Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

High-dimensional Lehmer problem on Beatty sequences

  • Received: 25 December 2022 Revised: 18 February 2023 Accepted: 09 March 2023 Published: 07 April 2023
  • MSC : 11B83, 11L05, 11N69

  • Let q be a positive integer. For each integer a with 1a<q and (a,q)=1, it is clear that there exists one and only one ˉa with 1ˉa<q such that aˉa1(q). Let k be any fixed integer with k2,0<δi1,i=1,2,,k. rn(δ1,δ2,,δk,α,β,c;q) denotes the number of all k-tuples with positive integer coordinates (x1,x2,,xk) such that 1xiδiq,(xi,q)=1,x1x2xkc(q), and x1,x2,,xk1Bα,β. In this paper, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals and give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.

    Citation: Xiaoqing Zhao, Yuan Yi. High-dimensional Lehmer problem on Beatty sequences[J]. AIMS Mathematics, 2023, 8(6): 13492-13502. doi: 10.3934/math.2023684

    Related Papers:

    [1] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
    [2] Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681
    [3] Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2Dy2=1 and x2Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170
    [4] Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780
    [5] Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143
    [6] Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461
    [7] Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196
    [8] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [9] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [10] Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227
  • Let q be a positive integer. For each integer a with 1a<q and (a,q)=1, it is clear that there exists one and only one ˉa with 1ˉa<q such that aˉa1(q). Let k be any fixed integer with k2,0<δi1,i=1,2,,k. rn(δ1,δ2,,δk,α,β,c;q) denotes the number of all k-tuples with positive integer coordinates (x1,x2,,xk) such that 1xiδiq,(xi,q)=1,x1x2xkc(q), and x1,x2,,xk1Bα,β. In this paper, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals and give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.



    Let q be a positive integer. For each integer a with 1a<q,(a,q)=1, we know that there exists one and only one ˉa with 1ˉa<q such that aˉa1(q). Let r(q) be the number of integers a with 1a<q for which a and ˉa are of opposite parity.

    D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:

    r(q)=12ϕ(q)+O(q12d2(q)log2q).

    Zhang [4] generalized the problem over short intervals and proved that

    aNaR(q)1=12Nϕ(q)q1+O(q12d2(q)log2q),

    where

    R(q):={a:1aq,(a,q)=1,2a+ˉa}.

    Let n2 be a fixed positive integer, q3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ21. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as

    rn(δ1,δ2,c;q):=aδ1qˉaδ2qaˉacmodqna+ˉa1,

    and obtained an interesting asymptotic formula,

    rn(δ1,δ2,c;q)=(1n1)δ1δ2ϕ(q)+O(q12d6(q)log2q).

    Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence of integers defined by

    Bα,β:=(αn+β)n=1,

    where t denotes the integer part of any tR. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic estimate

    #{ prime px:pBα,β}α1π(x) as x

    where π(x) is the prime counting function.

    We define type τ=τ(α) for any irrational number α by the following definition:

    τ:=sup{tR:lim infnnt

    Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,

    r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right): = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle {x_{1} \cdots x_{k} \equiv c\bmod q } \atop {\scriptstyle {x_{1}, \cdots x_{k-1} \in B_{\alpha,\beta}} \atop \scriptstyle {n \nmid x_{1}+\cdots+x_{k}}}} 1,(0 < \delta_{1}, \delta_{2},\cdots, \delta_{k} \leq 1),

    and where k = 2, we get the result of [7].

    By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.

    Theorem 1.1. Let k \geq 2 be a fixed positive integer, q\geq n^{3} and c be two integers with (n, q) = (c, q) = 1 , and \delta_{1}, \delta_{2}, \cdots, \delta_{k} be real numbers satisfying 0 < \delta_{1}, \delta_{2}, \cdots, \delta_{k} \leq 1 . Let \alpha > 1 be an irrational number of finite type. Then, we have the following asymptotic formula:

    r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right) = \left(1-n^{-1}\right) \alpha^{-(k-1)} \delta_{1} \delta_{2} \cdots \delta_{k}\phi^{k-1}(q)+O(q^{k-1-\frac{1}{\tau+1}+\varepsilon} ),

    where \phi(\cdot) is the Euler function, \varepsilon is a sufficiently small positive number, and the implied constant only depends on n .

    Notation. In this paper, we denote by \lfloor t\rfloor and \{t\} the integral part and the fractional part of t , respectively. As is customary, we put

    \mathbf{e}(t): = e^{2 \pi i t} \quad \text { and } \quad\{t\}: = t-\lfloor t\rfloor .

    The notation \|t\| is used to denote the distance from the real number t to the nearest integer; that is,

    \|t\|: = \min \limits_{n \in \mathbb{Z}}|t-n| .

    Let \chi^{0} be the principal character modulo q . The letter p always denotes a prime. Throughout the paper, \varepsilon always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O, \ll and \gg may depend (where obvious) on the parameters \alpha, n, \varepsilon but are absolute otherwise. For given functions F and G , the notations F \ll G , G \gg F and F = O(G) are all equivalent to the statement that the inequality |F| \leqslant \mathcal{C}|G| holds with some constant \mathcal{C} > 0 .

    To complete the proof of the theorem, we need the following several definitions and lemmas.

    Definition 2.1. For an arbitrary set \mathcal{S} , we use \mathbf{1}_{\mathcal{S}} to denote its indicator function:

    \mathbf{1}_{\mathcal{S}}(n): = \begin{cases}1 & { if } \;n \in \mathcal{S}, \\ 0 & { if }\; n \notin \mathcal{S} .\end{cases}

    We use \mathbf{1}_{\alpha, \beta} to denote the characteristic function of numbers in a Beatty sequence:

    \mathbf{1}_{\alpha, \beta}(n): = \begin{cases}1 & { if } \;n \in \mathcal{B}_{\alpha, \beta}, \\ 0 & { if }\; n \notin \mathcal{B}_{\alpha, \beta}.\end{cases}

    Lemma 2.2. Let a, q be integers, \delta \in(0, 1) be a real number, \theta be a rational number. Let \alpha be an irrational number of finite type \tau and H = q^{\varepsilon} > 0 . We have

    \sum\limits_{\scriptstyle {a \le \delta q} \atop \scriptstyle{a \in {{\cal B}_{\alpha ,\beta }}}} ' 1 = \alpha^{-1} \delta \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right),

    and

    \sum\limits_{\substack{a \leqslant \delta q \\ a \in \mathcal{B}_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum\limits_{a \leqslant \delta_1 q} \mathbf{e}(\theta a)+O\left(\|\theta\|^{-1} q^{-\varepsilon}+q^{\varepsilon}\right).

    Taking

    H = \|\theta\|^{-\frac{1}{\tau+1}+\varepsilon},

    we have

    \sum\limits_{\substack{a \leqslant \delta q \\ a \in B_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum\limits_{a \leqslant \delta_1 q} \mathbf{e}(\theta a)+O\left(\|\theta\|^{-\left(\frac{\tau}{\tau+1}+\varepsilon\right)}\right) .

    Proof. This is Lemma 2.4 and Lemma 2.5 of [7].

    Lemma 2.3. Let

    \mathbf{Kl}(r_{1},r_{2},\cdots,r_{k};q) = \sum\limits_{x_{1} \leqslant q-1} \cdots \sum\limits_{x_{k-1} \leqslant q-1} \mathbf{e}\left(\frac {r_{1}x_{1}+\cdots+r_{k-1}x_{k-1}+ r_{k}\overline{x_{1} \cdots x_{k-1}}}{p}\right).

    Then

    \mathbf{Kl}(r_{1},r_{2},\cdots,r_{k};q) \ll q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, r_{k}, q\right)^{\frac{1}{2}} \cdots\left(r_{k-1}, r_{k}, q\right)^{\frac{1}{2}}

    where (a, b, c) is the greatest common divisor of a, b and c .

    Proof. See [9].

    Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If

    a = \frac{s}{r}+\frac{\theta}{r^{2}}, \quad(r, s) = 1, r \geq 1,|\theta| \leq 1,

    then

    \sum\limits_{k \leqslant K} \min (U, \frac{1}{\|a k+b\|}) \ll (\frac{K}{r}+1 )(U+r \log r).

    Proof. The proof is given in [10].

    We begin by the definition

    r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right) = S_{1}-S_{2},

    where

    S_{1}: = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle {x_{1} \cdots x_{k} \equiv c\bmod q } \atop {\scriptstyle {x_{1}, \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}} }} 1,

    and

    S_{2}: = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle{x_{1} \cdots x_{k} \equiv c\bmod q }\atop {\scriptstyle{x_{1}, \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}}\atop \scriptstyle{n \mid x_{1}+\cdots+x_{k}}}} 1.

    By the Definition 2.1, Lemma 2.2 and congruence properties, we have

    \begin{aligned} S_{1}& = \mathop{\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q}}_{x_{1} \cdots x_{k} \equiv c\bmod q }\mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = \frac{1}{\phi(q)} \sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q} \sum\limits_{\chi \bmod q}\chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline c)\mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = S_{11}+S_{12}, \end{aligned}

    where

    \begin{align*} S_{11}: = \frac{1}{\phi(q)}\mathop{ {\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \cdots \mathop{ {\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q} \mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right), \end{align*}

    and

    S_{12}: = \frac{1}{\phi(q)} \mathop{\sum\limits_{\chi \bmod q}}_{\chi \neq \chi_{0}} \chi(\overline c) \left(\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{1}) \cdots \chi(x_{k}) \mathbf{1}_{\alpha,\beta} ( x_{1}) \cdots \mathbf{1}_{\alpha,\beta}( x_{k-1} )\right).

    For S_{2} , it follows that

    \begin{aligned} S_{2}& = \frac{1}{\phi(q)} \mathop{\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q}}_{n \mid x_{1}+\cdots+x_{k}} \sum\limits_{\chi \bmod q}\chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline c)\mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = S_{21}+S_{22}, \end{aligned}

    where

    \begin{align*} S_{21}: = \frac{1}{\phi(q)} \mathop{\mathop{ {\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \cdots \mathop{ {\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q} }_{n \mid x_{1}+\cdots+x_{k}} \mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right), \end{align*}

    and

    \begin{align*} S_{22}: = \frac{1}{\phi(q)} \mathop{\sum\limits_{\chi \bmod q}}_{\chi \neq \chi_{0}} \chi(\overline c) \mathop{{\sum\limits_{x_{1} \leqslant \delta_{1} q}} \cdots {\sum\limits_{x_{k} \leqslant \delta_{k} q}}}_{n \mid x_{1}+\cdots+x_{k}} \chi(x_{1}) \cdots \chi(x_{k-1}) \mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1}\right) . \end{align*}

    From the classical bound

    \sum \limits_{a \le \delta q}' 1 = \delta \phi(q)+O\left(d(q)\right)

    and Lemma 2.2, we have

    \begin{align} S_{11}& = \frac{1}{\phi(q)} \left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right) \left(\mathop{{\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q}1\right) \\ & = \left(\delta_{k}+O\left(\frac{d(q)}{\phi(q)}\right)\right)\prod \limits_{i = 1}^{k-1}\left( \alpha^{-1} \delta_{i} \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right)\right) \\ & = \alpha^{-(k-1)}\phi^{k-1}(q)\prod \limits_{i = 1}^{k-1} \delta_{i}+O\left(q^{k-1-\frac{1}{\tau+1}+\varepsilon}\right). \end{align} (3.1)

    From Lemma 2.2, we obtain

    \begin{align} S_{21}& = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left(\mathop{\mathop{{\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q}}_{n \mid x_{k}+(x_{1}+ \cdots +x_{k-1})}1\right) \\ & = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right) \left(\mathop{\sum\limits_{x_{k} \leqslant \delta_{k} q }}_{x_{k} \equiv-(x_{1}+ \cdots +x_{k-1}) \bmod n} \sum\limits_{\substack{d \mid(x_{k}, q)}} \mu(d)\right)\\ & = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left( \sum\limits_{\substack{d \mid q}} \mu(d) \mathop{\mathop{\sum\limits_{x_{k} \leqslant \delta_{k}q}}_{d \mid x_{k}}}_{x_{k} \equiv-(x_{1}+ \cdots +x_{k-1})\bmod n} 1 \right) \\ & = \frac{1}{\phi(q)} \left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left( \sum\limits_{\substack{d \mid q}} \mu(d) \left( \frac{\delta_{k}q}{nd}+O(1)\right)\right) \\ & = \frac{1}{\phi(q)}\left(\frac{\delta_{k}\phi(q)}{n}+O\left(d(q)\right) \right)\prod \limits_{i = 1}^{k-1}\left( \alpha^{-1} \delta_{i} \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right)\right)\\ & = \alpha^{-(k-1)}n^{-1}\phi^{k-1}(q)\prod \limits_{i = 1}^{k-1} \delta_{i}+O (q^{k-1-\frac{1}{\tau+1}+\varepsilon} ). \end{align} (3.2)

    By the properties of exponential sums,

    \begin{align} S_{22} = &\frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c) \left({\sum\limits_{x_{1} \leqslant \delta_{1} q}}\cdots {\sum\limits_{x_{k} \leqslant \delta_{k-1} q}}\chi(x_{1}) \cdots \chi(x_{k}) \mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\right) \\ &\times \left(\sum \limits_{l = 1}^{n}\mathbf{e}(\frac{x_{1}+\cdots+x_{k}}{n}l) \right)\\ = &\frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)\sum \limits_{l = 1}^{n} \prod \limits_{i = 1}^{k-1}\left( \sum\limits_{x_{i} \leqslant \delta_{i} q}\mathbf{1}_{\alpha, \beta}(x_{i}) \chi(x_{i}) \mathbf{e}(\frac{x_{i}}{n} l)\right)\left( \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{k}) \mathbf{e} (\frac{x_{k}}{n} l)\right). \end{align} (3.3)

    Let

    G(r, \chi): = \sum\limits_{h = 1}^{q} \chi(h) \mathbf{e} (\frac{r h}{q} )

    be the Gauss sum, and we know that for \chi \neq \chi_{0} ,

    \chi(x_{i}) = \frac{1}{q} \sum\limits_{r = 1}^{q} G(r, \chi) \mathbf{e} (-\frac{x_{i} r}{q} ) = \frac{1}{q} \sum\limits_{r = 1}^{q-1} G(r, \chi) \mathbf{e} (-\frac{x_{i} r}{q} ),

    and

    \frac{l}{n}-\frac{r}{q} \neq 0

    for 1 \leqslant l \leqslant n, 1 \leqslant r \leqslant q-1 and (n, q) = 1 .

    Therefore,

    \begin{equation} \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{k}) \mathbf{e} (\frac{x_{k}}{n} l ) = \frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e} (\frac{r_{k}}{q}-\frac{l}{h})-1}, \end{equation} (3.4)

    where

    f(\delta, l, r ; n, p): = 1-\mathbf{e}\left( (\frac{l}{n}-\frac{r}{q} )\lfloor\delta q\rfloor\right)

    and

    \left|f\left(\delta_{k}, l, r_{k} ; n, q\right)\right| \leqslant 2.

    For x_{i}(1\leqslant i \leqslant k-1) , using Lemma 2.2, we also have

    \begin{align} & \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \chi(x_{i}) \mathbf{e} (\frac{x_{i}}{n} l ) \\ = & \frac{1}{q} \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right) \\ = & \frac{1}{q} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right) \\ = & \frac{1}{q} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \left(\alpha^{-1}\sum\limits_{a \leqslant \delta_{i} q} \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right)+O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} +q^{\varepsilon}\right)\right) \\ = &\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \left(\frac{f\left(\delta_{i} , l, r_{i} ; n, q\right)}{\mathbf{e} (\frac{r_{i}}{q}-\frac{l}{n} )-1}+O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} +q^{\varepsilon}\right)\right) . \end{align} (3.5)

    Let

    \begin{align} S_{23}& = \frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1} \left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \frac{f\left(\delta_{i}, l, r_{i} ; n, q\right)}{\mathbf{e} (\frac{r_{i}}{q}-\frac{l}{n})-1}\right)\left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right) \\ & = \frac{1}{n \phi(q) q^{k} \alpha^{k-1}} \sum\limits_{l = 1}^{n}\sum\limits_{r_{1} = 1}^{q-1}\cdots \sum\limits_{r_{k} = 1}^{q-1} \frac{f\left(\delta_{1} , l, r_{1} ; n, q\right)\cdots f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\left(\mathbf{e} (\frac{r_{1}}{q}-\frac{l}{n} )-1\right)\cdots \left(\mathbf{e} (\frac{r_{k}}{q}-\frac{l}{n} )-1\right)} \\ &\times \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right). \end{align} (3.6)

    From the definition of Gauss sum and Lemma 2.3, we know that

    \begin{align} &\sum\limits_{\chi \mathrm{mod} q}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)\\ = &\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}\sum\limits_{\chi \mathrm{mod}q}\chi(\overline c)\chi(h_{1})\cdots \chi(h_{k})\mathbf{e} ( \frac{r_{1}h_{1}+\cdots +r_{k}h_{k}}{q} )\\ = &\phi(q)\mathop{\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}}_{h_{1} \cdots h_{k} \equiv c \bmod q}\mathbf{e} ( \frac{r_{1}h_{1}+ \cdots +r_{k}h_{k}}{q} )\\ = &\phi(q)\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}\mathbf{e} ( \frac{r_{1}h_{1}+ \cdots r_{k-1}h_{k-1}+r_{k}c\overline{h_{1} \cdots h_{k-1}}}{q} )\\ = &\phi(q) \mathbf{Kl}(r_{1},r_{2},\cdots,r_{k}c;q) \\ \ll& \phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, r_{k}c, q\right)^{\frac{1}{2}} \cdots\left(r_{k-1}, r_{k}c, q\right)^{\frac{1}{2}} \\ \ll&\phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). \end{align} (3.7)

    By Mobius inversion, we get

    G(r, \chi_{0}) = \sum\limits_{h = 1}^{q}' \mathbf{e} (\frac{r h}{q} ) = \mu\left(\frac{q}{(r, q)}\right) \frac{\varphi(q)}{\varphi(q /(r, q))} \ll(r, q),

    and

    \chi_{0}(\overline c)G\left(r_{1}, \chi_{0}\right)\cdots G\left(r_{k}, \chi_{0}\right) \ll\left(r_{1}, q\right) \cdots\left(r_{k}, q\right).

    Hence,

    \begin{align} &\mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)\\ = &\sum\limits_{\chi \mathrm{mod} q}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)-\chi_{0}(\overline c)G\left(r_{1}, \chi_{0}\right)\cdots G\left(r_{k}, \chi_{0}\right)\\ \ll&\phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). \end{align} (3.8)

    From (3.8) we may deduce the following result:

    \begin{align} S_{23}&\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\left|\mathbf{e} (\frac{r}{q}-\frac{l}{n} )-1\right|}\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\left|\sin \pi (\frac{r}{q}-\frac{l}{n} )\right|}\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\|\frac{r}{q}-\frac{l}{n}\|}\right)^{k}\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }\mathop{\sum\limits_{r \leq q-1}}_{(r,q) = d }\frac{d}{\|\frac{r}{q}-\frac{l}{n}\|}\right)^{k }\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }d\mathop{\sum\limits_{m \leq\frac{q-1}{d} }}_{(m,q) = 1}\frac{1}{\|\frac{md}{q}-\frac{l}{n}\|}\right)^{k }\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }d\sum\limits_{k \mid q}\mu(k)\sum\limits_{m \leq\frac{q-1}{kd} }\frac{1}{\|\frac{mkd}{q}-\frac{l}{n}\|}\right)^{k }. \end{align}

    It is easy to see

    \|\frac{mkd}{q}-\frac{l}{n}\| = \|\frac{mkn-l(q/d)}{(q/d)n}\| \geq \frac{1}{(q/d)n},

    and we obtain

    S_{23}\ll\frac{k^{\omega(q)}}{n \phi(q) q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q\\{d < q }}}d\sum\limits_{k \mid q}\sum\limits_{m \leq\frac{q-1}{kd} }\min (\frac{qn}{d},\frac{1}{\|\frac{mkd}{q}-\frac{l}{n}\|} )\right)^{k }.

    Let k d / q = h_{0} / q_{0} , where q_{0} \geq 1, \left(h_{0}, q_{0}\right) = 1 , and we will easily obtain q /(k d) \leq q_{0} \leq q / d . By using Lemma 2.4, we have

    \begin{align} S_{23}&\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{\substack{d \mid q \\ d < q}} d \sum\limits_{k \mid q}\left(\frac{(q-1) /(k d)}{q_{0}}+1\right) (\frac{q n}{d}+q_{0} \log q_{0} )\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{\substack{d \mid q \\ d < q}} d \sum\limits_{k \mid q}\left(\frac{(q-1) /(k d)}{q/(kd)}+1\right) (\frac{q n}{d}+\frac{q}{d} \log \frac{q}{d} )\right)^{k}\\ &\ll \frac{k^{\omega(q)}q^{\frac{k-1}{2}}}{ \alpha^{k-1}}\left(\sum\limits_{\substack{d \mid q \\ d < q}} \sum\limits_{k \mid q}n+\log q\right)^{k}\\ &\ll q^{\frac{k-1}{2}}d^{2k}(q)(\log q+n)^{k}. \end{align}

    Let

    S_{24}: = \frac{q^{(k-1)(-\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}} }\chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi)\frac{1}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right)

    and

    S_{25}: = \frac{q^{(k-1)(\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi) \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right).

    By the same argument of S_{23} , it follows that

    S_{24} \ll q^{\frac{k-1}{2}-\varepsilon}d^{2k}(q)(\log q+n)^{k},
    S_{25} \ll q^{\frac{k-3}{2}+\varepsilon}(\log q+n).

    Since n\ll q^{\frac{1}{3}} , we have

    \begin{equation} S_{25} \ll S_{24} \ll S_{23} \ll q^{\frac{k-1}{2}+\varepsilon}n^{k}\ll q^{k-2+\varepsilon}. \end{equation} (3.9)

    Taking n = 1 , we get

    \begin{equation} S_{12}\ll q^{\frac{k-1}{2}+\varepsilon}. \end{equation} (3.10)

    With (3.1), (3.2), (3.9) and (3.10), the proof is complete.

    This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.

    This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] R. K. Guy, Unsolved problems in number theory, 3 Eds., New York: Springer-Verlag, 2004. https://doi.org/10.1007/978-0-387-26677-0
    [2] W. Zhang, A problem of D. H. Lehmer and its generalization. Ⅱ, Compositio Math., 91 (1994), 47–56.
    [3] W. Zhang, On a problem of D. H. Lehmer and its generalization, Compositio Math., 86 (1993), 307–316.
    [4] W. Zhang, On D. H. Lehmer problem, Chin. Sci. Bull., 37 (1992), 1351–1354.
    [5] Y. Lu, Y. Yi, On the generalization of the D. H. Lehmer problem, Acta Math. Sin.-Engl. Ser., 25 (2009), 1269–1274. https://doi.org/10.1007/s10114-009-7652-3 doi: 10.1007/s10114-009-7652-3
    [6] H. Liu, W. Zhang, Two generalizations of a problem of Lehme, Acta Math. Sin. (Chin. Ser.), 49 (2006), 95–104.
    [7] Z. Guo, Y. Yi, The Lehmer problem and Beatty sequences, submitted for publication, 2022.
    [8] I. Vinogradov, A new estimate of a certain sum containing primes, Rec. Math., 2 (1937), 783–792.
    [9] L. Weinstein, The hyper-Kloosterman sum, Enseign. Math., 27 (1981), 29–40.
    [10] C. Pan, Goldbach conjecture, Beijing: Science Press, 1981.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1465) PDF downloads(75) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog