.22862 ^{\{ 7 \}} | 0.2276 ^{\{ 6 \}} | 0.19792 ^{\{ 4 \}} | 0.23825 ^{\{ 8 \}} | ||
D_{abs} | 0.04307 ^{\{ 1 \}} | 0.0449 ^{\{ 4 \}} | 0.04669 ^{\{ 7 \}} | 0.04388 ^{\{ 2 \}} | 0.04491 ^{\{ 5 \}} | 0.04571 ^{\{ 6 \}} | 0.04461 ^{\{ 3 \}} | 0.04673 ^{\{ 8 \}} | ||
D_{max} | 0.07024 ^{\{ 1 \}} | 0.07378 ^{\{ 3 \}} | 0.07974 ^{\{ 7 \}} | 0.07148 ^{\{ 2 \}} | 0.07603 ^{\{ 5 \}} | 0.07639 ^{\{ 6 \}} | 0.07422 ^{\{ 4 \}} | 0.08325 ^{\{ 8 \}} | ||
ASAE | 0.03049 ^{\{ 7 \}} | 0.02701 ^{\{ 3 \}} | 0.02932 ^{\{ 6 \}} | 0.02714 ^{\{ 4 \}} | 0.02773 ^{\{ 5 \}} | 0.0261 ^{\{ 1 \}} | 0.02631 ^{\{ 2 \}} | 0.03283 ^{\{ 8 \}} | ||
\sum Ranks | 44 ^{\{ 4 \}} | 40 ^{\{ 2 \}} | 74 ^{\{ 7 \}} | 18 ^{\{ 1 \}} | 70 ^{\{ 6 \}} | 50 ^{\{ 5 \}} | 42 ^{\{ 3 \}} | 94 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.51021 ^{\{ 6 \}} | 0.46181 ^{\{ 3 \}} | 0.55823 ^{\{ 7 \}} | 0.32583 ^{\{ 1 \}} | 0.50722 ^{\{ 5 \}} | 0.4729 ^{\{ 4 \}} | 0.44219 ^{\{ 2 \}} | 0.72147 ^{\{ 8 \}} |
\hat{a} | 0.14444 ^{\{ 7 \}} | 0.11709 ^{\{ 3 \}} | 0.12932 ^{\{ 6 \}} | 0.10479 ^{\{ 1 \}} | 0.12807 ^{\{ 5 \}} | 0.10663 ^{\{ 2 \}} | 0.11767 ^{\{ 4 \}} | 0.16304 ^{\{ 8 \}} | ||
\hat{b} | 0.21298 ^{\{ 4 \}} | 0.19057 ^{\{ 1 \}} | 0.22769 ^{\{ 7 \}} | 0.19871 ^{\{ 2 \}} | 0.22471 ^{\{ 5 \}} | 0.22894 ^{\{ 8 \}} | 0.20491 ^{\{ 3 \}} | 0.22533 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.42994 ^{\{ 5 \}} | 0.35419 ^{\{ 2 \}} | 0.59732 ^{\{ 7 \}} | 0.22679 ^{\{ 1 \}} | 0.51238 ^{\{ 6 \}} | 0.42894 ^{\{ 4 \}} | 0.35475 ^{\{ 3 \}} | 0.92497 ^{\{ 8 \}} | |
\hat{a} | 0.03539 ^{\{ 7 \}} | 0.02113 ^{\{ 4 \}} | 0.02531 ^{\{ 5 \}} | 0.01663 ^{\{ 1 \}} | 0.02539 ^{\{ 6 \}} | 0.01784 ^{\{ 2 \}} | 0.02057 ^{\{ 3 \}} | 0.0383 ^{\{ 8 \}} | ||
\hat{b} | 0.07882 ^{\{ 5 \}} | 0.06102 ^{\{ 2 \}} | 0.08373 ^{\{ 6 \}} | 0.05998 ^{\{ 1 \}} | 0.07835 ^{\{ 4 \}} | 0.08602 ^{\{ 7 \}} | 0.07017 ^{\{ 3 \}} | 0.08803 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.25511 ^{\{ 6 \}} | 0.2309 ^{\{ 3 \}} | 0.27912 ^{\{ 7 \}} | 0.16292 ^{\{ 1 \}} | 0.25361 ^{\{ 5 \}} | 0.23645 ^{\{ 4 \}} | 0.2211 ^{\{ 2 \}} | 0.36073 ^{\{ 8 \}} | |
\hat{a} | 0.28889 ^{\{ 7 \}} | 0.23418 ^{\{ 3 \}} | 0.25864 ^{\{ 6 \}} | 0.20958 ^{\{ 1 \}} | 0.25613 ^{\{ 5 \}} | 0.21326 ^{\{ 2 \}} | 0.23534 ^{\{ 4 \}} | 0.32609 ^{\{ 8 \}} | ||
\hat{b} | 0.14198 ^{\{ 4 \}} | 0.12705 ^{\{ 1 \}} | 0.15179 ^{\{ 7 \}} | 0.13248 ^{\{ 2 \}} | 0.14981 ^{\{ 5 \}} | 0.15263 ^{\{ 8 \}} | 0.13661 ^{\{ 3 \}} | 0.15022 ^{\{ 6 \}} | ||
D_{abs} | 0.03036 ^{\{ 2 \}} | 0.03145 ^{\{ 4 \}} | 0.03273 ^{\{ 6 \}} | 0.02999 ^{\{ 1 \}} | 0.03228 ^{\{ 5 \}} | 0.03339 ^{\{ 8 \}} | 0.03132 ^{\{ 3 \}} | 0.03284 ^{\{ 7 \}} | ||
D_{max} | 0.05009 ^{\{ 2 \}} | 0.05184 ^{\{ 3 \}} | 0.05627 ^{\{ 7 \}} | 0.04922 ^{\{ 1 \}} | 0.05469 ^{\{ 5 \}} | 0.05545 ^{\{ 6 \}} | 0.05225 ^{\{ 4 \}} | 0.0576 ^{\{ 8 \}} | ||
ASAE | 0.01841 ^{\{ 6 \}} | 0.01732 ^{\{ 3 \}} | 0.0189 ^{\{ 7 \}} | 0.01759 ^{\{ 4 \}} | 0.01822 ^{\{ 5 \}} | 0.01671 ^{\{ 1 \}} | 0.01717 ^{\{ 2 \}} | 0.0212 ^{\{ 8 \}} | ||
\sum Ranks | 61 ^{\{ 5.5 \}} | 32 ^{\{ 2 \}} | 78 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 61 ^{\{ 5.5 \}} | 56 ^{\{ 4 \}} | 36 ^{\{ 3 \}} | 91 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.43313 ^{\{ 5 \}} | 0.38216 ^{\{ 3 \}} | 0.4568 ^{\{ 6 \}} | 0.2421 ^{\{ 1 \}} | 0.46034 ^{\{ 7 \}} | 0.38646 ^{\{ 4 \}} | 0.36914 ^{\{ 2 \}} | 0.55156 ^{\{ 8 \}} |
\hat{a} | 0.11342 ^{\{ 7 \}} | 0.09493 ^{\{ 4 \}} | 0.10673 ^{\{ 5 \}} | 0.07841 ^{\{ 1 \}} | 0.10869 ^{\{ 6 \}} | 0.09064 ^{\{ 2 \}} | 0.09329 ^{\{ 3 \}} | 0.13012 ^{\{ 8 \}} | ||
\hat{b} | 0.13544 ^{\{ 3 \}} | 0.13508 ^{\{ 2 \}} | 0.15218 ^{\{ 6 \}} | 0.12937 ^{\{ 1 \}} | 0.15998 ^{\{ 8 \}} | 0.14971 ^{\{ 5 \}} | 0.13655 ^{\{ 4 \}} | 0.15561 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.3042 ^{\{ 5 \}} | 0.23781 ^{\{ 3 \}} | 0.35945 ^{\{ 6 \}} | 0.11844 ^{\{ 1 \}} | 0.37455 ^{\{ 7 \}} | 0.26349 ^{\{ 4 \}} | 0.23662 ^{\{ 2 \}} | 0.47541 ^{\{ 8 \}} | |
\hat{a} | 0.02075 ^{\{ 7 \}} | 0.01375 ^{\{ 4 \}} | 0.01716 ^{\{ 5 \}} | 0.00947 ^{\{ 1 \}} | 0.01836 ^{\{ 6 \}} | 0.013 ^{\{ 2 \}} | 0.01327 ^{\{ 3 \}} | 0.02369 ^{\{ 8 \}} | ||
\hat{b} | 0.03131 ^{\{ 4 \}} | 0.02853 ^{\{ 2 \}} | 0.03592 ^{\{ 5 \}} | 0.02519 ^{\{ 1 \}} | 0.03888 ^{\{ 8 \}} | 0.03726 ^{\{ 7 \}} | 0.03049 ^{\{ 3 \}} | 0.03632 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.21657 ^{\{ 5 \}} | 0.19108 ^{\{ 3 \}} | 0.2284 ^{\{ 6 \}} | 0.12105 ^{\{ 1 \}} | 0.23017 ^{\{ 7 \}} | 0.19323 ^{\{ 4 \}} | 0.18457 ^{\{ 2 \}} | 0.27578 ^{\{ 8 \}} | |
\hat{a} | 0.22685 ^{\{ 7 \}} | 0.18986 ^{\{ 4 \}} | 0.21346 ^{\{ 5 \}} | 0.15681 ^{\{ 1 \}} | 0.21737 ^{\{ 6 \}} | 0.18128 ^{\{ 2 \}} | 0.18657 ^{\{ 3 \}} | 0.26023 ^{\{ 8 \}} | ||
\hat{b} | 0.0903 ^{\{ 3 \}} | 0.09005 ^{\{ 2 \}} | 0.10145 ^{\{ 6 \}} | 0.08625 ^{\{ 1 \}} | 0.10665 ^{\{ 8 \}} | 0.09981 ^{\{ 5 \}} | 0.09104 ^{\{ 4 \}} | 0.10374 ^{\{ 7 \}} | ||
D_{abs} | 0.02029 ^{\{ 1 \}} | 0.02158 ^{\{ 4 \}} | 0.02244 ^{\{ 8 \}} | 0.02061 ^{\{ 2 \}} | 0.02192 ^{\{ 6 \}} | 0.02201 ^{\{ 7 \}} | 0.0213 ^{\{ 3 \}} | 0.02178 ^{\{ 5 \}} | ||
D_{max} | 0.0336 ^{\{ 1 \}} | 0.0357 ^{\{ 4 \}} | 0.0381 ^{\{ 8 \}} | 0.03368 ^{\{ 2 \}} | 0.03725 ^{\{ 6 \}} | 0.03676 ^{\{ 5 \}} | 0.03557 ^{\{ 3 \}} | 0.03761 ^{\{ 7 \}} | ||
ASAE | 0.01084 ^{\{ 5 \}} | 0.01034 ^{\{ 2 \}} | 0.01173 ^{\{ 7 \}} | 0.01071 ^{\{ 4 \}} | 0.01128 ^{\{ 6 \}} | 0.00996 ^{\{ 1 \}} | 0.01055 ^{\{ 3 \}} | 0.01309 ^{\{ 8 \}} | ||
\sum Ranks | 53 ^{\{ 5 \}} | 37 ^{\{ 3 \}} | 73 ^{\{ 6 \}} | 17 ^{\{ 1 \}} | 81 ^{\{ 7 \}} | 48 ^{\{ 4 \}} | 35 ^{\{ 2 \}} | 88 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.38726 ^{\{ 6 \}} | 0.33359 ^{\{ 2 \}} | 0.38992 ^{\{ 7 \}} | 0.18992 ^{\{ 1 \}} | 0.37128 ^{\{ 5 \}} | 0.35983 ^{\{ 4 \}} | 0.34388 ^{\{ 3 \}} | 0.46204 ^{\{ 8 \}} |
\hat{a} | 0.09738 ^{\{ 7 \}} | 0.0794 ^{\{ 2 \}} | 0.09391 ^{\{ 6 \}} | 0.06178 ^{\{ 1 \}} | 0.08945 ^{\{ 5 \}} | 0.08286 ^{\{ 3 \}} | 0.08352 ^{\{ 4 \}} | 0.11042 ^{\{ 8 \}} | ||
\hat{b} | 0.09272 ^{\{ 1 \}} | 0.10093 ^{\{ 4 \}} | 0.11688 ^{\{ 7 \}} | 0.09282 ^{\{ 2 \}} | 0.11978 ^{\{ 8 \}} | 0.10638 ^{\{ 5 \}} | 0.10064 ^{\{ 3 \}} | 0.11367 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.23046 ^{\{ 6 \}} | 0.1782 ^{\{ 2 \}} | 0.24446 ^{\{ 7 \}} | 0.08426 ^{\{ 1 \}} | 0.2303 ^{\{ 5 \}} | 0.21335 ^{\{ 4 \}} | 0.19028 ^{\{ 3 \}} | 0.31359 ^{\{ 8 \}} | |
\hat{a} | 0.01471 ^{\{ 7 \}} | 0.00985 ^{\{ 2 \}} | 0.01326 ^{\{ 6 \}} | 0.0063 ^{\{ 1 \}} | 0.01233 ^{\{ 5 \}} | 0.01072 ^{\{ 4 \}} | 0.01051 ^{\{ 3 \}} | 0.01694 ^{\{ 8 \}} | ||
\hat{b} | 0.01347 ^{\{ 2 \}} | 0.0154 ^{\{ 3 \}} | 0.02142 ^{\{ 7 \}} | 0.0127 ^{\{ 1 \}} | 0.02166 ^{\{ 8 \}} | 0.01781 ^{\{ 5 \}} | 0.01588 ^{\{ 4 \}} | 0.02005 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.19363 ^{\{ 6 \}} | 0.16679 ^{\{ 2 \}} | 0.19496 ^{\{ 7 \}} | 0.09496 ^{\{ 1 \}} | 0.18564 ^{\{ 5 \}} | 0.17992 ^{\{ 4 \}} | 0.17194 ^{\{ 3 \}} | 0.23102 ^{\{ 8 \}} | |
\hat{a} | 0.19476 ^{\{ 7 \}} | 0.1588 ^{\{ 2 \}} | 0.18781 ^{\{ 6 \}} | 0.12356 ^{\{ 1 \}} | 0.17891 ^{\{ 5 \}} | 0.16573 ^{\{ 3 \}} | 0.16703 ^{\{ 4 \}} | 0.22084 ^{\{ 8 \}} | ||
\hat{b} | 0.06181 ^{\{ 1 \}} | 0.06728 ^{\{ 4 \}} | 0.07792 ^{\{ 7 \}} | 0.06188 ^{\{ 2 \}} | 0.07985 ^{\{ 8 \}} | 0.07092 ^{\{ 5 \}} | 0.0671 ^{\{ 3 \}} | 0.07578 ^{\{ 6 \}} | ||
D_{abs} | 0.01458 ^{\{ 2 \}} | 0.01466 ^{\{ 3 \}} | 0.01637 ^{\{ 8 \}} | 0.01442 ^{\{ 1 \}} | 0.01585 ^{\{ 5 \}} | 0.01586 ^{\{ 6 \}} | 0.01526 ^{\{ 4 \}} | 0.01617 ^{\{ 7 \}} | ||
D_{max} | 0.02429 ^{\{ 2 \}} | 0.02455 ^{\{ 3 \}} | 0.02772 ^{\{ 8 \}} | 0.0237 ^{\{ 1 \}} | 0.02703 ^{\{ 6 \}} | 0.02665 ^{\{ 5 \}} | 0.0255 ^{\{ 4 \}} | 0.02769 ^{\{ 7 \}} | ||
ASAE | 0.00677 ^{\{ 5 \}} | 0.0067 ^{\{ 3 \}} | 0.00736 ^{\{ 7 \}} | 0.00671 ^{\{ 4 \}} | 0.00725 ^{\{ 6 \}} | 0.00629 ^{\{ 1 \}} | 0.00664 ^{\{ 2 \}} | 0.00836 ^{\{ 8 \}} | ||
\sum Ranks | 52 ^{\{ 5 \}} | 32 ^{\{ 2 \}} | 83 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 71 ^{\{ 6 \}} | 49 ^{\{ 4 \}} | 40 ^{\{ 3 \}} | 88 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.33439 ^{\{ 6 \}} | 0.29901 ^{\{ 2 \}} | 0.33425 ^{\{ 5 \}} | 0.12434 ^{\{ 1 \}} | 0.34928 ^{\{ 7 \}} | 0.307 ^{\{ 3 \}} | 0.31014 ^{\{ 4 \}} | 0.38531 ^{\{ 8 \}} |
\hat{a} | 0.08166 ^{\{ 6 \}} | 0.0727 ^{\{ 3 \}} | 0.07959 ^{\{ 5 \}} | 0.04277 ^{\{ 1 \}} | 0.08482 ^{\{ 7 \}} | 0.07253 ^{\{ 2 \}} | 0.0737 ^{\{ 4 \}} | 0.09209 ^{\{ 8 \}} | ||
\hat{b} | 0.0686 ^{\{ 2 \}} | 0.07273 ^{\{ 4 \}} | 0.0851 ^{\{ 7 \}} | 0.06697 ^{\{ 1 \}} | 0.08853 ^{\{ 8 \}} | 0.07975 ^{\{ 5 \}} | 0.07184 ^{\{ 3 \}} | 0.08318 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.16634 ^{\{ 5 \}} | 0.13955 ^{\{ 2 \}} | 0.17655 ^{\{ 6 \}} | 0.05129 ^{\{ 1 \}} | 0.18951 ^{\{ 7 \}} | 0.15596 ^{\{ 4 \}} | 0.1493 ^{\{ 3 \}} | 0.20575 ^{\{ 8 \}} | |
\hat{a} | 0.01011 ^{\{ 6 \}} | 0.00794 ^{\{ 2 \}} | 0.00965 ^{\{ 5 \}} | 0.0035 ^{\{ 1 \}} | 0.01076 ^{\{ 7 \}} | 0.00839 ^{\{ 4 \}} | 0.00828 ^{\{ 3 \}} | 0.01148 ^{\{ 8 \}} | ||
\hat{b} | 0.00734 ^{\{ 2 \}} | 0.00804 ^{\{ 3 \}} | 0.01118 ^{\{ 7 \}} | 0.00685 ^{\{ 1 \}} | 0.01207 ^{\{ 8 \}} | 0.00953 ^{\{ 5 \}} | 0.00809 ^{\{ 4 \}} | 0.01058 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.1672 ^{\{ 6 \}} | 0.14951 ^{\{ 2 \}} | 0.16712 ^{\{ 5 \}} | 0.06217 ^{\{ 1 \}} | 0.17464 ^{\{ 7 \}} | 0.1535 ^{\{ 3 \}} | 0.15507 ^{\{ 4 \}} | 0.19266 ^{\{ 8 \}} | |
\hat{a} | 0.16331 ^{\{ 6 \}} | 0.1454 ^{\{ 3 \}} | 0.15918 ^{\{ 5 \}} | 0.08554 ^{\{ 1 \}} | 0.16963 ^{\{ 7 \}} | 0.14506 ^{\{ 2 \}} | 0.14741 ^{\{ 4 \}} | 0.18418 ^{\{ 8 \}} | ||
\hat{b} | 0.04573 ^{\{ 2 \}} | 0.04849 ^{\{ 4 \}} | 0.05674 ^{\{ 7 \}} | 0.04465 ^{\{ 1 \}} | 0.05902 ^{\{ 8 \}} | 0.05317 ^{\{ 5 \}} | 0.0479 ^{\{ 3 \}} | 0.05545 ^{\{ 6 \}} | ||
D_{abs} | 0.01052 ^{\{ 1 \}} | 0.01059 ^{\{ 3 \}} | 0.01098 ^{\{ 5 \}} | 0.01057 ^{\{ 2 \}} | 0.01117 ^{\{ 7 \}} | 0.0113 ^{\{ 8 \}} | 0.01068 ^{\{ 4 \}} | 0.01106 ^{\{ 6 \}} | ||
D_{max} | 0.01751 ^{\{ 2 \}} | 0.01784 ^{\{ 3 \}} | 0.01888 ^{\{ 5 \}} | 0.01736 ^{\{ 1 \}} | 0.01914 ^{\{ 7 \}} | 0.01915 ^{\{ 8 \}} | 0.01798 ^{\{ 4 \}} | 0.01898 ^{\{ 6 \}} | ||
ASAE | 0.00424 ^{\{ 4 \}} | 0.0042 ^{\{ 2 \}} | 0.00469 ^{\{ 7 \}} | 0.00438 ^{\{ 5 \}} | 0.00466 ^{\{ 6 \}} | 0.00396 ^{\{ 1 \}} | 0.00422 ^{\{ 3 \}} | 0.00525 ^{\{ 8 \}} | ||
\sum Ranks | 48 ^{\{ 4 \}} | 33 ^{\{ 2 \}} | 69 ^{\{ 6 \}} | 17 ^{\{ 1 \}} | 86 ^{\{ 7.5 \}} | 50 ^{\{ 5 \}} | 43 ^{\{ 3 \}} | 86 ^{\{ 7.5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.51619 ^{\{ 2 \}} | 0.63113 ^{\{ 6 \}} | 0.67423 ^{\{ 7 \}} | 0.51172 ^{\{ 1 \}} | 0.61334 ^{\{ 4 \}} | 0.62651 ^{\{ 5 \}} | 0.55707 ^{\{ 3 \}} | 0.88577 ^{\{ 8 \}} |
\hat{a} | 0.4211 ^{\{ 6 \}} | 0.39524 ^{\{ 5 \}} | 0.43673 ^{\{ 7 \}} | 0.34427 ^{\{ 1 \}} | 0.38438 ^{\{ 3 \}} | 0.36625 ^{\{ 2 \}} | 0.38901 ^{\{ 4 \}} | 0.57667 ^{\{ 8 \}} | ||
\hat{b} | 0.42122 ^{\{ 2 \}} | 0.42702 ^{\{ 3 \}} | 0.52173 ^{\{ 8 \}} | 0.40397 ^{\{ 1 \}} | 0.48285 ^{\{ 6 \}} | 0.45722 ^{\{ 5 \}} | 0.44181 ^{\{ 4 \}} | 0.4914 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.44269 ^{\{ 1 \}} | 1.40915 ^{\{ 6 \}} | 0.97253 ^{\{ 5 \}} | 0.79973 ^{\{ 4 \}} | 0.78856 ^{\{ 3 \}} | 4.65109 ^{\{ 8 \}} | 0.70986 ^{\{ 2 \}} | 1.63292 ^{\{ 7 \}} | |
\hat{a} | 0.28044 ^{\{ 6 \}} | 0.24296 ^{\{ 5 \}} | 0.31317 ^{\{ 7 \}} | 0.18465 ^{\{ 1 \}} | 0.23352 ^{\{ 4 \}} | 0.21626 ^{\{ 2 \}} | 0.23222 ^{\{ 3 \}} | 0.50968 ^{\{ 8 \}} | ||
\hat{b} | 0.32216 ^{\{ 2 \}} | 0.33661 ^{\{ 4 \}} | 0.5635 ^{\{ 8 \}} | 0.25378 ^{\{ 1 \}} | 0.4679 ^{\{ 6 \}} | 0.37052 ^{\{ 5 \}} | 0.3353 ^{\{ 3 \}} | 0.47121 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.2581 ^{\{ 2 \}} | 0.31556 ^{\{ 6 \}} | 0.33711 ^{\{ 7 \}} | 0.25586 ^{\{ 1 \}} | 0.30667 ^{\{ 4 \}} | 0.31326 ^{\{ 5 \}} | 0.27853 ^{\{ 3 \}} | 0.44288 ^{\{ 8 \}} | |
\hat{a} | 0.28073 ^{\{ 6 \}} | 0.26349 ^{\{ 5 \}} | 0.29115 ^{\{ 7 \}} | 0.22951 ^{\{ 1 \}} | 0.25625 ^{\{ 3 \}} | 0.24417 ^{\{ 2 \}} | 0.25934 ^{\{ 4 \}} | 0.38445 ^{\{ 8 \}} | ||
\hat{b} | 0.21061 ^{\{ 2 \}} | 0.21351 ^{\{ 3 \}} | 0.26087 ^{\{ 8 \}} | 0.20198 ^{\{ 1 \}} | 0.24143 ^{\{ 6 \}} | 0.22861 ^{\{ 5 \}} | 0.2209 ^{\{ 4 \}} | 0.2457 ^{\{ 7 \}} | ||
D_{abs} | 0.04173 ^{\{ 1 \}} | 0.04563 ^{\{ 4 \}} | 0.04698 ^{\{ 8 \}} | 0.04308 ^{\{ 2 \}} | 0.0467 ^{\{ 7 \}} | 0.04585 ^{\{ 5 \}} | 0.04476 ^{\{ 3 \}} | 0.04629 ^{\{ 6 \}} | ||
D_{max} | 0.06876 ^{\{ 1 \}} | 0.07601 ^{\{ 4 \}} | 0.08059 ^{\{ 7 \}} | 0.07069 ^{\{ 2 \}} | 0.07795 ^{\{ 6 \}} | 0.07656 ^{\{ 5 \}} | 0.07406 ^{\{ 3 \}} | 0.08173 ^{\{ 8 \}} | ||
ASAE | 0.03095 ^{\{ 7 \}} | 0.02759 ^{\{ 4 \}} | 0.02937 ^{\{ 6 \}} | 0.02711 ^{\{ 3 \}} | 0.02798 ^{\{ 5 \}} | 0.02651 ^{\{ 1 \}} | 0.02653 ^{\{ 2 \}} | 0.03252 ^{\{ 8 \}} | ||
\sum Ranks | 38 ^{\{ 2.5 \}} | 55 ^{\{ 5 \}} | 85 ^{\{ 7 \}} | 19 ^{\{ 1 \}} | 57 ^{\{ 6 \}} | 50 ^{\{ 4 \}} | 38 ^{\{ 2.5 \}} | 90 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.47926 ^{\{ 5 \}} | 0.46754 ^{\{ 4 \}} | 0.5632 ^{\{ 7 \}} | 0.3673 ^{\{ 1 \}} | 0.55214 ^{\{ 6 \}} | 0.46172 ^{\{ 2 \}} | 0.46383 ^{\{ 3 \}} | 0.67025 ^{\{ 8 \}} |
\hat{a} | 0.36435 ^{\{ 7 \}} | 0.30602 ^{\{ 3 \}} | 0.3521 ^{\{ 6 \}} | 0.27605 ^{\{ 1 \}} | 0.33303 ^{\{ 5 \}} | 0.29119 ^{\{ 2 \}} | 0.31509 ^{\{ 4 \}} | 0.43801 ^{\{ 8 \}} | ||
\hat{b} | 0.29223 ^{\{ 3 \}} | 0.29115 ^{\{ 2 \}} | 0.3284 ^{\{ 7 \}} | 0.28673 ^{\{ 1 \}} | 0.33862 ^{\{ 8 \}} | 0.31389 ^{\{ 5 \}} | 0.30284 ^{\{ 4 \}} | 0.31591 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.37454 ^{\{ 3 \}} | 0.36448 ^{\{ 2 \}} | 0.56211 ^{\{ 7 \}} | 0.2657 ^{\{ 1 \}} | 0.53431 ^{\{ 6 \}} | 0.39635 ^{\{ 5 \}} | 0.37914 ^{\{ 4 \}} | 0.72289 ^{\{ 8 \}} | |
\hat{a} | 0.20482 ^{\{ 7 \}} | 0.14296 ^{\{ 3 \}} | 0.18606 ^{\{ 6 \}} | 0.11389 ^{\{ 1 \}} | 0.17027 ^{\{ 5 \}} | 0.1266 ^{\{ 2 \}} | 0.15246 ^{\{ 4 \}} | 0.27299 ^{\{ 8 \}} | ||
\hat{b} | 0.14415 ^{\{ 3 \}} | 0.13708 ^{\{ 2 \}} | 0.17917 ^{\{ 7 \}} | 0.13026 ^{\{ 1 \}} | 0.19342 ^{\{ 8 \}} | 0.16635 ^{\{ 5 \}} | 0.15758 ^{\{ 4 \}} | 0.1689 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.23963 ^{\{ 5 \}} | 0.23377 ^{\{ 4 \}} | 0.2816 ^{\{ 7 \}} | 0.18365 ^{\{ 1 \}} | 0.27607 ^{\{ 6 \}} | 0.23086 ^{\{ 2 \}} | 0.23191 ^{\{ 3 \}} | 0.33512 ^{\{ 8 \}} | |
\hat{a} | 0.2429 ^{\{ 7 \}} | 0.20401 ^{\{ 3 \}} | 0.23473 ^{\{ 6 \}} | 0.18403 ^{\{ 1 \}} | 0.22202 ^{\{ 5 \}} | 0.19413 ^{\{ 2 \}} | 0.21006 ^{\{ 4 \}} | 0.29201 ^{\{ 8 \}} | ||
\hat{b} | 0.14612 ^{\{ 3 \}} | 0.14557 ^{\{ 2 \}} | 0.1642 ^{\{ 7 \}} | 0.14337 ^{\{ 1 \}} | 0.16931 ^{\{ 8 \}} | 0.15694 ^{\{ 5 \}} | 0.15142 ^{\{ 4 \}} | 0.15796 ^{\{ 6 \}} | ||
D_{abs} | 0.03043 ^{\{ 1 \}} | 0.03146 ^{\{ 3 \}} | 0.03257 ^{\{ 5 \}} | 0.03117 ^{\{ 2 \}} | 0.03291 ^{\{ 7 \}} | 0.03307 ^{\{ 8 \}} | 0.03149 ^{\{ 4 \}} | 0.03263 ^{\{ 6 \}} | ||
D_{max} | 0.04996 ^{\{ 1 \}} | 0.05229 ^{\{ 4 \}} | 0.0556 ^{\{ 7 \}} | 0.05107 ^{\{ 2 \}} | 0.05559 ^{\{ 6 \}} | 0.05467 ^{\{ 5 \}} | 0.05214 ^{\{ 3 \}} | 0.05719 ^{\{ 8 \}} | ||
ASAE | 0.01855 ^{\{ 6 \}} | 0.01739 ^{\{ 3 \}} | 0.01871 ^{\{ 7 \}} | 0.01758 ^{\{ 4 \}} | 0.01813 ^{\{ 5 \}} | 0.01678 ^{\{ 1 \}} | 0.01729 ^{\{ 2 \}} | 0.02109 ^{\{ 8 \}} | ||
\sum Ranks | 51 ^{\{ 5 \}} | 35 ^{\{ 2 \}} | 79 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 75 ^{\{ 6 \}} | 44 ^{\{ 4 \}} | 43 ^{\{ 3 \}} | 88 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.4392 ^{\{ 5 \}} | 0.39379 ^{\{ 3 \}} | 0.45566 ^{\{ 7 \}} | 0.27549 ^{\{ 1 \}} | 0.44834 ^{\{ 6 \}} | 0.38128 ^{\{ 2 \}} | 0.41046 ^{\{ 4 \}} | 0.54089 ^{\{ 8 \}} |
\hat{a} | 0.31014 ^{\{ 7 \}} | 0.26139 ^{\{ 3 \}} | 0.28645 ^{\{ 5 \}} | 0.21856 ^{\{ 1 \}} | 0.28762 ^{\{ 6 \}} | 0.24802 ^{\{ 2 \}} | 0.26741 ^{\{ 4 \}} | 0.3628 ^{\{ 8 \}} | ||
\hat{b} | 0.19985 ^{\{ 3 \}} | 0.19591 ^{\{ 1 \}} | 0.21751 ^{\{ 6 \}} | 0.19621 ^{\{ 2 \}} | 0.22876 ^{\{ 8 \}} | 0.21446 ^{\{ 5 \}} | 0.20679 ^{\{ 4 \}} | 0.2256 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.31057 ^{\{ 5 \}} | 0.2424 ^{\{ 2 \}} | 0.33171 ^{\{ 7 \}} | 0.13533 ^{\{ 1 \}} | 0.32597 ^{\{ 6 \}} | 0.25702 ^{\{ 3 \}} | 0.26429 ^{\{ 4 \}} | 0.43436 ^{\{ 8 \}} | |
\hat{a} | 0.15063 ^{\{ 7 \}} | 0.10087 ^{\{ 3 \}} | 0.12317 ^{\{ 6 \}} | 0.07577 ^{\{ 1 \}} | 0.12274 ^{\{ 5 \}} | 0.09392 ^{\{ 2 \}} | 0.10589 ^{\{ 4 \}} | 0.18107 ^{\{ 8 \}} | ||
\hat{b} | 0.06714 ^{\{ 4 \}} | 0.05805 ^{\{ 1 \}} | 0.07483 ^{\{ 6 \}} | 0.05816 ^{\{ 2 \}} | 0.08113 ^{\{ 7 \}} | 0.07187 ^{\{ 5 \}} | 0.06713 ^{\{ 3 \}} | 0.08227 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.2196 ^{\{ 5 \}} | 0.19689 ^{\{ 3 \}} | 0.22783 ^{\{ 7 \}} | 0.13775 ^{\{ 1 \}} | 0.22417 ^{\{ 6 \}} | 0.19064 ^{\{ 2 \}} | 0.20523 ^{\{ 4 \}} | 0.27044 ^{\{ 8 \}} | |
\hat{a} | 0.20676 ^{\{ 7 \}} | 0.17426 ^{\{ 3 \}} | 0.19097 ^{\{ 5 \}} | 0.14571 ^{\{ 1 \}} | 0.19175 ^{\{ 6 \}} | 0.16535 ^{\{ 2 \}} | 0.17827 ^{\{ 4 \}} | 0.24186 ^{\{ 8 \}} | ||
\hat{b} | 0.09993 ^{\{ 3 \}} | 0.09795 ^{\{ 1 \}} | 0.10875 ^{\{ 6 \}} | 0.09811 ^{\{ 2 \}} | 0.11438 ^{\{ 8 \}} | 0.10723 ^{\{ 5 \}} | 0.10339 ^{\{ 4 \}} | 0.1128 ^{\{ 7 \}} | ||
D_{abs} | 0.02083 ^{\{ 1 \}} | 0.02159 ^{\{ 4 \}} | 0.02178 ^{\{ 5 \}} | 0.02125 ^{\{ 2.5 \}} | 0.02218 ^{\{ 6 \}} | 0.02294 ^{\{ 8 \}} | 0.02125 ^{\{ 2.5 \}} | 0.02263 ^{\{ 7 \}} | ||
D_{max} | 0.03432 ^{\{ 1 \}} | 0.03586 ^{\{ 4 \}} | 0.03724 ^{\{ 5 \}} | 0.03487 ^{\{ 2 \}} | 0.03795 ^{\{ 6 \}} | 0.03803 ^{\{ 7 \}} | 0.03566 ^{\{ 3 \}} | 0.03867 ^{\{ 8 \}} | ||
ASAE | 0.0109 ^{\{ 5 \}} | 0.01075 ^{\{ 3.5 \}} | 0.01143 ^{\{ 7 \}} | 0.01075 ^{\{ 3.5 \}} | 0.0111 ^{\{ 6 \}} | 0.01011 ^{\{ 1 \}} | 0.01051 ^{\{ 2 \}} | 0.01296 ^{\{ 8 \}} | ||
\sum Ranks | 53 ^{\{ 5 \}} | 31.5 ^{\{ 2 \}} | 72 ^{\{ 6 \}} | 20 ^{\{ 1 \}} | 76 ^{\{ 7 \}} | 44 ^{\{ 4 \}} | 42.5 ^{\{ 3 \}} | 93 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.38358 ^{\{ 5 \}} | 0.35025 ^{\{ 3 \}} | 0.40996 ^{\{ 7 \}} | 0.20918 ^{\{ 1 \}} | 0.38933 ^{\{ 6 \}} | 0.35514 ^{\{ 4 \}} | 0.34544 ^{\{ 2 \}} | 0.47301 ^{\{ 8 \}} |
\hat{a} | 0.25949 ^{\{ 7 \}} | 0.22513 ^{\{ 3 \}} | 0.25895 ^{\{ 6 \}} | 0.15794 ^{\{ 1 \}} | 0.25286 ^{\{ 5 \}} | 0.2244 ^{\{ 2 \}} | 0.23092 ^{\{ 4 \}} | 0.31424 ^{\{ 8 \}} | ||
\hat{b} | 0.14384 ^{\{ 3 \}} | 0.14219 ^{\{ 2 \}} | 0.16653 ^{\{ 7 \}} | 0.13428 ^{\{ 1 \}} | 0.16744 ^{\{ 8 \}} | 0.15275 ^{\{ 5 \}} | 0.14455 ^{\{ 4 \}} | 0.16515 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.22395 ^{\{ 5 \}} | 0.18899 ^{\{ 3 \}} | 0.25726 ^{\{ 7 \}} | 0.08634 ^{\{ 1 \}} | 0.23811 ^{\{ 6 \}} | 0.21275 ^{\{ 4 \}} | 0.18524 ^{\{ 2 \}} | 0.31153 ^{\{ 8 \}} | |
\hat{a} | 0.10146 ^{\{ 7 \}} | 0.07569 ^{\{ 2 \}} | 0.0982 ^{\{ 6 \}} | 0.04298 ^{\{ 1 \}} | 0.09473 ^{\{ 5 \}} | 0.07846 ^{\{ 3 \}} | 0.07943 ^{\{ 4 \}} | 0.13087 ^{\{ 8 \}} | ||
\hat{b} | 0.03255 ^{\{ 4 \}} | 0.0313 ^{\{ 2 \}} | 0.04249 ^{\{ 7 \}} | 0.02688 ^{\{ 1 \}} | 0.04388 ^{\{ 8 \}} | 0.03491 ^{\{ 5 \}} | 0.03196 ^{\{ 3 \}} | 0.04248 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.19179 ^{\{ 5 \}} | 0.17513 ^{\{ 3 \}} | 0.20498 ^{\{ 7 \}} | 0.10459 ^{\{ 1 \}} | 0.19466 ^{\{ 6 \}} | 0.17757 ^{\{ 4 \}} | 0.17272 ^{\{ 2 \}} | 0.2365 ^{\{ 8 \}} | |
\hat{a} | 0.17299 ^{\{ 7 \}} | 0.15009 ^{\{ 3 \}} | 0.17264 ^{\{ 6 \}} | 0.10529 ^{\{ 1 \}} | 0.16858 ^{\{ 5 \}} | 0.1496 ^{\{ 2 \}} | 0.15394 ^{\{ 4 \}} | 0.20949 ^{\{ 8 \}} | ||
\hat{b} | 0.07192 ^{\{ 3 \}} | 0.07109 ^{\{ 2 \}} | 0.08327 ^{\{ 7 \}} | 0.06714 ^{\{ 1 \}} | 0.08372 ^{\{ 8 \}} | 0.07638 ^{\{ 5 \}} | 0.07227 ^{\{ 4 \}} | 0.08258 ^{\{ 6 \}} | ||
D_{abs} | 0.01502 ^{\{ 2 \}} | 0.01519 ^{\{ 4 \}} | 0.01582 ^{\{ 6 \}} | 0.01471 ^{\{ 1 \}} | 0.01536 ^{\{ 5 \}} | 0.01593 ^{\{ 7 \}} | 0.01513 ^{\{ 3 \}} | 0.01595 ^{\{ 8 \}} | ||
D_{max} | 0.02487 ^{\{ 2 \}} | 0.02543 ^{\{ 4 \}} | 0.02719 ^{\{ 7 \}} | 0.02418 ^{\{ 1 \}} | 0.02652 ^{\{ 5 \}} | 0.02678 ^{\{ 6 \}} | 0.02539 ^{\{ 3 \}} | 0.02738 ^{\{ 8 \}} | ||
ASAE | 0.00687 ^{\{ 5 \}} | 0.00666 ^{\{ 2 \}} | 0.00739 ^{\{ 7 \}} | 0.00686 ^{\{ 4 \}} | 0.00722 ^{\{ 6 \}} | 0.00639 ^{\{ 1 \}} | 0.0067 ^{\{ 3 \}} | 0.00837 ^{\{ 8 \}} | ||
\sum Ranks | 55 ^{\{ 5 \}} | 33 ^{\{ 2 \}} | 80 ^{\{ 7 \}} | 15 ^{\{ 1 \}} | 73 ^{\{ 6 \}} | 48 ^{\{ 4 \}} | 38 ^{\{ 3 \}} | 90 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.34337 ^{\{ 5 \}} | 0.29599 ^{\{ 2 \}} | 0.35608 ^{\{ 7 \}} | 0.12837 ^{\{ 1 \}} | 0.34858 ^{\{ 6 \}} | 0.30958 ^{\{ 4 \}} | 0.30911 ^{\{ 3 \}} | 0.4042 ^{\{ 8 \}} |
\hat{a} | 0.22922 ^{\{ 7 \}} | 0.19345 ^{\{ 3 \}} | 0.22519 ^{\{ 5 \}} | 0.09817 ^{\{ 1 \}} | 0.22778 ^{\{ 6 \}} | 0.19235 ^{\{ 2 \}} | 0.20261 ^{\{ 4 \}} | 0.27243 ^{\{ 8 \}} | ||
\hat{b} | 0.10161 ^{\{ 2 \}} | 0.10663 ^{\{ 3 \}} | 0.12649 ^{\{ 8 \}} | 0.09413 ^{\{ 1 \}} | 0.12277 ^{\{ 6 \}} | 0.11287 ^{\{ 5 \}} | 0.10742 ^{\{ 4 \}} | 0.12442 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.17598 ^{\{ 6 \}} | 0.13529 ^{\{ 2 \}} | 0.18281 ^{\{ 7 \}} | 0.04448 ^{\{ 1 \}} | 0.17429 ^{\{ 5 \}} | 0.15427 ^{\{ 4 \}} | 0.14265 ^{\{ 3 \}} | 0.22018 ^{\{ 8 \}} | |
\hat{a} | 0.07869 ^{\{ 7 \}} | 0.05647 ^{\{ 2 \}} | 0.07356 ^{\{ 6 \}} | 0.02176 ^{\{ 1 \}} | 0.07329 ^{\{ 5 \}} | 0.05829 ^{\{ 3 \}} | 0.06038 ^{\{ 4 \}} | 0.09527 ^{\{ 8 \}} | ||
\hat{b} | 0.01627 ^{\{ 2 \}} | 0.01766 ^{\{ 3 \}} | 0.02538 ^{\{ 8 \}} | 0.01352 ^{\{ 1 \}} | 0.02319 ^{\{ 6 \}} | 0.01936 ^{\{ 5 \}} | 0.01824 ^{\{ 4 \}} | 0.02403 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.17169 ^{\{ 5 \}} | 0.14799 ^{\{ 2 \}} | 0.17804 ^{\{ 7 \}} | 0.06418 ^{\{ 1 \}} | 0.17429 ^{\{ 6 \}} | 0.15479 ^{\{ 4 \}} | 0.15455 ^{\{ 3 \}} | 0.2021 ^{\{ 8 \}} | |
\hat{a} | 0.15282 ^{\{ 7 \}} | 0.12897 ^{\{ 3 \}} | 0.15012 ^{\{ 5 \}} | 0.06545 ^{\{ 1 \}} | 0.15185 ^{\{ 6 \}} | 0.12823 ^{\{ 2 \}} | 0.13507 ^{\{ 4 \}} | 0.18162 ^{\{ 8 \}} | ||
\hat{b} | 0.0508 ^{\{ 2 \}} | 0.05331 ^{\{ 3 \}} | 0.06325 ^{\{ 8 \}} | 0.04706 ^{\{ 1 \}} | 0.06139 ^{\{ 6 \}} | 0.05644 ^{\{ 5 \}} | 0.05371 ^{\{ 4 \}} | 0.06221 ^{\{ 7 \}} | ||
D_{abs} | 0.01056 ^{\{ 2 \}} | 0.0106 ^{\{ 3 \}} | 0.01125 ^{\{ 7 \}} | 0.0103 ^{\{ 1 \}} | 0.01164 ^{\{ 8 \}} | 0.01124 ^{\{ 6 \}} | 0.0107 ^{\{ 4 \}} | 0.01089 ^{\{ 5 \}} | ||
D_{max} | 0.01782 ^{\{ 2 \}} | 0.01801 ^{\{ 3 \}} | 0.01931 ^{\{ 7 \}} | 0.017 ^{\{ 1 \}} | 0.01973 ^{\{ 8 \}} | 0.01893 ^{\{ 6 \}} | 0.01812 ^{\{ 4 \}} | 0.01874 ^{\{ 5 \}} | ||
ASAE | 0.00429 ^{\{ 2 \}} | 0.0043 ^{\{ 3 \}} | 0.00478 ^{\{ 7 \}} | 0.0045 ^{\{ 5 \}} | 0.00457 ^{\{ 6 \}} | 0.00406 ^{\{ 1 \}} | 0.00431 ^{\{ 4 \}} | 0.00534 ^{\{ 8 \}} | ||
\sum Ranks | 49 ^{\{ 5 \}} | 32 ^{\{ 2 \}} | 82 ^{\{ 7 \}} | 16 ^{\{ 1 \}} | 74 ^{\{ 6 \}} | 47 ^{\{ 4 \}} | 45 ^{\{ 3 \}} | 87 ^{\{ 8 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.41263 ^{\{ 1 \}} | 0.63117 ^{\{ 3 \}} | 0.61646 ^{\{ 2 \}} | 0.68971 ^{\{ 6 \}} | 0.66123 ^{\{ 4 \}} | 0.69605 ^{\{ 7 \}} | 0.6614 ^{\{ 5 \}} | 0.73592 ^{\{ 8 \}} |
\hat{a} | 0.3458 ^{\{ 1 \}} | 0.40339 ^{\{ 3 \}} | 0.40077 ^{\{ 2 \}} | 0.43258 ^{\{ 6 \}} | 0.43443 ^{\{ 7 \}} | 0.46564 ^{\{ 8 \}} | 0.41928 ^{\{ 5 \}} | 0.40721 ^{\{ 4 \}} | ||
\hat{b} | 0.90474 ^{\{ 2 \}} | 0.95946 ^{\{ 6 \}} | 0.95309 ^{\{ 4 \}} | 0.95489 ^{\{ 5 \}} | 0.92977 ^{\{ 3 \}} | 0.88 ^{\{ 1 \}} | 0.96175 ^{\{ 7 \}} | 1.06824 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.23196 ^{\{ 1 \}} | 0.53768 ^{\{ 3 \}} | 0.47197 ^{\{ 2 \}} | 0.65139 ^{\{ 7 \}} | 0.55116 ^{\{ 4 \}} | 0.64812 ^{\{ 6 \}} | 0.57172 ^{\{ 5 \}} | 0.87411 ^{\{ 8 \}} | |
\hat{a} | 0.19495 ^{\{ 1 \}} | 0.25654 ^{\{ 3 \}} | 0.25032 ^{\{ 2 \}} | 0.28251 ^{\{ 5 \}} | 0.28292 ^{\{ 6 \}} | 0.33262 ^{\{ 8 \}} | 0.27497 ^{\{ 4 \}} | 0.28509 ^{\{ 7 \}} | ||
\hat{b} | 1.40385 ^{\{ 7 \}} | 1.37779 ^{\{ 5 \}} | 1.33026 ^{\{ 3 \}} | 1.37841 ^{\{ 6 \}} | 1.24057 ^{\{ 1 \}} | 1.28937 ^{\{ 2 \}} | 1.33079 ^{\{ 4 \}} | 1.7756 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.55017 ^{\{ 1 \}} | 0.84156 ^{\{ 3 \}} | 0.82195 ^{\{ 2 \}} | 0.91961 ^{\{ 6 \}} | 0.88164 ^{\{ 4 \}} | 0.92807 ^{\{ 7 \}} | 0.88187 ^{\{ 5 \}} | 0.98123 ^{\{ 8 \}} | |
\hat{a} | 0.1729 ^{\{ 1 \}} | 0.20169 ^{\{ 3 \}} | 0.20039 ^{\{ 2 \}} | 0.21629 ^{\{ 6 \}} | 0.21721 ^{\{ 7 \}} | 0.23282 ^{\{ 8 \}} | 0.20964 ^{\{ 5 \}} | 0.20361 ^{\{ 4 \}} | ||
\hat{b} | 0.30158 ^{\{ 2 \}} | 0.31982 ^{\{ 6 \}} | 0.3177 ^{\{ 4 \}} | 0.3183 ^{\{ 5 \}} | 0.30992 ^{\{ 3 \}} | 0.29333 ^{\{ 1 \}} | 0.32058 ^{\{ 7 \}} | 0.35608 ^{\{ 8 \}} | ||
D_{abs} | 0.04253 ^{\{ 1 \}} | 0.04336 ^{\{ 2 \}} | 0.04718 ^{\{ 8 \}} | 0.04338 ^{\{ 3 \}} | 0.04551 ^{\{ 5 \}} | 0.04671 ^{\{ 7 \}} | 0.04479 ^{\{ 4 \}} | 0.04664 ^{\{ 6 \}} | ||
D_{max} | 0.07112 ^{\{ 2 \}} | 0.07194 ^{\{ 3 \}} | 0.0792 ^{\{ 8 \}} | 0.07007 ^{\{ 1 \}} | 0.07453 ^{\{ 5 \}} | 0.07777 ^{\{ 6 \}} | 0.07355 ^{\{ 4 \}} | 0.07787 ^{\{ 7 \}} | ||
ASAE | 0.02959 ^{\{ 7 \}} | 0.02756 ^{\{ 3 \}} | 0.02928 ^{\{ 6 \}} | 0.02713 ^{\{ 2 \}} | 0.02829 ^{\{ 5 \}} | 0.02772 ^{\{ 4 \}} | 0.02691 ^{\{ 1 \}} | 0.03129 ^{\{ 8 \}} | ||
\sum Ranks | 27 ^{\{ 1 \}} | 43 ^{\{ 2 \}} | 45 ^{\{ 3 \}} | 58 ^{\{ 6 \}} | 54 ^{\{ 4 \}} | 65 ^{\{ 7 \}} | 56 ^{\{ 5 \}} | 84 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.37728 ^{\{ 1 \}} | 0.57428 ^{\{ 3 \}} | 0.57379 ^{\{ 2 \}} | 0.61526 ^{\{ 7 \}} | 0.60356 ^{\{ 5 \}} | 0.60726 ^{\{ 6 \}} | 0.58819 ^{\{ 4 \}} | 0.61897 ^{\{ 8 \}} |
\hat{a} | 0.25016 ^{\{ 1 \}} | 0.31949 ^{\{ 2 \}} | 0.33757 ^{\{ 4 \}} | 0.35113 ^{\{ 7 \}} | 0.34537 ^{\{ 6 \}} | 0.35421 ^{\{ 8 \}} | 0.33813 ^{\{ 5 \}} | 0.3285 ^{\{ 3 \}} | ||
\hat{b} | 0.68242 ^{\{ 1 \}} | 0.79998 ^{\{ 5 \}} | 0.77034 ^{\{ 3 \}} | 0.82325 ^{\{ 6 \}} | 0.83417 ^{\{ 8 \}} | 0.69139 ^{\{ 2 \}} | 0.78972 ^{\{ 4 \}} | 0.82557 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.20498 ^{\{ 1 \}} | 0.47839 ^{\{ 4 \}} | 0.45179 ^{\{ 2 \}} | 0.57434 ^{\{ 7 \}} | 0.47675 ^{\{ 3 \}} | 0.53826 ^{\{ 6 \}} | 0.48684 ^{\{ 5 \}} | 0.5989 ^{\{ 8 \}} | |
\hat{a} | 0.09985 ^{\{ 1 \}} | 0.15258 ^{\{ 2 \}} | 0.17907 ^{\{ 4 \}} | 0.20305 ^{\{ 8 \}} | 0.18005 ^{\{ 5 \}} | 0.18882 ^{\{ 7 \}} | 0.17375 ^{\{ 3 \}} | 0.18104 ^{\{ 6 \}} | ||
\hat{b} | 0.77461 ^{\{ 2 \}} | 1.01864 ^{\{ 6 \}} | 0.8902 ^{\{ 3 \}} | 1.13061 ^{\{ 8 \}} | 1.01306 ^{\{ 5 \}} | 0.74376 ^{\{ 1 \}} | 0.95657 ^{\{ 4 \}} | 1.08045 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.50303 ^{\{ 1 \}} | 0.76571 ^{\{ 3 \}} | 0.76505 ^{\{ 2 \}} | 0.82035 ^{\{ 7 \}} | 0.80474 ^{\{ 5 \}} | 0.80968 ^{\{ 6 \}} | 0.78426 ^{\{ 4 \}} | 0.8253 ^{\{ 8 \}} | |
\hat{a} | 0.12508 ^{\{ 1 \}} | 0.15974 ^{\{ 2 \}} | 0.16879 ^{\{ 4 \}} | 0.17557 ^{\{ 7 \}} | 0.17268 ^{\{ 6 \}} | 0.1771 ^{\{ 8 \}} | 0.16906 ^{\{ 5 \}} | 0.16425 ^{\{ 3 \}} | ||
\hat{b} | 0.22747 ^{\{ 1 \}} | 0.26666 ^{\{ 5 \}} | 0.25678 ^{\{ 3 \}} | 0.27442 ^{\{ 6 \}} | 0.27806 ^{\{ 8 \}} | 0.23046 ^{\{ 2 \}} | 0.26324 ^{\{ 4 \}} | 0.27519 ^{\{ 7 \}} | ||
D_{abs} | 0.03062 ^{\{ 2 \}} | 0.03064 ^{\{ 3 \}} | 0.03404 ^{\{ 8 \}} | 0.03001 ^{\{ 1 \}} | 0.03304 ^{\{ 7 \}} | 0.03289 ^{\{ 6 \}} | 0.03251 ^{\{ 4 \}} | 0.03252 ^{\{ 5 \}} | ||
D_{max} | 0.05131 ^{\{ 2 \}} | 0.05151 ^{\{ 3 \}} | 0.05754 ^{\{ 8 \}} | 0.04967 ^{\{ 1 \}} | 0.05555 ^{\{ 7 \}} | 0.05553 ^{\{ 6 \}} | 0.05366 ^{\{ 4 \}} | 0.0546 ^{\{ 5 \}} | ||
ASAE | 0.01854 ^{\{ 7 \}} | 0.01731 ^{\{ 4 \}} | 0.01828 ^{\{ 6 \}} | 0.01722 ^{\{ 2 \}} | 0.01814 ^{\{ 5 \}} | 0.01725 ^{\{ 3 \}} | 0.01692 ^{\{ 1 \}} | 0.01936 ^{\{ 8 \}} | ||
\sum Ranks | 21 ^{\{ 1 \}} | 42 ^{\{ 2 \}} | 49 ^{\{ 4 \}} | 67 ^{\{ 6 \}} | 70 ^{\{ 7 \}} | 61 ^{\{ 5 \}} | 47 ^{\{ 3 \}} | 75 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.31212 ^{\{ 1 \}} | 0.45159 ^{\{ 2 \}} | 0.49391 ^{\{ 4 \}} | 0.50158 ^{\{ 6 \}} | 0.49767 ^{\{ 5 \}} | 0.51173 ^{\{ 8 \}} | 0.47926 ^{\{ 3 \}} | 0.50467 ^{\{ 7 \}} |
\hat{a} | 0.18389 ^{\{ 1 \}} | 0.24619 ^{\{ 2 \}} | 0.26366 ^{\{ 5 \}} | 0.26623 ^{\{ 6 \}} | 0.27263 ^{\{ 8 \}} | 0.26155 ^{\{ 3 \}} | 0.26205 ^{\{ 4 \}} | 0.26637 ^{\{ 7 \}} | ||
\hat{b} | 0.51055 ^{\{ 1 \}} | 0.58914 ^{\{ 2 \}} | 0.64746 ^{\{ 7 \}} | 0.59531 ^{\{ 4 \}} | 0.65501 ^{\{ 8 \}} | 0.62579 ^{\{ 5 \}} | 0.59382 ^{\{ 3 \}} | 0.63847 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.14708 ^{\{ 1 \}} | 0.33233 ^{\{ 2 \}} | 0.35351 ^{\{ 3 \}} | 0.44757 ^{\{ 8 \}} | 0.36746 ^{\{ 5 \}} | 0.41305 ^{\{ 7 \}} | 0.36255 ^{\{ 4 \}} | 0.4025 ^{\{ 6 \}} | |
\hat{a} | 0.05157 ^{\{ 1 \}} | 0.09975 ^{\{ 2 \}} | 0.10789 ^{\{ 3 \}} | 0.12791 ^{\{ 8 \}} | 0.11535 ^{\{ 6 \}} | 0.1123 ^{\{ 5 \}} | 0.11096 ^{\{ 4 \}} | 0.1174 ^{\{ 7 \}} | ||
\hat{b} | 0.47277 ^{\{ 1 \}} | 0.61572 ^{\{ 4 \}} | 0.6529 ^{\{ 5 \}} | 0.7086 ^{\{ 8 \}} | 0.67921 ^{\{ 6 \}} | 0.59584 ^{\{ 2 \}} | 0.60046 ^{\{ 3 \}} | 0.70453 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.41616 ^{\{ 1 \}} | 0.60212 ^{\{ 2 \}} | 0.65854 ^{\{ 4 \}} | 0.66877 ^{\{ 6 \}} | 0.66356 ^{\{ 5 \}} | 0.68231 ^{\{ 8 \}} | 0.63901 ^{\{ 3 \}} | 0.67289 ^{\{ 7 \}} | |
\hat{a} | 0.09195 ^{\{ 1 \}} | 0.1231 ^{\{ 2 \}} | 0.13183 ^{\{ 5 \}} | 0.13311 ^{\{ 6 \}} | 0.13632 ^{\{ 8 \}} | 0.13078 ^{\{ 3 \}} | 0.13102 ^{\{ 4 \}} | 0.13318 ^{\{ 7 \}} | ||
\hat{b} | 0.17018 ^{\{ 1 \}} | 0.19638 ^{\{ 2 \}} | 0.21582 ^{\{ 7 \}} | 0.19844 ^{\{ 4 \}} | 0.21834 ^{\{ 8 \}} | 0.2086 ^{\{ 5 \}} | 0.19794 ^{\{ 3 \}} | 0.21282 ^{\{ 6 \}} | ||
D_{abs} | 0.02081 ^{\{ 1 \}} | 0.02156 ^{\{ 3 \}} | 0.02279 ^{\{ 7.5 \}} | 0.02171 ^{\{ 4 \}} | 0.02269 ^{\{ 6 \}} | 0.02221 ^{\{ 5 \}} | 0.02123 ^{\{ 2 \}} | 0.02279 ^{\{ 7.5 \}} | ||
D_{max} | 0.03496 ^{\{ 1 \}} | 0.0362 ^{\{ 4 \}} | 0.0389 ^{\{ 8 \}} | 0.03607 ^{\{ 3 \}} | 0.03834 ^{\{ 5 \}} | 0.03836 ^{\{ 6 \}} | 0.03583 ^{\{ 2 \}} | 0.03862 ^{\{ 7 \}} | ||
ASAE | 0.01105 ^{\{ 5 \}} | 0.0105 ^{\{ 3 \}} | 0.0111 ^{\{ 7 \}} | 0.01079 ^{\{ 4 \}} | 0.01108 ^{\{ 6 \}} | 0.01049 ^{\{ 2 \}} | 0.01039 ^{\{ 1 \}} | 0.01196 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 30 ^{\{ 2 \}} | 65.5 ^{\{ 5 \}} | 67 ^{\{ 6 \}} | 76 ^{\{ 7 \}} | 59 ^{\{ 4 \}} | 36 ^{\{ 3 \}} | 82.5 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.26159 ^{\{ 1 \}} | 0.33734 ^{\{ 2 \}} | 0.40449 ^{\{ 6 \}} | 0.3744 ^{\{ 4 \}} | 0.41347 ^{\{ 7 \}} | 0.42097 ^{\{ 8 \}} | 0.34325 ^{\{ 3 \}} | 0.37827 ^{\{ 5 \}} |
\hat{a} | 0.14993 ^{\{ 1 \}} | 0.18532 ^{\{ 3 \}} | 0.20625 ^{\{ 7 \}} | 0.19513 ^{\{ 4 \}} | 0.20695 ^{\{ 8 \}} | 0.19719 ^{\{ 5 \}} | 0.18169 ^{\{ 2 \}} | 0.20501 ^{\{ 6 \}} | ||
\hat{b} | 0.37223 ^{\{ 1 \}} | 0.41779 ^{\{ 2 \}} | 0.508 ^{\{ 7 \}} | 0.44601 ^{\{ 4 \}} | 0.50594 ^{\{ 6 \}} | 0.52145 ^{\{ 8 \}} | 0.42076 ^{\{ 3 \}} | 0.45303 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.10953 ^{\{ 1 \}} | 0.20094 ^{\{ 2 \}} | 0.26331 ^{\{ 5 \}} | 0.29301 ^{\{ 7 \}} | 0.28568 ^{\{ 6 \}} | 0.30513 ^{\{ 8 \}} | 0.20537 ^{\{ 3 \}} | 0.24655 ^{\{ 4 \}} | |
\hat{a} | 0.03556 ^{\{ 1 \}} | 0.05977 ^{\{ 3 \}} | 0.06975 ^{\{ 4 \}} | 0.07768 ^{\{ 8 \}} | 0.07525 ^{\{ 7 \}} | 0.07119 ^{\{ 5 \}} | 0.05699 ^{\{ 2 \}} | 0.07212 ^{\{ 6 \}} | ||
\hat{b} | 0.29126 ^{\{ 1 \}} | 0.31942 ^{\{ 2 \}} | 0.43464 ^{\{ 6 \}} | 0.48268 ^{\{ 8 \}} | 0.44893 ^{\{ 7 \}} | 0.43375 ^{\{ 5 \}} | 0.32104 ^{\{ 3 \}} | 0.39031 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.34879 ^{\{ 1 \}} | 0.44978 ^{\{ 2 \}} | 0.53932 ^{\{ 6 \}} | 0.49921 ^{\{ 4 \}} | 0.5513 ^{\{ 7 \}} | 0.56129 ^{\{ 8 \}} | 0.45767 ^{\{ 3 \}} | 0.50436 ^{\{ 5 \}} | |
\hat{a} | 0.07496 ^{\{ 1 \}} | 0.09266 ^{\{ 3 \}} | 0.10313 ^{\{ 7 \}} | 0.09757 ^{\{ 4 \}} | 0.10347 ^{\{ 8 \}} | 0.09859 ^{\{ 5 \}} | 0.09085 ^{\{ 2 \}} | 0.1025 ^{\{ 6 \}} | ||
\hat{b} | 0.12408 ^{\{ 1 \}} | 0.13926 ^{\{ 2 \}} | 0.16933 ^{\{ 7 \}} | 0.14867 ^{\{ 4 \}} | 0.16865 ^{\{ 6 \}} | 0.17382 ^{\{ 8 \}} | 0.14025 ^{\{ 3 \}} | 0.15101 ^{\{ 5 \}} | ||
D_{abs} | 0.01478 ^{\{ 1 \}} | 0.01563 ^{\{ 4 \}} | 0.01625 ^{\{ 8 \}} | 0.01541 ^{\{ 3 \}} | 0.01591 ^{\{ 6 \}} | 0.01623 ^{\{ 7 \}} | 0.01493 ^{\{ 2 \}} | 0.01584 ^{\{ 5 \}} | ||
D_{max} | 0.02519 ^{\{ 1 \}} | 0.02694 ^{\{ 4 \}} | 0.02821 ^{\{ 8 \}} | 0.02592 ^{\{ 3 \}} | 0.02751 ^{\{ 6 \}} | 0.02814 ^{\{ 7 \}} | 0.02552 ^{\{ 2 \}} | 0.0274 ^{\{ 5 \}} | ||
ASAE | 0.00695 ^{\{ 4 \}} | 0.00682 ^{\{ 3 \}} | 0.00721 ^{\{ 7 \}} | 0.00697 ^{\{ 5 \}} | 0.00704 ^{\{ 6 \}} | 0.00671 ^{\{ 1 \}} | 0.0068 ^{\{ 2 \}} | 0.00775 ^{\{ 8 \}} | ||
\sum Ranks | 15 ^{\{ 1 \}} | 32 ^{\{ 3 \}} | 78 ^{\{ 7 \}} | 58 ^{\{ 4 \}} | 80 ^{\{ 8 \}} | 75 ^{\{ 6 \}} | 30 ^{\{ 2 \}} | 64 ^{\{ 5 \}} | ||
600 | BIAS | \hat{\tau} | 0.19336 ^{\{ 1 \}} | 0.23349 ^{\{ 2 \}} | 0.28978 ^{\{ 6 \}} | 0.23372 ^{\{ 3 \}} | 0.30777 ^{\{ 7 \}} | 0.30949 ^{\{ 8 \}} | 0.23507 ^{\{ 4 \}} | 0.2662 ^{\{ 5 \}} |
\hat{a} | 0.10937 ^{\{ 1 \}} | 0.12304 ^{\{ 2 \}} | 0.14902 ^{\{ 6 \}} | 0.12842 ^{\{ 4 \}} | 0.15724 ^{\{ 8 \}} | 0.13825 ^{\{ 5 \}} | 0.12621 ^{\{ 3 \}} | 0.15464 ^{\{ 7 \}} | ||
\hat{b} | 0.26801 ^{\{ 1 \}} | 0.30194 ^{\{ 4 \}} | 0.37263 ^{\{ 6 \}} | 0.27088 ^{\{ 2 \}} | 0.38556 ^{\{ 7 \}} | 0.42662 ^{\{ 8 \}} | 0.29441 ^{\{ 3 \}} | 0.30703 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.06126 ^{\{ 1 \}} | 0.10127 ^{\{ 2 \}} | 0.15044 ^{\{ 6 \}} | 0.13095 ^{\{ 4 \}} | 0.16716 ^{\{ 8 \}} | 0.16478 ^{\{ 7 \}} | 0.10547 ^{\{ 3 \}} | 0.13164 ^{\{ 5 \}} | |
\hat{a} | 0.0189 ^{\{ 1 \}} | 0.02821 ^{\{ 2 \}} | 0.04017 ^{\{ 6 \}} | 0.03537 ^{\{ 4 \}} | 0.04408 ^{\{ 8 \}} | 0.03582 ^{\{ 5 \}} | 0.02981 ^{\{ 3 \}} | 0.04188 ^{\{ 7 \}} | ||
\hat{b} | 0.12688 ^{\{ 1 \}} | 0.15549 ^{\{ 2 \}} | 0.25123 ^{\{ 6 \}} | 0.18801 ^{\{ 4 \}} | 0.28486 ^{\{ 7 \}} | 0.29794 ^{\{ 8 \}} | 0.15848 ^{\{ 3 \}} | 0.18934 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.25781 ^{\{ 1 \}} | 0.31131 ^{\{ 2 \}} | 0.38638 ^{\{ 6 \}} | 0.31162 ^{\{ 3 \}} | 0.41036 ^{\{ 7 \}} | 0.41265 ^{\{ 8 \}} | 0.31343 ^{\{ 4 \}} | 0.35494 ^{\{ 5 \}} | |
\hat{a} | 0.05468 ^{\{ 1 \}} | 0.06152 ^{\{ 2 \}} | 0.07451 ^{\{ 6 \}} | 0.06421 ^{\{ 4 \}} | 0.07862 ^{\{ 8 \}} | 0.06912 ^{\{ 5 \}} | 0.06311 ^{\{ 3 \}} | 0.07732 ^{\{ 7 \}} | ||
\hat{b} | 0.08934 ^{\{ 1 \}} | 0.10065 ^{\{ 4 \}} | 0.12421 ^{\{ 6 \}} | 0.09029 ^{\{ 2 \}} | 0.12852 ^{\{ 7 \}} | 0.14221 ^{\{ 8 \}} | 0.09814 ^{\{ 3 \}} | 0.10234 ^{\{ 5 \}} | ||
D_{abs} | 0.01062 ^{\{ 2 \}} | 0.01055 ^{\{ 1 \}} | 0.01157 ^{\{ 7 \}} | 0.01098 ^{\{ 3 \}} | 0.01158 ^{\{ 8 \}} | 0.01113 ^{\{ 5 \}} | 0.01112 ^{\{ 4 \}} | 0.0113 ^{\{ 6 \}} | ||
D_{max} | 0.0181 ^{\{ 1 \}} | 0.01823 ^{\{ 2 \}} | 0.02019 ^{\{ 8 \}} | 0.01873 ^{\{ 3 \}} | 0.0201 ^{\{ 7 \}} | 0.01976 ^{\{ 6 \}} | 0.01902 ^{\{ 4 \}} | 0.01972 ^{\{ 5 \}} | ||
ASAE | 0.00457 ^{\{ 5 \}} | 0.00443 ^{\{ 3 \}} | 0.00471 ^{\{ 6 \}} | 0.00456 ^{\{ 4 \}} | 0.00473 ^{\{ 7 \}} | 0.0044 ^{\{ 2 \}} | 0.00435 ^{\{ 1 \}} | 0.00516 ^{\{ 8 \}} | ||
\sum Ranks | 17 ^{\{ 1 \}} | 28 ^{\{ 2 \}} | 75 ^{\{ 6.5 \}} | 40 ^{\{ 4 \}} | 89 ^{\{ 8 \}} | 75 ^{\{ 6.5 \}} | 38 ^{\{ 3 \}} | 70 ^{\{ 5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.28261 ^{\{ 2 \}} | 0.4647 ^{\{ 5 \}} | 0.48379 ^{\{ 7 \}} | 0.41025 ^{\{ 3 \}} | 0.42315 ^{\{ 4 \}} | 0.51017 ^{\{ 8 \}} | 0.47272 ^{\{ 6 \}} | 0.26393 ^{\{ 1 \}} |
\hat{a} | 0.70395 ^{\{ 1 \}} | 0.78929 ^{\{ 3 \}} | 0.91784 ^{\{ 8 \}} | 0.77174 ^{\{ 2 \}} | 0.90659 ^{\{ 7 \}} | 0.82398 ^{\{ 4 \}} | 0.83444 ^{\{ 5 \}} | 0.84481 ^{\{ 6 \}} | ||
\hat{b} | 0.11892 ^{\{ 2 \}} | 0.13452 ^{\{ 6 \}} | 0.13845 ^{\{ 7 \}} | 0.12898 ^{\{ 4 \}} | 0.11407 ^{\{ 1 \}} | 0.14639 ^{\{ 8 \}} | 0.13051 ^{\{ 5 \}} | 0.12794 ^{\{ 3 \}} | ||
MSE | \hat{\tau} | 0.14259 ^{\{ 1 \}} | 0.54086 ^{\{ 5 \}} | 0.58623 ^{\{ 6 \}} | 0.45928 ^{\{ 3 \}} | 0.52049 ^{\{ 4 \}} | 0.67661 ^{\{ 8 \}} | 0.60141 ^{\{ 7 \}} | 0.18215 ^{\{ 2 \}} | |
\hat{a} | 0.92929 ^{\{ 2 \}} | 0.99608 ^{\{ 3 \}} | 1.35102 ^{\{ 8 \}} | 0.89166 ^{\{ 1 \}} | 1.27505 ^{\{ 7 \}} | 1.08694 ^{\{ 4 \}} | 1.10922 ^{\{ 5 \}} | 1.17679 ^{\{ 6 \}} | ||
\hat{b} | 0.02632 ^{\{ 3 \}} | 0.03369 ^{\{ 6 \}} | 0.03609 ^{\{ 7 \}} | 0.02757 ^{\{ 4 \}} | 0.02515 ^{\{ 2 \}} | 0.03881 ^{\{ 8 \}} | 0.03305 ^{\{ 5 \}} | 0.02449 ^{\{ 1 \}} | ||
MRE | \hat{\tau} | 1.13045 ^{\{ 2 \}} | 1.85879 ^{\{ 5 \}} | 1.93515 ^{\{ 7 \}} | 1.64101 ^{\{ 3 \}} | 1.6926 ^{\{ 4 \}} | 2.04067 ^{\{ 8 \}} | 1.8909 ^{\{ 6 \}} | 1.05573 ^{\{ 1 \}} | |
\hat{a} | 0.23465 ^{\{ 1 \}} | 0.2631 ^{\{ 3 \}} | 0.30595 ^{\{ 8 \}} | 0.25725 ^{\{ 2 \}} | 0.3022 ^{\{ 7 \}} | 0.27466 ^{\{ 4 \}} | 0.27815 ^{\{ 5 \}} | 0.2816 ^{\{ 6 \}} | ||
\hat{b} | 0.47569 ^{\{ 2 \}} | 0.53808 ^{\{ 6 \}} | 0.5538 ^{\{ 7 \}} | 0.5159 ^{\{ 4 \}} | 0.45626 ^{\{ 1 \}} | 0.58556 ^{\{ 8 \}} | 0.52205 ^{\{ 5 \}} | 0.51177 ^{\{ 3 \}} | ||
D_{abs} | 0.04268 ^{\{ 1 \}} | 0.04508 ^{\{ 3 \}} | 0.04693 ^{\{ 8 \}} | 0.04333 ^{\{ 2 \}} | 0.04525 ^{\{ 4 \}} | 0.04586 ^{\{ 6 \}} | 0.0455 ^{\{ 5 \}} | 0.04675 ^{\{ 7 \}} | ||
D_{max} | 0.0706 ^{\{ 1 \}} | 0.07457 ^{\{ 3 \}} | 0.07976 ^{\{ 8 \}} | 0.0712 ^{\{ 2 \}} | 0.07566 ^{\{ 5 \}} | 0.07738 ^{\{ 7 \}} | 0.07522 ^{\{ 4 \}} | 0.07734 ^{\{ 6 \}} | ||
ASAE | 0.02998 ^{\{ 6 \}} | 0.02782 ^{\{ 4 \}} | 0.02947 ^{\{ 5 \}} | 0.02765 ^{\{ 3 \}} | 0.03091 ^{\{ 7 \}} | 0.02581 ^{\{ 1 \}} | 0.02751 ^{\{ 2 \}} | 0.03566 ^{\{ 8 \}} | ||
\sum Ranks | 24 ^{\{ 1 \}} | 52 ^{\{ 4 \}} | 86 ^{\{ 8 \}} | 33 ^{\{ 2 \}} | 53 ^{\{ 5 \}} | 74 ^{\{ 7 \}} | 60 ^{\{ 6 \}} | 50 ^{\{ 3 \}} | ||
70 | BIAS | \hat{\tau} | 0.26535 ^{\{ 2 \}} | 0.35171 ^{\{ 5 \}} | 0.40366 ^{\{ 7 \}} | 0.29134 ^{\{ 3 \}} | 0.35289 ^{\{ 6 \}} | 0.42263 ^{\{ 8 \}} | 0.34207 ^{\{ 4 \}} | 0.24784 ^{\{ 1 \}} |
\hat{a} | 0.47336 ^{\{ 1 \}} | 0.55386 ^{\{ 3 \}} | 0.64736 ^{\{ 7 \}} | 0.55627 ^{\{ 4 \}} | 0.64889 ^{\{ 8 \}} | 0.61187 ^{\{ 6 \}} | 0.54143 ^{\{ 2 \}} | 0.59785 ^{\{ 5 \}} | ||
\hat{b} | 0.09971 ^{\{ 1 \}} | 0.11155 ^{\{ 5 \}} | 0.11542 ^{\{ 6 \}} | 0.10741 ^{\{ 3 \}} | 0.10532 ^{\{ 2 \}} | 0.12794 ^{\{ 8 \}} | 0.10844 ^{\{ 4 \}} | 0.11607 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.12711 ^{\{ 1 \}} | 0.28471 ^{\{ 4 \}} | 0.4177 ^{\{ 7 \}} | 0.22138 ^{\{ 3 \}} | 0.33996 ^{\{ 6 \}} | 0.48266 ^{\{ 8 \}} | 0.30172 ^{\{ 5 \}} | 0.13702 ^{\{ 2 \}} | |
\hat{a} | 0.36529 ^{\{ 1 \}} | 0.48714 ^{\{ 4 \}} | 0.68965 ^{\{ 8 \}} | 0.48295 ^{\{ 2 \}} | 0.66234 ^{\{ 7 \}} | 0.6146 ^{\{ 6 \}} | 0.48359 ^{\{ 3 \}} | 0.58995 ^{\{ 5 \}} | ||
\hat{b} | 0.01575 ^{\{ 1 \}} | 0.02146 ^{\{ 5 \}} | 0.02598 ^{\{ 7 \}} | 0.01737 ^{\{ 2 \}} | 0.02098 ^{\{ 4 \}} | 0.03058 ^{\{ 8 \}} | 0.02191 ^{\{ 6 \}} | 0.01909 ^{\{ 3 \}} | ||
MRE | \hat{\tau} | 1.06141 ^{\{ 2 \}} | 1.40685 ^{\{ 5 \}} | 1.61465 ^{\{ 7 \}} | 1.16535 ^{\{ 3 \}} | 1.41156 ^{\{ 6 \}} | 1.6905 ^{\{ 8 \}} | 1.3683 ^{\{ 4 \}} | 0.99135 ^{\{ 1 \}} | |
\hat{a} | 0.15779 ^{\{ 1 \}} | 0.18462 ^{\{ 3 \}} | 0.21579 ^{\{ 7 \}} | 0.18542 ^{\{ 4 \}} | 0.2163 ^{\{ 8 \}} | 0.20396 ^{\{ 6 \}} | 0.18048 ^{\{ 2 \}} | 0.19928 ^{\{ 5 \}} | ||
\hat{b} | 0.39883 ^{\{ 1 \}} | 0.44619 ^{\{ 5 \}} | 0.46169 ^{\{ 6 \}} | 0.42965 ^{\{ 3 \}} | 0.42127 ^{\{ 2 \}} | 0.51178 ^{\{ 8 \}} | 0.43376 ^{\{ 4 \}} | 0.46429 ^{\{ 7 \}} | ||
D_{abs} | 0.02997 ^{\{ 1 \}} | 0.03175 ^{\{ 4 \}} | 0.03324 ^{\{ 8 \}} | 0.03081 ^{\{ 2 \}} | 0.03247 ^{\{ 5 \}} | 0.0327 ^{\{ 7 \}} | 0.03127 ^{\{ 3 \}} | 0.03251 ^{\{ 6 \}} | ||
D_{max} | 0.0499 ^{\{ 1 \}} | 0.05326 ^{\{ 4 \}} | 0.05658 ^{\{ 8 \}} | 0.05081 ^{\{ 2 \}} | 0.05486 ^{\{ 6 \}} | 0.05572 ^{\{ 7 \}} | 0.05218 ^{\{ 3 \}} | 0.05438 ^{\{ 5 \}} | ||
ASAE | 0.01808 ^{\{ 5 \}} | 0.0179 ^{\{ 4 \}} | 0.01884 ^{\{ 6 \}} | 0.01751 ^{\{ 3 \}} | 0.0192 ^{\{ 7 \}} | 0.01618 ^{\{ 1 \}} | 0.01733 ^{\{ 2 \}} | 0.02197 ^{\{ 8 \}} | ||
\sum Ranks | 18 ^{\{ 1 \}} | 51 ^{\{ 4 \}} | 84 ^{\{ 8 \}} | 34 ^{\{ 2 \}} | 67 ^{\{ 6 \}} | 81 ^{\{ 7 \}} | 42 ^{\{ 3 \}} | 55 ^{\{ 5 \}} | ||
150 | BIAS | \hat{\tau} | 0.20572 ^{\{ 2 \}} | 0.23878 ^{\{ 4 \}} | 0.31697 ^{\{ 8 \}} | 0.216 ^{\{ 3 \}} | 0.29435 ^{\{ 7 \}} | 0.28901 ^{\{ 6 \}} | 0.25867 ^{\{ 5 \}} | 0.20305 ^{\{ 1 \}} |
\hat{a} | 0.30956 ^{\{ 1 \}} | 0.34668 ^{\{ 2 \}} | 0.42934 ^{\{ 7 \}} | 0.34894 ^{\{ 3 \}} | 0.4327 ^{\{ 8 \}} | 0.39302 ^{\{ 5 \}} | 0.36418 ^{\{ 4 \}} | 0.41109 ^{\{ 6 \}} | ||
\hat{b} | 0.07839 ^{\{ 1 \}} | 0.08716 ^{\{ 2 \}} | 0.09845 ^{\{ 8 \}} | 0.08897 ^{\{ 3 \}} | 0.09366 ^{\{ 5 \}} | 0.09844 ^{\{ 7 \}} | 0.09049 ^{\{ 4 \}} | 0.09505 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.0763 ^{\{ 2 \}} | 0.11584 ^{\{ 4 \}} | 0.24604 ^{\{ 8 \}} | 0.08934 ^{\{ 3 \}} | 0.21433 ^{\{ 6 \}} | 0.22492 ^{\{ 7 \}} | 0.14363 ^{\{ 5 \}} | 0.07388 ^{\{ 1 \}} | |
\hat{a} | 0.15388 ^{\{ 1 \}} | 0.18414 ^{\{ 2 \}} | 0.29541 ^{\{ 8 \}} | 0.19105 ^{\{ 3 \}} | 0.29359 ^{\{ 7 \}} | 0.25171 ^{\{ 5 \}} | 0.20937 ^{\{ 4 \}} | 0.26876 ^{\{ 6 \}} | ||
\hat{b} | 0.00994 ^{\{ 1 \}} | 0.01226 ^{\{ 3 \}} | 0.01875 ^{\{ 7 \}} | 0.01132 ^{\{ 2 \}} | 0.01714 ^{\{ 6 \}} | 0.01897 ^{\{ 8 \}} | 0.014 ^{\{ 5 \}} | 0.01332 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.82287 ^{\{ 2 \}} | 0.95511 ^{\{ 4 \}} | 1.26786 ^{\{ 8 \}} | 0.86398 ^{\{ 3 \}} | 1.17741 ^{\{ 7 \}} | 1.15604 ^{\{ 6 \}} | 1.03466 ^{\{ 5 \}} | 0.81219 ^{\{ 1 \}} | |
\hat{a} | 0.10319 ^{\{ 1 \}} | 0.11556 ^{\{ 2 \}} | 0.14311 ^{\{ 7 \}} | 0.11631 ^{\{ 3 \}} | 0.14423 ^{\{ 8 \}} | 0.13101 ^{\{ 5 \}} | 0.12139 ^{\{ 4 \}} | 0.13703 ^{\{ 6 \}} | ||
\hat{b} | 0.31354 ^{\{ 1 \}} | 0.34864 ^{\{ 2 \}} | 0.39378 ^{\{ 8 \}} | 0.35589 ^{\{ 3 \}} | 0.37463 ^{\{ 5 \}} | 0.39376 ^{\{ 7 \}} | 0.36195 ^{\{ 4 \}} | 0.38019 ^{\{ 6 \}} | ||
D_{abs} | 0.02072 ^{\{ 1 \}} | 0.02107 ^{\{ 2 \}} | 0.0225 ^{\{ 7 \}} | 0.02189 ^{\{ 4 \}} | 0.02263 ^{\{ 8 \}} | 0.02228 ^{\{ 6 \}} | 0.02197 ^{\{ 5 \}} | 0.02181 ^{\{ 3 \}} | ||
D_{max} | 0.03401 ^{\{ 1 \}} | 0.03512 ^{\{ 2 \}} | 0.03847 ^{\{ 8 \}} | 0.03585 ^{\{ 3 \}} | 0.03844 ^{\{ 7 \}} | 0.038 ^{\{ 6 \}} | 0.0367 ^{\{ 4 \}} | 0.03682 ^{\{ 5 \}} | ||
ASAE | 0.01108 ^{\{ 5 \}} | 0.0106 ^{\{ 3 \}} | 0.01135 ^{\{ 6 \}} | 0.01106 ^{\{ 4 \}} | 0.01179 ^{\{ 7 \}} | 0.00992 ^{\{ 1 \}} | 0.01047 ^{\{ 2 \}} | 0.01254 ^{\{ 8 \}} | ||
\sum Ranks | 19 ^{\{ 1 \}} | 32 ^{\{ 2 \}} | 90 ^{\{ 8 \}} | 37 ^{\{ 3 \}} | 81 ^{\{ 7 \}} | 69 ^{\{ 6 \}} | 51 ^{\{ 4 \}} | 53 ^{\{ 5 \}} | ||
300 | BIAS | \hat{\tau} | 0.16066 ^{\{ 1 \}} | 0.18134 ^{\{ 3 \}} | 0.23938 ^{\{ 8 \}} | 0.17022 ^{\{ 2 \}} | 0.22051 ^{\{ 6 \}} | 0.23877 ^{\{ 7 \}} | 0.1881 ^{\{ 4 \}} | 0.18849 ^{\{ 5 \}} |
\hat{a} | 0.22654 ^{\{ 2 \}} | 0.24264 ^{\{ 3 \}} | 0.2944 ^{\{ 7 \}} | 0.22178 ^{\{ 1 \}} | 0.28817 ^{\{ 6 \}} | 0.26568 ^{\{ 5 \}} | 0.25777 ^{\{ 4 \}} | 0.30304 ^{\{ 8 \}} | ||
\hat{b} | 0.06214 ^{\{ 1 \}} | 0.07012 ^{\{ 2 \}} | 0.08156 ^{\{ 6 \}} | 0.07737 ^{\{ 4 \}} | 0.07758 ^{\{ 5 \}} | 0.08871 ^{\{ 8 \}} | 0.07058 ^{\{ 3 \}} | 0.08471 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.04415 ^{\{ 2 \}} | 0.05978 ^{\{ 4 \}} | 0.11788 ^{\{ 7 \}} | 0.04234 ^{\{ 1 \}} | 0.10883 ^{\{ 6 \}} | 0.13383 ^{\{ 8 \}} | 0.06789 ^{\{ 5 \}} | 0.05456 ^{\{ 3 \}} | |
\hat{a} | 0.08313 ^{\{ 2 \}} | 0.09201 ^{\{ 3 \}} | 0.14205 ^{\{ 8 \}} | 0.07858 ^{\{ 1 \}} | 0.13512 ^{\{ 6 \}} | 0.11565 ^{\{ 5 \}} | 0.10225 ^{\{ 4 \}} | 0.13876 ^{\{ 7 \}} | ||
\hat{b} | 0.00617 ^{\{ 1 \}} | 0.00773 ^{\{ 2 \}} | 0.01181 ^{\{ 7 \}} | 0.00837 ^{\{ 4 \}} | 0.01107 ^{\{ 6 \}} | 0.015 ^{\{ 8 \}} | 0.00814 ^{\{ 3 \}} | 0.01064 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.64263 ^{\{ 1 \}} | 0.72534 ^{\{ 3 \}} | 0.95752 ^{\{ 8 \}} | 0.68088 ^{\{ 2 \}} | 0.88205 ^{\{ 6 \}} | 0.95509 ^{\{ 7 \}} | 0.75242 ^{\{ 4 \}} | 0.75394 ^{\{ 5 \}} | |
\hat{a} | 0.07551 ^{\{ 2 \}} | 0.08088 ^{\{ 3 \}} | 0.09813 ^{\{ 7 \}} | 0.07393 ^{\{ 1 \}} | 0.09606 ^{\{ 6 \}} | 0.08856 ^{\{ 5 \}} | 0.08592 ^{\{ 4 \}} | 0.10101 ^{\{ 8 \}} | ||
\hat{b} | 0.24856 ^{\{ 1 \}} | 0.28049 ^{\{ 2 \}} | 0.32624 ^{\{ 6 \}} | 0.30949 ^{\{ 4 \}} | 0.31033 ^{\{ 5 \}} | 0.35482 ^{\{ 8 \}} | 0.2823 ^{\{ 3 \}} | 0.33885 ^{\{ 7 \}} | ||
D_{abs} | 0.01473 ^{\{ 2 \}} | 0.01494 ^{\{ 3 \}} | 0.01581 ^{\{ 6 \}} | 0.01432 ^{\{ 1 \}} | 0.01598 ^{\{ 7 \}} | 0.01578 ^{\{ 5 \}} | 0.01551 ^{\{ 4 \}} | 0.01624 ^{\{ 8 \}} | ||
D_{max} | 0.02441 ^{\{ 2 \}} | 0.02498 ^{\{ 3 \}} | 0.02726 ^{\{ 8 \}} | 0.02345 ^{\{ 1 \}} | 0.027 ^{\{ 5 \}} | 0.02708 ^{\{ 6 \}} | 0.02606 ^{\{ 4 \}} | 0.02724 ^{\{ 7 \}} | ||
ASAE | 0.00706 ^{\{ 5 \}} | 0.00686 ^{\{ 3 \}} | 0.00722 ^{\{ 6 \}} | 0.00694 ^{\{ 4 \}} | 0.00749 ^{\{ 7 \}} | 0.00632 ^{\{ 1 \}} | 0.00684 ^{\{ 2 \}} | 0.0084 ^{\{ 8 \}} | ||
\sum Ranks | 22 ^{\{ 1 \}} | 34 ^{\{ 3 \}} | 84 ^{\{ 8 \}} | 26 ^{\{ 2 \}} | 71 ^{\{ 5 \}} | 73 ^{\{ 6 \}} | 44 ^{\{ 4 \}} | 78 ^{\{ 7 \}} | ||
600 | BIAS | \hat{\tau} | 0.13045 ^{\{ 1 \}} | 0.14467 ^{\{ 4 \}} | 0.1922 ^{\{ 7 \}} | 0.13076 ^{\{ 2 \}} | 0.18277 ^{\{ 6 \}} | 0.19589 ^{\{ 8 \}} | 0.15452 ^{\{ 5 \}} | 0.14197 ^{\{ 3 \}} |
\hat{a} | 0.1464 ^{\{ 1 \}} | 0.17091 ^{\{ 3 \}} | 0.19656 ^{\{ 6 \}} | 0.15933 ^{\{ 2 \}} | 0.20011 ^{\{ 7 \}} | 0.18356 ^{\{ 5 \}} | 0.17299 ^{\{ 4 \}} | 0.21255 ^{\{ 8 \}} | ||
\hat{b} | 0.05408 ^{\{ 1 \}} | 0.05771 ^{\{ 2 \}} | 0.0699 ^{\{ 7 \}} | 0.06108 ^{\{ 4 \}} | 0.06848 ^{\{ 6 \}} | 0.07427 ^{\{ 8 \}} | 0.06095 ^{\{ 3 \}} | 0.06422 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.02716 ^{\{ 2 \}} | 0.03419 ^{\{ 4 \}} | 0.06868 ^{\{ 7 \}} | 0.02593 ^{\{ 1 \}} | 0.0615 ^{\{ 6 \}} | 0.08038 ^{\{ 8 \}} | 0.03947 ^{\{ 5 \}} | 0.03024 ^{\{ 3 \}} | |
\hat{a} | 0.03481 ^{\{ 1 \}} | 0.04524 ^{\{ 3 \}} | 0.06127 ^{\{ 6 \}} | 0.04288 ^{\{ 2 \}} | 0.06229 ^{\{ 7 \}} | 0.05226 ^{\{ 5 \}} | 0.04678 ^{\{ 4 \}} | 0.06879 ^{\{ 8 \}} | ||
\hat{b} | 0.00463 ^{\{ 1 \}} | 0.00511 ^{\{ 2 \}} | 0.00825 ^{\{ 7 \}} | 0.00581 ^{\{ 4 \}} | 0.00774 ^{\{ 6 \}} | 0.01049 ^{\{ 8 \}} | 0.0057 ^{\{ 3 \}} | 0.00661 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.52182 ^{\{ 1 \}} | 0.57868 ^{\{ 4 \}} | 0.76881 ^{\{ 7 \}} | 0.52302 ^{\{ 2 \}} | 0.73109 ^{\{ 6 \}} | 0.78357 ^{\{ 8 \}} | 0.61806 ^{\{ 5 \}} | 0.56786 ^{\{ 3 \}} | |
\hat{a} | 0.0488 ^{\{ 1 \}} | 0.05697 ^{\{ 3 \}} | 0.06552 ^{\{ 6 \}} | 0.05311 ^{\{ 2 \}} | 0.0667 ^{\{ 7 \}} | 0.06119 ^{\{ 5 \}} | 0.05766 ^{\{ 4 \}} | 0.07085 ^{\{ 8 \}} | ||
\hat{b} | 0.21631 ^{\{ 1 \}} | 0.23082 ^{\{ 2 \}} | 0.27958 ^{\{ 7 \}} | 0.24431 ^{\{ 4 \}} | 0.27392 ^{\{ 6 \}} | 0.29709 ^{\{ 8 \}} | 0.24381 ^{\{ 3 \}} | 0.25689 ^{\{ 5 \}} | ||
D_{abs} | 0.00998 ^{\{ 1 \}} | 0.01059 ^{\{ 3 \}} | 0.01162 ^{\{ 8 \}} | 0.01045 ^{\{ 2 \}} | 0.01138 ^{\{ 7 \}} | 0.01125 ^{\{ 6 \}} | 0.01098 ^{\{ 4 \}} | 0.01118 ^{\{ 5 \}} | ||
D_{max} | 0.01645 ^{\{ 1 \}} | 0.01762 ^{\{ 3 \}} | 0.01993 ^{\{ 8 \}} | 0.01726 ^{\{ 2 \}} | 0.01949 ^{\{ 7 \}} | 0.01935 ^{\{ 6 \}} | 0.01833 ^{\{ 4 \}} | 0.01893 ^{\{ 5 \}} | ||
ASAE | 0.00442 ^{\{ 3 \}} | 0.00443 ^{\{ 4 \}} | 0.00475 ^{\{ 7 \}} | 0.00444 ^{\{ 5 \}} | 0.00472 ^{\{ 6 \}} | 0.00408 ^{\{ 1 \}} | 0.00436 ^{\{ 2 \}} | 0.00545 ^{\{ 8 \}} | ||
\sum Ranks | 15 ^{\{ 1 \}} | 37 ^{\{ 3 \}} | 83 ^{\{ 8 \}} | 32 ^{\{ 2 \}} | 77 ^{\{ 7 \}} | 76 ^{\{ 6 \}} | 46 ^{\{ 4 \}} | 66 ^{\{ 5 \}} |
Parameter | n | MLE | ADE | CVME | MPSE | OLSE | RTADE | WLSE | LTADE |
\tau=0.5 , a=0.25 , b=0.75 | 35 | 4 | 2 | 7 | 1 | 6 | 5 | 3 | 8 |
70 | 5.5 | 2 | 7 | 1 | 5.5 | 4 | 3 | 8 | |
150 | 5 | 3 | 6 | 1 | 7 | 4 | 2 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 4 | 2 | 6 | 1 | 7.5 | 5 | 3 | 7.5 | |
\tau=1.5 , a=0.75 , b=0.5 | 35 | 2.5 | 5 | 7 | 1 | 6 | 4 | 2.5 | 8 |
70 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
150 | 5 | 2 | 6 | 1 | 7 | 4 | 3 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
\tau=2 , a=0.5 , b=1.5 | 35 | 1 | 3.5 | 5 | 3.5 | 6 | 7 | 2 | 8 |
70 | 1 | 2 | 5 | 4 | 7 | 8 | 3 | 6 | |
150 | 1 | 2 | 7 | 4.5 | 6 | 8 | 3 | 4.5 | |
300 | 1 | 4 | 5 | 3 | 8 | 7 | 2 | 6 | |
600 | 1 | 4 | 8 | 2.5 | 6 | 7 | 2.5 | 5 | |
\tau=2 , a=1.5 , b=2 | 35 | 2 | 3 | 6 | 4 | 7 | 1 | 5 | 8 |
70 | 1 | 2 | 7 | 5 | 6 | 4 | 3 | 8 | |
150 | 1 | 2 | 6 | 4 | 8 | 5 | 3 | 7 | |
300 | 1 | 4 | 6 | 3 | 7 | 5 | 2 | 8 | |
600 | 1 | 3 | 6 | 2 | 7.5 | 5 | 4 | 7.5 | |
\tau=0.75 , a=2 , b=3 | 35 | 1 | 2 | 3 | 6 | 4 | 7 | 5 | 8 |
70 | 1 | 2 | 4 | 6 | 7 | 5 | 3 | 8 | |
150 | 1 | 2 | 5 | 6 | 7 | 4 | 3 | 8 | |
300 | 1 | 3 | 7 | 4 | 8 | 6 | 2 | 5 | |
600 | 1 | 2 | 6.5 | 4 | 8 | 6.5 | 3 | 5 | |
\tau=0.25 , a=3 , b=0.25 | 35 | 1 | 4 | 8 | 2 | 5 | 7 | 6 | 3 |
70 | 1 | 4 | 8 | 2 | 6 | 7 | 3 | 5 | |
150 | 1 | 2 | 8 | 3 | 7 | 6 | 4 | 5 | |
300 | 1 | 3 | 8 | 2 | 5 | 6 | 4 | 7 | |
600 | 1 | 3 | 8 | 2 | 7 | 6 | 4 | 5 | |
\sum Ranks | 67.0 | 80.5 | 193.5 | 82.5 | 195.5 | 159.5 | 95.0 | 206.5 | |
Overall Rank | 1 | 2 | 6 | 3 | 7 | 5 | 4 | 8 |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=0.25 | 35 | a | 0.1424 | 0.3840 | 0.2416 | 95.2% | 0.1240 | 0.3716 | 0.2475 | 97.4% |
b | 0.3074 | 1.3956 | 1.0881 | 96.2% | 0.1761 | 1.3511 | 1.1751 | 98.6% | ||
\tau | -0.1474 | 1.3940 | 1.5415 | 94.6% | -0.2409 | 1.3937 | 1.6346 | 95.6% | ||
70 | a | 0.1680 | 0.3336 | 0.1655 | 95.8% | 0.1571 | 0.3300 | 0.1730 | 96.0% | |
b | 0.3442 | 1.2438 | 0.8996 | 94.6% | 0.2876 | 1.1783 | 0.8907 | 96.8% | ||
\tau | -0.0981 | 1.3002 | 1.3983 | 94.2% | -0.0982 | 1.1923 | 1.2906 | 96.8% | ||
b=0.75 | 150 | a | 0.1940 | 0.3084 | 0.1144 | 94.2% | 0.1890 | 0.3050 | 0.1160 | 96.4% |
b | 0.4466 | 1.0598 | 0.6132 | 93.2% | 0.4220 | 1.0220 | 0.6001 | 96.4% | ||
\tau | 0.0900 | 0.9525 | 0.8625 | 94.0% | 0.1039 | 0.8881 | 0.7841 | 95.0% | ||
\tau=0.5 | 300 | a | 0.2082 | 0.2896 | 0.0814 | 95.2% | 0.2092 | 0.2852 | 0.0761 | 96.4% |
b | 0.4659 | 1.0316 | 0.5657 | 94.8% | 0.5239 | 0.9391 | 0.4153 | 96.2% | ||
\tau | 0.0907 | 0.9503 | 0.8596 | 93.6% | 0.2218 | 0.7761 | 0.5543 | 95.8% | ||
600 | a | 0.2172 | 0.2825 | 0.0654 | 94.2% | 0.2162 | 0.2805 | 0.0643 | 95.4% | |
b | 0.5764 | 0.9262 | 0.3498 | 93.6% | 0.5853 | 0.8925 | 0.3073 | 95.2% | ||
\tau | 0.2346 | 0.7904 | 0.5559 | 94.6% | 0.2858 | 0.7160 | 0.4302 | 96.0% | ||
a=0.75 | 35 | a | 0.3749 | 1.7629 | 1.3880 | 96.8% | 0.2215 | 1.6978 | 1.4762 | 98.2% |
b | 0.1733 | 0.7843 | 0.6110 | 91.0% | 0.1273 | 0.7737 | 0.6464 | 92.8% | ||
\tau | 0.0167 | 2.3436 | 2.3269 | 99.8% | -0.1434 | 2.5520 | 2.6954 | 100.0% | ||
70 | a | 0.5547 | 1.4283 | 0.8736 | 95.2% | 0.4283 | 1.4450 | 1.0167 | 97.8% | |
b | 0.1933 | 0.7132 | 0.5198 | 92.0% | 0.1226 | 0.7452 | 0.6226 | 93.8% | ||
\tau | 0.1180 | 2.1860 | 2.0680 | 94.2% | -0.1264 | 2.4289 | 2.5553 | 100.0% | ||
b=0.5 | 150 | a | 0.6664 | 1.3496 | 0.6831 | 94.8% | 0.5957 | 1.3420 | 0.7462 | 97.8% |
b | 0.2169 | 0.6506 | 0.4337 | 93.0% | 0.2726 | 0.6031 | 0.3306 | 93.2% | ||
\tau | 0.1519 | 1.9431 | 1.7911 | 94.4% | 0.3050 | 1.8915 | 1.5865 | 93.0% | ||
\tau=1.5 | 300 | a | 0.7354 | 1.2244 | 0.4890 | 95.2% | 0.6828 | 1.2239 | 0.5411 | 96.6% |
b | 0.3296 | 0.5786 | 0.2489 | 95.4% | 0.3910 | 0.5441 | 0.1531 | 89.8% | ||
\tau | 0.5329 | 1.7045 | 1.1716 | 95.6% | 0.7327 | 1.6352 | 0.9025 | 90.8% | ||
600 | a | 0.8075 | 1.1805 | 0.3730 | 95.2% | 0.7656 | 1.1558 | 0.3902 | 98.6% | |
b | 0.3372 | 0.5607 | 0.2236 | 97.4% | 0.4507 | 0.4944 | 0.0438 | 49.6% | ||
\tau | 0.5921 | 1.5764 | 0.9843 | 96.6% | 0.9952 | 1.3684 | 0.3732 | 65.0% | ||
a=0.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
\tau | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
\tau | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=1.5 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
\tau | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
\tau=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
\tau | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
\tau | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=1.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
\tau | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
\tau | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=2 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
\tau | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
\tau=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
\tau | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
\tau | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% | ||
a=2 | 35 | a | 1.4516 | 3.0180 | 1.5664 | 95.2% | 1.2272 | 3.0073 | 1.7800 | 98.6% |
b | 1.2482 | 5.2132 | 3.9651 | 95.8% | 0.8513 | 4.9181 | 4.0668 | 99.2% | ||
\tau | -0.2282 | 1.6153 | 1.8435 | 95.6% | -0.4111 | 1.7960 | 2.2071 | 94.0% | ||
70 | a | 1.6144 | 2.7305 | 1.1160 | 95.0% | 1.4843 | 2.7390 | 1.2547 | 97.6% | |
b | 1.4910 | 4.6090 | 3.1180 | 96.2% | 1.1561 | 4.5050 | 3.3489 | 99.0% | ||
\tau | -0.0943 | 1.4316 | 1.5259 | 95.2% | -0.2493 | 1.5585 | 1.8078 | 94.8% | ||
b=3 | 150 | a | 1.7896 | 2.5391 | 0.7496 | 95.4% | 1.7365 | 2.5418 | 0.8053 | 96.2% |
b | 1.7926 | 4.1551 | 2.3625 | 96.2% | 1.6447 | 4.0422 | 2.3974 | 96.8% | ||
\tau | 0.0645 | 1.1806 | 1.1161 | 96.6% | 0.0097 | 1.1917 | 1.1821 | 97.0% | ||
\tau=0.75 | 300 | a | 1.9039 | 2.4287 | 0.5249 | 95.8% | 1.8799 | 2.4292 | 0.5493 | 97.4% |
b | 2.1524 | 3.7909 | 1.6385 | 94.2% | 1.9889 | 3.7889 | 1.8000 | 97.2% | ||
\tau | 0.1813 | 1.0293 | 0.8480 | 95.4% | 0.1349 | 1.0399 | 0.9050 | 97.0% | ||
600 | a | 1.9724 | 2.3730 | 0.4006 | 95.6% | 1.9612 | 2.3715 | 0.4103 | 96.0% | |
b | 2.3438 | 3.5541 | 1.2102 | 94.2% | 2.3352 | 3.4916 | 1.1564 | 95.4% | ||
\tau | 0.2739 | 0.9082 | 0.6344 | 95.0% | 0.2774 | 0.8905 | 0.6131 | 96.2% | ||
a=3 | 35 | a | 1.9729 | 4.6161 | 2.6432 | 95.8% | 1.8782 | 4.3354 | 2.4572 | 97.0% |
b | -0.0293 | 0.7353 | 0.7646 | 97.0% | -0.0398 | 0.6755 | 0.7154 | 98.0% | ||
\tau | -0.4116 | 1.4397 | 1.8512 | 94.0% | -0.4786 | 1.4140 | 1.8926 | 95.4% | ||
70 | a | 2.4063 | 3.9743 | 1.5680 | 94.2% | 2.2750 | 3.9640 | 1.6890 | 94.2% | |
b | -0.0284 | 0.5486 | 0.5770 | 94.8% | -0.0534 | 0.5696 | 0.6230 | 97.4% | ||
\tau | -0.3834 | 1.0028 | 1.3862 | 93.4% | -0.4462 | 1.0793 | 1.5255 | 93.6% | ||
b=0.25 | 150 | a | 2.6660 | 3.7299 | 1.0639 | 93.4% | 2.6852 | 3.6862 | 1.0010 | 94.4% |
b | 0.0336 | 0.4138 | 0.3803 | 94.2% | -0.0209 | 0.5050 | 0.5260 | 91.6% | ||
\tau | -0.2258 | 0.6358 | 0.8616 | 93.8% | -0.3280 | 0.8359 | 1.1640 | 88.4% | ||
\tau=0.25 | 300 | a | 2.8201 | 3.5448 | 0.7248 | 94.0% | 2.9279 | 3.5496 | 0.6216 | 93.8% |
b | 0.0642 | 0.3265 | 0.2624 | 92.6% | 0.2438 | 0.3026 | 0.0587 | 98.2% | ||
\tau | -0.1524 | 0.4342 | 0.5866 | 92.8% | 0.3140 | 0.3670 | 0.0530 | 97.3% | ||
600 | a | 2.9387 | 3.4003 | 0.4616 | 94.8% | 2.9697 | 3.1695 | 0.1998 | 98.1% | |
b | 0.1070 | 0.2593 | 0.1523 | 95.4% | 0.3550 | 0.1831 | -0.1719 | 96.9% | ||
\tau | -0.0465 | 0.2697 | 0.3162 | 95.4% | 0.4718 | 0.1116 | -0.3601 | 97.5% |
\alpha | \beta | \tau | \theta | \lambda | ||
EGAPE | Estimates | 1.8897 | 29.0863 | 1.7697 | ||
SE | 0.5609 | 21.0642 | 0.8618 | |||
EL | Estimates | 77.2175 | 12.0930 | 3.6927 | ||
SE | 116.8405 | 17.6372 | 7.7470 | |||
KW | Estimates | 30.4293 | 0.3994 | 1.7768 | 1.4045 | |
SE | 35.9424 | 0.4654 | 0.8620 | 0.6895 | ||
EW | Estimates | 2.757653 | 13.05099 | 11.26919 | ||
SE | 0.425237 | 16.18943 | 25.32466 | |||
MOAPEW | Estimates | 0.0048 | 0.4068 | 0.1943 | 0.4860 | 0.0038 |
SE | 0.0070 | 0.1936 | 0.0756 | 0.2005 | 0.0011 | |
KMGE | Estimates | 32.4295 | 2.0003 | |||
SE | 20.6526 | 0.4056 | ||||
EHLINH | Estimates | 6.7046 | 28.4439 | 0.0674 | ||
SE | 2.0967 | 65.6860 | 0.1601 | |||
ExEx | Estimates | 133.3134 | 0.0028 | |||
SE | 78.3222 | 0.0015 | ||||
OWITL | Estimates | 2.9015 | 79.0976 | 0.3261 | ||
SE | 0.4311 | 115.5561 | 0.1408 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.1163 | 0.9495 | 37.8850 | 40.8722 | 39.3850 | 38.4682 | 0.0427 | 0.2510 |
EL | 0.1211 | 0.9308 | 37.5124 | 40.4996 | 39.0124 | 38.0955 | 0.0391 | 0.2260 |
KW | 0.1392 | 0.8329 | 39.9867 | 43.9696 | 42.6534 | 40.7642 | 0.0498 | 0.2913 |
MOAPEW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
EW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
KMGE | 0.1206 | 0.9330 | 35.9024 | 37.8938 | 36.6082 | 36.2911 | 0.0438 | 0.2576 |
EHLINH | 0.1294 | 0.8912 | 37.9113 | 40.8985 | 39.4113 | 38.4944 | 0.0457 | 0.2641 |
ExEx | 0.4041 | 0.0029 | 59.5574 | 61.5489 | 60.2633 | 59.9461 | 0.1761 | 1.0400 |
OWITL | 0.1783 | 0.5481 | 44.5537 | 47.5409 | 46.0537 | 45.1369 | 0.1441 | 0.8519 |
\alpha | \beta | \tau | \theta | \lambda | ||
EGAPE | Estimates | 0.0886 | 1.4401 | 0.6050 | ||
SE | 0.0157 | 0.5555 | 0.6115 | |||
TLMW | Estimates | 0.0106 | 0.0101 | 1.2689 | 1.2680 | |
SE | 0.0740 | 0.0276 | 0.2493 | 1.0647 | ||
TIIEHLPL | Estimates | 1.7143 | 0.1844 | 28.8074 | 166.7427 | |
SE | 2.9734 | 0.2303 | 71.7154 | 27.4533 | ||
EL | Estimates | 1.8125 | 11.2464 | 123.1732 | ||
SE | 0.3163 | 8.1168 | 102.2685 | |||
KW | Estimates | 1.2083 | 2.3127 | 0.0326 | 1.1786 | |
SE | 0.9050 | 6.4453 | 0.0641 | 0.6493 | ||
GMW | Estimates | 0.0370 | 1.2290 | 0.0015 | 1.1750 | |
SE | 0.0939 | 0.9993 | 0.0140 | 0.7523 | ||
MOAPEW | Estimates | 0.3553 | 0.2575 | 0.1384 | 0.0058 | 0.0087 |
SE | 0.5066 | 0.0104 | 0.1008 | 0.0018 | 0.0078 | |
EW | Estimates | 0.2312 | 0.0085 | 0.2914 | ||
SE | 0.0152 | 0.0058 | 0.1531 | |||
KMGE | Estimates | 1.8212 | 0.0675 | |||
SE | 0.2588 | 0.0091 | ||||
EHLINH | Estimates | 19.5686 | 0.2837 | 1589.2263 | ||
SE | 15.3431 | 0.0490 | 237.2804 | |||
ExEx | Estimates | 3.4494 | 0.0117 | |||
SE | 1.9636 | 0.0079 | ||||
OWITL | Estimates | 1.1721 | 0.0508 | 1.1382 | ||
SE | 0.4598 | 0.0350 | 0.5937 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0728 | 0.7453 | 662.0716 | 669.4693 | 662.3608 | 665.0504 | 0.0869 | 0.5958 |
TLMW | 0.0740 | 0.7280 | 663.9288 | 673.7924 | 664.4166 | 667.9005 | 0.0901 | 0.6041 |
TIIEHLPL | 0.0816 | 0.6084 | 665.4572 | 675.3208 | 665.9450 | 669.4290 | 0.0814 | 0.6494 |
EL | 0.0845 | 0.5635 | 663.7241 | 671.1218 | 664.0132 | 666.7029 | 0.0761 | 0.6190 |
KW | 0.0752 | 0.7090 | 663.9278 | 673.7914 | 664.4156 | 667.8996 | 0.0920 | 0.6121 |
GMW | 0.0768 | 0.6834 | 663.8639 | 673.7276 | 664.3517 | 667.8357 | 0.0943 | 0.6201 |
MOAPEW | 0.0762 | 0.6929 | 665.7249 | 678.0545 | 666.4657 | 670.6897 | 0.0879 | 0.5993 |
EW | 0.1110 | 0.2336 | 667.4458 | 674.8435 | 667.7349 | 670.4246 | 0.2186 | 1.2041 |
KMGE | 0.0861 | 0.5389 | 662.3907 | 669.8323 | 662.5335 | 665.3766 | 0.0763 | 0.6177 |
EHLINH | 0.0864 | 0.5345 | 664.3826 | 671.7803 | 664.6718 | 667.3615 | 0.0853 | 0.7083 |
ExEx | 0.0919 | 0.4547 | 662.8435 | 669.7753 | 662.9863 | 665.8294 | 0.1603 | 0.9021 |
OWITL | 0.0771 | 0.6787 | 662.6932 | 669.5910 | 662.9824 | 665.6721 | 0.0996 | 0.6511 |
\alpha | \beta | \tau | \theta | ||
EGAPE | Estimates | 1.2948 | 0.9091 | 0.0079 | |
SE | 0.1631 | 0.6367 | 0.0242 | ||
TLMW | Estimates | 0.2497 | 0.2004 | 1.2916 | 2.7723 |
SE | 0.9087 | 0.7554 | 0.7622 | 1.5924 | |
TIIEHLPL | Estimates | 0.0927 | 1.3381 | 2.4967 | 138.0944 |
SE | 0.2557 | 0.8698 | 1.5475 | 532.9272 | |
EL | Estimates | 3.8657 | 36.6762 | 30.4730 | |
SE | 0.8248 | 61.0255 | 53.2398 | ||
KW | Estimates | 3.9049 | 3.8098 | 0.6329 | 0.7832 |
SE | 9.9178 | 25.2951 | 0.8289 | 1.7951 | |
GMW | Estimates | 1.4999 | 7.0403 | 0.1177 | 0.5813 |
SE | 0.7081 | 2.0431 | 0.0250 | 0.1381 | |
EW | Estimates | 1.8162 | 36.6594 | 5.3695 | |
SE | 0.1607 | 70.2187 | 9.0321 | ||
EGAPEx | Estimates | 2.2303 | 3.0157 | 3.0038 | 0.4497 |
SE | 4.3322 | 1.7338 | 3.8605 | 0.5913 | |
KMGE | Estimates | 3.7890 | 0.9720 | ||
SE | 0.7019 | 0.1221 | |||
EHLINH | Estimates | 34.1057 | 0.3627 | 94.1204 | |
SE | 38.2904 | 0.0934 | 165.6271 | ||
ExEx | Estimates | 70.0000 | 0.0051 | ||
SE | 81.8420 | 0.0059 | |||
OWITL | Estimates | 1.8011 | 19.0880 | 0.3149 | |
SE | 0.1713 | 23.2625 | 0.1740 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0826 | 0.7094 | 192.5995 | 199.4295 | 192.9524 | 195.3185 | 0.0881 | 0.5118 |
TLMW | 0.0885 | 0.6253 | 196.1265 | 205.2332 | 196.7235 | 199.7519 | 0.0915 | 0.5657 |
TIIEHLPL | 0.0874 | 0.6408 | 196.0386 | 205.1453 | 196.6356 | 199.6640 | 0.0747 | 0.4823 |
EL | 0.0944 | 0.5429 | 194.7195 | 201.5495 | 195.0725 | 197.4386 | 0.0770 | 0.5188 |
KW | 0.0896 | 0.6103 | 196.1880 | 205.2947 | 196.7850 | 199.8134 | 0.0933 | 0.5735 |
GMW | 0.0905 | 0.5967 | 197.2302 | 206.3369 | 197.8272 | 200.8556 | 0.1064 | 0.6601 |
EW | 0.1056 | 0.3984 | 197.6848 | 204.5148 | 198.0377 | 200.4038 | 0.1662 | 0.9792 |
EGAPEx | 0.0874 | 0.6411 | 196.1340 | 205.2406 | 196.7310 | 199.7594 | 0.0917 | 0.5652 |
KMGE | 0.0906 | 0.5961 | 193.4319 | 200.9853 | 193.6058 | 196.2446 | 0.0970 | 0.5771 |
EHLINH | 0.1011 | 0.4537 | 195.7417 | 202.5717 | 196.0946 | 198.4607 | 0.0976 | 0.6161 |
ExEx | 0.2118 | 0.0031 | 210.6588 | 215.2121 | 210.8327 | 212.4715 | 0.2429 | 1.4240 |
OWITL | 0.0929 | 0.5634 | 194.6419 | 201.4719 | 194.9949 | 197.3610 | 0.0921 | 0.5773 |
Data | T_1 | T_2 | T_3 | n_1 | n_2 | n_3 | \alpha_1 | \alpha_2 | \alpha_3 | \beta | \tau | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 5 | 2.5353 | 4.2746 | 3.3228 | 1.8354 | 0.0020 | -7.2028 | 24.4055 | 29.3842 |
3.5 | 6 | 2.4710 | 3.8668 | 2.3909 | 2.0295 | 0.0031 | -10.4644 | 30.9287 | 35.9074 | |||||
2.2 | 3 | 9 | 3 | 2.5416 | 3.5990 | 5.0954 | 1.9838 | 0.0026 | -7.1745 | 24.3490 | 29.3277 | |||
3.5 | 4 | 2.5352 | 3.0753 | 2.9460 | 1.9840 | 0.0008 | -10.8706 | 31.7412 | 36.7198 | |||||
1.8 | 1.9 | 3 | 11 | 2 | 5 | 2.8502 | 4.7026 | 3.3463 | 1.4596 | 0.0034 | -7.6071 | 25.2142 | 30.1929 | |
3.5 | 6 | 2.7474 | 4.0312 | 2.4071 | 1.7368 | 0.0024 | -10.7940 | 31.5879 | 36.5666 | |||||
2.2 | 3 | 4 | 3 | 2.9864 | 3.0214 | 5.1299 | 1.3835 | 0.0007 | -7.4430 | 24.8859 | 29.8646 | |||
3.5 | 4 | 2.8427 | 2.4470 | 2.9661 | 1.9249 | 0.0025 | -10.9378 | 31.8756 | 36.8543 | |||||
II | 8 | 14 | 22 | 22 | 21 | 24 | 0.0842 | 0.1251 | 0.3435 | 1.4147 | 0.8461 | -207.0863 | 424.1727 | 436.5022 |
38 | 36 | 0.0463 | 0.0689 | 0.1152 | 1.3591 | 1.4858 | -278.0608 | 566.1216 | 578.4511 | |||||
18 | 30 | 35 | 14 | 0.1071 | 0.1562 | 0.2666 | 1.2760 | 0.3879 | -231.5655 | 473.1311 | 485.4606 | |||
38 | 22 | 0.0929 | 0.1258 | 0.1248 | 1.2874 | 0.4486 | -278.8941 | 567.7881 | 580.1177 | |||||
10 | 14 | 30 | 28 | 15 | 28 | 0.0546 | 0.0970 | 0.2060 | 1.4255 | 1.5355 | -229.6798 | 469.3596 | 481.6891 | |
38 | 36 | 0.0473 | 0.0790 | 0.1146 | 1.3702 | 1.5078 | -277.6793 | 565.3585 | 577.6881 | |||||
18 | 30 | 29 | 14 | 0.0908 | 0.1687 | 0.2639 | 1.3715 | 0.6488 | -230.6346 | 471.2691 | 483.5987 | |||
38 | 22 | 0.0642 | 0.1176 | 0.1199 | 1.4065 | 1.0223 | -278.2243 | 566.4487 | 578.7782 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 17 | 18 | 1.9285 | 1.9888 | 3.3652 | 2.1804 | 0.0428 | -42.3850 | 94.7701 | 106.1534 |
3 | 26 | 1.8135 | 1.6050 | 2.1656 | 2.1324 | 0.0408 | -61.6277 | 133.2554 | 144.6387 | |||||
1.9 | 2.4 | 25 | 10 | 1.9262 | 2.1187 | 4.8965 | 2.1808 | 0.0427 | -41.3863 | 92.7727 | 104.1560 | |||
3 | 18 | 1.8140 | 1.6102 | 2.5898 | 2.1043 | 0.0396 | -60.9120 | 131.8240 | 143.2073 | |||||
1.3 | 1.6 | 2.4 | 30 | 8 | 18 | 2.0586 | 1.6644 | 3.3873 | 2.4176 | 0.0402 | -42.2304 | 94.4608 | 105.8442 | |
3 | 26 | 1.8815 | 1.2926 | 2.1763 | 2.2743 | 0.0399 | -61.2000 | 132.4000 | 143.7833 | |||||
1.9 | 2.4 | 16 | 10 | 2.0571 | 1.9902 | 4.9177 | 2.4155 | 0.0401 | -41.4372 | 92.8744 | 104.2577 | |||
3 | 18 | 1.8835 | 1.4376 | 2.6025 | 2.2621 | 0.0392 | -60.5813 | 131.1625 | 142.5459 |
Data | T_1 | T_2 | T_3 | n_1 | n_2 | n_3 | \alpha_1 | \alpha_2 | \alpha_3 | \beta | \tau | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 2 | 2.7800 | 6.6237 | 5.1808 | 1.5332 | 0.0019 | -1.3345 | 12.6689 | 17.6476 |
3.5 | 3 | 2.6606 | 5.5631 | 2.0821 | 1.5061 | 0.0026 | -5.5431 | 21.0862 | 26.0648 | |||||
2.2 | 3.1 | 9 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0021 | -6.6903 | 23.3806 | 28.3592 | |||
3.5 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0001 | -6.6903 | 23.3806 | 28.3592 | |||||
1.8 | 1.9 | 3 | 11 | 1 | 2 | 3.3879 | 5.5803 | 2.5550 | 1.4507 | 0.0012 | -4.0139 | 18.0277 | 23.0064 | |
3.5 | 3 | 3.5248 | 3.7242 | 1.6542 | 2.0645 | 0.0018 | -7.1073 | 24.2145 | 29.1932 | |||||
2.2 | 3 | 3 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0019 | -3.0837 | 16.1675 | 21.1461 | |||
3.5 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0029 | -3.0837 | 16.1675 | 21.1461 | |||||
II | 8 | 14 | 22 | 22 | 18 | 16 | 0.1221 | 0.1552 | 0.3637 | 1.3846 | 0.5564 | -171.7641 | 353.5283 | 365.8578 |
38 | 25 | 0.0621 | 0.0835 | 0.1128 | 1.4401 | 1.4256 | -226.8644 | 463.7287 | 476.0583 | |||||
18 | 22 | 29 | 5 | 0.1362 | 0.2049 | 0.5140 | 1.3076 | 0.3588 | -171.8571 | 353.7143 | 366.0438 | |||
38 | 15 | 0.1127 | 0.1369 | 0.1093 | 1.2970 | 0.4134 | -230.3447 | 470.6895 | 483.0190 | |||||
10 | 14 | 22 | 28 | 12 | 16 | 0.0711 | 0.1187 | 0.3461 | 1.5427 | 1.6947 | -169.7180 | 349.4361 | 361.7656 | |
38 | 24 | 0.0584 | 0.0858 | 0.1120 | 1.4557 | 1.6740 | -220.9976 | 451.9953 | 464.3248 | |||||
18 | 22 | 24 | 5 | 0.1297 | 0.2358 | 0.5680 | 1.3375 | 0.4332 | -173.7040 | 357.4080 | 369.7376 | |||
38 | 13 | 0.1069 | 0.1581 | 0.1051 | 1.3487 | 0.5302 | -224.0241 | 458.0481 | 470.3777 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 13 | 9 | 2.2016 | 2.4738 | 4.1560 | 2.3470 | 0.0482 | -27.9595 | 65.9191 | 77.3024 |
3 | 13 | 2.1023 | 2.0038 | 2.3040 | 2.2828 | 0.0463 | -39.9871 | 89.9742 | 101.3575 | |||||
1.9 | 2.4 | 21 | 5 | 2.0900 | 2.4406 | 5.7452 | 2.3197 | 0.0480 | -32.3110 | 74.6221 | 86.0054 | |||
3 | 9 | 2.0104 | 1.9690 | 2.9062 | 2.2560 | 0.0457 | -43.2342 | 96.4684 | 107.8517 | |||||
1.3 | 1.6 | 2.4 | 30 | 6 | 10 | 2.3723 | 1.9721 | 3.2473 | 2.7184 | 0.0406 | -32.2770 | 74.5541 | 85.9374 | |
3 | 14 | 2.2271 | 1.5491 | 2.2233 | 2.5817 | 0.0408 | -42.5040 | 95.0080 | 106.3914 | |||||
1.9 | 2.4 | 12 | 8 | 2.2277 | 1.8942 | 4.5920 | 2.5778 | 0.0406 | -36.5661 | 83.1323 | 94.5156 | |||
3 | 10 | 2.1666 | 1.6701 | 3.5295 | 2.5178 | 0.0404 | -41.6866 | 93.3732 | 104.7565 |
Parameters | Measures | |||||||||
a | b | \tau | \mu^\prime_1 | \mu^\prime_2 | \mu^\prime_3 | \mu^\prime_4 | \sigma^2 | CV | skewness | kurtosis |
0.5 | 0.75 | 0.25 | 2.68979 | 12.4088 | 79.9101 | 662.52 | 5.17387 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.74385 | 6.75901 | 40.1156 | 319.514 | 3.71799 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 2.0773 | 7.90377 | 45.4087 | 353.528 | 3.5886 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.68603 | 5.38955 | 27.4263 | 198.4 | 2.54684 | 0.94653 | 5.75592 | 12.5055 | ||
0.75 | 0.75 | 0.25 | 1.79319 | 5.51503 | 23.6771 | 130.868 | 2.2995 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 1.16257 | 3.004 | 11.8861 | 63.1139 | 1.65244 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 1.38487 | 3.51279 | 13.4544 | 69.8326 | 1.59493 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 1.12402 | 2.39536 | 8.12631 | 39.1901 | 1.13193 | 0.94653 | 5.75592 | 12.5055 | ||
1.5 | 0.75 | 0.25 | 0.896596 | 1.37876 | 2.95963 | 8.17926 | 0.574874 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.581283 | 0.751001 | 1.48576 | 3.94462 | 0.41311 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.692433 | 0.878196 | 1.68181 | 4.36454 | 0.398733 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.562011 | 0.598839 | 1.01579 | 2.44938 | 0.282982 | 0.94653 | 5.75592 | 12.5055 | ||
2.5 | 0.75 | 0.25 | 0.537958 | 0.496353 | 0.63928 | 1.06003 | 0.206955 | 0.845648 | 2.52479 | 6.88807 |
0.9 | 0.34877 | 0.27036 | 0.320925 | 0.511223 | 0.14872 | 1.10572 | 4.59144 | 9.78582 | ||
1.5 | 1.5 | 0.41546 | 0.316151 | 0.36327 | 0.565644 | 0.143544 | 0.911934 | 4.29041 | 9.70584 | |
2.0 | 0.337207 | 0.215582 | 0.21941 | 0.31744 | 0.101874 | 0.94653 | 5.75592 | 12.5055 |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.32671 ^{\{ 1 \}} | 0.58371 ^{\{ 5 \}} | 0.56143 ^{\{ 2 \}} | 0.57133 ^{\{ 3 \}} | 0.60648 ^{\{ 6 \}} | 0.63277 ^{\{ 8 \}} | 0.5738 ^{\{ 4 \}} | 0.61215 ^{\{ 7 \}} |
\hat{a} | 0.04966 ^{\{ 1 \}} | 0.06013 ^{\{ 4 \}} | 0.0625 ^{\{ 6 \}} | 0.05958 ^{\{ 3 \}} | 0.06715 ^{\{ 8 \}} | 0.06343 ^{\{ 7 \}} | 0.05815 ^{\{ 2 \}} | 0.06028 ^{\{ 5 \}} | ||
\hat{b} | 0.24844 ^{\{ 1 \}} | 0.28129 ^{\{ 4 \}} | 0.28515 ^{\{ 5 \}} | 0.29203 ^{\{ 6 \}} | 0.27907 ^{\{ 2 \}} | 0.29342 ^{\{ 7 \}} | 0.28051 ^{\{ 3 \}} | 0.31435 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.16299 ^{\{ 1 \}} | 0.59664 ^{\{ 5 \}} | 0.52583 ^{\{ 2 \}} | 0.58252 ^{\{ 4 \}} | 0.61607 ^{\{ 6 \}} | 0.721 ^{\{ 7 \}} | 0.55021 ^{\{ 3 \}} | 0.93333 ^{\{ 8 \}} | |
\hat{a} | 0.00411 ^{\{ 1 \}} | 0.00549 ^{\{ 4 \}} | 0.00611 ^{\{ 6 \}} | 0.0054 ^{\{ 3 \}} | 0.00663 ^{\{ 7.5 \}} | 0.00663 ^{\{ 7.5 \}} | 0.00519 ^{\{ 2 \}} | 0.00574 ^{\{ 5 \}} | ||
\hat{b} | 0.10323 ^{\{ 1 \}} | 0.11811 ^{\{ 4 \}} | 0.12803 ^{\{ 6 \}} | 0.11815 ^{\{ 5 \}} | 0.1178 ^{\{ 3 \}} | 0.14159 ^{\{ 8 \}} | 0.11156 ^{\{ 2 \}} | 0.14151 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.65343 ^{\{ 1 \}} | 1.16742 ^{\{ 5 \}} | 1.12285 ^{\{ 2 \}} | 1.14267 ^{\{ 3 \}} | 1.21295 ^{\{ 6 \}} | 1.26554 ^{\{ 8 \}} | 1.1476 ^{\{ 4 \}} | 1.22429 ^{\{ 7 \}} | |
\hat{a} | 0.19865 ^{\{ 1 \}} | 0.24052 ^{\{ 4 \}} | 0.25 ^{\{ 6 \}} | 0.23833 ^{\{ 3 \}} | 0.2686 ^{\{ 8 \}} | 0.2537 ^{\{ 7 \}} | 0.23258 ^{\{ 2 \}} | 0.2411 ^{\{ 5 \}} | ||
\hat{b} | 0.33126 ^{\{ 1 \}} | 0.37506 ^{\{ 4 \}} | 0.3802 ^{\{ 5 \}} | 0.38937 ^{\{ 6 \}} | 0.37209 ^{\{ 2 \}} | 0.39123 ^{\{ 7 \}} | 0.37402 ^{\{ 3 \}} | 0.41913 ^{\{ 8 \}} | ||
D_{abs} | 0.04372 ^{\{ 2 \}} | 0.04281 ^{\{ 1 \}} | 0.04653 ^{\{ 7 \}} | 0.04411 ^{\{ 3 \}} | 0.04606 ^{\{ 5 \}} | 0.04624 ^{\{ 6 \}} | 0.0448 ^{\{ 4 \}} | 0.04683 ^{\{ 8 \}} | ||
D_{max} | 0.07294 ^{\{ 3 \}} | 0.07168 ^{\{ 2 \}} | 0.07905 ^{\{ 8 \}} | 0.07157 ^{\{ 1 \}} | 0.0766 ^{\{ 5 \}} | 0.07807 ^{\{ 6 \}} | 0.07418 ^{\{ 4 \}} | 0.07819 ^{\{ 7 \}} | ||
ASAE | 0.02941 ^{\{ 7 \}} | 0.02686 ^{\{ 2 \}} | 0.02879 ^{\{ 5 \}} | 0.02748 ^{\{ 4 \}} | 0.02895 ^{\{ 6 \}} | 0.02682 ^{\{ 1 \}} | 0.02728 ^{\{ 3 \}} | 0.03173 ^{\{ 8 \}} | ||
\sum Ranks | 21 ^{\{ 1 \}} | 44 ^{\{ 3.5 \}} | 60 ^{\{ 5 \}} | 44 ^{\{ 3.5 \}} | 64.5 ^{\{ 6 \}} | 79.5 ^{\{ 7 \}} | 36 ^{\{ 2 \}} | 83 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.31314 ^{\{ 1 \}} | 0.47069 ^{\{ 3 \}} | 0.48998 ^{\{ 5 \}} | 0.49062 ^{\{ 6 \}} | 0.50913 ^{\{ 7 \}} | 0.54111 ^{\{ 8 \}} | 0.47654 ^{\{ 4 \}} | 0.46785 ^{\{ 2 \}} |
\hat{a} | 0.03421 ^{\{ 1 \}} | 0.04143 ^{\{ 2 \}} | 0.04746 ^{\{ 6 \}} | 0.04299 ^{\{ 3 \}} | 0.04804 ^{\{ 7 \}} | 0.04809 ^{\{ 8 \}} | 0.04356 ^{\{ 4 \}} | 0.04532 ^{\{ 5 \}} | ||
\hat{b} | 0.21631 ^{\{ 1 \}} | 0.2507 ^{\{ 5 \}} | 0.23911 ^{\{ 2 \}} | 0.27064 ^{\{ 7 \}} | 0.24898 ^{\{ 3 \}} | 0.24985 ^{\{ 4 \}} | 0.25229 ^{\{ 6 \}} | 0.2829 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.1496 ^{\{ 1 \}} | 0.41058 ^{\{ 4 \}} | 0.43118 ^{\{ 5 \}} | 0.45507 ^{\{ 7 \}} | 0.44542 ^{\{ 6 \}} | 0.55159 ^{\{ 8 \}} | 0.40366 ^{\{ 3 \}} | 0.39192 ^{\{ 2 \}} | |
\hat{a} | 0.00191 ^{\{ 1 \}} | 0.00286 ^{\{ 2 \}} | 0.0034 ^{\{ 6 \}} | 0.00317 ^{\{ 4 \}} | 0.00368 ^{\{ 8 \}} | 0.00366 ^{\{ 7 \}} | 0.00308 ^{\{ 3 \}} | 0.00328 ^{\{ 5 \}} | ||
\hat{b} | 0.07529 ^{\{ 1 \}} | 0.08986 ^{\{ 4 \}} | 0.0849 ^{\{ 2 \}} | 0.10267 ^{\{ 7 \}} | 0.08698 ^{\{ 3 \}} | 0.09562 ^{\{ 6 \}} | 0.09 ^{\{ 5 \}} | 0.11517 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.62627 ^{\{ 1 \}} | 0.94139 ^{\{ 3 \}} | 0.97995 ^{\{ 5 \}} | 0.98124 ^{\{ 6 \}} | 1.01826 ^{\{ 7 \}} | 1.08221 ^{\{ 8 \}} | 0.95309 ^{\{ 4 \}} | 0.93571 ^{\{ 2 \}} | |
\hat{a} | 0.13684 ^{\{ 1 \}} | 0.16572 ^{\{ 2 \}} | 0.18984 ^{\{ 6 \}} | 0.17197 ^{\{ 3 \}} | 0.19217 ^{\{ 7 \}} | 0.19238 ^{\{ 8 \}} | 0.17425 ^{\{ 4 \}} | 0.18128 ^{\{ 5 \}} | ||
\hat{b} | 0.28842 ^{\{ 1 \}} | 0.33426 ^{\{ 5 \}} | 0.31881 ^{\{ 2 \}} | 0.36085 ^{\{ 7 \}} | 0.33197 ^{\{ 3 \}} | 0.33314 ^{\{ 4 \}} | 0.33638 ^{\{ 6 \}} | 0.3772 ^{\{ 8 \}} | ||
D_{abs} | 0.03037 ^{\{ 1 \}} | 0.03108 ^{\{ 3 \}} | 0.03275 ^{\{ 8 \}} | 0.03089 ^{\{ 2 \}} | 0.03226 ^{\{ 5 \}} | 0.03245 ^{\{ 6 \}} | 0.03186 ^{\{ 4 \}} | 0.03262 ^{\{ 7 \}} | ||
D_{max} | 0.05103 ^{\{ 2 \}} | 0.05227 ^{\{ 3 \}} | 0.05581 ^{\{ 8 \}} | 0.05055 ^{\{ 1 \}} | 0.05432 ^{\{ 5 \}} | 0.05561 ^{\{ 7 \}} | 0.0531 ^{\{ 4 \}} | 0.05469 ^{\{ 6 \}} | ||
ASAE | 0.01852 ^{\{ 7 \}} | 0.01764 ^{\{ 3 \}} | 0.01828 ^{\{ 5 \}} | 0.01771 ^{\{ 4 \}} | 0.0183 ^{\{ 6 \}} | 0.01677 ^{\{ 1 \}} | 0.01726 ^{\{ 2 \}} | 0.02027 ^{\{ 8 \}} | ||
\sum Ranks | 19 ^{\{ 1 \}} | 39 ^{\{ 2 \}} | 60 ^{\{ 5 \}} | 57 ^{\{ 4 \}} | 67 ^{\{ 7 \}} | 75 ^{\{ 8 \}} | 49 ^{\{ 3 \}} | 66 ^{\{ 6 \}} | ||
150 | BIAS | \hat{\tau} | 0.27897 ^{\{ 1 \}} | 0.33896 ^{\{ 2 \}} | 0.4218 ^{\{ 7 \}} | 0.37504 ^{\{ 5 \}} | 0.40603 ^{\{ 6 \}} | 0.43235 ^{\{ 8 \}} | 0.36118 ^{\{ 4 \}} | 0.33952 ^{\{ 3 \}} |
\hat{a} | 0.02475 ^{\{ 1 \}} | 0.02809 ^{\{ 2 \}} | 0.03377 ^{\{ 8 \}} | 0.02817 ^{\{ 3 \}} | 0.03358 ^{\{ 7 \}} | 0.03171 ^{\{ 6 \}} | 0.0292 ^{\{ 4 \}} | 0.03094 ^{\{ 5 \}} | ||
\hat{b} | 0.17834 ^{\{ 1 \}} | 0.19969 ^{\{ 2 \}} | 0.22885 ^{\{ 6 \}} | 0.23606 ^{\{ 8 \}} | 0.21943 ^{\{ 4 \}} | 0.23111 ^{\{ 7 \}} | 0.20646 ^{\{ 3 \}} | 0.22692 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.12003 ^{\{ 1 \}} | 0.21771 ^{\{ 3 \}} | 0.32049 ^{\{ 7 \}} | 0.26977 ^{\{ 5 \}} | 0.2889 ^{\{ 6 \}} | 0.35196 ^{\{ 8 \}} | 0.2381 ^{\{ 4 \}} | 0.18081 ^{\{ 2 \}} | |
\hat{a} | 0.00097 ^{\{ 1 \}} | 0.00137 ^{\{ 2 \}} | 0.00186 ^{\{ 7 \}} | 0.00155 ^{\{ 5 \}} | 0.00189 ^{\{ 8 \}} | 0.00175 ^{\{ 6 \}} | 0.00149 ^{\{ 3 \}} | 0.00151 ^{\{ 4 \}} | ||
\hat{b} | 0.05034 ^{\{ 1 \}} | 0.05811 ^{\{ 2 \}} | 0.07333 ^{\{ 5 \}} | 0.08301 ^{\{ 8 \}} | 0.06651 ^{\{ 4 \}} | 0.07845 ^{\{ 7 \}} | 0.06122 ^{\{ 3 \}} | 0.07669 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.55795 ^{\{ 1 \}} | 0.67793 ^{\{ 2 \}} | 0.84359 ^{\{ 7 \}} | 0.75008 ^{\{ 5 \}} | 0.81206 ^{\{ 6 \}} | 0.86469 ^{\{ 8 \}} | 0.72235 ^{\{ 4 \}} | 0.67904 ^{\{ 3 \}} | |
\hat{a} | 0.09901 ^{\{ 1 \}} | 0.11236 ^{\{ 2 \}} | 0.1351 ^{\{ 8 \}} | 0.11269 ^{\{ 3 \}} | 0.13434 ^{\{ 7 \}} | 0.12685 ^{\{ 6 \}} | 0.11682 ^{\{ 4 \}} | 0.12378 ^{\{ 5 \}} | ||
\hat{b} | 0.23779 ^{\{ 1 \}} | 0.26626 ^{\{ 2 \}} | 0.30514 ^{\{ 6 \}} | 0.31475 ^{\{ 8 \}} | 0.29257 ^{\{ 4 \}} | 0.30814 ^{\{ 7 \}} | 0.27529 ^{\{ 3 \}} | 0.30257 ^{\{ 5 \}} | ||
D_{abs} | 0.02145 ^{\{ 2 \}} | 0.02295 ^{\{ 7 \}} | 0.0217 ^{\{ 3 \}} | 0.02129 ^{\{ 1 \}} | 0.02288 ^{\{ 6 \}} | 0.023 ^{\{ 8 \}} | 0.02213 ^{\{ 4 \}} | 0.0225 ^{\{ 5 \}} | ||
D_{max} | 0.03601 ^{\{ 2 \}} | 0.03845 ^{\{ 6 \}} | 0.03771 ^{\{ 4 \}} | 0.03525 ^{\{ 1 \}} | 0.03891 ^{\{ 7 \}} | 0.03973 ^{\{ 8 \}} | 0.03688 ^{\{ 3 \}} | 0.03798 ^{\{ 5 \}} | ||
ASAE | 0.011 ^{\{ 5 \}} | 0.01062 ^{\{ 3 \}} | 0.01139 ^{\{ 6 \}} | 0.01092 ^{\{ 4 \}} | 0.01146 ^{\{ 7 \}} | 0.01039 ^{\{ 1 \}} | 0.01045 ^{\{ 2 \}} | 0.01269 ^{\{ 8 \}} | ||
\sum Ranks | 18 ^{\{ 1 \}} | 35 ^{\{ 2 \}} | 74 ^{\{ 7 \}} | 56 ^{\{ 4.5 \}} | 72 ^{\{ 6 \}} | 80 ^{\{ 8 \}} | 41 ^{\{ 3 \}} | 56 ^{\{ 4.5 \}} | ||
300 | BIAS | \hat{\tau} | 0.20018 ^{\{ 1 \}} | 0.243 ^{\{ 4 \}} | 0.29528 ^{\{ 6 \}} | 0.23781 ^{\{ 3 \}} | 0.31369 ^{\{ 7 \}} | 0.33876 ^{\{ 8 \}} | 0.23778 ^{\{ 2 \}} | 0.25695 ^{\{ 5 \}} |
\hat{a} | 0.01707 ^{\{ 1 \}} | 0.01972 ^{\{ 4 \}} | 0.02215 ^{\{ 6 \}} | 0.01893 ^{\{ 3 \}} | 0.02216 ^{\{ 7 \}} | 0.02177 ^{\{ 5 \}} | 0.01829 ^{\{ 2 \}} | 0.02228 ^{\{ 8 \}} | ||
\hat{b} | 0.13506 ^{\{ 1 \}} | 0.15636 ^{\{ 3 \}} | 0.18002 ^{\{ 6 \}} | 0.17262 ^{\{ 5 \}} | 0.19427 ^{\{ 7 \}} | 0.20028 ^{\{ 8 \}} | 0.15561 ^{\{ 2 \}} | 0.16985 ^{\{ 4 \}} | ||
MSE | \hat{\tau} | 0.0643 ^{\{ 1 \}} | 0.1019 ^{\{ 4 \}} | 0.14664 ^{\{ 6 \}} | 0.08922 ^{\{ 2 \}} | 0.16416 ^{\{ 7 \}} | 0.21518 ^{\{ 8 \}} | 0.08995 ^{\{ 3 \}} | 0.10932 ^{\{ 5 \}} | |
\hat{a} | 0.00047 ^{\{ 1 \}} | 0.00066 ^{\{ 4 \}} | 0.00082 ^{\{ 6 \}} | 0.00056 ^{\{ 2.5 \}} | 0.00088 ^{\{ 8 \}} | 0.00087 ^{\{ 7 \}} | 0.00056 ^{\{ 2.5 \}} | 0.00081 ^{\{ 5 \}} | ||
\hat{b} | 0.03228 ^{\{ 1 \}} | 0.03756 ^{\{ 3 \}} | 0.0464 ^{\{ 4 \}} | 0.05353 ^{\{ 7 \}} | 0.05263 ^{\{ 6 \}} | 0.05765 ^{\{ 8 \}} | 0.03636 ^{\{ 2 \}} | 0.04878 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.40037 ^{\{ 1 \}} | 0.486 ^{\{ 4 \}} | 0.59055 ^{\{ 6 \}} | 0.47561 ^{\{ 3 \}} | 0.62739 ^{\{ 7 \}} | 0.67751 ^{\{ 8 \}} | 0.47557 ^{\{ 2 \}} | 0.5139 ^{\{ 5 \}} | |
\hat{a} | 0.06829 ^{\{ 1 \}} | 0.07887 ^{\{ 4 \}} | 0.08859 ^{\{ 6 \}} | 0.0757 ^{\{ 3 \}} | 0.08866 ^{\{ 7 \}} | 0.0871 ^{\{ 5 \}} | 0.07315 ^{\{ 2 \}} | 0.08912 ^{\{ 8 \}} | ||
\hat{b} | 0.18008 ^{\{ 1 \}} | 0.20848 ^{\{ 3 \}} | 0.24002 ^{\{ 6 \}} | 0.23017 ^{\{ 5 \}} | 0.25903 ^{\{ 7 \}} | 0.26704 ^{\{ 8 \}} | 0.20748 ^{\{ 2 \}} | 0.22646 ^{\{ 4 \}} | ||
D_{abs} | 0.01493 ^{\{ 1 \}} | 0.01579 ^{\{ 5 \}} | 0.0158 ^{\{ 6 \}} | 0.0154 ^{\{ 3 \}} | 0.01595 ^{\{ 7 \}} | 0.01566 ^{\{ 4 \}} | 0.01501 ^{\{ 2 \}} | 0.01623 ^{\{ 8 \}} | ||
D_{max} | 0.02495 ^{\{ 1 \}} | 0.02657 ^{\{ 4 \}} | 0.0273 ^{\{ 6 \}} | 0.02576 ^{\{ 3 \}} | 0.02745 ^{\{ 7 \}} | 0.02722 ^{\{ 5 \}} | 0.02546 ^{\{ 2 \}} | 0.02772 ^{\{ 8 \}} | ||
ASAE | 0.00711 ^{\{ 5 \}} | 0.00685 ^{\{ 2 \}} | 0.00726 ^{\{ 6 \}} | 0.007 ^{\{ 4 \}} | 0.00737 ^{\{ 7 \}} | 0.0066 ^{\{ 1 \}} | 0.00688 ^{\{ 3 \}} | 0.008 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 44 ^{\{ 4 \}} | 70 ^{\{ 5 \}} | 43.5 ^{\{ 3 \}} | 84 ^{\{ 8 \}} | 75 ^{\{ 7 \}} | 26.5 ^{\{ 2 \}} | 73 ^{\{ 6 \}} | ||
600 | BIAS | \hat{\tau} | 0.14883 ^{\{ 1 \}} | 0.18347 ^{\{ 4 \}} | 0.22873 ^{\{ 7 \}} | 0.16341 ^{\{ 2 \}} | 0.2235 ^{\{ 6 \}} | 0.23795 ^{\{ 8 \}} | 0.17744 ^{\{ 3 \}} | 0.18749 ^{\{ 5 \}} |
\hat{a} | 0.01222 ^{\{ 1 \}} | 0.01372 ^{\{ 4 \}} | 0.01577 ^{\{ 7 \}} | 0.01259 ^{\{ 2 \}} | 0.01528 ^{\{ 6 \}} | 0.01437 ^{\{ 5 \}} | 0.01333 ^{\{ 3 \}} | 0.01579 ^{\{ 8 \}} | ||
\hat{b} | 0.09866 ^{\{ 1 \}} | 0.12057 ^{\{ 3 \}} | 0.14941 ^{\{ 7 \}} | 0.12377 ^{\{ 5 \}} | 0.14754 ^{\{ 6 \}} | 0.15886 ^{\{ 8 \}} | 0.11439 ^{\{ 2 \}} | 0.12134 ^{\{ 4 \}} | ||
MSE | \hat{\tau} | 0.03594 ^{\{ 1 \}} | 0.05294 ^{\{ 4 \}} | 0.07897 ^{\{ 7 \}} | 0.04896 ^{\{ 2 \}} | 0.07454 ^{\{ 6 \}} | 0.08434 ^{\{ 8 \}} | 0.04983 ^{\{ 3 \}} | 0.05618 ^{\{ 5 \}} | |
\hat{a} | 0.00024 ^{\{ 1 \}} | 3e-04 ^{\{ 4 \}} | 0.00039 ^{\{ 7 \}} | 0.00025 ^{\{ 2 \}} | 0.00038 ^{\{ 6 \}} | 0.00033 ^{\{ 5 \}} | 0.00028 ^{\{ 3 \}} | 4e-04 ^{\{ 8 \}} | ||
\hat{b} | 0.01685 ^{\{ 1 \}} | 0.02314 ^{\{ 3 \}} | 0.03354 ^{\{ 7 \}} | 0.03316 ^{\{ 6 \}} | 0.03195 ^{\{ 5 \}} | 0.03586 ^{\{ 8 \}} | 0.02149 ^{\{ 2 \}} | 0.02667 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.29767 ^{\{ 1 \}} | 0.36695 ^{\{ 4 \}} | 0.45746 ^{\{ 7 \}} | 0.32682 ^{\{ 2 \}} | 0.447 ^{\{ 6 \}} | 0.47591 ^{\{ 8 \}} | 0.35489 ^{\{ 3 \}} | 0.37498 ^{\{ 5 \}} | |
\hat{a} | 0.04889 ^{\{ 1 \}} | 0.05487 ^{\{ 4 \}} | 0.06308 ^{\{ 7 \}} | 0.05037 ^{\{ 2 \}} | 0.0611 ^{\{ 6 \}} | 0.05747 ^{\{ 5 \}} | 0.05332 ^{\{ 3 \}} | 0.06316 ^{\{ 8 \}} | ||
\hat{b} | 0.13154 ^{\{ 1 \}} | 0.16077 ^{\{ 3 \}} | 0.19922 ^{\{ 7 \}} | 0.16503 ^{\{ 5 \}} | 0.19672 ^{\{ 6 \}} | 0.21182 ^{\{ 8 \}} | 0.15252 ^{\{ 2 \}} | 0.16179 ^{\{ 4 \}} | ||
D_{abs} | 0.0111 ^{\{ 4.5 \}} | 0.01086 ^{\{ 2 \}} | 0.01153 ^{\{ 8 \}} | 0.01074 ^{\{ 1 \}} | 0.01151 ^{\{ 7 \}} | 0.0111 ^{\{ 4.5 \}} | 0.011 ^{\{ 3 \}} | 0.01132 ^{\{ 6 \}} | ||
D_{max} | 0.01861 ^{\{ 3 \}} | 0.01858 ^{\{ 2 \}} | 0.02 ^{\{ 8 \}} | 0.01805 ^{\{ 1 \}} | 0.01977 ^{\{ 7 \}} | 0.01944 ^{\{ 5 \}} | 0.01862 ^{\{ 4 \}} | 0.01945 ^{\{ 6 \}} | ||
ASAE | 0.00463 ^{\{ 5 \}} | 0.00449 ^{\{ 2 \}} | 0.00477 ^{\{ 7 \}} | 0.00458 ^{\{ 4 \}} | 0.00468 ^{\{ 6 \}} | 0.00423 ^{\{ 1 \}} | 0.00453 ^{\{ 3 \}} | 0.0053 ^{\{ 8 \}} | ||
\sum Ranks | 21.5 ^{\{ 1 \}} | 42 ^{\{ 4 \}} | 85 ^{\{ 8 \}} | 34 ^{\{ 2.5 \}} | 72 ^{\{ 6 \}} | 72.5 ^{\{ 7 \}} | 34 ^{\{ 2.5 \}} | 71 ^{\{ 5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.52028 ^{\{ 1 \}} | 0.68928 ^{\{ 3 \}} | 0.70994 ^{\{ 5 \}} | 0.69622 ^{\{ 4 \}} | 0.75178 ^{\{ 7 \}} | 0.67815 ^{\{ 2 \}} | 0.72398 ^{\{ 6 \}} | 1.13877 ^{\{ 8 \}} |
\hat{a} | 0.31117 ^{\{ 5 \}} | 0.30596 ^{\{ 4 \}} | 0.34262 ^{\{ 7 \}} | 0.29874 ^{\{ 2 \}} | 0.32249 ^{\{ 6 \}} | 0.29648 ^{\{ 1 \}} | 0.30057 ^{\{ 3 \}} | 0.40126 ^{\{ 8 \}} | ||
\hat{b} | 0.10184 ^{\{ 1 \}} | 0.12191 ^{\{ 2 \}} | 0.12619 ^{\{ 4 \}} | 0.12737 ^{\{ 5 \}} | 0.14134 ^{\{ 8 \}} | 0.12264 ^{\{ 3 \}} | 0.13027 ^{\{ 7 \}} | 0.12801 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.39328 ^{\{ 1 \}} | 0.62488 ^{\{ 3 \}} | 0.63359 ^{\{ 4 \}} | 0.64832 ^{\{ 5 \}} | 0.70817 ^{\{ 7 \}} | 0.59038 ^{\{ 2 \}} | 0.6678 ^{\{ 6 \}} | 5.81642 ^{\{ 8 \}} | |
\hat{a} | 0.19077 ^{\{ 6 \}} | 0.16766 ^{\{ 4 \}} | 0.21757 ^{\{ 7 \}} | 0.13867 ^{\{ 1 \}} | 0.1814 ^{\{ 5 \}} | 0.15924 ^{\{ 3 \}} | 0.14761 ^{\{ 2 \}} | 0.28201 ^{\{ 8 \}} | ||
\hat{b} | 0.01765 ^{\{ 1 \}} | 0.02526 ^{\{ 3 \}} | 0.02541 ^{\{ 4 \}} | 0.02837 ^{\{ 7 \}} | 0.03057 ^{\{ 8 \}} | 0.02415 ^{\{ 2 \}} | 0.02725 ^{\{ 5 \}} | 0.02764 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.34685 ^{\{ 1 \}} | 0.45952 ^{\{ 3 \}} | 0.47329 ^{\{ 5 \}} | 0.46415 ^{\{ 4 \}} | 0.50118 ^{\{ 7 \}} | 0.4521 ^{\{ 2 \}} | 0.48266 ^{\{ 6 \}} | 0.75918 ^{\{ 8 \}} | |
\hat{a} | 0.41489 ^{\{ 5 \}} | 0.40795 ^{\{ 4 \}} | 0.45682 ^{\{ 7 \}} | 0.39832 ^{\{ 2 \}} | 0.42998 ^{\{ 6 \}} | 0.39531 ^{\{ 1 \}} | 0.40076 ^{\{ 3 \}} | 0.53502 ^{\{ 8 \}} | ||
\hat{b} | 0.20368 ^{\{ 1 \}} | 0.24381 ^{\{ 2 \}} | 0.25237 ^{\{ 4 \}} | 0.25474 ^{\{ 5 \}} | 0.28267 ^{\{ 8 \}} | 0.24528 ^{\{ 3 \}} | 0.26055 ^{\{ 7 \}} | 0.25601 ^{\{ 6 \}} | ||
D_{abs} | 0.04223 ^{\{ 1 \}} | 0.04403 ^{\{ 2 \}} | 0.04672 ^{\{ 8 \}} | 0.04455 ^{\{ 3 \}} | 0.04648 ^{\{ 7 \}} | 0.04513 ^{\{ 4 \}} | 0.04515 ^{\{ 5 \}} | 0.04614 ^{\{ 6 \}} | ||
D_{max} | 0.07079 ^{\{ 1 \}} | 0.07367 ^{\{ 3 \}} | 0.07922 ^{\{ 8 \}} | 0.07196 ^{\{ 2 \}} | 0.07766 ^{\{ 6 \}} | 0.07539 ^{\{ 5 \}} | 0.07491 ^{\{ 4 \}} | 0.07795 ^{\{ 7 \}} | ||
ASAE | 0.02942 ^{\{ 7 \}} | 0.02673 ^{\{ 4 \}} | 0.02904 ^{\{ 5 \}} | 0.02425 ^{\{ 1 \}} | 0.02924 ^{\{ 6 \}} | 0.02505 ^{\{ 2 \}} | 0.02572 ^{\{ 3 \}} | 0.03359 ^{\{ 8 \}} | ||
\sum Ranks | 31 ^{\{ 2 \}} | 37 ^{\{ 3 \}} | 68 ^{\{ 6 \}} | 41 ^{\{ 4 \}} | 81 ^{\{ 7 \}} | 30 ^{\{ 1 \}} | 57 ^{\{ 5 \}} | 87 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.44843 ^{\{ 1 \}} | 0.55647 ^{\{ 2 \}} | 0.60703 ^{\{ 6 \}} | 0.59899 ^{\{ 5 \}} | 0.61789 ^{\{ 7 \}} | 0.59399 ^{\{ 4 \}} | 0.5885 ^{\{ 3 \}} | 0.81136 ^{\{ 8 \}} |
\hat{a} | 0.21823 ^{\{ 1 \}} | 0.23547 ^{\{ 2 \}} | 0.28101 ^{\{ 7 \}} | 0.24595 ^{\{ 4 \}} | 0.27126 ^{\{ 6 \}} | 0.24022 ^{\{ 3 \}} | 0.25611 ^{\{ 5 \}} | 0.34138 ^{\{ 8 \}} | ||
\hat{b} | 0.07119 ^{\{ 1 \}} | 0.07899 ^{\{ 2 \}} | 0.09493 ^{\{ 7 \}} | 0.09127 ^{\{ 4 \}} | 0.09464 ^{\{ 6 \}} | 0.09441 ^{\{ 5 \}} | 0.08918 ^{\{ 3 \}} | 0.09618 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.29594 ^{\{ 1 \}} | 0.41655 ^{\{ 2 \}} | 0.47968 ^{\{ 5 \}} | 0.50918 ^{\{ 7 \}} | 0.49378 ^{\{ 6 \}} | 0.47083 ^{\{ 4 \}} | 0.46093 ^{\{ 3 \}} | 1.11606 ^{\{ 8 \}} | |
\hat{a} | 0.08284 ^{\{ 1 \}} | 0.08655 ^{\{ 2 \}} | 0.13227 ^{\{ 7 \}} | 0.08818 ^{\{ 3 \}} | 0.12046 ^{\{ 6 \}} | 0.09121 ^{\{ 4 \}} | 0.10373 ^{\{ 5 \}} | 0.1922 ^{\{ 8 \}} | ||
\hat{b} | 0.00891 ^{\{ 1 \}} | 0.01107 ^{\{ 2 \}} | 0.01553 ^{\{ 5.5 \}} | 0.01731 ^{\{ 8 \}} | 0.01553 ^{\{ 5.5 \}} | 0.01424 ^{\{ 4 \}} | 0.01391 ^{\{ 3 \}} | 0.01668 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.29895 ^{\{ 1 \}} | 0.37098 ^{\{ 2 \}} | 0.40469 ^{\{ 6 \}} | 0.39933 ^{\{ 5 \}} | 0.41193 ^{\{ 7 \}} | 0.39599 ^{\{ 4 \}} | 0.39233 ^{\{ 3 \}} | 0.5409 ^{\{ 8 \}} | |
\hat{a} | 0.29097 ^{\{ 1 \}} | 0.31396 ^{\{ 2 \}} | 0.37468 ^{\{ 7 \}} | 0.32794 ^{\{ 4 \}} | 0.36168 ^{\{ 6 \}} | 0.32029 ^{\{ 3 \}} | 0.34148 ^{\{ 5 \}} | 0.45517 ^{\{ 8 \}} | ||
\hat{b} | 0.14238 ^{\{ 1 \}} | 0.15797 ^{\{ 2 \}} | 0.18985 ^{\{ 7 \}} | 0.18254 ^{\{ 4 \}} | 0.18928 ^{\{ 6 \}} | 0.18881 ^{\{ 5 \}} | 0.17837 ^{\{ 3 \}} | 0.19237 ^{\{ 8 \}} | ||
D_{abs} | 0.03152 ^{\{ 2.5 \}} | 0.03098 ^{\{ 1 \}} | 0.03327 ^{\{ 6 \}} | 0.03152 ^{\{ 2.5 \}} | 0.03365 ^{\{ 7 \}} | 0.03254 ^{\{ 5 \}} | 0.0324 ^{\{ 4 \}} | 0.03395 ^{\{ 8 \}} | ||
D_{max} | 0.05225 ^{\{ 3 \}} | 0.05176 ^{\{ 1 \}} | 0.0565 ^{\{ 6 \}} | 0.05216 ^{\{ 2 \}} | 0.05677 ^{\{ 7 \}} | 0.05497 ^{\{ 5 \}} | 0.05425 ^{\{ 4 \}} | 0.05832 ^{\{ 8 \}} | ||
ASAE | 0.01684 ^{\{ 5 \}} | 0.0164 ^{\{ 4 \}} | 0.01827 ^{\{ 7 \}} | 0.01516 ^{\{ 2 \}} | 0.01819 ^{\{ 6 \}} | 0.01497 ^{\{ 1 \}} | 0.01597 ^{\{ 3 \}} | 0.02063 ^{\{ 8 \}} | ||
\sum Ranks | 19.5 ^{\{ 1 \}} | 24 ^{\{ 2 \}} | 76.5 ^{\{ 7 \}} | 50.5 ^{\{ 5 \}} | 75.5 ^{\{ 6 \}} | 47 ^{\{ 4 \}} | 44 ^{\{ 3 \}} | 95 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.35036 ^{\{ 1 \}} | 0.41902 ^{\{ 2 \}} | 0.48817 ^{\{ 6 \}} | 0.48135 ^{\{ 5 \}} | 0.50235 ^{\{ 7 \}} | 0.47052 ^{\{ 4 \}} | 0.45634 ^{\{ 3 \}} | 0.61217 ^{\{ 8 \}} |
\hat{a} | 0.15767 ^{\{ 1 \}} | 0.18619 ^{\{ 2 \}} | 0.21414 ^{\{ 6 \}} | 0.20254 ^{\{ 5 \}} | 0.22223 ^{\{ 7 \}} | 0.18666 ^{\{ 3 \}} | 0.18946 ^{\{ 4 \}} | 0.26043 ^{\{ 8 \}} | ||
\hat{b} | 0.04827 ^{\{ 1 \}} | 0.05232 ^{\{ 3 \}} | 0.06485 ^{\{ 7 \}} | 0.05135 ^{\{ 2 \}} | 0.06782 ^{\{ 8 \}} | 0.06386 ^{\{ 6 \}} | 0.05683 ^{\{ 4 \}} | 0.06102 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.18777 ^{\{ 1 \}} | 0.25158 ^{\{ 2 \}} | 0.32527 ^{\{ 5 \}} | 0.352 ^{\{ 7 \}} | 0.34253 ^{\{ 6 \}} | 0.31557 ^{\{ 4 \}} | 0.28732 ^{\{ 3 \}} | 0.5778 ^{\{ 8 \}} | |
\hat{a} | 0.04089 ^{\{ 1 \}} | 0.05247 ^{\{ 3 \}} | 0.07072 ^{\{ 6 \}} | 0.06092 ^{\{ 5 \}} | 0.07443 ^{\{ 7 \}} | 0.05186 ^{\{ 2 \}} | 0.05349 ^{\{ 4 \}} | 0.10477 ^{\{ 8 \}} | ||
\hat{b} | 0.00404 ^{\{ 1 \}} | 0.00479 ^{\{ 2 \}} | 0.00774 ^{\{ 7 \}} | 0.00548 ^{\{ 3 \}} | 0.00827 ^{\{ 8 \}} | 0.00696 ^{\{ 6 \}} | 0.00551 ^{\{ 4 \}} | 0.00665 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.23357 ^{\{ 1 \}} | 0.27934 ^{\{ 2 \}} | 0.32544 ^{\{ 6 \}} | 0.3209 ^{\{ 5 \}} | 0.3349 ^{\{ 7 \}} | 0.31368 ^{\{ 4 \}} | 0.30422 ^{\{ 3 \}} | 0.40811 ^{\{ 8 \}} | |
\hat{a} | 0.21023 ^{\{ 1 \}} | 0.24825 ^{\{ 2 \}} | 0.28552 ^{\{ 6 \}} | 0.27005 ^{\{ 5 \}} | 0.29631 ^{\{ 7 \}} | 0.24888 ^{\{ 3 \}} | 0.25261 ^{\{ 4 \}} | 0.34723 ^{\{ 8 \}} | ||
\hat{b} | 0.09655 ^{\{ 1 \}} | 0.10464 ^{\{ 3 \}} | 0.12969 ^{\{ 7 \}} | 0.1027 ^{\{ 2 \}} | 0.13565 ^{\{ 8 \}} | 0.12772 ^{\{ 6 \}} | 0.11365 ^{\{ 4 \}} | 0.12204 ^{\{ 5 \}} | ||
D_{abs} | 0.02102 ^{\{ 1 \}} | 0.02184 ^{\{ 3 \}} | 0.02231 ^{\{ 5 \}} | 0.02208 ^{\{ 4 \}} | 0.02368 ^{\{ 8 \}} | 0.02251 ^{\{ 6 \}} | 0.02177 ^{\{ 2 \}} | 0.02282 ^{\{ 7 \}} | ||
D_{max} | 0.03532 ^{\{ 1 \}} | 0.03657 ^{\{ 2 \}} | 0.03853 ^{\{ 6 \}} | 0.0366 ^{\{ 3 \}} | 0.04015 ^{\{ 8 \}} | 0.03831 ^{\{ 5 \}} | 0.03668 ^{\{ 4 \}} | 0.03957 ^{\{ 7 \}} | ||
ASAE | 0.00991 ^{\{ 5 \}} | 0.0094 ^{\{ 3 \}} | 0.0108 ^{\{ 7 \}} | 0.00918 ^{\{ 2 \}} | 0.01075 ^{\{ 6 \}} | 0.00871 ^{\{ 1 \}} | 0.00976 ^{\{ 4 \}} | 0.01271 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 29 ^{\{ 2 \}} | 74 ^{\{ 6 \}} | 48 ^{\{ 4 \}} | 87 ^{\{ 8 \}} | 50 ^{\{ 5 \}} | 43 ^{\{ 3 \}} | 85 ^{\{ 7 \}} | ||
300 | BIAS | \hat{\tau} | 0.26655 ^{\{ 1 \}} | 0.33434 ^{\{ 3 \}} | 0.37325 ^{\{ 6 \}} | 0.34711 ^{\{ 4 \}} | 0.39467 ^{\{ 7 \}} | 0.36499 ^{\{ 5 \}} | 0.33138 ^{\{ 2 \}} | 0.48508 ^{\{ 8 \}} |
\hat{a} | 0.12193 ^{\{ 1 \}} | 0.14744 ^{\{ 4 \}} | 0.16883 ^{\{ 6 \}} | 0.15015 ^{\{ 5 \}} | 0.17776 ^{\{ 7 \}} | 0.14515 ^{\{ 2 \}} | 0.14696 ^{\{ 3 \}} | 0.21805 ^{\{ 8 \}} | ||
\hat{b} | 0.03505 ^{\{ 1 \}} | 0.03905 ^{\{ 4 \}} | 0.04169 ^{\{ 5 \}} | 0.03599 ^{\{ 2 \}} | 0.04485 ^{\{ 7 \}} | 0.04629 ^{\{ 8 \}} | 0.03769 ^{\{ 3 \}} | 0.04173 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.11494 ^{\{ 1 \}} | 0.16891 ^{\{ 3 \}} | 0.19839 ^{\{ 4 \}} | 0.22068 ^{\{ 7 \}} | 0.21592 ^{\{ 6 \}} | 0.20154 ^{\{ 5 \}} | 0.16587 ^{\{ 2 \}} | 0.37566 ^{\{ 8 \}} | |
\hat{a} | 0.0244 ^{\{ 1 \}} | 0.03273 ^{\{ 4 \}} | 0.0429 ^{\{ 6 \}} | 0.03661 ^{\{ 5 \}} | 0.04653 ^{\{ 7 \}} | 0.03141 ^{\{ 2 \}} | 0.03249 ^{\{ 3 \}} | 0.07079 ^{\{ 8 \}} | ||
\hat{b} | 0.00192 ^{\{ 1 \}} | 0.00236 ^{\{ 4 \}} | 0.00295 ^{\{ 6 \}} | 0.00211 ^{\{ 2 \}} | 0.00333 ^{\{ 7 \}} | 0.00349 ^{\{ 8 \}} | 0.00226 ^{\{ 3 \}} | 0.00285 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.1777 ^{\{ 1 \}} | 0.22289 ^{\{ 3 \}} | 0.24883 ^{\{ 6 \}} | 0.23141 ^{\{ 4 \}} | 0.26311 ^{\{ 7 \}} | 0.24333 ^{\{ 5 \}} | 0.22092 ^{\{ 2 \}} | 0.32339 ^{\{ 8 \}} | |
\hat{a} | 0.16257 ^{\{ 1 \}} | 0.19658 ^{\{ 4 \}} | 0.2251 ^{\{ 6 \}} | 0.2002 ^{\{ 5 \}} | 0.23701 ^{\{ 7 \}} | 0.19353 ^{\{ 2 \}} | 0.19595 ^{\{ 3 \}} | 0.29074 ^{\{ 8 \}} | ||
\hat{b} | 0.0701 ^{\{ 1 \}} | 0.07811 ^{\{ 4 \}} | 0.08338 ^{\{ 5 \}} | 0.07198 ^{\{ 2 \}} | 0.08971 ^{\{ 7 \}} | 0.09259 ^{\{ 8 \}} | 0.07539 ^{\{ 3 \}} | 0.08345 ^{\{ 6 \}} | ||
D_{abs} | 0.0149 ^{\{ 1 \}} | 0.01559 ^{\{ 4 \}} | 0.0158 ^{\{ 5 \}} | 0.01556 ^{\{ 3 \}} | 0.01608 ^{\{ 7 \}} | 0.01621 ^{\{ 8 \}} | 0.01505 ^{\{ 2 \}} | 0.01595 ^{\{ 6 \}} | ||
D_{max} | 0.02507 ^{\{ 1 \}} | 0.02657 ^{\{ 4 \}} | 0.02735 ^{\{ 5 \}} | 0.02614 ^{\{ 3 \}} | 0.02778 ^{\{ 7 \}} | 0.02768 ^{\{ 6 \}} | 0.02561 ^{\{ 2 \}} | 0.02806 ^{\{ 8 \}} | ||
ASAE | 0.00607 ^{\{ 5 \}} | 0.00598 ^{\{ 4 \}} | 0.0069 ^{\{ 7 \}} | 0.00571 ^{\{ 2 \}} | 0.00682 ^{\{ 6 \}} | 0.00559 ^{\{ 1 \}} | 0.00593 ^{\{ 3 \}} | 0.00804 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 45 ^{\{ 4 \}} | 67 ^{\{ 6 \}} | 44 ^{\{ 3 \}} | 82 ^{\{ 7 \}} | 60 ^{\{ 5 \}} | 31 ^{\{ 2 \}} | 87 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.19544 ^{\{ 1 \}} | 0.23541 ^{\{ 3 \}} | 0.30543 ^{\{ 6 \}} | 0.22954 ^{\{ 2 \}} | 0.30719 ^{\{ 7 \}} | 0.2498 ^{\{ 5 \}} | 0.24212 ^{\{ 4 \}} | 0.36224 ^{\{ 8 \}} |
\hat{a} | 0.08322 ^{\{ 1 \}} | 0.10415 ^{\{ 4 \}} | 0.13813 ^{\{ 6 \}} | 0.10194 ^{\{ 2 \}} | 0.13953 ^{\{ 7 \}} | 0.1021 ^{\{ 3 \}} | 0.10419 ^{\{ 5 \}} | 0.1712 ^{\{ 8 \}} | ||
\hat{b} | 0.02563 ^{\{ 2 \}} | 0.02682 ^{\{ 3 \}} | 0.03267 ^{\{ 8 \}} | 0.02544 ^{\{ 1 \}} | 0.03225 ^{\{ 7 \}} | 0.03151 ^{\{ 6 \}} | 0.0275 ^{\{ 4 \}} | 0.02908 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.06188 ^{\{ 1 \}} | 0.09047 ^{\{ 2 \}} | 0.14058 ^{\{ 7 \}} | 0.12175 ^{\{ 5 \}} | 0.13924 ^{\{ 6 \}} | 0.10305 ^{\{ 4 \}} | 0.09293 ^{\{ 3 \}} | 0.21849 ^{\{ 8 \}} | |
\hat{a} | 0.01115 ^{\{ 1 \}} | 0.01707 ^{\{ 3 \}} | 0.02836 ^{\{ 6 \}} | 0.01967 ^{\{ 5 \}} | 0.02862 ^{\{ 7 \}} | 0.01637 ^{\{ 2 \}} | 0.01746 ^{\{ 4 \}} | 0.04409 ^{\{ 8 \}} | ||
\hat{b} | 0.00105 ^{\{ 2 \}} | 0.00116 ^{\{ 3 \}} | 0.00174 ^{\{ 8 \}} | 0.00103 ^{\{ 1 \}} | 0.00162 ^{\{ 7 \}} | 0.00159 ^{\{ 6 \}} | 0.00118 ^{\{ 4 \}} | 0.00135 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.13029 ^{\{ 1 \}} | 0.15694 ^{\{ 3 \}} | 0.20362 ^{\{ 6 \}} | 0.15302 ^{\{ 2 \}} | 0.20479 ^{\{ 7 \}} | 0.16653 ^{\{ 5 \}} | 0.16141 ^{\{ 4 \}} | 0.24149 ^{\{ 8 \}} | |
\hat{a} | 0.11096 ^{\{ 1 \}} | 0.13886 ^{\{ 4 \}} | 0.18417 ^{\{ 6 \}} | 0.13592 ^{\{ 2 \}} | 0.18604 ^{\{ 7 \}} | 0.13613 ^{\{ 3 \}} | 0.13892 ^{\{ 5 \}} | 0.22827 ^{\{ 8 \}} | ||
\hat{b} | 0.05126 ^{\{ 2 \}} | 0.05365 ^{\{ 3 \}} | 0.06534 ^{\{ 8 \}} | 0.05088 ^{\{ 1 \}} | 0.06449 ^{\{ 7 \}} | 0.06302 ^{\{ 6 \}} | 0.055 ^{\{ 4 \}} | 0.05817 ^{\{ 5 \}} | ||
D_{abs} | 0.01057 ^{\{ 1 \}} | 0.01082 ^{\{ 3 \}} | 0.01131 ^{\{ 7 \}} | 0.0107 ^{\{ 2 \}} | 0.01154 ^{\{ 8 \}} | 0.01116 ^{\{ 5 \}} | 0.01097 ^{\{ 4 \}} | 0.01124 ^{\{ 6 \}} | ||
D_{max} | 0.01792 ^{\{ 1 \}} | 0.01849 ^{\{ 3 \}} | 0.01965 ^{\{ 6 \}} | 0.01801 ^{\{ 2 \}} | 0.02001 ^{\{ 8 \}} | 0.01931 ^{\{ 5 \}} | 0.01869 ^{\{ 4 \}} | 0.01979 ^{\{ 7 \}} | ||
ASAE | 0.00367 ^{\{ 3 \}} | 0.00378 ^{\{ 5 \}} | 0.00448 ^{\{ 7 \}} | 0.00364 ^{\{ 2 \}} | 0.00445 ^{\{ 6 \}} | 0.0035 ^{\{ 1 \}} | 0.00376 ^{\{ 4 \}} | 0.0053 ^{\{ 8 \}} | ||
\sum Ranks | 17 ^{\{ 1 \}} | 39 ^{\{ 3 \}} | 81 ^{\{ 6 \}} | 27 ^{\{ 2 \}} | 84 ^{\{ 7.5 \}} | 51 ^{\{ 5 \}} | 49 ^{\{ 4 \}} | 84 ^{\{ 7.5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.53211 ^{\{ 2 \}} | 0.62026 ^{\{ 4 \}} | 0.75084 ^{\{ 7 \}} | 0.47271 ^{\{ 1 \}} | 0.63274 ^{\{ 6 \}} | 0.62076 ^{\{ 5 \}} | 0.55091 ^{\{ 3 \}} | 0.88774 ^{\{ 8 \}} |
\hat{a} | 0.17954 ^{\{ 7 \}} | 0.14419 ^{\{ 3 \}} | 0.15786 ^{\{ 5 \}} | 0.13798 ^{\{ 1 \}} | 0.16003 ^{\{ 6 \}} | 0.14116 ^{\{ 2 \}} | 0.14743 ^{\{ 4 \}} | 0.20721 ^{\{ 8 \}} | ||
\hat{b} | 0.29362 ^{\{ 3 \}} | 0.2843 ^{\{ 2 \}} | 0.33553 ^{\{ 5 \}} | 0.27643 ^{\{ 1 \}} | 0.34292 ^{\{ 7 \}} | 0.34139 ^{\{ 6 \}} | 0.29688 ^{\{ 4 \}} | 0.35737 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.48119 ^{\{ 1 \}} | 3.73487 ^{\{ 7 \}} | 5.47953 ^{\{ 8 \}} | 0.75293 ^{\{ 2 \}} | 1.38498 ^{\{ 5 \}} | 1.30859 ^{\{ 4 \}} | 0.81897 ^{\{ 3 \}} | 1.74615 ^{\{ 6 \}} | |
\hat{a} | 0.05597 ^{\{ 7 \}} | 0.03354 ^{\{ 3 \}} | 0.04117 ^{\{ 5 \}} | 0.02854 ^{\{ 1 \}} | 0.04153 ^{\{ 6 \}} | 0.03226 ^{\{ 2 \}} | 0.03661 ^{\{ 4 \}} | 0.06468 ^{\{ 8 \}} | ||
\hat{b} | 0.15312 ^{\{ 3 \}} | 0.13705 ^{\{ 2 \}} | 0.20378 ^{\{ 7 \}} | 0.11466 ^{\{ 1 \}} | 0.19627 ^{\{ 6 \}} | 0.19503 ^{\{ 5 \}} | 0.16026 ^{\{ 4 \}} | 0.25206 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.26605 ^{\{ 2 \}} | 0.31013 ^{\{ 4 \}} | 0.37542 ^{\{ 7 \}} | 0.23636 ^{\{ 1 \}} | 0.31637 ^{\{ 6 \}} | 0.31038 ^{\{ 5 \}} | 0.27546 ^{\{ 3 \}} | 0.44387 ^{\{ 8 \}} | |
\hat{a} | 0.35909 ^{\{ 7 \}} | 0.28838 ^{\{ 3 \}} | 0.31573 ^{\{ 5 \}} | 0.27597 ^{\{ 1 \}} | 0.32006 ^{\{ 6 \}} | 0.28232 ^{\{ 2 \}} | 0.29486 ^{\{ 4 \}} | 0.41442 ^{\{ 8 \}} | ||
\hat{b} | 0.19574 ^{\{ 3 \}} | 0.18953 ^{\{ 2 \}} | 0.22369 ^{\{ 5 \}} | 0.18428 ^{\{ 1 \}} | 0.22862 ^{\{ 7 \}} | 0.2276 ^{\{ 6 \}} | 0.19792 ^{\{ 4 \}} | 0.23825 ^{\{ 8 \}} | ||
D_{abs} | 0.04307 ^{\{ 1 \}} | 0.0449 ^{\{ 4 \}} | 0.04669 ^{\{ 7 \}} | 0.04388 ^{\{ 2 \}} | 0.04491 ^{\{ 5 \}} | 0.04571 ^{\{ 6 \}} | 0.04461 ^{\{ 3 \}} | 0.04673 ^{\{ 8 \}} | ||
D_{max} | 0.07024 ^{\{ 1 \}} | 0.07378 ^{\{ 3 \}} | 0.07974 ^{\{ 7 \}} | 0.07148 ^{\{ 2 \}} | 0.07603 ^{\{ 5 \}} | 0.07639 ^{\{ 6 \}} | 0.07422 ^{\{ 4 \}} | 0.08325 ^{\{ 8 \}} | ||
ASAE | 0.03049 ^{\{ 7 \}} | 0.02701 ^{\{ 3 \}} | 0.02932 ^{\{ 6 \}} | 0.02714 ^{\{ 4 \}} | 0.02773 ^{\{ 5 \}} | 0.0261 ^{\{ 1 \}} | 0.02631 ^{\{ 2 \}} | 0.03283 ^{\{ 8 \}} | ||
\sum Ranks | 44 ^{\{ 4 \}} | 40 ^{\{ 2 \}} | 74 ^{\{ 7 \}} | 18 ^{\{ 1 \}} | 70 ^{\{ 6 \}} | 50 ^{\{ 5 \}} | 42 ^{\{ 3 \}} | 94 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.51021 ^{\{ 6 \}} | 0.46181 ^{\{ 3 \}} | 0.55823 ^{\{ 7 \}} | 0.32583 ^{\{ 1 \}} | 0.50722 ^{\{ 5 \}} | 0.4729 ^{\{ 4 \}} | 0.44219 ^{\{ 2 \}} | 0.72147 ^{\{ 8 \}} |
\hat{a} | 0.14444 ^{\{ 7 \}} | 0.11709 ^{\{ 3 \}} | 0.12932 ^{\{ 6 \}} | 0.10479 ^{\{ 1 \}} | 0.12807 ^{\{ 5 \}} | 0.10663 ^{\{ 2 \}} | 0.11767 ^{\{ 4 \}} | 0.16304 ^{\{ 8 \}} | ||
\hat{b} | 0.21298 ^{\{ 4 \}} | 0.19057 ^{\{ 1 \}} | 0.22769 ^{\{ 7 \}} | 0.19871 ^{\{ 2 \}} | 0.22471 ^{\{ 5 \}} | 0.22894 ^{\{ 8 \}} | 0.20491 ^{\{ 3 \}} | 0.22533 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.42994 ^{\{ 5 \}} | 0.35419 ^{\{ 2 \}} | 0.59732 ^{\{ 7 \}} | 0.22679 ^{\{ 1 \}} | 0.51238 ^{\{ 6 \}} | 0.42894 ^{\{ 4 \}} | 0.35475 ^{\{ 3 \}} | 0.92497 ^{\{ 8 \}} | |
\hat{a} | 0.03539 ^{\{ 7 \}} | 0.02113 ^{\{ 4 \}} | 0.02531 ^{\{ 5 \}} | 0.01663 ^{\{ 1 \}} | 0.02539 ^{\{ 6 \}} | 0.01784 ^{\{ 2 \}} | 0.02057 ^{\{ 3 \}} | 0.0383 ^{\{ 8 \}} | ||
\hat{b} | 0.07882 ^{\{ 5 \}} | 0.06102 ^{\{ 2 \}} | 0.08373 ^{\{ 6 \}} | 0.05998 ^{\{ 1 \}} | 0.07835 ^{\{ 4 \}} | 0.08602 ^{\{ 7 \}} | 0.07017 ^{\{ 3 \}} | 0.08803 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.25511 ^{\{ 6 \}} | 0.2309 ^{\{ 3 \}} | 0.27912 ^{\{ 7 \}} | 0.16292 ^{\{ 1 \}} | 0.25361 ^{\{ 5 \}} | 0.23645 ^{\{ 4 \}} | 0.2211 ^{\{ 2 \}} | 0.36073 ^{\{ 8 \}} | |
\hat{a} | 0.28889 ^{\{ 7 \}} | 0.23418 ^{\{ 3 \}} | 0.25864 ^{\{ 6 \}} | 0.20958 ^{\{ 1 \}} | 0.25613 ^{\{ 5 \}} | 0.21326 ^{\{ 2 \}} | 0.23534 ^{\{ 4 \}} | 0.32609 ^{\{ 8 \}} | ||
\hat{b} | 0.14198 ^{\{ 4 \}} | 0.12705 ^{\{ 1 \}} | 0.15179 ^{\{ 7 \}} | 0.13248 ^{\{ 2 \}} | 0.14981 ^{\{ 5 \}} | 0.15263 ^{\{ 8 \}} | 0.13661 ^{\{ 3 \}} | 0.15022 ^{\{ 6 \}} | ||
D_{abs} | 0.03036 ^{\{ 2 \}} | 0.03145 ^{\{ 4 \}} | 0.03273 ^{\{ 6 \}} | 0.02999 ^{\{ 1 \}} | 0.03228 ^{\{ 5 \}} | 0.03339 ^{\{ 8 \}} | 0.03132 ^{\{ 3 \}} | 0.03284 ^{\{ 7 \}} | ||
D_{max} | 0.05009 ^{\{ 2 \}} | 0.05184 ^{\{ 3 \}} | 0.05627 ^{\{ 7 \}} | 0.04922 ^{\{ 1 \}} | 0.05469 ^{\{ 5 \}} | 0.05545 ^{\{ 6 \}} | 0.05225 ^{\{ 4 \}} | 0.0576 ^{\{ 8 \}} | ||
ASAE | 0.01841 ^{\{ 6 \}} | 0.01732 ^{\{ 3 \}} | 0.0189 ^{\{ 7 \}} | 0.01759 ^{\{ 4 \}} | 0.01822 ^{\{ 5 \}} | 0.01671 ^{\{ 1 \}} | 0.01717 ^{\{ 2 \}} | 0.0212 ^{\{ 8 \}} | ||
\sum Ranks | 61 ^{\{ 5.5 \}} | 32 ^{\{ 2 \}} | 78 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 61 ^{\{ 5.5 \}} | 56 ^{\{ 4 \}} | 36 ^{\{ 3 \}} | 91 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.43313 ^{\{ 5 \}} | 0.38216 ^{\{ 3 \}} | 0.4568 ^{\{ 6 \}} | 0.2421 ^{\{ 1 \}} | 0.46034 ^{\{ 7 \}} | 0.38646 ^{\{ 4 \}} | 0.36914 ^{\{ 2 \}} | 0.55156 ^{\{ 8 \}} |
\hat{a} | 0.11342 ^{\{ 7 \}} | 0.09493 ^{\{ 4 \}} | 0.10673 ^{\{ 5 \}} | 0.07841 ^{\{ 1 \}} | 0.10869 ^{\{ 6 \}} | 0.09064 ^{\{ 2 \}} | 0.09329 ^{\{ 3 \}} | 0.13012 ^{\{ 8 \}} | ||
\hat{b} | 0.13544 ^{\{ 3 \}} | 0.13508 ^{\{ 2 \}} | 0.15218 ^{\{ 6 \}} | 0.12937 ^{\{ 1 \}} | 0.15998 ^{\{ 8 \}} | 0.14971 ^{\{ 5 \}} | 0.13655 ^{\{ 4 \}} | 0.15561 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.3042 ^{\{ 5 \}} | 0.23781 ^{\{ 3 \}} | 0.35945 ^{\{ 6 \}} | 0.11844 ^{\{ 1 \}} | 0.37455 ^{\{ 7 \}} | 0.26349 ^{\{ 4 \}} | 0.23662 ^{\{ 2 \}} | 0.47541 ^{\{ 8 \}} | |
\hat{a} | 0.02075 ^{\{ 7 \}} | 0.01375 ^{\{ 4 \}} | 0.01716 ^{\{ 5 \}} | 0.00947 ^{\{ 1 \}} | 0.01836 ^{\{ 6 \}} | 0.013 ^{\{ 2 \}} | 0.01327 ^{\{ 3 \}} | 0.02369 ^{\{ 8 \}} | ||
\hat{b} | 0.03131 ^{\{ 4 \}} | 0.02853 ^{\{ 2 \}} | 0.03592 ^{\{ 5 \}} | 0.02519 ^{\{ 1 \}} | 0.03888 ^{\{ 8 \}} | 0.03726 ^{\{ 7 \}} | 0.03049 ^{\{ 3 \}} | 0.03632 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.21657 ^{\{ 5 \}} | 0.19108 ^{\{ 3 \}} | 0.2284 ^{\{ 6 \}} | 0.12105 ^{\{ 1 \}} | 0.23017 ^{\{ 7 \}} | 0.19323 ^{\{ 4 \}} | 0.18457 ^{\{ 2 \}} | 0.27578 ^{\{ 8 \}} | |
\hat{a} | 0.22685 ^{\{ 7 \}} | 0.18986 ^{\{ 4 \}} | 0.21346 ^{\{ 5 \}} | 0.15681 ^{\{ 1 \}} | 0.21737 ^{\{ 6 \}} | 0.18128 ^{\{ 2 \}} | 0.18657 ^{\{ 3 \}} | 0.26023 ^{\{ 8 \}} | ||
\hat{b} | 0.0903 ^{\{ 3 \}} | 0.09005 ^{\{ 2 \}} | 0.10145 ^{\{ 6 \}} | 0.08625 ^{\{ 1 \}} | 0.10665 ^{\{ 8 \}} | 0.09981 ^{\{ 5 \}} | 0.09104 ^{\{ 4 \}} | 0.10374 ^{\{ 7 \}} | ||
D_{abs} | 0.02029 ^{\{ 1 \}} | 0.02158 ^{\{ 4 \}} | 0.02244 ^{\{ 8 \}} | 0.02061 ^{\{ 2 \}} | 0.02192 ^{\{ 6 \}} | 0.02201 ^{\{ 7 \}} | 0.0213 ^{\{ 3 \}} | 0.02178 ^{\{ 5 \}} | ||
D_{max} | 0.0336 ^{\{ 1 \}} | 0.0357 ^{\{ 4 \}} | 0.0381 ^{\{ 8 \}} | 0.03368 ^{\{ 2 \}} | 0.03725 ^{\{ 6 \}} | 0.03676 ^{\{ 5 \}} | 0.03557 ^{\{ 3 \}} | 0.03761 ^{\{ 7 \}} | ||
ASAE | 0.01084 ^{\{ 5 \}} | 0.01034 ^{\{ 2 \}} | 0.01173 ^{\{ 7 \}} | 0.01071 ^{\{ 4 \}} | 0.01128 ^{\{ 6 \}} | 0.00996 ^{\{ 1 \}} | 0.01055 ^{\{ 3 \}} | 0.01309 ^{\{ 8 \}} | ||
\sum Ranks | 53 ^{\{ 5 \}} | 37 ^{\{ 3 \}} | 73 ^{\{ 6 \}} | 17 ^{\{ 1 \}} | 81 ^{\{ 7 \}} | 48 ^{\{ 4 \}} | 35 ^{\{ 2 \}} | 88 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.38726 ^{\{ 6 \}} | 0.33359 ^{\{ 2 \}} | 0.38992 ^{\{ 7 \}} | 0.18992 ^{\{ 1 \}} | 0.37128 ^{\{ 5 \}} | 0.35983 ^{\{ 4 \}} | 0.34388 ^{\{ 3 \}} | 0.46204 ^{\{ 8 \}} |
\hat{a} | 0.09738 ^{\{ 7 \}} | 0.0794 ^{\{ 2 \}} | 0.09391 ^{\{ 6 \}} | 0.06178 ^{\{ 1 \}} | 0.08945 ^{\{ 5 \}} | 0.08286 ^{\{ 3 \}} | 0.08352 ^{\{ 4 \}} | 0.11042 ^{\{ 8 \}} | ||
\hat{b} | 0.09272 ^{\{ 1 \}} | 0.10093 ^{\{ 4 \}} | 0.11688 ^{\{ 7 \}} | 0.09282 ^{\{ 2 \}} | 0.11978 ^{\{ 8 \}} | 0.10638 ^{\{ 5 \}} | 0.10064 ^{\{ 3 \}} | 0.11367 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.23046 ^{\{ 6 \}} | 0.1782 ^{\{ 2 \}} | 0.24446 ^{\{ 7 \}} | 0.08426 ^{\{ 1 \}} | 0.2303 ^{\{ 5 \}} | 0.21335 ^{\{ 4 \}} | 0.19028 ^{\{ 3 \}} | 0.31359 ^{\{ 8 \}} | |
\hat{a} | 0.01471 ^{\{ 7 \}} | 0.00985 ^{\{ 2 \}} | 0.01326 ^{\{ 6 \}} | 0.0063 ^{\{ 1 \}} | 0.01233 ^{\{ 5 \}} | 0.01072 ^{\{ 4 \}} | 0.01051 ^{\{ 3 \}} | 0.01694 ^{\{ 8 \}} | ||
\hat{b} | 0.01347 ^{\{ 2 \}} | 0.0154 ^{\{ 3 \}} | 0.02142 ^{\{ 7 \}} | 0.0127 ^{\{ 1 \}} | 0.02166 ^{\{ 8 \}} | 0.01781 ^{\{ 5 \}} | 0.01588 ^{\{ 4 \}} | 0.02005 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.19363 ^{\{ 6 \}} | 0.16679 ^{\{ 2 \}} | 0.19496 ^{\{ 7 \}} | 0.09496 ^{\{ 1 \}} | 0.18564 ^{\{ 5 \}} | 0.17992 ^{\{ 4 \}} | 0.17194 ^{\{ 3 \}} | 0.23102 ^{\{ 8 \}} | |
\hat{a} | 0.19476 ^{\{ 7 \}} | 0.1588 ^{\{ 2 \}} | 0.18781 ^{\{ 6 \}} | 0.12356 ^{\{ 1 \}} | 0.17891 ^{\{ 5 \}} | 0.16573 ^{\{ 3 \}} | 0.16703 ^{\{ 4 \}} | 0.22084 ^{\{ 8 \}} | ||
\hat{b} | 0.06181 ^{\{ 1 \}} | 0.06728 ^{\{ 4 \}} | 0.07792 ^{\{ 7 \}} | 0.06188 ^{\{ 2 \}} | 0.07985 ^{\{ 8 \}} | 0.07092 ^{\{ 5 \}} | 0.0671 ^{\{ 3 \}} | 0.07578 ^{\{ 6 \}} | ||
D_{abs} | 0.01458 ^{\{ 2 \}} | 0.01466 ^{\{ 3 \}} | 0.01637 ^{\{ 8 \}} | 0.01442 ^{\{ 1 \}} | 0.01585 ^{\{ 5 \}} | 0.01586 ^{\{ 6 \}} | 0.01526 ^{\{ 4 \}} | 0.01617 ^{\{ 7 \}} | ||
D_{max} | 0.02429 ^{\{ 2 \}} | 0.02455 ^{\{ 3 \}} | 0.02772 ^{\{ 8 \}} | 0.0237 ^{\{ 1 \}} | 0.02703 ^{\{ 6 \}} | 0.02665 ^{\{ 5 \}} | 0.0255 ^{\{ 4 \}} | 0.02769 ^{\{ 7 \}} | ||
ASAE | 0.00677 ^{\{ 5 \}} | 0.0067 ^{\{ 3 \}} | 0.00736 ^{\{ 7 \}} | 0.00671 ^{\{ 4 \}} | 0.00725 ^{\{ 6 \}} | 0.00629 ^{\{ 1 \}} | 0.00664 ^{\{ 2 \}} | 0.00836 ^{\{ 8 \}} | ||
\sum Ranks | 52 ^{\{ 5 \}} | 32 ^{\{ 2 \}} | 83 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 71 ^{\{ 6 \}} | 49 ^{\{ 4 \}} | 40 ^{\{ 3 \}} | 88 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.33439 ^{\{ 6 \}} | 0.29901 ^{\{ 2 \}} | 0.33425 ^{\{ 5 \}} | 0.12434 ^{\{ 1 \}} | 0.34928 ^{\{ 7 \}} | 0.307 ^{\{ 3 \}} | 0.31014 ^{\{ 4 \}} | 0.38531 ^{\{ 8 \}} |
\hat{a} | 0.08166 ^{\{ 6 \}} | 0.0727 ^{\{ 3 \}} | 0.07959 ^{\{ 5 \}} | 0.04277 ^{\{ 1 \}} | 0.08482 ^{\{ 7 \}} | 0.07253 ^{\{ 2 \}} | 0.0737 ^{\{ 4 \}} | 0.09209 ^{\{ 8 \}} | ||
\hat{b} | 0.0686 ^{\{ 2 \}} | 0.07273 ^{\{ 4 \}} | 0.0851 ^{\{ 7 \}} | 0.06697 ^{\{ 1 \}} | 0.08853 ^{\{ 8 \}} | 0.07975 ^{\{ 5 \}} | 0.07184 ^{\{ 3 \}} | 0.08318 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.16634 ^{\{ 5 \}} | 0.13955 ^{\{ 2 \}} | 0.17655 ^{\{ 6 \}} | 0.05129 ^{\{ 1 \}} | 0.18951 ^{\{ 7 \}} | 0.15596 ^{\{ 4 \}} | 0.1493 ^{\{ 3 \}} | 0.20575 ^{\{ 8 \}} | |
\hat{a} | 0.01011 ^{\{ 6 \}} | 0.00794 ^{\{ 2 \}} | 0.00965 ^{\{ 5 \}} | 0.0035 ^{\{ 1 \}} | 0.01076 ^{\{ 7 \}} | 0.00839 ^{\{ 4 \}} | 0.00828 ^{\{ 3 \}} | 0.01148 ^{\{ 8 \}} | ||
\hat{b} | 0.00734 ^{\{ 2 \}} | 0.00804 ^{\{ 3 \}} | 0.01118 ^{\{ 7 \}} | 0.00685 ^{\{ 1 \}} | 0.01207 ^{\{ 8 \}} | 0.00953 ^{\{ 5 \}} | 0.00809 ^{\{ 4 \}} | 0.01058 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.1672 ^{\{ 6 \}} | 0.14951 ^{\{ 2 \}} | 0.16712 ^{\{ 5 \}} | 0.06217 ^{\{ 1 \}} | 0.17464 ^{\{ 7 \}} | 0.1535 ^{\{ 3 \}} | 0.15507 ^{\{ 4 \}} | 0.19266 ^{\{ 8 \}} | |
\hat{a} | 0.16331 ^{\{ 6 \}} | 0.1454 ^{\{ 3 \}} | 0.15918 ^{\{ 5 \}} | 0.08554 ^{\{ 1 \}} | 0.16963 ^{\{ 7 \}} | 0.14506 ^{\{ 2 \}} | 0.14741 ^{\{ 4 \}} | 0.18418 ^{\{ 8 \}} | ||
\hat{b} | 0.04573 ^{\{ 2 \}} | 0.04849 ^{\{ 4 \}} | 0.05674 ^{\{ 7 \}} | 0.04465 ^{\{ 1 \}} | 0.05902 ^{\{ 8 \}} | 0.05317 ^{\{ 5 \}} | 0.0479 ^{\{ 3 \}} | 0.05545 ^{\{ 6 \}} | ||
D_{abs} | 0.01052 ^{\{ 1 \}} | 0.01059 ^{\{ 3 \}} | 0.01098 ^{\{ 5 \}} | 0.01057 ^{\{ 2 \}} | 0.01117 ^{\{ 7 \}} | 0.0113 ^{\{ 8 \}} | 0.01068 ^{\{ 4 \}} | 0.01106 ^{\{ 6 \}} | ||
D_{max} | 0.01751 ^{\{ 2 \}} | 0.01784 ^{\{ 3 \}} | 0.01888 ^{\{ 5 \}} | 0.01736 ^{\{ 1 \}} | 0.01914 ^{\{ 7 \}} | 0.01915 ^{\{ 8 \}} | 0.01798 ^{\{ 4 \}} | 0.01898 ^{\{ 6 \}} | ||
ASAE | 0.00424 ^{\{ 4 \}} | 0.0042 ^{\{ 2 \}} | 0.00469 ^{\{ 7 \}} | 0.00438 ^{\{ 5 \}} | 0.00466 ^{\{ 6 \}} | 0.00396 ^{\{ 1 \}} | 0.00422 ^{\{ 3 \}} | 0.00525 ^{\{ 8 \}} | ||
\sum Ranks | 48 ^{\{ 4 \}} | 33 ^{\{ 2 \}} | 69 ^{\{ 6 \}} | 17 ^{\{ 1 \}} | 86 ^{\{ 7.5 \}} | 50 ^{\{ 5 \}} | 43 ^{\{ 3 \}} | 86 ^{\{ 7.5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.51619 ^{\{ 2 \}} | 0.63113 ^{\{ 6 \}} | 0.67423 ^{\{ 7 \}} | 0.51172 ^{\{ 1 \}} | 0.61334 ^{\{ 4 \}} | 0.62651 ^{\{ 5 \}} | 0.55707 ^{\{ 3 \}} | 0.88577 ^{\{ 8 \}} |
\hat{a} | 0.4211 ^{\{ 6 \}} | 0.39524 ^{\{ 5 \}} | 0.43673 ^{\{ 7 \}} | 0.34427 ^{\{ 1 \}} | 0.38438 ^{\{ 3 \}} | 0.36625 ^{\{ 2 \}} | 0.38901 ^{\{ 4 \}} | 0.57667 ^{\{ 8 \}} | ||
\hat{b} | 0.42122 ^{\{ 2 \}} | 0.42702 ^{\{ 3 \}} | 0.52173 ^{\{ 8 \}} | 0.40397 ^{\{ 1 \}} | 0.48285 ^{\{ 6 \}} | 0.45722 ^{\{ 5 \}} | 0.44181 ^{\{ 4 \}} | 0.4914 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.44269 ^{\{ 1 \}} | 1.40915 ^{\{ 6 \}} | 0.97253 ^{\{ 5 \}} | 0.79973 ^{\{ 4 \}} | 0.78856 ^{\{ 3 \}} | 4.65109 ^{\{ 8 \}} | 0.70986 ^{\{ 2 \}} | 1.63292 ^{\{ 7 \}} | |
\hat{a} | 0.28044 ^{\{ 6 \}} | 0.24296 ^{\{ 5 \}} | 0.31317 ^{\{ 7 \}} | 0.18465 ^{\{ 1 \}} | 0.23352 ^{\{ 4 \}} | 0.21626 ^{\{ 2 \}} | 0.23222 ^{\{ 3 \}} | 0.50968 ^{\{ 8 \}} | ||
\hat{b} | 0.32216 ^{\{ 2 \}} | 0.33661 ^{\{ 4 \}} | 0.5635 ^{\{ 8 \}} | 0.25378 ^{\{ 1 \}} | 0.4679 ^{\{ 6 \}} | 0.37052 ^{\{ 5 \}} | 0.3353 ^{\{ 3 \}} | 0.47121 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.2581 ^{\{ 2 \}} | 0.31556 ^{\{ 6 \}} | 0.33711 ^{\{ 7 \}} | 0.25586 ^{\{ 1 \}} | 0.30667 ^{\{ 4 \}} | 0.31326 ^{\{ 5 \}} | 0.27853 ^{\{ 3 \}} | 0.44288 ^{\{ 8 \}} | |
\hat{a} | 0.28073 ^{\{ 6 \}} | 0.26349 ^{\{ 5 \}} | 0.29115 ^{\{ 7 \}} | 0.22951 ^{\{ 1 \}} | 0.25625 ^{\{ 3 \}} | 0.24417 ^{\{ 2 \}} | 0.25934 ^{\{ 4 \}} | 0.38445 ^{\{ 8 \}} | ||
\hat{b} | 0.21061 ^{\{ 2 \}} | 0.21351 ^{\{ 3 \}} | 0.26087 ^{\{ 8 \}} | 0.20198 ^{\{ 1 \}} | 0.24143 ^{\{ 6 \}} | 0.22861 ^{\{ 5 \}} | 0.2209 ^{\{ 4 \}} | 0.2457 ^{\{ 7 \}} | ||
D_{abs} | 0.04173 ^{\{ 1 \}} | 0.04563 ^{\{ 4 \}} | 0.04698 ^{\{ 8 \}} | 0.04308 ^{\{ 2 \}} | 0.0467 ^{\{ 7 \}} | 0.04585 ^{\{ 5 \}} | 0.04476 ^{\{ 3 \}} | 0.04629 ^{\{ 6 \}} | ||
D_{max} | 0.06876 ^{\{ 1 \}} | 0.07601 ^{\{ 4 \}} | 0.08059 ^{\{ 7 \}} | 0.07069 ^{\{ 2 \}} | 0.07795 ^{\{ 6 \}} | 0.07656 ^{\{ 5 \}} | 0.07406 ^{\{ 3 \}} | 0.08173 ^{\{ 8 \}} | ||
ASAE | 0.03095 ^{\{ 7 \}} | 0.02759 ^{\{ 4 \}} | 0.02937 ^{\{ 6 \}} | 0.02711 ^{\{ 3 \}} | 0.02798 ^{\{ 5 \}} | 0.02651 ^{\{ 1 \}} | 0.02653 ^{\{ 2 \}} | 0.03252 ^{\{ 8 \}} | ||
\sum Ranks | 38 ^{\{ 2.5 \}} | 55 ^{\{ 5 \}} | 85 ^{\{ 7 \}} | 19 ^{\{ 1 \}} | 57 ^{\{ 6 \}} | 50 ^{\{ 4 \}} | 38 ^{\{ 2.5 \}} | 90 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.47926 ^{\{ 5 \}} | 0.46754 ^{\{ 4 \}} | 0.5632 ^{\{ 7 \}} | 0.3673 ^{\{ 1 \}} | 0.55214 ^{\{ 6 \}} | 0.46172 ^{\{ 2 \}} | 0.46383 ^{\{ 3 \}} | 0.67025 ^{\{ 8 \}} |
\hat{a} | 0.36435 ^{\{ 7 \}} | 0.30602 ^{\{ 3 \}} | 0.3521 ^{\{ 6 \}} | 0.27605 ^{\{ 1 \}} | 0.33303 ^{\{ 5 \}} | 0.29119 ^{\{ 2 \}} | 0.31509 ^{\{ 4 \}} | 0.43801 ^{\{ 8 \}} | ||
\hat{b} | 0.29223 ^{\{ 3 \}} | 0.29115 ^{\{ 2 \}} | 0.3284 ^{\{ 7 \}} | 0.28673 ^{\{ 1 \}} | 0.33862 ^{\{ 8 \}} | 0.31389 ^{\{ 5 \}} | 0.30284 ^{\{ 4 \}} | 0.31591 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.37454 ^{\{ 3 \}} | 0.36448 ^{\{ 2 \}} | 0.56211 ^{\{ 7 \}} | 0.2657 ^{\{ 1 \}} | 0.53431 ^{\{ 6 \}} | 0.39635 ^{\{ 5 \}} | 0.37914 ^{\{ 4 \}} | 0.72289 ^{\{ 8 \}} | |
\hat{a} | 0.20482 ^{\{ 7 \}} | 0.14296 ^{\{ 3 \}} | 0.18606 ^{\{ 6 \}} | 0.11389 ^{\{ 1 \}} | 0.17027 ^{\{ 5 \}} | 0.1266 ^{\{ 2 \}} | 0.15246 ^{\{ 4 \}} | 0.27299 ^{\{ 8 \}} | ||
\hat{b} | 0.14415 ^{\{ 3 \}} | 0.13708 ^{\{ 2 \}} | 0.17917 ^{\{ 7 \}} | 0.13026 ^{\{ 1 \}} | 0.19342 ^{\{ 8 \}} | 0.16635 ^{\{ 5 \}} | 0.15758 ^{\{ 4 \}} | 0.1689 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.23963 ^{\{ 5 \}} | 0.23377 ^{\{ 4 \}} | 0.2816 ^{\{ 7 \}} | 0.18365 ^{\{ 1 \}} | 0.27607 ^{\{ 6 \}} | 0.23086 ^{\{ 2 \}} | 0.23191 ^{\{ 3 \}} | 0.33512 ^{\{ 8 \}} | |
\hat{a} | 0.2429 ^{\{ 7 \}} | 0.20401 ^{\{ 3 \}} | 0.23473 ^{\{ 6 \}} | 0.18403 ^{\{ 1 \}} | 0.22202 ^{\{ 5 \}} | 0.19413 ^{\{ 2 \}} | 0.21006 ^{\{ 4 \}} | 0.29201 ^{\{ 8 \}} | ||
\hat{b} | 0.14612 ^{\{ 3 \}} | 0.14557 ^{\{ 2 \}} | 0.1642 ^{\{ 7 \}} | 0.14337 ^{\{ 1 \}} | 0.16931 ^{\{ 8 \}} | 0.15694 ^{\{ 5 \}} | 0.15142 ^{\{ 4 \}} | 0.15796 ^{\{ 6 \}} | ||
D_{abs} | 0.03043 ^{\{ 1 \}} | 0.03146 ^{\{ 3 \}} | 0.03257 ^{\{ 5 \}} | 0.03117 ^{\{ 2 \}} | 0.03291 ^{\{ 7 \}} | 0.03307 ^{\{ 8 \}} | 0.03149 ^{\{ 4 \}} | 0.03263 ^{\{ 6 \}} | ||
D_{max} | 0.04996 ^{\{ 1 \}} | 0.05229 ^{\{ 4 \}} | 0.0556 ^{\{ 7 \}} | 0.05107 ^{\{ 2 \}} | 0.05559 ^{\{ 6 \}} | 0.05467 ^{\{ 5 \}} | 0.05214 ^{\{ 3 \}} | 0.05719 ^{\{ 8 \}} | ||
ASAE | 0.01855 ^{\{ 6 \}} | 0.01739 ^{\{ 3 \}} | 0.01871 ^{\{ 7 \}} | 0.01758 ^{\{ 4 \}} | 0.01813 ^{\{ 5 \}} | 0.01678 ^{\{ 1 \}} | 0.01729 ^{\{ 2 \}} | 0.02109 ^{\{ 8 \}} | ||
\sum Ranks | 51 ^{\{ 5 \}} | 35 ^{\{ 2 \}} | 79 ^{\{ 7 \}} | 17 ^{\{ 1 \}} | 75 ^{\{ 6 \}} | 44 ^{\{ 4 \}} | 43 ^{\{ 3 \}} | 88 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.4392 ^{\{ 5 \}} | 0.39379 ^{\{ 3 \}} | 0.45566 ^{\{ 7 \}} | 0.27549 ^{\{ 1 \}} | 0.44834 ^{\{ 6 \}} | 0.38128 ^{\{ 2 \}} | 0.41046 ^{\{ 4 \}} | 0.54089 ^{\{ 8 \}} |
\hat{a} | 0.31014 ^{\{ 7 \}} | 0.26139 ^{\{ 3 \}} | 0.28645 ^{\{ 5 \}} | 0.21856 ^{\{ 1 \}} | 0.28762 ^{\{ 6 \}} | 0.24802 ^{\{ 2 \}} | 0.26741 ^{\{ 4 \}} | 0.3628 ^{\{ 8 \}} | ||
\hat{b} | 0.19985 ^{\{ 3 \}} | 0.19591 ^{\{ 1 \}} | 0.21751 ^{\{ 6 \}} | 0.19621 ^{\{ 2 \}} | 0.22876 ^{\{ 8 \}} | 0.21446 ^{\{ 5 \}} | 0.20679 ^{\{ 4 \}} | 0.2256 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.31057 ^{\{ 5 \}} | 0.2424 ^{\{ 2 \}} | 0.33171 ^{\{ 7 \}} | 0.13533 ^{\{ 1 \}} | 0.32597 ^{\{ 6 \}} | 0.25702 ^{\{ 3 \}} | 0.26429 ^{\{ 4 \}} | 0.43436 ^{\{ 8 \}} | |
\hat{a} | 0.15063 ^{\{ 7 \}} | 0.10087 ^{\{ 3 \}} | 0.12317 ^{\{ 6 \}} | 0.07577 ^{\{ 1 \}} | 0.12274 ^{\{ 5 \}} | 0.09392 ^{\{ 2 \}} | 0.10589 ^{\{ 4 \}} | 0.18107 ^{\{ 8 \}} | ||
\hat{b} | 0.06714 ^{\{ 4 \}} | 0.05805 ^{\{ 1 \}} | 0.07483 ^{\{ 6 \}} | 0.05816 ^{\{ 2 \}} | 0.08113 ^{\{ 7 \}} | 0.07187 ^{\{ 5 \}} | 0.06713 ^{\{ 3 \}} | 0.08227 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.2196 ^{\{ 5 \}} | 0.19689 ^{\{ 3 \}} | 0.22783 ^{\{ 7 \}} | 0.13775 ^{\{ 1 \}} | 0.22417 ^{\{ 6 \}} | 0.19064 ^{\{ 2 \}} | 0.20523 ^{\{ 4 \}} | 0.27044 ^{\{ 8 \}} | |
\hat{a} | 0.20676 ^{\{ 7 \}} | 0.17426 ^{\{ 3 \}} | 0.19097 ^{\{ 5 \}} | 0.14571 ^{\{ 1 \}} | 0.19175 ^{\{ 6 \}} | 0.16535 ^{\{ 2 \}} | 0.17827 ^{\{ 4 \}} | 0.24186 ^{\{ 8 \}} | ||
\hat{b} | 0.09993 ^{\{ 3 \}} | 0.09795 ^{\{ 1 \}} | 0.10875 ^{\{ 6 \}} | 0.09811 ^{\{ 2 \}} | 0.11438 ^{\{ 8 \}} | 0.10723 ^{\{ 5 \}} | 0.10339 ^{\{ 4 \}} | 0.1128 ^{\{ 7 \}} | ||
D_{abs} | 0.02083 ^{\{ 1 \}} | 0.02159 ^{\{ 4 \}} | 0.02178 ^{\{ 5 \}} | 0.02125 ^{\{ 2.5 \}} | 0.02218 ^{\{ 6 \}} | 0.02294 ^{\{ 8 \}} | 0.02125 ^{\{ 2.5 \}} | 0.02263 ^{\{ 7 \}} | ||
D_{max} | 0.03432 ^{\{ 1 \}} | 0.03586 ^{\{ 4 \}} | 0.03724 ^{\{ 5 \}} | 0.03487 ^{\{ 2 \}} | 0.03795 ^{\{ 6 \}} | 0.03803 ^{\{ 7 \}} | 0.03566 ^{\{ 3 \}} | 0.03867 ^{\{ 8 \}} | ||
ASAE | 0.0109 ^{\{ 5 \}} | 0.01075 ^{\{ 3.5 \}} | 0.01143 ^{\{ 7 \}} | 0.01075 ^{\{ 3.5 \}} | 0.0111 ^{\{ 6 \}} | 0.01011 ^{\{ 1 \}} | 0.01051 ^{\{ 2 \}} | 0.01296 ^{\{ 8 \}} | ||
\sum Ranks | 53 ^{\{ 5 \}} | 31.5 ^{\{ 2 \}} | 72 ^{\{ 6 \}} | 20 ^{\{ 1 \}} | 76 ^{\{ 7 \}} | 44 ^{\{ 4 \}} | 42.5 ^{\{ 3 \}} | 93 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.38358 ^{\{ 5 \}} | 0.35025 ^{\{ 3 \}} | 0.40996 ^{\{ 7 \}} | 0.20918 ^{\{ 1 \}} | 0.38933 ^{\{ 6 \}} | 0.35514 ^{\{ 4 \}} | 0.34544 ^{\{ 2 \}} | 0.47301 ^{\{ 8 \}} |
\hat{a} | 0.25949 ^{\{ 7 \}} | 0.22513 ^{\{ 3 \}} | 0.25895 ^{\{ 6 \}} | 0.15794 ^{\{ 1 \}} | 0.25286 ^{\{ 5 \}} | 0.2244 ^{\{ 2 \}} | 0.23092 ^{\{ 4 \}} | 0.31424 ^{\{ 8 \}} | ||
\hat{b} | 0.14384 ^{\{ 3 \}} | 0.14219 ^{\{ 2 \}} | 0.16653 ^{\{ 7 \}} | 0.13428 ^{\{ 1 \}} | 0.16744 ^{\{ 8 \}} | 0.15275 ^{\{ 5 \}} | 0.14455 ^{\{ 4 \}} | 0.16515 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.22395 ^{\{ 5 \}} | 0.18899 ^{\{ 3 \}} | 0.25726 ^{\{ 7 \}} | 0.08634 ^{\{ 1 \}} | 0.23811 ^{\{ 6 \}} | 0.21275 ^{\{ 4 \}} | 0.18524 ^{\{ 2 \}} | 0.31153 ^{\{ 8 \}} | |
\hat{a} | 0.10146 ^{\{ 7 \}} | 0.07569 ^{\{ 2 \}} | 0.0982 ^{\{ 6 \}} | 0.04298 ^{\{ 1 \}} | 0.09473 ^{\{ 5 \}} | 0.07846 ^{\{ 3 \}} | 0.07943 ^{\{ 4 \}} | 0.13087 ^{\{ 8 \}} | ||
\hat{b} | 0.03255 ^{\{ 4 \}} | 0.0313 ^{\{ 2 \}} | 0.04249 ^{\{ 7 \}} | 0.02688 ^{\{ 1 \}} | 0.04388 ^{\{ 8 \}} | 0.03491 ^{\{ 5 \}} | 0.03196 ^{\{ 3 \}} | 0.04248 ^{\{ 6 \}} | ||
MRE | \hat{\tau} | 0.19179 ^{\{ 5 \}} | 0.17513 ^{\{ 3 \}} | 0.20498 ^{\{ 7 \}} | 0.10459 ^{\{ 1 \}} | 0.19466 ^{\{ 6 \}} | 0.17757 ^{\{ 4 \}} | 0.17272 ^{\{ 2 \}} | 0.2365 ^{\{ 8 \}} | |
\hat{a} | 0.17299 ^{\{ 7 \}} | 0.15009 ^{\{ 3 \}} | 0.17264 ^{\{ 6 \}} | 0.10529 ^{\{ 1 \}} | 0.16858 ^{\{ 5 \}} | 0.1496 ^{\{ 2 \}} | 0.15394 ^{\{ 4 \}} | 0.20949 ^{\{ 8 \}} | ||
\hat{b} | 0.07192 ^{\{ 3 \}} | 0.07109 ^{\{ 2 \}} | 0.08327 ^{\{ 7 \}} | 0.06714 ^{\{ 1 \}} | 0.08372 ^{\{ 8 \}} | 0.07638 ^{\{ 5 \}} | 0.07227 ^{\{ 4 \}} | 0.08258 ^{\{ 6 \}} | ||
D_{abs} | 0.01502 ^{\{ 2 \}} | 0.01519 ^{\{ 4 \}} | 0.01582 ^{\{ 6 \}} | 0.01471 ^{\{ 1 \}} | 0.01536 ^{\{ 5 \}} | 0.01593 ^{\{ 7 \}} | 0.01513 ^{\{ 3 \}} | 0.01595 ^{\{ 8 \}} | ||
D_{max} | 0.02487 ^{\{ 2 \}} | 0.02543 ^{\{ 4 \}} | 0.02719 ^{\{ 7 \}} | 0.02418 ^{\{ 1 \}} | 0.02652 ^{\{ 5 \}} | 0.02678 ^{\{ 6 \}} | 0.02539 ^{\{ 3 \}} | 0.02738 ^{\{ 8 \}} | ||
ASAE | 0.00687 ^{\{ 5 \}} | 0.00666 ^{\{ 2 \}} | 0.00739 ^{\{ 7 \}} | 0.00686 ^{\{ 4 \}} | 0.00722 ^{\{ 6 \}} | 0.00639 ^{\{ 1 \}} | 0.0067 ^{\{ 3 \}} | 0.00837 ^{\{ 8 \}} | ||
\sum Ranks | 55 ^{\{ 5 \}} | 33 ^{\{ 2 \}} | 80 ^{\{ 7 \}} | 15 ^{\{ 1 \}} | 73 ^{\{ 6 \}} | 48 ^{\{ 4 \}} | 38 ^{\{ 3 \}} | 90 ^{\{ 8 \}} | ||
600 | BIAS | \hat{\tau} | 0.34337 ^{\{ 5 \}} | 0.29599 ^{\{ 2 \}} | 0.35608 ^{\{ 7 \}} | 0.12837 ^{\{ 1 \}} | 0.34858 ^{\{ 6 \}} | 0.30958 ^{\{ 4 \}} | 0.30911 ^{\{ 3 \}} | 0.4042 ^{\{ 8 \}} |
\hat{a} | 0.22922 ^{\{ 7 \}} | 0.19345 ^{\{ 3 \}} | 0.22519 ^{\{ 5 \}} | 0.09817 ^{\{ 1 \}} | 0.22778 ^{\{ 6 \}} | 0.19235 ^{\{ 2 \}} | 0.20261 ^{\{ 4 \}} | 0.27243 ^{\{ 8 \}} | ||
\hat{b} | 0.10161 ^{\{ 2 \}} | 0.10663 ^{\{ 3 \}} | 0.12649 ^{\{ 8 \}} | 0.09413 ^{\{ 1 \}} | 0.12277 ^{\{ 6 \}} | 0.11287 ^{\{ 5 \}} | 0.10742 ^{\{ 4 \}} | 0.12442 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.17598 ^{\{ 6 \}} | 0.13529 ^{\{ 2 \}} | 0.18281 ^{\{ 7 \}} | 0.04448 ^{\{ 1 \}} | 0.17429 ^{\{ 5 \}} | 0.15427 ^{\{ 4 \}} | 0.14265 ^{\{ 3 \}} | 0.22018 ^{\{ 8 \}} | |
\hat{a} | 0.07869 ^{\{ 7 \}} | 0.05647 ^{\{ 2 \}} | 0.07356 ^{\{ 6 \}} | 0.02176 ^{\{ 1 \}} | 0.07329 ^{\{ 5 \}} | 0.05829 ^{\{ 3 \}} | 0.06038 ^{\{ 4 \}} | 0.09527 ^{\{ 8 \}} | ||
\hat{b} | 0.01627 ^{\{ 2 \}} | 0.01766 ^{\{ 3 \}} | 0.02538 ^{\{ 8 \}} | 0.01352 ^{\{ 1 \}} | 0.02319 ^{\{ 6 \}} | 0.01936 ^{\{ 5 \}} | 0.01824 ^{\{ 4 \}} | 0.02403 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.17169 ^{\{ 5 \}} | 0.14799 ^{\{ 2 \}} | 0.17804 ^{\{ 7 \}} | 0.06418 ^{\{ 1 \}} | 0.17429 ^{\{ 6 \}} | 0.15479 ^{\{ 4 \}} | 0.15455 ^{\{ 3 \}} | 0.2021 ^{\{ 8 \}} | |
\hat{a} | 0.15282 ^{\{ 7 \}} | 0.12897 ^{\{ 3 \}} | 0.15012 ^{\{ 5 \}} | 0.06545 ^{\{ 1 \}} | 0.15185 ^{\{ 6 \}} | 0.12823 ^{\{ 2 \}} | 0.13507 ^{\{ 4 \}} | 0.18162 ^{\{ 8 \}} | ||
\hat{b} | 0.0508 ^{\{ 2 \}} | 0.05331 ^{\{ 3 \}} | 0.06325 ^{\{ 8 \}} | 0.04706 ^{\{ 1 \}} | 0.06139 ^{\{ 6 \}} | 0.05644 ^{\{ 5 \}} | 0.05371 ^{\{ 4 \}} | 0.06221 ^{\{ 7 \}} | ||
D_{abs} | 0.01056 ^{\{ 2 \}} | 0.0106 ^{\{ 3 \}} | 0.01125 ^{\{ 7 \}} | 0.0103 ^{\{ 1 \}} | 0.01164 ^{\{ 8 \}} | 0.01124 ^{\{ 6 \}} | 0.0107 ^{\{ 4 \}} | 0.01089 ^{\{ 5 \}} | ||
D_{max} | 0.01782 ^{\{ 2 \}} | 0.01801 ^{\{ 3 \}} | 0.01931 ^{\{ 7 \}} | 0.017 ^{\{ 1 \}} | 0.01973 ^{\{ 8 \}} | 0.01893 ^{\{ 6 \}} | 0.01812 ^{\{ 4 \}} | 0.01874 ^{\{ 5 \}} | ||
ASAE | 0.00429 ^{\{ 2 \}} | 0.0043 ^{\{ 3 \}} | 0.00478 ^{\{ 7 \}} | 0.0045 ^{\{ 5 \}} | 0.00457 ^{\{ 6 \}} | 0.00406 ^{\{ 1 \}} | 0.00431 ^{\{ 4 \}} | 0.00534 ^{\{ 8 \}} | ||
\sum Ranks | 49 ^{\{ 5 \}} | 32 ^{\{ 2 \}} | 82 ^{\{ 7 \}} | 16 ^{\{ 1 \}} | 74 ^{\{ 6 \}} | 47 ^{\{ 4 \}} | 45 ^{\{ 3 \}} | 87 ^{\{ 8 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.41263 ^{\{ 1 \}} | 0.63117 ^{\{ 3 \}} | 0.61646 ^{\{ 2 \}} | 0.68971 ^{\{ 6 \}} | 0.66123 ^{\{ 4 \}} | 0.69605 ^{\{ 7 \}} | 0.6614 ^{\{ 5 \}} | 0.73592 ^{\{ 8 \}} |
\hat{a} | 0.3458 ^{\{ 1 \}} | 0.40339 ^{\{ 3 \}} | 0.40077 ^{\{ 2 \}} | 0.43258 ^{\{ 6 \}} | 0.43443 ^{\{ 7 \}} | 0.46564 ^{\{ 8 \}} | 0.41928 ^{\{ 5 \}} | 0.40721 ^{\{ 4 \}} | ||
\hat{b} | 0.90474 ^{\{ 2 \}} | 0.95946 ^{\{ 6 \}} | 0.95309 ^{\{ 4 \}} | 0.95489 ^{\{ 5 \}} | 0.92977 ^{\{ 3 \}} | 0.88 ^{\{ 1 \}} | 0.96175 ^{\{ 7 \}} | 1.06824 ^{\{ 8 \}} | ||
MSE | \hat{\tau} | 0.23196 ^{\{ 1 \}} | 0.53768 ^{\{ 3 \}} | 0.47197 ^{\{ 2 \}} | 0.65139 ^{\{ 7 \}} | 0.55116 ^{\{ 4 \}} | 0.64812 ^{\{ 6 \}} | 0.57172 ^{\{ 5 \}} | 0.87411 ^{\{ 8 \}} | |
\hat{a} | 0.19495 ^{\{ 1 \}} | 0.25654 ^{\{ 3 \}} | 0.25032 ^{\{ 2 \}} | 0.28251 ^{\{ 5 \}} | 0.28292 ^{\{ 6 \}} | 0.33262 ^{\{ 8 \}} | 0.27497 ^{\{ 4 \}} | 0.28509 ^{\{ 7 \}} | ||
\hat{b} | 1.40385 ^{\{ 7 \}} | 1.37779 ^{\{ 5 \}} | 1.33026 ^{\{ 3 \}} | 1.37841 ^{\{ 6 \}} | 1.24057 ^{\{ 1 \}} | 1.28937 ^{\{ 2 \}} | 1.33079 ^{\{ 4 \}} | 1.7756 ^{\{ 8 \}} | ||
MRE | \hat{\tau} | 0.55017 ^{\{ 1 \}} | 0.84156 ^{\{ 3 \}} | 0.82195 ^{\{ 2 \}} | 0.91961 ^{\{ 6 \}} | 0.88164 ^{\{ 4 \}} | 0.92807 ^{\{ 7 \}} | 0.88187 ^{\{ 5 \}} | 0.98123 ^{\{ 8 \}} | |
\hat{a} | 0.1729 ^{\{ 1 \}} | 0.20169 ^{\{ 3 \}} | 0.20039 ^{\{ 2 \}} | 0.21629 ^{\{ 6 \}} | 0.21721 ^{\{ 7 \}} | 0.23282 ^{\{ 8 \}} | 0.20964 ^{\{ 5 \}} | 0.20361 ^{\{ 4 \}} | ||
\hat{b} | 0.30158 ^{\{ 2 \}} | 0.31982 ^{\{ 6 \}} | 0.3177 ^{\{ 4 \}} | 0.3183 ^{\{ 5 \}} | 0.30992 ^{\{ 3 \}} | 0.29333 ^{\{ 1 \}} | 0.32058 ^{\{ 7 \}} | 0.35608 ^{\{ 8 \}} | ||
D_{abs} | 0.04253 ^{\{ 1 \}} | 0.04336 ^{\{ 2 \}} | 0.04718 ^{\{ 8 \}} | 0.04338 ^{\{ 3 \}} | 0.04551 ^{\{ 5 \}} | 0.04671 ^{\{ 7 \}} | 0.04479 ^{\{ 4 \}} | 0.04664 ^{\{ 6 \}} | ||
D_{max} | 0.07112 ^{\{ 2 \}} | 0.07194 ^{\{ 3 \}} | 0.0792 ^{\{ 8 \}} | 0.07007 ^{\{ 1 \}} | 0.07453 ^{\{ 5 \}} | 0.07777 ^{\{ 6 \}} | 0.07355 ^{\{ 4 \}} | 0.07787 ^{\{ 7 \}} | ||
ASAE | 0.02959 ^{\{ 7 \}} | 0.02756 ^{\{ 3 \}} | 0.02928 ^{\{ 6 \}} | 0.02713 ^{\{ 2 \}} | 0.02829 ^{\{ 5 \}} | 0.02772 ^{\{ 4 \}} | 0.02691 ^{\{ 1 \}} | 0.03129 ^{\{ 8 \}} | ||
\sum Ranks | 27 ^{\{ 1 \}} | 43 ^{\{ 2 \}} | 45 ^{\{ 3 \}} | 58 ^{\{ 6 \}} | 54 ^{\{ 4 \}} | 65 ^{\{ 7 \}} | 56 ^{\{ 5 \}} | 84 ^{\{ 8 \}} | ||
70 | BIAS | \hat{\tau} | 0.37728 ^{\{ 1 \}} | 0.57428 ^{\{ 3 \}} | 0.57379 ^{\{ 2 \}} | 0.61526 ^{\{ 7 \}} | 0.60356 ^{\{ 5 \}} | 0.60726 ^{\{ 6 \}} | 0.58819 ^{\{ 4 \}} | 0.61897 ^{\{ 8 \}} |
\hat{a} | 0.25016 ^{\{ 1 \}} | 0.31949 ^{\{ 2 \}} | 0.33757 ^{\{ 4 \}} | 0.35113 ^{\{ 7 \}} | 0.34537 ^{\{ 6 \}} | 0.35421 ^{\{ 8 \}} | 0.33813 ^{\{ 5 \}} | 0.3285 ^{\{ 3 \}} | ||
\hat{b} | 0.68242 ^{\{ 1 \}} | 0.79998 ^{\{ 5 \}} | 0.77034 ^{\{ 3 \}} | 0.82325 ^{\{ 6 \}} | 0.83417 ^{\{ 8 \}} | 0.69139 ^{\{ 2 \}} | 0.78972 ^{\{ 4 \}} | 0.82557 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.20498 ^{\{ 1 \}} | 0.47839 ^{\{ 4 \}} | 0.45179 ^{\{ 2 \}} | 0.57434 ^{\{ 7 \}} | 0.47675 ^{\{ 3 \}} | 0.53826 ^{\{ 6 \}} | 0.48684 ^{\{ 5 \}} | 0.5989 ^{\{ 8 \}} | |
\hat{a} | 0.09985 ^{\{ 1 \}} | 0.15258 ^{\{ 2 \}} | 0.17907 ^{\{ 4 \}} | 0.20305 ^{\{ 8 \}} | 0.18005 ^{\{ 5 \}} | 0.18882 ^{\{ 7 \}} | 0.17375 ^{\{ 3 \}} | 0.18104 ^{\{ 6 \}} | ||
\hat{b} | 0.77461 ^{\{ 2 \}} | 1.01864 ^{\{ 6 \}} | 0.8902 ^{\{ 3 \}} | 1.13061 ^{\{ 8 \}} | 1.01306 ^{\{ 5 \}} | 0.74376 ^{\{ 1 \}} | 0.95657 ^{\{ 4 \}} | 1.08045 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.50303 ^{\{ 1 \}} | 0.76571 ^{\{ 3 \}} | 0.76505 ^{\{ 2 \}} | 0.82035 ^{\{ 7 \}} | 0.80474 ^{\{ 5 \}} | 0.80968 ^{\{ 6 \}} | 0.78426 ^{\{ 4 \}} | 0.8253 ^{\{ 8 \}} | |
\hat{a} | 0.12508 ^{\{ 1 \}} | 0.15974 ^{\{ 2 \}} | 0.16879 ^{\{ 4 \}} | 0.17557 ^{\{ 7 \}} | 0.17268 ^{\{ 6 \}} | 0.1771 ^{\{ 8 \}} | 0.16906 ^{\{ 5 \}} | 0.16425 ^{\{ 3 \}} | ||
\hat{b} | 0.22747 ^{\{ 1 \}} | 0.26666 ^{\{ 5 \}} | 0.25678 ^{\{ 3 \}} | 0.27442 ^{\{ 6 \}} | 0.27806 ^{\{ 8 \}} | 0.23046 ^{\{ 2 \}} | 0.26324 ^{\{ 4 \}} | 0.27519 ^{\{ 7 \}} | ||
D_{abs} | 0.03062 ^{\{ 2 \}} | 0.03064 ^{\{ 3 \}} | 0.03404 ^{\{ 8 \}} | 0.03001 ^{\{ 1 \}} | 0.03304 ^{\{ 7 \}} | 0.03289 ^{\{ 6 \}} | 0.03251 ^{\{ 4 \}} | 0.03252 ^{\{ 5 \}} | ||
D_{max} | 0.05131 ^{\{ 2 \}} | 0.05151 ^{\{ 3 \}} | 0.05754 ^{\{ 8 \}} | 0.04967 ^{\{ 1 \}} | 0.05555 ^{\{ 7 \}} | 0.05553 ^{\{ 6 \}} | 0.05366 ^{\{ 4 \}} | 0.0546 ^{\{ 5 \}} | ||
ASAE | 0.01854 ^{\{ 7 \}} | 0.01731 ^{\{ 4 \}} | 0.01828 ^{\{ 6 \}} | 0.01722 ^{\{ 2 \}} | 0.01814 ^{\{ 5 \}} | 0.01725 ^{\{ 3 \}} | 0.01692 ^{\{ 1 \}} | 0.01936 ^{\{ 8 \}} | ||
\sum Ranks | 21 ^{\{ 1 \}} | 42 ^{\{ 2 \}} | 49 ^{\{ 4 \}} | 67 ^{\{ 6 \}} | 70 ^{\{ 7 \}} | 61 ^{\{ 5 \}} | 47 ^{\{ 3 \}} | 75 ^{\{ 8 \}} | ||
150 | BIAS | \hat{\tau} | 0.31212 ^{\{ 1 \}} | 0.45159 ^{\{ 2 \}} | 0.49391 ^{\{ 4 \}} | 0.50158 ^{\{ 6 \}} | 0.49767 ^{\{ 5 \}} | 0.51173 ^{\{ 8 \}} | 0.47926 ^{\{ 3 \}} | 0.50467 ^{\{ 7 \}} |
\hat{a} | 0.18389 ^{\{ 1 \}} | 0.24619 ^{\{ 2 \}} | 0.26366 ^{\{ 5 \}} | 0.26623 ^{\{ 6 \}} | 0.27263 ^{\{ 8 \}} | 0.26155 ^{\{ 3 \}} | 0.26205 ^{\{ 4 \}} | 0.26637 ^{\{ 7 \}} | ||
\hat{b} | 0.51055 ^{\{ 1 \}} | 0.58914 ^{\{ 2 \}} | 0.64746 ^{\{ 7 \}} | 0.59531 ^{\{ 4 \}} | 0.65501 ^{\{ 8 \}} | 0.62579 ^{\{ 5 \}} | 0.59382 ^{\{ 3 \}} | 0.63847 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.14708 ^{\{ 1 \}} | 0.33233 ^{\{ 2 \}} | 0.35351 ^{\{ 3 \}} | 0.44757 ^{\{ 8 \}} | 0.36746 ^{\{ 5 \}} | 0.41305 ^{\{ 7 \}} | 0.36255 ^{\{ 4 \}} | 0.4025 ^{\{ 6 \}} | |
\hat{a} | 0.05157 ^{\{ 1 \}} | 0.09975 ^{\{ 2 \}} | 0.10789 ^{\{ 3 \}} | 0.12791 ^{\{ 8 \}} | 0.11535 ^{\{ 6 \}} | 0.1123 ^{\{ 5 \}} | 0.11096 ^{\{ 4 \}} | 0.1174 ^{\{ 7 \}} | ||
\hat{b} | 0.47277 ^{\{ 1 \}} | 0.61572 ^{\{ 4 \}} | 0.6529 ^{\{ 5 \}} | 0.7086 ^{\{ 8 \}} | 0.67921 ^{\{ 6 \}} | 0.59584 ^{\{ 2 \}} | 0.60046 ^{\{ 3 \}} | 0.70453 ^{\{ 7 \}} | ||
MRE | \hat{\tau} | 0.41616 ^{\{ 1 \}} | 0.60212 ^{\{ 2 \}} | 0.65854 ^{\{ 4 \}} | 0.66877 ^{\{ 6 \}} | 0.66356 ^{\{ 5 \}} | 0.68231 ^{\{ 8 \}} | 0.63901 ^{\{ 3 \}} | 0.67289 ^{\{ 7 \}} | |
\hat{a} | 0.09195 ^{\{ 1 \}} | 0.1231 ^{\{ 2 \}} | 0.13183 ^{\{ 5 \}} | 0.13311 ^{\{ 6 \}} | 0.13632 ^{\{ 8 \}} | 0.13078 ^{\{ 3 \}} | 0.13102 ^{\{ 4 \}} | 0.13318 ^{\{ 7 \}} | ||
\hat{b} | 0.17018 ^{\{ 1 \}} | 0.19638 ^{\{ 2 \}} | 0.21582 ^{\{ 7 \}} | 0.19844 ^{\{ 4 \}} | 0.21834 ^{\{ 8 \}} | 0.2086 ^{\{ 5 \}} | 0.19794 ^{\{ 3 \}} | 0.21282 ^{\{ 6 \}} | ||
D_{abs} | 0.02081 ^{\{ 1 \}} | 0.02156 ^{\{ 3 \}} | 0.02279 ^{\{ 7.5 \}} | 0.02171 ^{\{ 4 \}} | 0.02269 ^{\{ 6 \}} | 0.02221 ^{\{ 5 \}} | 0.02123 ^{\{ 2 \}} | 0.02279 ^{\{ 7.5 \}} | ||
D_{max} | 0.03496 ^{\{ 1 \}} | 0.0362 ^{\{ 4 \}} | 0.0389 ^{\{ 8 \}} | 0.03607 ^{\{ 3 \}} | 0.03834 ^{\{ 5 \}} | 0.03836 ^{\{ 6 \}} | 0.03583 ^{\{ 2 \}} | 0.03862 ^{\{ 7 \}} | ||
ASAE | 0.01105 ^{\{ 5 \}} | 0.0105 ^{\{ 3 \}} | 0.0111 ^{\{ 7 \}} | 0.01079 ^{\{ 4 \}} | 0.01108 ^{\{ 6 \}} | 0.01049 ^{\{ 2 \}} | 0.01039 ^{\{ 1 \}} | 0.01196 ^{\{ 8 \}} | ||
\sum Ranks | 16 ^{\{ 1 \}} | 30 ^{\{ 2 \}} | 65.5 ^{\{ 5 \}} | 67 ^{\{ 6 \}} | 76 ^{\{ 7 \}} | 59 ^{\{ 4 \}} | 36 ^{\{ 3 \}} | 82.5 ^{\{ 8 \}} | ||
300 | BIAS | \hat{\tau} | 0.26159 ^{\{ 1 \}} | 0.33734 ^{\{ 2 \}} | 0.40449 ^{\{ 6 \}} | 0.3744 ^{\{ 4 \}} | 0.41347 ^{\{ 7 \}} | 0.42097 ^{\{ 8 \}} | 0.34325 ^{\{ 3 \}} | 0.37827 ^{\{ 5 \}} |
\hat{a} | 0.14993 ^{\{ 1 \}} | 0.18532 ^{\{ 3 \}} | 0.20625 ^{\{ 7 \}} | 0.19513 ^{\{ 4 \}} | 0.20695 ^{\{ 8 \}} | 0.19719 ^{\{ 5 \}} | 0.18169 ^{\{ 2 \}} | 0.20501 ^{\{ 6 \}} | ||
\hat{b} | 0.37223 ^{\{ 1 \}} | 0.41779 ^{\{ 2 \}} | 0.508 ^{\{ 7 \}} | 0.44601 ^{\{ 4 \}} | 0.50594 ^{\{ 6 \}} | 0.52145 ^{\{ 8 \}} | 0.42076 ^{\{ 3 \}} | 0.45303 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.10953 ^{\{ 1 \}} | 0.20094 ^{\{ 2 \}} | 0.26331 ^{\{ 5 \}} | 0.29301 ^{\{ 7 \}} | 0.28568 ^{\{ 6 \}} | 0.30513 ^{\{ 8 \}} | 0.20537 ^{\{ 3 \}} | 0.24655 ^{\{ 4 \}} | |
\hat{a} | 0.03556 ^{\{ 1 \}} | 0.05977 ^{\{ 3 \}} | 0.06975 ^{\{ 4 \}} | 0.07768 ^{\{ 8 \}} | 0.07525 ^{\{ 7 \}} | 0.07119 ^{\{ 5 \}} | 0.05699 ^{\{ 2 \}} | 0.07212 ^{\{ 6 \}} | ||
\hat{b} | 0.29126 ^{\{ 1 \}} | 0.31942 ^{\{ 2 \}} | 0.43464 ^{\{ 6 \}} | 0.48268 ^{\{ 8 \}} | 0.44893 ^{\{ 7 \}} | 0.43375 ^{\{ 5 \}} | 0.32104 ^{\{ 3 \}} | 0.39031 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.34879 ^{\{ 1 \}} | 0.44978 ^{\{ 2 \}} | 0.53932 ^{\{ 6 \}} | 0.49921 ^{\{ 4 \}} | 0.5513 ^{\{ 7 \}} | 0.56129 ^{\{ 8 \}} | 0.45767 ^{\{ 3 \}} | 0.50436 ^{\{ 5 \}} | |
\hat{a} | 0.07496 ^{\{ 1 \}} | 0.09266 ^{\{ 3 \}} | 0.10313 ^{\{ 7 \}} | 0.09757 ^{\{ 4 \}} | 0.10347 ^{\{ 8 \}} | 0.09859 ^{\{ 5 \}} | 0.09085 ^{\{ 2 \}} | 0.1025 ^{\{ 6 \}} | ||
\hat{b} | 0.12408 ^{\{ 1 \}} | 0.13926 ^{\{ 2 \}} | 0.16933 ^{\{ 7 \}} | 0.14867 ^{\{ 4 \}} | 0.16865 ^{\{ 6 \}} | 0.17382 ^{\{ 8 \}} | 0.14025 ^{\{ 3 \}} | 0.15101 ^{\{ 5 \}} | ||
D_{abs} | 0.01478 ^{\{ 1 \}} | 0.01563 ^{\{ 4 \}} | 0.01625 ^{\{ 8 \}} | 0.01541 ^{\{ 3 \}} | 0.01591 ^{\{ 6 \}} | 0.01623 ^{\{ 7 \}} | 0.01493 ^{\{ 2 \}} | 0.01584 ^{\{ 5 \}} | ||
D_{max} | 0.02519 ^{\{ 1 \}} | 0.02694 ^{\{ 4 \}} | 0.02821 ^{\{ 8 \}} | 0.02592 ^{\{ 3 \}} | 0.02751 ^{\{ 6 \}} | 0.02814 ^{\{ 7 \}} | 0.02552 ^{\{ 2 \}} | 0.0274 ^{\{ 5 \}} | ||
ASAE | 0.00695 ^{\{ 4 \}} | 0.00682 ^{\{ 3 \}} | 0.00721 ^{\{ 7 \}} | 0.00697 ^{\{ 5 \}} | 0.00704 ^{\{ 6 \}} | 0.00671 ^{\{ 1 \}} | 0.0068 ^{\{ 2 \}} | 0.00775 ^{\{ 8 \}} | ||
\sum Ranks | 15 ^{\{ 1 \}} | 32 ^{\{ 3 \}} | 78 ^{\{ 7 \}} | 58 ^{\{ 4 \}} | 80 ^{\{ 8 \}} | 75 ^{\{ 6 \}} | 30 ^{\{ 2 \}} | 64 ^{\{ 5 \}} | ||
600 | BIAS | \hat{\tau} | 0.19336 ^{\{ 1 \}} | 0.23349 ^{\{ 2 \}} | 0.28978 ^{\{ 6 \}} | 0.23372 ^{\{ 3 \}} | 0.30777 ^{\{ 7 \}} | 0.30949 ^{\{ 8 \}} | 0.23507 ^{\{ 4 \}} | 0.2662 ^{\{ 5 \}} |
\hat{a} | 0.10937 ^{\{ 1 \}} | 0.12304 ^{\{ 2 \}} | 0.14902 ^{\{ 6 \}} | 0.12842 ^{\{ 4 \}} | 0.15724 ^{\{ 8 \}} | 0.13825 ^{\{ 5 \}} | 0.12621 ^{\{ 3 \}} | 0.15464 ^{\{ 7 \}} | ||
\hat{b} | 0.26801 ^{\{ 1 \}} | 0.30194 ^{\{ 4 \}} | 0.37263 ^{\{ 6 \}} | 0.27088 ^{\{ 2 \}} | 0.38556 ^{\{ 7 \}} | 0.42662 ^{\{ 8 \}} | 0.29441 ^{\{ 3 \}} | 0.30703 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.06126 ^{\{ 1 \}} | 0.10127 ^{\{ 2 \}} | 0.15044 ^{\{ 6 \}} | 0.13095 ^{\{ 4 \}} | 0.16716 ^{\{ 8 \}} | 0.16478 ^{\{ 7 \}} | 0.10547 ^{\{ 3 \}} | 0.13164 ^{\{ 5 \}} | |
\hat{a} | 0.0189 ^{\{ 1 \}} | 0.02821 ^{\{ 2 \}} | 0.04017 ^{\{ 6 \}} | 0.03537 ^{\{ 4 \}} | 0.04408 ^{\{ 8 \}} | 0.03582 ^{\{ 5 \}} | 0.02981 ^{\{ 3 \}} | 0.04188 ^{\{ 7 \}} | ||
\hat{b} | 0.12688 ^{\{ 1 \}} | 0.15549 ^{\{ 2 \}} | 0.25123 ^{\{ 6 \}} | 0.18801 ^{\{ 4 \}} | 0.28486 ^{\{ 7 \}} | 0.29794 ^{\{ 8 \}} | 0.15848 ^{\{ 3 \}} | 0.18934 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.25781 ^{\{ 1 \}} | 0.31131 ^{\{ 2 \}} | 0.38638 ^{\{ 6 \}} | 0.31162 ^{\{ 3 \}} | 0.41036 ^{\{ 7 \}} | 0.41265 ^{\{ 8 \}} | 0.31343 ^{\{ 4 \}} | 0.35494 ^{\{ 5 \}} | |
\hat{a} | 0.05468 ^{\{ 1 \}} | 0.06152 ^{\{ 2 \}} | 0.07451 ^{\{ 6 \}} | 0.06421 ^{\{ 4 \}} | 0.07862 ^{\{ 8 \}} | 0.06912 ^{\{ 5 \}} | 0.06311 ^{\{ 3 \}} | 0.07732 ^{\{ 7 \}} | ||
\hat{b} | 0.08934 ^{\{ 1 \}} | 0.10065 ^{\{ 4 \}} | 0.12421 ^{\{ 6 \}} | 0.09029 ^{\{ 2 \}} | 0.12852 ^{\{ 7 \}} | 0.14221 ^{\{ 8 \}} | 0.09814 ^{\{ 3 \}} | 0.10234 ^{\{ 5 \}} | ||
D_{abs} | 0.01062 ^{\{ 2 \}} | 0.01055 ^{\{ 1 \}} | 0.01157 ^{\{ 7 \}} | 0.01098 ^{\{ 3 \}} | 0.01158 ^{\{ 8 \}} | 0.01113 ^{\{ 5 \}} | 0.01112 ^{\{ 4 \}} | 0.0113 ^{\{ 6 \}} | ||
D_{max} | 0.0181 ^{\{ 1 \}} | 0.01823 ^{\{ 2 \}} | 0.02019 ^{\{ 8 \}} | 0.01873 ^{\{ 3 \}} | 0.0201 ^{\{ 7 \}} | 0.01976 ^{\{ 6 \}} | 0.01902 ^{\{ 4 \}} | 0.01972 ^{\{ 5 \}} | ||
ASAE | 0.00457 ^{\{ 5 \}} | 0.00443 ^{\{ 3 \}} | 0.00471 ^{\{ 6 \}} | 0.00456 ^{\{ 4 \}} | 0.00473 ^{\{ 7 \}} | 0.0044 ^{\{ 2 \}} | 0.00435 ^{\{ 1 \}} | 0.00516 ^{\{ 8 \}} | ||
\sum Ranks | 17 ^{\{ 1 \}} | 28 ^{\{ 2 \}} | 75 ^{\{ 6.5 \}} | 40 ^{\{ 4 \}} | 89 ^{\{ 8 \}} | 75 ^{\{ 6.5 \}} | 38 ^{\{ 3 \}} | 70 ^{\{ 5 \}} |
n | Est. | Est. Par. | MLE | ADE | CVME | MPSE | LSE | RTADE | WLSE | LTADE |
35 | BIAS | \hat{\tau} | 0.28261 ^{\{ 2 \}} | 0.4647 ^{\{ 5 \}} | 0.48379 ^{\{ 7 \}} | 0.41025 ^{\{ 3 \}} | 0.42315 ^{\{ 4 \}} | 0.51017 ^{\{ 8 \}} | 0.47272 ^{\{ 6 \}} | 0.26393 ^{\{ 1 \}} |
\hat{a} | 0.70395 ^{\{ 1 \}} | 0.78929 ^{\{ 3 \}} | 0.91784 ^{\{ 8 \}} | 0.77174 ^{\{ 2 \}} | 0.90659 ^{\{ 7 \}} | 0.82398 ^{\{ 4 \}} | 0.83444 ^{\{ 5 \}} | 0.84481 ^{\{ 6 \}} | ||
\hat{b} | 0.11892 ^{\{ 2 \}} | 0.13452 ^{\{ 6 \}} | 0.13845 ^{\{ 7 \}} | 0.12898 ^{\{ 4 \}} | 0.11407 ^{\{ 1 \}} | 0.14639 ^{\{ 8 \}} | 0.13051 ^{\{ 5 \}} | 0.12794 ^{\{ 3 \}} | ||
MSE | \hat{\tau} | 0.14259 ^{\{ 1 \}} | 0.54086 ^{\{ 5 \}} | 0.58623 ^{\{ 6 \}} | 0.45928 ^{\{ 3 \}} | 0.52049 ^{\{ 4 \}} | 0.67661 ^{\{ 8 \}} | 0.60141 ^{\{ 7 \}} | 0.18215 ^{\{ 2 \}} | |
\hat{a} | 0.92929 ^{\{ 2 \}} | 0.99608 ^{\{ 3 \}} | 1.35102 ^{\{ 8 \}} | 0.89166 ^{\{ 1 \}} | 1.27505 ^{\{ 7 \}} | 1.08694 ^{\{ 4 \}} | 1.10922 ^{\{ 5 \}} | 1.17679 ^{\{ 6 \}} | ||
\hat{b} | 0.02632 ^{\{ 3 \}} | 0.03369 ^{\{ 6 \}} | 0.03609 ^{\{ 7 \}} | 0.02757 ^{\{ 4 \}} | 0.02515 ^{\{ 2 \}} | 0.03881 ^{\{ 8 \}} | 0.03305 ^{\{ 5 \}} | 0.02449 ^{\{ 1 \}} | ||
MRE | \hat{\tau} | 1.13045 ^{\{ 2 \}} | 1.85879 ^{\{ 5 \}} | 1.93515 ^{\{ 7 \}} | 1.64101 ^{\{ 3 \}} | 1.6926 ^{\{ 4 \}} | 2.04067 ^{\{ 8 \}} | 1.8909 ^{\{ 6 \}} | 1.05573 ^{\{ 1 \}} | |
\hat{a} | 0.23465 ^{\{ 1 \}} | 0.2631 ^{\{ 3 \}} | 0.30595 ^{\{ 8 \}} | 0.25725 ^{\{ 2 \}} | 0.3022 ^{\{ 7 \}} | 0.27466 ^{\{ 4 \}} | 0.27815 ^{\{ 5 \}} | 0.2816 ^{\{ 6 \}} | ||
\hat{b} | 0.47569 ^{\{ 2 \}} | 0.53808 ^{\{ 6 \}} | 0.5538 ^{\{ 7 \}} | 0.5159 ^{\{ 4 \}} | 0.45626 ^{\{ 1 \}} | 0.58556 ^{\{ 8 \}} | 0.52205 ^{\{ 5 \}} | 0.51177 ^{\{ 3 \}} | ||
D_{abs} | 0.04268 ^{\{ 1 \}} | 0.04508 ^{\{ 3 \}} | 0.04693 ^{\{ 8 \}} | 0.04333 ^{\{ 2 \}} | 0.04525 ^{\{ 4 \}} | 0.04586 ^{\{ 6 \}} | 0.0455 ^{\{ 5 \}} | 0.04675 ^{\{ 7 \}} | ||
D_{max} | 0.0706 ^{\{ 1 \}} | 0.07457 ^{\{ 3 \}} | 0.07976 ^{\{ 8 \}} | 0.0712 ^{\{ 2 \}} | 0.07566 ^{\{ 5 \}} | 0.07738 ^{\{ 7 \}} | 0.07522 ^{\{ 4 \}} | 0.07734 ^{\{ 6 \}} | ||
ASAE | 0.02998 ^{\{ 6 \}} | 0.02782 ^{\{ 4 \}} | 0.02947 ^{\{ 5 \}} | 0.02765 ^{\{ 3 \}} | 0.03091 ^{\{ 7 \}} | 0.02581 ^{\{ 1 \}} | 0.02751 ^{\{ 2 \}} | 0.03566 ^{\{ 8 \}} | ||
\sum Ranks | 24 ^{\{ 1 \}} | 52 ^{\{ 4 \}} | 86 ^{\{ 8 \}} | 33 ^{\{ 2 \}} | 53 ^{\{ 5 \}} | 74 ^{\{ 7 \}} | 60 ^{\{ 6 \}} | 50 ^{\{ 3 \}} | ||
70 | BIAS | \hat{\tau} | 0.26535 ^{\{ 2 \}} | 0.35171 ^{\{ 5 \}} | 0.40366 ^{\{ 7 \}} | 0.29134 ^{\{ 3 \}} | 0.35289 ^{\{ 6 \}} | 0.42263 ^{\{ 8 \}} | 0.34207 ^{\{ 4 \}} | 0.24784 ^{\{ 1 \}} |
\hat{a} | 0.47336 ^{\{ 1 \}} | 0.55386 ^{\{ 3 \}} | 0.64736 ^{\{ 7 \}} | 0.55627 ^{\{ 4 \}} | 0.64889 ^{\{ 8 \}} | 0.61187 ^{\{ 6 \}} | 0.54143 ^{\{ 2 \}} | 0.59785 ^{\{ 5 \}} | ||
\hat{b} | 0.09971 ^{\{ 1 \}} | 0.11155 ^{\{ 5 \}} | 0.11542 ^{\{ 6 \}} | 0.10741 ^{\{ 3 \}} | 0.10532 ^{\{ 2 \}} | 0.12794 ^{\{ 8 \}} | 0.10844 ^{\{ 4 \}} | 0.11607 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.12711 ^{\{ 1 \}} | 0.28471 ^{\{ 4 \}} | 0.4177 ^{\{ 7 \}} | 0.22138 ^{\{ 3 \}} | 0.33996 ^{\{ 6 \}} | 0.48266 ^{\{ 8 \}} | 0.30172 ^{\{ 5 \}} | 0.13702 ^{\{ 2 \}} | |
\hat{a} | 0.36529 ^{\{ 1 \}} | 0.48714 ^{\{ 4 \}} | 0.68965 ^{\{ 8 \}} | 0.48295 ^{\{ 2 \}} | 0.66234 ^{\{ 7 \}} | 0.6146 ^{\{ 6 \}} | 0.48359 ^{\{ 3 \}} | 0.58995 ^{\{ 5 \}} | ||
\hat{b} | 0.01575 ^{\{ 1 \}} | 0.02146 ^{\{ 5 \}} | 0.02598 ^{\{ 7 \}} | 0.01737 ^{\{ 2 \}} | 0.02098 ^{\{ 4 \}} | 0.03058 ^{\{ 8 \}} | 0.02191 ^{\{ 6 \}} | 0.01909 ^{\{ 3 \}} | ||
MRE | \hat{\tau} | 1.06141 ^{\{ 2 \}} | 1.40685 ^{\{ 5 \}} | 1.61465 ^{\{ 7 \}} | 1.16535 ^{\{ 3 \}} | 1.41156 ^{\{ 6 \}} | 1.6905 ^{\{ 8 \}} | 1.3683 ^{\{ 4 \}} | 0.99135 ^{\{ 1 \}} | |
\hat{a} | 0.15779 ^{\{ 1 \}} | 0.18462 ^{\{ 3 \}} | 0.21579 ^{\{ 7 \}} | 0.18542 ^{\{ 4 \}} | 0.2163 ^{\{ 8 \}} | 0.20396 ^{\{ 6 \}} | 0.18048 ^{\{ 2 \}} | 0.19928 ^{\{ 5 \}} | ||
\hat{b} | 0.39883 ^{\{ 1 \}} | 0.44619 ^{\{ 5 \}} | 0.46169 ^{\{ 6 \}} | 0.42965 ^{\{ 3 \}} | 0.42127 ^{\{ 2 \}} | 0.51178 ^{\{ 8 \}} | 0.43376 ^{\{ 4 \}} | 0.46429 ^{\{ 7 \}} | ||
D_{abs} | 0.02997 ^{\{ 1 \}} | 0.03175 ^{\{ 4 \}} | 0.03324 ^{\{ 8 \}} | 0.03081 ^{\{ 2 \}} | 0.03247 ^{\{ 5 \}} | 0.0327 ^{\{ 7 \}} | 0.03127 ^{\{ 3 \}} | 0.03251 ^{\{ 6 \}} | ||
D_{max} | 0.0499 ^{\{ 1 \}} | 0.05326 ^{\{ 4 \}} | 0.05658 ^{\{ 8 \}} | 0.05081 ^{\{ 2 \}} | 0.05486 ^{\{ 6 \}} | 0.05572 ^{\{ 7 \}} | 0.05218 ^{\{ 3 \}} | 0.05438 ^{\{ 5 \}} | ||
ASAE | 0.01808 ^{\{ 5 \}} | 0.0179 ^{\{ 4 \}} | 0.01884 ^{\{ 6 \}} | 0.01751 ^{\{ 3 \}} | 0.0192 ^{\{ 7 \}} | 0.01618 ^{\{ 1 \}} | 0.01733 ^{\{ 2 \}} | 0.02197 ^{\{ 8 \}} | ||
\sum Ranks | 18 ^{\{ 1 \}} | 51 ^{\{ 4 \}} | 84 ^{\{ 8 \}} | 34 ^{\{ 2 \}} | 67 ^{\{ 6 \}} | 81 ^{\{ 7 \}} | 42 ^{\{ 3 \}} | 55 ^{\{ 5 \}} | ||
150 | BIAS | \hat{\tau} | 0.20572 ^{\{ 2 \}} | 0.23878 ^{\{ 4 \}} | 0.31697 ^{\{ 8 \}} | 0.216 ^{\{ 3 \}} | 0.29435 ^{\{ 7 \}} | 0.28901 ^{\{ 6 \}} | 0.25867 ^{\{ 5 \}} | 0.20305 ^{\{ 1 \}} |
\hat{a} | 0.30956 ^{\{ 1 \}} | 0.34668 ^{\{ 2 \}} | 0.42934 ^{\{ 7 \}} | 0.34894 ^{\{ 3 \}} | 0.4327 ^{\{ 8 \}} | 0.39302 ^{\{ 5 \}} | 0.36418 ^{\{ 4 \}} | 0.41109 ^{\{ 6 \}} | ||
\hat{b} | 0.07839 ^{\{ 1 \}} | 0.08716 ^{\{ 2 \}} | 0.09845 ^{\{ 8 \}} | 0.08897 ^{\{ 3 \}} | 0.09366 ^{\{ 5 \}} | 0.09844 ^{\{ 7 \}} | 0.09049 ^{\{ 4 \}} | 0.09505 ^{\{ 6 \}} | ||
MSE | \hat{\tau} | 0.0763 ^{\{ 2 \}} | 0.11584 ^{\{ 4 \}} | 0.24604 ^{\{ 8 \}} | 0.08934 ^{\{ 3 \}} | 0.21433 ^{\{ 6 \}} | 0.22492 ^{\{ 7 \}} | 0.14363 ^{\{ 5 \}} | 0.07388 ^{\{ 1 \}} | |
\hat{a} | 0.15388 ^{\{ 1 \}} | 0.18414 ^{\{ 2 \}} | 0.29541 ^{\{ 8 \}} | 0.19105 ^{\{ 3 \}} | 0.29359 ^{\{ 7 \}} | 0.25171 ^{\{ 5 \}} | 0.20937 ^{\{ 4 \}} | 0.26876 ^{\{ 6 \}} | ||
\hat{b} | 0.00994 ^{\{ 1 \}} | 0.01226 ^{\{ 3 \}} | 0.01875 ^{\{ 7 \}} | 0.01132 ^{\{ 2 \}} | 0.01714 ^{\{ 6 \}} | 0.01897 ^{\{ 8 \}} | 0.014 ^{\{ 5 \}} | 0.01332 ^{\{ 4 \}} | ||
MRE | \hat{\tau} | 0.82287 ^{\{ 2 \}} | 0.95511 ^{\{ 4 \}} | 1.26786 ^{\{ 8 \}} | 0.86398 ^{\{ 3 \}} | 1.17741 ^{\{ 7 \}} | 1.15604 ^{\{ 6 \}} | 1.03466 ^{\{ 5 \}} | 0.81219 ^{\{ 1 \}} | |
\hat{a} | 0.10319 ^{\{ 1 \}} | 0.11556 ^{\{ 2 \}} | 0.14311 ^{\{ 7 \}} | 0.11631 ^{\{ 3 \}} | 0.14423 ^{\{ 8 \}} | 0.13101 ^{\{ 5 \}} | 0.12139 ^{\{ 4 \}} | 0.13703 ^{\{ 6 \}} | ||
\hat{b} | 0.31354 ^{\{ 1 \}} | 0.34864 ^{\{ 2 \}} | 0.39378 ^{\{ 8 \}} | 0.35589 ^{\{ 3 \}} | 0.37463 ^{\{ 5 \}} | 0.39376 ^{\{ 7 \}} | 0.36195 ^{\{ 4 \}} | 0.38019 ^{\{ 6 \}} | ||
D_{abs} | 0.02072 ^{\{ 1 \}} | 0.02107 ^{\{ 2 \}} | 0.0225 ^{\{ 7 \}} | 0.02189 ^{\{ 4 \}} | 0.02263 ^{\{ 8 \}} | 0.02228 ^{\{ 6 \}} | 0.02197 ^{\{ 5 \}} | 0.02181 ^{\{ 3 \}} | ||
D_{max} | 0.03401 ^{\{ 1 \}} | 0.03512 ^{\{ 2 \}} | 0.03847 ^{\{ 8 \}} | 0.03585 ^{\{ 3 \}} | 0.03844 ^{\{ 7 \}} | 0.038 ^{\{ 6 \}} | 0.0367 ^{\{ 4 \}} | 0.03682 ^{\{ 5 \}} | ||
ASAE | 0.01108 ^{\{ 5 \}} | 0.0106 ^{\{ 3 \}} | 0.01135 ^{\{ 6 \}} | 0.01106 ^{\{ 4 \}} | 0.01179 ^{\{ 7 \}} | 0.00992 ^{\{ 1 \}} | 0.01047 ^{\{ 2 \}} | 0.01254 ^{\{ 8 \}} | ||
\sum Ranks | 19 ^{\{ 1 \}} | 32 ^{\{ 2 \}} | 90 ^{\{ 8 \}} | 37 ^{\{ 3 \}} | 81 ^{\{ 7 \}} | 69 ^{\{ 6 \}} | 51 ^{\{ 4 \}} | 53 ^{\{ 5 \}} | ||
300 | BIAS | \hat{\tau} | 0.16066 ^{\{ 1 \}} | 0.18134 ^{\{ 3 \}} | 0.23938 ^{\{ 8 \}} | 0.17022 ^{\{ 2 \}} | 0.22051 ^{\{ 6 \}} | 0.23877 ^{\{ 7 \}} | 0.1881 ^{\{ 4 \}} | 0.18849 ^{\{ 5 \}} |
\hat{a} | 0.22654 ^{\{ 2 \}} | 0.24264 ^{\{ 3 \}} | 0.2944 ^{\{ 7 \}} | 0.22178 ^{\{ 1 \}} | 0.28817 ^{\{ 6 \}} | 0.26568 ^{\{ 5 \}} | 0.25777 ^{\{ 4 \}} | 0.30304 ^{\{ 8 \}} | ||
\hat{b} | 0.06214 ^{\{ 1 \}} | 0.07012 ^{\{ 2 \}} | 0.08156 ^{\{ 6 \}} | 0.07737 ^{\{ 4 \}} | 0.07758 ^{\{ 5 \}} | 0.08871 ^{\{ 8 \}} | 0.07058 ^{\{ 3 \}} | 0.08471 ^{\{ 7 \}} | ||
MSE | \hat{\tau} | 0.04415 ^{\{ 2 \}} | 0.05978 ^{\{ 4 \}} | 0.11788 ^{\{ 7 \}} | 0.04234 ^{\{ 1 \}} | 0.10883 ^{\{ 6 \}} | 0.13383 ^{\{ 8 \}} | 0.06789 ^{\{ 5 \}} | 0.05456 ^{\{ 3 \}} | |
\hat{a} | 0.08313 ^{\{ 2 \}} | 0.09201 ^{\{ 3 \}} | 0.14205 ^{\{ 8 \}} | 0.07858 ^{\{ 1 \}} | 0.13512 ^{\{ 6 \}} | 0.11565 ^{\{ 5 \}} | 0.10225 ^{\{ 4 \}} | 0.13876 ^{\{ 7 \}} | ||
\hat{b} | 0.00617 ^{\{ 1 \}} | 0.00773 ^{\{ 2 \}} | 0.01181 ^{\{ 7 \}} | 0.00837 ^{\{ 4 \}} | 0.01107 ^{\{ 6 \}} | 0.015 ^{\{ 8 \}} | 0.00814 ^{\{ 3 \}} | 0.01064 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.64263 ^{\{ 1 \}} | 0.72534 ^{\{ 3 \}} | 0.95752 ^{\{ 8 \}} | 0.68088 ^{\{ 2 \}} | 0.88205 ^{\{ 6 \}} | 0.95509 ^{\{ 7 \}} | 0.75242 ^{\{ 4 \}} | 0.75394 ^{\{ 5 \}} | |
\hat{a} | 0.07551 ^{\{ 2 \}} | 0.08088 ^{\{ 3 \}} | 0.09813 ^{\{ 7 \}} | 0.07393 ^{\{ 1 \}} | 0.09606 ^{\{ 6 \}} | 0.08856 ^{\{ 5 \}} | 0.08592 ^{\{ 4 \}} | 0.10101 ^{\{ 8 \}} | ||
\hat{b} | 0.24856 ^{\{ 1 \}} | 0.28049 ^{\{ 2 \}} | 0.32624 ^{\{ 6 \}} | 0.30949 ^{\{ 4 \}} | 0.31033 ^{\{ 5 \}} | 0.35482 ^{\{ 8 \}} | 0.2823 ^{\{ 3 \}} | 0.33885 ^{\{ 7 \}} | ||
D_{abs} | 0.01473 ^{\{ 2 \}} | 0.01494 ^{\{ 3 \}} | 0.01581 ^{\{ 6 \}} | 0.01432 ^{\{ 1 \}} | 0.01598 ^{\{ 7 \}} | 0.01578 ^{\{ 5 \}} | 0.01551 ^{\{ 4 \}} | 0.01624 ^{\{ 8 \}} | ||
D_{max} | 0.02441 ^{\{ 2 \}} | 0.02498 ^{\{ 3 \}} | 0.02726 ^{\{ 8 \}} | 0.02345 ^{\{ 1 \}} | 0.027 ^{\{ 5 \}} | 0.02708 ^{\{ 6 \}} | 0.02606 ^{\{ 4 \}} | 0.02724 ^{\{ 7 \}} | ||
ASAE | 0.00706 ^{\{ 5 \}} | 0.00686 ^{\{ 3 \}} | 0.00722 ^{\{ 6 \}} | 0.00694 ^{\{ 4 \}} | 0.00749 ^{\{ 7 \}} | 0.00632 ^{\{ 1 \}} | 0.00684 ^{\{ 2 \}} | 0.0084 ^{\{ 8 \}} | ||
\sum Ranks | 22 ^{\{ 1 \}} | 34 ^{\{ 3 \}} | 84 ^{\{ 8 \}} | 26 ^{\{ 2 \}} | 71 ^{\{ 5 \}} | 73 ^{\{ 6 \}} | 44 ^{\{ 4 \}} | 78 ^{\{ 7 \}} | ||
600 | BIAS | \hat{\tau} | 0.13045 ^{\{ 1 \}} | 0.14467 ^{\{ 4 \}} | 0.1922 ^{\{ 7 \}} | 0.13076 ^{\{ 2 \}} | 0.18277 ^{\{ 6 \}} | 0.19589 ^{\{ 8 \}} | 0.15452 ^{\{ 5 \}} | 0.14197 ^{\{ 3 \}} |
\hat{a} | 0.1464 ^{\{ 1 \}} | 0.17091 ^{\{ 3 \}} | 0.19656 ^{\{ 6 \}} | 0.15933 ^{\{ 2 \}} | 0.20011 ^{\{ 7 \}} | 0.18356 ^{\{ 5 \}} | 0.17299 ^{\{ 4 \}} | 0.21255 ^{\{ 8 \}} | ||
\hat{b} | 0.05408 ^{\{ 1 \}} | 0.05771 ^{\{ 2 \}} | 0.0699 ^{\{ 7 \}} | 0.06108 ^{\{ 4 \}} | 0.06848 ^{\{ 6 \}} | 0.07427 ^{\{ 8 \}} | 0.06095 ^{\{ 3 \}} | 0.06422 ^{\{ 5 \}} | ||
MSE | \hat{\tau} | 0.02716 ^{\{ 2 \}} | 0.03419 ^{\{ 4 \}} | 0.06868 ^{\{ 7 \}} | 0.02593 ^{\{ 1 \}} | 0.0615 ^{\{ 6 \}} | 0.08038 ^{\{ 8 \}} | 0.03947 ^{\{ 5 \}} | 0.03024 ^{\{ 3 \}} | |
\hat{a} | 0.03481 ^{\{ 1 \}} | 0.04524 ^{\{ 3 \}} | 0.06127 ^{\{ 6 \}} | 0.04288 ^{\{ 2 \}} | 0.06229 ^{\{ 7 \}} | 0.05226 ^{\{ 5 \}} | 0.04678 ^{\{ 4 \}} | 0.06879 ^{\{ 8 \}} | ||
\hat{b} | 0.00463 ^{\{ 1 \}} | 0.00511 ^{\{ 2 \}} | 0.00825 ^{\{ 7 \}} | 0.00581 ^{\{ 4 \}} | 0.00774 ^{\{ 6 \}} | 0.01049 ^{\{ 8 \}} | 0.0057 ^{\{ 3 \}} | 0.00661 ^{\{ 5 \}} | ||
MRE | \hat{\tau} | 0.52182 ^{\{ 1 \}} | 0.57868 ^{\{ 4 \}} | 0.76881 ^{\{ 7 \}} | 0.52302 ^{\{ 2 \}} | 0.73109 ^{\{ 6 \}} | 0.78357 ^{\{ 8 \}} | 0.61806 ^{\{ 5 \}} | 0.56786 ^{\{ 3 \}} | |
\hat{a} | 0.0488 ^{\{ 1 \}} | 0.05697 ^{\{ 3 \}} | 0.06552 ^{\{ 6 \}} | 0.05311 ^{\{ 2 \}} | 0.0667 ^{\{ 7 \}} | 0.06119 ^{\{ 5 \}} | 0.05766 ^{\{ 4 \}} | 0.07085 ^{\{ 8 \}} | ||
\hat{b} | 0.21631 ^{\{ 1 \}} | 0.23082 ^{\{ 2 \}} | 0.27958 ^{\{ 7 \}} | 0.24431 ^{\{ 4 \}} | 0.27392 ^{\{ 6 \}} | 0.29709 ^{\{ 8 \}} | 0.24381 ^{\{ 3 \}} | 0.25689 ^{\{ 5 \}} | ||
D_{abs} | 0.00998 ^{\{ 1 \}} | 0.01059 ^{\{ 3 \}} | 0.01162 ^{\{ 8 \}} | 0.01045 ^{\{ 2 \}} | 0.01138 ^{\{ 7 \}} | 0.01125 ^{\{ 6 \}} | 0.01098 ^{\{ 4 \}} | 0.01118 ^{\{ 5 \}} | ||
D_{max} | 0.01645 ^{\{ 1 \}} | 0.01762 ^{\{ 3 \}} | 0.01993 ^{\{ 8 \}} | 0.01726 ^{\{ 2 \}} | 0.01949 ^{\{ 7 \}} | 0.01935 ^{\{ 6 \}} | 0.01833 ^{\{ 4 \}} | 0.01893 ^{\{ 5 \}} | ||
ASAE | 0.00442 ^{\{ 3 \}} | 0.00443 ^{\{ 4 \}} | 0.00475 ^{\{ 7 \}} | 0.00444 ^{\{ 5 \}} | 0.00472 ^{\{ 6 \}} | 0.00408 ^{\{ 1 \}} | 0.00436 ^{\{ 2 \}} | 0.00545 ^{\{ 8 \}} | ||
\sum Ranks | 15 ^{\{ 1 \}} | 37 ^{\{ 3 \}} | 83 ^{\{ 8 \}} | 32 ^{\{ 2 \}} | 77 ^{\{ 7 \}} | 76 ^{\{ 6 \}} | 46 ^{\{ 4 \}} | 66 ^{\{ 5 \}} |
Parameter | n | MLE | ADE | CVME | MPSE | OLSE | RTADE | WLSE | LTADE |
\tau=0.5 , a=0.25 , b=0.75 | 35 | 4 | 2 | 7 | 1 | 6 | 5 | 3 | 8 |
70 | 5.5 | 2 | 7 | 1 | 5.5 | 4 | 3 | 8 | |
150 | 5 | 3 | 6 | 1 | 7 | 4 | 2 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 4 | 2 | 6 | 1 | 7.5 | 5 | 3 | 7.5 | |
\tau=1.5 , a=0.75 , b=0.5 | 35 | 2.5 | 5 | 7 | 1 | 6 | 4 | 2.5 | 8 |
70 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
150 | 5 | 2 | 6 | 1 | 7 | 4 | 3 | 8 | |
300 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
600 | 5 | 2 | 7 | 1 | 6 | 4 | 3 | 8 | |
\tau=2 , a=0.5 , b=1.5 | 35 | 1 | 3.5 | 5 | 3.5 | 6 | 7 | 2 | 8 |
70 | 1 | 2 | 5 | 4 | 7 | 8 | 3 | 6 | |
150 | 1 | 2 | 7 | 4.5 | 6 | 8 | 3 | 4.5 | |
300 | 1 | 4 | 5 | 3 | 8 | 7 | 2 | 6 | |
600 | 1 | 4 | 8 | 2.5 | 6 | 7 | 2.5 | 5 | |
\tau=2 , a=1.5 , b=2 | 35 | 2 | 3 | 6 | 4 | 7 | 1 | 5 | 8 |
70 | 1 | 2 | 7 | 5 | 6 | 4 | 3 | 8 | |
150 | 1 | 2 | 6 | 4 | 8 | 5 | 3 | 7 | |
300 | 1 | 4 | 6 | 3 | 7 | 5 | 2 | 8 | |
600 | 1 | 3 | 6 | 2 | 7.5 | 5 | 4 | 7.5 | |
\tau=0.75 , a=2 , b=3 | 35 | 1 | 2 | 3 | 6 | 4 | 7 | 5 | 8 |
70 | 1 | 2 | 4 | 6 | 7 | 5 | 3 | 8 | |
150 | 1 | 2 | 5 | 6 | 7 | 4 | 3 | 8 | |
300 | 1 | 3 | 7 | 4 | 8 | 6 | 2 | 5 | |
600 | 1 | 2 | 6.5 | 4 | 8 | 6.5 | 3 | 5 | |
\tau=0.25 , a=3 , b=0.25 | 35 | 1 | 4 | 8 | 2 | 5 | 7 | 6 | 3 |
70 | 1 | 4 | 8 | 2 | 6 | 7 | 3 | 5 | |
150 | 1 | 2 | 8 | 3 | 7 | 6 | 4 | 5 | |
300 | 1 | 3 | 8 | 2 | 5 | 6 | 4 | 7 | |
600 | 1 | 3 | 8 | 2 | 7 | 6 | 4 | 5 | |
\sum Ranks | 67.0 | 80.5 | 193.5 | 82.5 | 195.5 | 159.5 | 95.0 | 206.5 | |
Overall Rank | 1 | 2 | 6 | 3 | 7 | 5 | 4 | 8 |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=0.25 | 35 | a | 0.1424 | 0.3840 | 0.2416 | 95.2% | 0.1240 | 0.3716 | 0.2475 | 97.4% |
b | 0.3074 | 1.3956 | 1.0881 | 96.2% | 0.1761 | 1.3511 | 1.1751 | 98.6% | ||
\tau | -0.1474 | 1.3940 | 1.5415 | 94.6% | -0.2409 | 1.3937 | 1.6346 | 95.6% | ||
70 | a | 0.1680 | 0.3336 | 0.1655 | 95.8% | 0.1571 | 0.3300 | 0.1730 | 96.0% | |
b | 0.3442 | 1.2438 | 0.8996 | 94.6% | 0.2876 | 1.1783 | 0.8907 | 96.8% | ||
\tau | -0.0981 | 1.3002 | 1.3983 | 94.2% | -0.0982 | 1.1923 | 1.2906 | 96.8% | ||
b=0.75 | 150 | a | 0.1940 | 0.3084 | 0.1144 | 94.2% | 0.1890 | 0.3050 | 0.1160 | 96.4% |
b | 0.4466 | 1.0598 | 0.6132 | 93.2% | 0.4220 | 1.0220 | 0.6001 | 96.4% | ||
\tau | 0.0900 | 0.9525 | 0.8625 | 94.0% | 0.1039 | 0.8881 | 0.7841 | 95.0% | ||
\tau=0.5 | 300 | a | 0.2082 | 0.2896 | 0.0814 | 95.2% | 0.2092 | 0.2852 | 0.0761 | 96.4% |
b | 0.4659 | 1.0316 | 0.5657 | 94.8% | 0.5239 | 0.9391 | 0.4153 | 96.2% | ||
\tau | 0.0907 | 0.9503 | 0.8596 | 93.6% | 0.2218 | 0.7761 | 0.5543 | 95.8% | ||
600 | a | 0.2172 | 0.2825 | 0.0654 | 94.2% | 0.2162 | 0.2805 | 0.0643 | 95.4% | |
b | 0.5764 | 0.9262 | 0.3498 | 93.6% | 0.5853 | 0.8925 | 0.3073 | 95.2% | ||
\tau | 0.2346 | 0.7904 | 0.5559 | 94.6% | 0.2858 | 0.7160 | 0.4302 | 96.0% | ||
a=0.75 | 35 | a | 0.3749 | 1.7629 | 1.3880 | 96.8% | 0.2215 | 1.6978 | 1.4762 | 98.2% |
b | 0.1733 | 0.7843 | 0.6110 | 91.0% | 0.1273 | 0.7737 | 0.6464 | 92.8% | ||
\tau | 0.0167 | 2.3436 | 2.3269 | 99.8% | -0.1434 | 2.5520 | 2.6954 | 100.0% | ||
70 | a | 0.5547 | 1.4283 | 0.8736 | 95.2% | 0.4283 | 1.4450 | 1.0167 | 97.8% | |
b | 0.1933 | 0.7132 | 0.5198 | 92.0% | 0.1226 | 0.7452 | 0.6226 | 93.8% | ||
\tau | 0.1180 | 2.1860 | 2.0680 | 94.2% | -0.1264 | 2.4289 | 2.5553 | 100.0% | ||
b=0.5 | 150 | a | 0.6664 | 1.3496 | 0.6831 | 94.8% | 0.5957 | 1.3420 | 0.7462 | 97.8% |
b | 0.2169 | 0.6506 | 0.4337 | 93.0% | 0.2726 | 0.6031 | 0.3306 | 93.2% | ||
\tau | 0.1519 | 1.9431 | 1.7911 | 94.4% | 0.3050 | 1.8915 | 1.5865 | 93.0% | ||
\tau=1.5 | 300 | a | 0.7354 | 1.2244 | 0.4890 | 95.2% | 0.6828 | 1.2239 | 0.5411 | 96.6% |
b | 0.3296 | 0.5786 | 0.2489 | 95.4% | 0.3910 | 0.5441 | 0.1531 | 89.8% | ||
\tau | 0.5329 | 1.7045 | 1.1716 | 95.6% | 0.7327 | 1.6352 | 0.9025 | 90.8% | ||
600 | a | 0.8075 | 1.1805 | 0.3730 | 95.2% | 0.7656 | 1.1558 | 0.3902 | 98.6% | |
b | 0.3372 | 0.5607 | 0.2236 | 97.4% | 0.4507 | 0.4944 | 0.0438 | 49.6% | ||
\tau | 0.5921 | 1.5764 | 0.9843 | 96.6% | 0.9952 | 1.3684 | 0.3732 | 65.0% | ||
a=0.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
\tau | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
\tau | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=1.5 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
\tau | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
\tau=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
\tau | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
\tau | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% |
MLE | MPS | |||||||||
n | Lower | Upper | LACI | CP | Lower | Upper | LACI | CP | ||
a=1.5 | 35 | a | 0.0841 | 3.0983 | 3.0142 | 99.4% | 0.5964 | 2.4213 | 1.8249 | 97.0% |
b | 0.7792 | 3.3199 | 2.5407 | 96.4% | 0.9277 | 2.9819 | 2.0541 | 96.2% | ||
\tau | -4.1397 | 11.2084 | 15.3481 | 96.8% | 0.5888 | 5.0887 | 4.5000 | 96.8% | ||
70 | a | 0.3513 | 2.9435 | 2.5922 | 98.6% | 0.7959 | 2.3551 | 1.5592 | 97.6% | |
b | 1.1282 | 2.8535 | 1.7253 | 95.8% | 1.2526 | 2.6453 | 1.3927 | 95.4% | ||
\tau | -2.3903 | 7.7478 | 10.1381 | 94.6% | 0.7896 | 3.9179 | 3.1283 | 96.6% | ||
b=2 | 150 | a | 0.4155 | 3.0630 | 2.6474 | 95.6% | 0.8704 | 2.4470 | 1.5766 | 98.4% |
b | 1.2344 | 2.6437 | 1.4093 | 95.8% | 1.4967 | 2.3945 | 0.8979 | 95.0% | ||
\tau | -1.8044 | 6.2974 | 8.1017 | 93.8% | 0.7386 | 3.4610 | 2.7224 | 99.2% | ||
\tau=2 | 300 | a | 0.7300 | 2.9444 | 2.2144 | 89.4% | 0.9837 | 2.4903 | 1.5066 | 96.4% |
b | 1.4469 | 2.5415 | 1.0947 | 93.2% | 1.6720 | 2.3314 | 0.6594 | 95.2% | ||
\tau | -0.7896 | 4.4351 | 5.2247 | 92.8% | 0.8241 | 2.8969 | 2.0728 | 96.8% | ||
600 | a | 0.8443 | 3.0427 | 2.1984 | 88.0% | 1.1938 | 2.4879 | 1.2942 | 91.4% | |
b | 1.4851 | 2.4993 | 1.0142 | 91.4% | 1.8123 | 2.2369 | 0.4246 | 89.2% | ||
\tau | -0.9598 | 4.2972 | 5.2570 | 91.6% | 0.8832 | 2.5574 | 1.6742 | 90.4% | ||
a=2 | 35 | a | 1.4516 | 3.0180 | 1.5664 | 95.2% | 1.2272 | 3.0073 | 1.7800 | 98.6% |
b | 1.2482 | 5.2132 | 3.9651 | 95.8% | 0.8513 | 4.9181 | 4.0668 | 99.2% | ||
\tau | -0.2282 | 1.6153 | 1.8435 | 95.6% | -0.4111 | 1.7960 | 2.2071 | 94.0% | ||
70 | a | 1.6144 | 2.7305 | 1.1160 | 95.0% | 1.4843 | 2.7390 | 1.2547 | 97.6% | |
b | 1.4910 | 4.6090 | 3.1180 | 96.2% | 1.1561 | 4.5050 | 3.3489 | 99.0% | ||
\tau | -0.0943 | 1.4316 | 1.5259 | 95.2% | -0.2493 | 1.5585 | 1.8078 | 94.8% | ||
b=3 | 150 | a | 1.7896 | 2.5391 | 0.7496 | 95.4% | 1.7365 | 2.5418 | 0.8053 | 96.2% |
b | 1.7926 | 4.1551 | 2.3625 | 96.2% | 1.6447 | 4.0422 | 2.3974 | 96.8% | ||
\tau | 0.0645 | 1.1806 | 1.1161 | 96.6% | 0.0097 | 1.1917 | 1.1821 | 97.0% | ||
\tau=0.75 | 300 | a | 1.9039 | 2.4287 | 0.5249 | 95.8% | 1.8799 | 2.4292 | 0.5493 | 97.4% |
b | 2.1524 | 3.7909 | 1.6385 | 94.2% | 1.9889 | 3.7889 | 1.8000 | 97.2% | ||
\tau | 0.1813 | 1.0293 | 0.8480 | 95.4% | 0.1349 | 1.0399 | 0.9050 | 97.0% | ||
600 | a | 1.9724 | 2.3730 | 0.4006 | 95.6% | 1.9612 | 2.3715 | 0.4103 | 96.0% | |
b | 2.3438 | 3.5541 | 1.2102 | 94.2% | 2.3352 | 3.4916 | 1.1564 | 95.4% | ||
\tau | 0.2739 | 0.9082 | 0.6344 | 95.0% | 0.2774 | 0.8905 | 0.6131 | 96.2% | ||
a=3 | 35 | a | 1.9729 | 4.6161 | 2.6432 | 95.8% | 1.8782 | 4.3354 | 2.4572 | 97.0% |
b | -0.0293 | 0.7353 | 0.7646 | 97.0% | -0.0398 | 0.6755 | 0.7154 | 98.0% | ||
\tau | -0.4116 | 1.4397 | 1.8512 | 94.0% | -0.4786 | 1.4140 | 1.8926 | 95.4% | ||
70 | a | 2.4063 | 3.9743 | 1.5680 | 94.2% | 2.2750 | 3.9640 | 1.6890 | 94.2% | |
b | -0.0284 | 0.5486 | 0.5770 | 94.8% | -0.0534 | 0.5696 | 0.6230 | 97.4% | ||
\tau | -0.3834 | 1.0028 | 1.3862 | 93.4% | -0.4462 | 1.0793 | 1.5255 | 93.6% | ||
b=0.25 | 150 | a | 2.6660 | 3.7299 | 1.0639 | 93.4% | 2.6852 | 3.6862 | 1.0010 | 94.4% |
b | 0.0336 | 0.4138 | 0.3803 | 94.2% | -0.0209 | 0.5050 | 0.5260 | 91.6% | ||
\tau | -0.2258 | 0.6358 | 0.8616 | 93.8% | -0.3280 | 0.8359 | 1.1640 | 88.4% | ||
\tau=0.25 | 300 | a | 2.8201 | 3.5448 | 0.7248 | 94.0% | 2.9279 | 3.5496 | 0.6216 | 93.8% |
b | 0.0642 | 0.3265 | 0.2624 | 92.6% | 0.2438 | 0.3026 | 0.0587 | 98.2% | ||
\tau | -0.1524 | 0.4342 | 0.5866 | 92.8% | 0.3140 | 0.3670 | 0.0530 | 97.3% | ||
600 | a | 2.9387 | 3.4003 | 0.4616 | 94.8% | 2.9697 | 3.1695 | 0.1998 | 98.1% | |
b | 0.1070 | 0.2593 | 0.1523 | 95.4% | 0.3550 | 0.1831 | -0.1719 | 96.9% | ||
\tau | -0.0465 | 0.2697 | 0.3162 | 95.4% | 0.4718 | 0.1116 | -0.3601 | 97.5% |
\alpha | \beta | \tau | \theta | \lambda | ||
EGAPE | Estimates | 1.8897 | 29.0863 | 1.7697 | ||
SE | 0.5609 | 21.0642 | 0.8618 | |||
EL | Estimates | 77.2175 | 12.0930 | 3.6927 | ||
SE | 116.8405 | 17.6372 | 7.7470 | |||
KW | Estimates | 30.4293 | 0.3994 | 1.7768 | 1.4045 | |
SE | 35.9424 | 0.4654 | 0.8620 | 0.6895 | ||
EW | Estimates | 2.757653 | 13.05099 | 11.26919 | ||
SE | 0.425237 | 16.18943 | 25.32466 | |||
MOAPEW | Estimates | 0.0048 | 0.4068 | 0.1943 | 0.4860 | 0.0038 |
SE | 0.0070 | 0.1936 | 0.0756 | 0.2005 | 0.0011 | |
KMGE | Estimates | 32.4295 | 2.0003 | |||
SE | 20.6526 | 0.4056 | ||||
EHLINH | Estimates | 6.7046 | 28.4439 | 0.0674 | ||
SE | 2.0967 | 65.6860 | 0.1601 | |||
ExEx | Estimates | 133.3134 | 0.0028 | |||
SE | 78.3222 | 0.0015 | ||||
OWITL | Estimates | 2.9015 | 79.0976 | 0.3261 | ||
SE | 0.4311 | 115.5561 | 0.1408 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.1163 | 0.9495 | 37.8850 | 40.8722 | 39.3850 | 38.4682 | 0.0427 | 0.2510 |
EL | 0.1211 | 0.9308 | 37.5124 | 40.4996 | 39.0124 | 38.0955 | 0.0391 | 0.2260 |
KW | 0.1392 | 0.8329 | 39.9867 | 43.9696 | 42.6534 | 40.7642 | 0.0498 | 0.2913 |
MOAPEW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
EW | 0.1853 | 0.4984 | 47.2771 | 50.2643 | 48.7771 | 47.8603 | 0.1866 | 1.0986 |
KMGE | 0.1206 | 0.9330 | 35.9024 | 37.8938 | 36.6082 | 36.2911 | 0.0438 | 0.2576 |
EHLINH | 0.1294 | 0.8912 | 37.9113 | 40.8985 | 39.4113 | 38.4944 | 0.0457 | 0.2641 |
ExEx | 0.4041 | 0.0029 | 59.5574 | 61.5489 | 60.2633 | 59.9461 | 0.1761 | 1.0400 |
OWITL | 0.1783 | 0.5481 | 44.5537 | 47.5409 | 46.0537 | 45.1369 | 0.1441 | 0.8519 |
\alpha | \beta | \tau | \theta | \lambda | ||
EGAPE | Estimates | 0.0886 | 1.4401 | 0.6050 | ||
SE | 0.0157 | 0.5555 | 0.6115 | |||
TLMW | Estimates | 0.0106 | 0.0101 | 1.2689 | 1.2680 | |
SE | 0.0740 | 0.0276 | 0.2493 | 1.0647 | ||
TIIEHLPL | Estimates | 1.7143 | 0.1844 | 28.8074 | 166.7427 | |
SE | 2.9734 | 0.2303 | 71.7154 | 27.4533 | ||
EL | Estimates | 1.8125 | 11.2464 | 123.1732 | ||
SE | 0.3163 | 8.1168 | 102.2685 | |||
KW | Estimates | 1.2083 | 2.3127 | 0.0326 | 1.1786 | |
SE | 0.9050 | 6.4453 | 0.0641 | 0.6493 | ||
GMW | Estimates | 0.0370 | 1.2290 | 0.0015 | 1.1750 | |
SE | 0.0939 | 0.9993 | 0.0140 | 0.7523 | ||
MOAPEW | Estimates | 0.3553 | 0.2575 | 0.1384 | 0.0058 | 0.0087 |
SE | 0.5066 | 0.0104 | 0.1008 | 0.0018 | 0.0078 | |
EW | Estimates | 0.2312 | 0.0085 | 0.2914 | ||
SE | 0.0152 | 0.0058 | 0.1531 | |||
KMGE | Estimates | 1.8212 | 0.0675 | |||
SE | 0.2588 | 0.0091 | ||||
EHLINH | Estimates | 19.5686 | 0.2837 | 1589.2263 | ||
SE | 15.3431 | 0.0490 | 237.2804 | |||
ExEx | Estimates | 3.4494 | 0.0117 | |||
SE | 1.9636 | 0.0079 | ||||
OWITL | Estimates | 1.1721 | 0.0508 | 1.1382 | ||
SE | 0.4598 | 0.0350 | 0.5937 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0728 | 0.7453 | 662.0716 | 669.4693 | 662.3608 | 665.0504 | 0.0869 | 0.5958 |
TLMW | 0.0740 | 0.7280 | 663.9288 | 673.7924 | 664.4166 | 667.9005 | 0.0901 | 0.6041 |
TIIEHLPL | 0.0816 | 0.6084 | 665.4572 | 675.3208 | 665.9450 | 669.4290 | 0.0814 | 0.6494 |
EL | 0.0845 | 0.5635 | 663.7241 | 671.1218 | 664.0132 | 666.7029 | 0.0761 | 0.6190 |
KW | 0.0752 | 0.7090 | 663.9278 | 673.7914 | 664.4156 | 667.8996 | 0.0920 | 0.6121 |
GMW | 0.0768 | 0.6834 | 663.8639 | 673.7276 | 664.3517 | 667.8357 | 0.0943 | 0.6201 |
MOAPEW | 0.0762 | 0.6929 | 665.7249 | 678.0545 | 666.4657 | 670.6897 | 0.0879 | 0.5993 |
EW | 0.1110 | 0.2336 | 667.4458 | 674.8435 | 667.7349 | 670.4246 | 0.2186 | 1.2041 |
KMGE | 0.0861 | 0.5389 | 662.3907 | 669.8323 | 662.5335 | 665.3766 | 0.0763 | 0.6177 |
EHLINH | 0.0864 | 0.5345 | 664.3826 | 671.7803 | 664.6718 | 667.3615 | 0.0853 | 0.7083 |
ExEx | 0.0919 | 0.4547 | 662.8435 | 669.7753 | 662.9863 | 665.8294 | 0.1603 | 0.9021 |
OWITL | 0.0771 | 0.6787 | 662.6932 | 669.5910 | 662.9824 | 665.6721 | 0.0996 | 0.6511 |
\alpha | \beta | \tau | \theta | ||
EGAPE | Estimates | 1.2948 | 0.9091 | 0.0079 | |
SE | 0.1631 | 0.6367 | 0.0242 | ||
TLMW | Estimates | 0.2497 | 0.2004 | 1.2916 | 2.7723 |
SE | 0.9087 | 0.7554 | 0.7622 | 1.5924 | |
TIIEHLPL | Estimates | 0.0927 | 1.3381 | 2.4967 | 138.0944 |
SE | 0.2557 | 0.8698 | 1.5475 | 532.9272 | |
EL | Estimates | 3.8657 | 36.6762 | 30.4730 | |
SE | 0.8248 | 61.0255 | 53.2398 | ||
KW | Estimates | 3.9049 | 3.8098 | 0.6329 | 0.7832 |
SE | 9.9178 | 25.2951 | 0.8289 | 1.7951 | |
GMW | Estimates | 1.4999 | 7.0403 | 0.1177 | 0.5813 |
SE | 0.7081 | 2.0431 | 0.0250 | 0.1381 | |
EW | Estimates | 1.8162 | 36.6594 | 5.3695 | |
SE | 0.1607 | 70.2187 | 9.0321 | ||
EGAPEx | Estimates | 2.2303 | 3.0157 | 3.0038 | 0.4497 |
SE | 4.3322 | 1.7338 | 3.8605 | 0.5913 | |
KMGE | Estimates | 3.7890 | 0.9720 | ||
SE | 0.7019 | 0.1221 | |||
EHLINH | Estimates | 34.1057 | 0.3627 | 94.1204 | |
SE | 38.2904 | 0.0934 | 165.6271 | ||
ExEx | Estimates | 70.0000 | 0.0051 | ||
SE | 81.8420 | 0.0059 | |||
OWITL | Estimates | 1.8011 | 19.0880 | 0.3149 | |
SE | 0.1713 | 23.2625 | 0.1740 |
KSD | KSPV | AI | BI | CAI | HQI | CVM | AD | |
GAPEED | 0.0826 | 0.7094 | 192.5995 | 199.4295 | 192.9524 | 195.3185 | 0.0881 | 0.5118 |
TLMW | 0.0885 | 0.6253 | 196.1265 | 205.2332 | 196.7235 | 199.7519 | 0.0915 | 0.5657 |
TIIEHLPL | 0.0874 | 0.6408 | 196.0386 | 205.1453 | 196.6356 | 199.6640 | 0.0747 | 0.4823 |
EL | 0.0944 | 0.5429 | 194.7195 | 201.5495 | 195.0725 | 197.4386 | 0.0770 | 0.5188 |
KW | 0.0896 | 0.6103 | 196.1880 | 205.2947 | 196.7850 | 199.8134 | 0.0933 | 0.5735 |
GMW | 0.0905 | 0.5967 | 197.2302 | 206.3369 | 197.8272 | 200.8556 | 0.1064 | 0.6601 |
EW | 0.1056 | 0.3984 | 197.6848 | 204.5148 | 198.0377 | 200.4038 | 0.1662 | 0.9792 |
EGAPEx | 0.0874 | 0.6411 | 196.1340 | 205.2406 | 196.7310 | 199.7594 | 0.0917 | 0.5652 |
KMGE | 0.0906 | 0.5961 | 193.4319 | 200.9853 | 193.6058 | 196.2446 | 0.0970 | 0.5771 |
EHLINH | 0.1011 | 0.4537 | 195.7417 | 202.5717 | 196.0946 | 198.4607 | 0.0976 | 0.6161 |
ExEx | 0.2118 | 0.0031 | 210.6588 | 215.2121 | 210.8327 | 212.4715 | 0.2429 | 1.4240 |
OWITL | 0.0929 | 0.5634 | 194.6419 | 201.4719 | 194.9949 | 197.3610 | 0.0921 | 0.5773 |
Data | T_1 | T_2 | T_3 | n_1 | n_2 | n_3 | \alpha_1 | \alpha_2 | \alpha_3 | \beta | \tau | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 5 | 2.5353 | 4.2746 | 3.3228 | 1.8354 | 0.0020 | -7.2028 | 24.4055 | 29.3842 |
3.5 | 6 | 2.4710 | 3.8668 | 2.3909 | 2.0295 | 0.0031 | -10.4644 | 30.9287 | 35.9074 | |||||
2.2 | 3 | 9 | 3 | 2.5416 | 3.5990 | 5.0954 | 1.9838 | 0.0026 | -7.1745 | 24.3490 | 29.3277 | |||
3.5 | 4 | 2.5352 | 3.0753 | 2.9460 | 1.9840 | 0.0008 | -10.8706 | 31.7412 | 36.7198 | |||||
1.8 | 1.9 | 3 | 11 | 2 | 5 | 2.8502 | 4.7026 | 3.3463 | 1.4596 | 0.0034 | -7.6071 | 25.2142 | 30.1929 | |
3.5 | 6 | 2.7474 | 4.0312 | 2.4071 | 1.7368 | 0.0024 | -10.7940 | 31.5879 | 36.5666 | |||||
2.2 | 3 | 4 | 3 | 2.9864 | 3.0214 | 5.1299 | 1.3835 | 0.0007 | -7.4430 | 24.8859 | 29.8646 | |||
3.5 | 4 | 2.8427 | 2.4470 | 2.9661 | 1.9249 | 0.0025 | -10.9378 | 31.8756 | 36.8543 | |||||
II | 8 | 14 | 22 | 22 | 21 | 24 | 0.0842 | 0.1251 | 0.3435 | 1.4147 | 0.8461 | -207.0863 | 424.1727 | 436.5022 |
38 | 36 | 0.0463 | 0.0689 | 0.1152 | 1.3591 | 1.4858 | -278.0608 | 566.1216 | 578.4511 | |||||
18 | 30 | 35 | 14 | 0.1071 | 0.1562 | 0.2666 | 1.2760 | 0.3879 | -231.5655 | 473.1311 | 485.4606 | |||
38 | 22 | 0.0929 | 0.1258 | 0.1248 | 1.2874 | 0.4486 | -278.8941 | 567.7881 | 580.1177 | |||||
10 | 14 | 30 | 28 | 15 | 28 | 0.0546 | 0.0970 | 0.2060 | 1.4255 | 1.5355 | -229.6798 | 469.3596 | 481.6891 | |
38 | 36 | 0.0473 | 0.0790 | 0.1146 | 1.3702 | 1.5078 | -277.6793 | 565.3585 | 577.6881 | |||||
18 | 30 | 29 | 14 | 0.0908 | 0.1687 | 0.2639 | 1.3715 | 0.6488 | -230.6346 | 471.2691 | 483.5987 | |||
38 | 22 | 0.0642 | 0.1176 | 0.1199 | 1.4065 | 1.0223 | -278.2243 | 566.4487 | 578.7782 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 17 | 18 | 1.9285 | 1.9888 | 3.3652 | 2.1804 | 0.0428 | -42.3850 | 94.7701 | 106.1534 |
3 | 26 | 1.8135 | 1.6050 | 2.1656 | 2.1324 | 0.0408 | -61.6277 | 133.2554 | 144.6387 | |||||
1.9 | 2.4 | 25 | 10 | 1.9262 | 2.1187 | 4.8965 | 2.1808 | 0.0427 | -41.3863 | 92.7727 | 104.1560 | |||
3 | 18 | 1.8140 | 1.6102 | 2.5898 | 2.1043 | 0.0396 | -60.9120 | 131.8240 | 143.2073 | |||||
1.3 | 1.6 | 2.4 | 30 | 8 | 18 | 2.0586 | 1.6644 | 3.3873 | 2.4176 | 0.0402 | -42.2304 | 94.4608 | 105.8442 | |
3 | 26 | 1.8815 | 1.2926 | 2.1763 | 2.2743 | 0.0399 | -61.2000 | 132.4000 | 143.7833 | |||||
1.9 | 2.4 | 16 | 10 | 2.0571 | 1.9902 | 4.9177 | 2.4155 | 0.0401 | -41.4372 | 92.8744 | 104.2577 | |||
3 | 18 | 1.8835 | 1.4376 | 2.6025 | 2.2621 | 0.0392 | -60.5813 | 131.1625 | 142.5459 |
Data | T_1 | T_2 | T_3 | n_1 | n_2 | n_3 | \alpha_1 | \alpha_2 | \alpha_3 | \beta | \tau | Llog | AI | BI |
I | 1.6 | 1.9 | 3 | 6 | 7 | 2 | 2.7800 | 6.6237 | 5.1808 | 1.5332 | 0.0019 | -1.3345 | 12.6689 | 17.6476 |
3.5 | 3 | 2.6606 | 5.5631 | 2.0821 | 1.5061 | 0.0026 | -5.5431 | 21.0862 | 26.0648 | |||||
2.2 | 3.1 | 9 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0021 | -6.6903 | 23.3806 | 28.3592 | |||
3.5 | 2 | 2.5638 | 4.3445 | 2.5229 | 1.7539 | 0.0001 | -6.6903 | 23.3806 | 28.3592 | |||||
1.8 | 1.9 | 3 | 11 | 1 | 2 | 3.3879 | 5.5803 | 2.5550 | 1.4507 | 0.0012 | -4.0139 | 18.0277 | 23.0064 | |
3.5 | 3 | 3.5248 | 3.7242 | 1.6542 | 2.0645 | 0.0018 | -7.1073 | 24.2145 | 29.1932 | |||||
2.2 | 3 | 3 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0019 | -3.0837 | 16.1675 | 21.1461 | |||
3.5 | 1 | 3.2535 | 4.6798 | 10.2574 | 1.5629 | 0.0029 | -3.0837 | 16.1675 | 21.1461 | |||||
II | 8 | 14 | 22 | 22 | 18 | 16 | 0.1221 | 0.1552 | 0.3637 | 1.3846 | 0.5564 | -171.7641 | 353.5283 | 365.8578 |
38 | 25 | 0.0621 | 0.0835 | 0.1128 | 1.4401 | 1.4256 | -226.8644 | 463.7287 | 476.0583 | |||||
18 | 22 | 29 | 5 | 0.1362 | 0.2049 | 0.5140 | 1.3076 | 0.3588 | -171.8571 | 353.7143 | 366.0438 | |||
38 | 15 | 0.1127 | 0.1369 | 0.1093 | 1.2970 | 0.4134 | -230.3447 | 470.6895 | 483.0190 | |||||
10 | 14 | 22 | 28 | 12 | 16 | 0.0711 | 0.1187 | 0.3461 | 1.5427 | 1.6947 | -169.7180 | 349.4361 | 361.7656 | |
38 | 24 | 0.0584 | 0.0858 | 0.1120 | 1.4557 | 1.6740 | -220.9976 | 451.9953 | 464.3248 | |||||
18 | 22 | 24 | 5 | 0.1297 | 0.2358 | 0.5680 | 1.3375 | 0.4332 | -173.7040 | 357.4080 | 369.7376 | |||
38 | 13 | 0.1069 | 0.1581 | 0.1051 | 1.3487 | 0.5302 | -224.0241 | 458.0481 | 470.3777 | |||||
III | 1.1 | 1.6 | 2.4 | 21 | 13 | 9 | 2.2016 | 2.4738 | 4.1560 | 2.3470 | 0.0482 | -27.9595 | 65.9191 | 77.3024 |
3 | 13 | 2.1023 | 2.0038 | 2.3040 | 2.2828 | 0.0463 | -39.9871 | 89.9742 | 101.3575 | |||||
1.9 | 2.4 | 21 | 5 | 2.0900 | 2.4406 | 5.7452 | 2.3197 | 0.0480 | -32.3110 | 74.6221 | 86.0054 | |||
3 | 9 | 2.0104 | 1.9690 | 2.9062 | 2.2560 | 0.0457 | -43.2342 | 96.4684 | 107.8517 | |||||
1.3 | 1.6 | 2.4 | 30 | 6 | 10 | 2.3723 | 1.9721 | 3.2473 | 2.7184 | 0.0406 | -32.2770 | 74.5541 | 85.9374 | |
3 | 14 | 2.2271 | 1.5491 | 2.2233 | 2.5817 | 0.0408 | -42.5040 | 95.0080 | 106.3914 | |||||
1.9 | 2.4 | 12 | 8 | 2.2277 | 1.8942 | 4.5920 | 2.5778 | 0.0406 | -36.5661 | 83.1323 | 94.5156 | |||
3 | 10 | 2.1666 | 1.6701 | 3.5295 | 2.5178 | 0.0404 | -41.6866 | 93.3732 | 104.7565 |