Citation: Thomas P. Witelski. Nonlinear dynamics of dewetting thin films[J]. AIMS Mathematics, 2020, 5(5): 4229-4259. doi: 10.3934/math.2020270
[1] | Grace Noveli Belvy Louvila, Armel Judice Ntsokongo, Franck Davhys Reval Langa, Benjamin Mampassi . A conserved Caginalp phase-field system with two temperatures and a nonlinear coupling term based on heat conduction. AIMS Mathematics, 2023, 8(6): 14485-14507. doi: 10.3934/math.2023740 |
[2] | Armel Judice Ntsokongo, Daniel Moukoko, Franck Davhys Reval Langa, Fidèle Moukamba . On higher-order anisotropic conservative Caginalp phase-field type models. AIMS Mathematics, 2017, 2(2): 215-229. doi: 10.3934/Math.2017.2.215 |
[3] | Kiran Sajjan, N. Ameer Ahammad, C. S. K. Raju, M. Karuna Prasad, Nehad Ali Shah, Thongchai Botmart . Study of nonlinear thermal convection of ternary nanofluid within Darcy-Brinkman porous structure with time dependent heat source/sink. AIMS Mathematics, 2023, 8(2): 4237-4260. doi: 10.3934/math.2023211 |
[4] | Jean De Dieu Mangoubi, Mayeul Evrard Isseret Goyaud, Daniel Moukoko . Pullback attractor for a nonautonomous parabolic Cahn-Hilliard phase-field system. AIMS Mathematics, 2023, 8(9): 22037-22066. doi: 10.3934/math.20231123 |
[5] | Armel Judice Ntsokongo, Narcisse Batangouna . Existence and uniqueness of solutions for a conserved phase-field type model. AIMS Mathematics, 2016, 1(2): 144-155. doi: 10.3934/Math.2016.2.144 |
[6] | Nadeem Abbas, Wasfi Shatanawi, Taqi A. M. Shatnawi . Innovation of prescribe conditions for radiative Casson micropolar hybrid nanofluid flow with inclined MHD over a stretching sheet/cylinder. AIMS Mathematics, 2025, 10(2): 3561-3580. doi: 10.3934/math.2025164 |
[7] | Brice Landry Doumbé Bangola . Phase-field system with two temperatures and a nonlinear coupling term. AIMS Mathematics, 2018, 3(2): 298-315. doi: 10.3934/Math.2018.2.298 |
[8] | Hyun Geun Lee . A mass conservative and energy stable scheme for the conservative Allen–Cahn type Ohta–Kawasaki model for diblock copolymers. AIMS Mathematics, 2025, 10(3): 6719-6731. doi: 10.3934/math.2025307 |
[9] | Ahmed Abouelregal, Meshari Alesemi, Husam Alfadil . Thermoelastic reactions in a long and thin flexible viscoelastic cylinder due to non-uniform heat flow under the non-Fourier model with fractional derivative of two different orders. AIMS Mathematics, 2022, 7(5): 8510-8533. doi: 10.3934/math.2022474 |
[10] | Yonghui Zou, Xin Xu, An Gao . Local well-posedness to the thermal boundary layer equations in Sobolev space. AIMS Mathematics, 2023, 8(4): 9933-9964. doi: 10.3934/math.2023503 |
G. Caginalp introduced in [1] and [2] the following phase-field systems:
∂u∂t+Δ2u−Δf(u)=−Δθ, | (1.1) |
∂θ∂t−Δθ=−∂u∂t, | (1.2) |
where
Equations (1.1) and (1.2) are based on the total free energy
ψ(u,θ)=∫Ω(12|∇u|2+F(u)−uθ−12θ2)dx, | (1.3) |
where
H=−∂θψ, | (1.4) |
where
H=u+θ. | (1.5) |
The gouverning equations for
∂u∂t=Δ∂uψ, | (1.6) |
∂H∂t=−divq, | (1.7) |
where
q=−∇θ, | (1.8) |
we obtain (1.1) and (1.2).
Now, one drawback of the Fourier law is that it predicts that thermal signals propagate with an infinite speed, which violates causality (the so-called "paradox of heat conduction", see, e.g. [5]). Therefore, several modifications of (1.8) have been proposed in the literature to correct this unrealistic feature, leading to a second order in time equation for the temperature.
In particular, we considered in [15] (see also [19] the Maxwell-Cattaneo law)
(1+η∂∂t)q=−∇θ,η>0, | (1.9) |
which leads to
η∂2θ∂t2+∂θ∂t−Δθ=−η∂2u∂t2−∂u∂t. | (1.10) |
Green and Naghdi proposed in [21] an alternative treatment for a thermomechanical theory of deformable media. This theory is based on an entropy balance rather than the usual entropy inequality and is proposed in a very rational way. If we restrict our attention to the heat conduction, we recall that proposed three different theories, labelled as type Ⅰ, type Ⅱ and type Ⅲ, respectively. In particular, when type Ⅰ is linearized, we recover the classical theory based on the Fourier law. The linearized versions of the two other theories are decribed by the constitutive equation of type Ⅱ (see [12])
q=−k∇α,k>0, | (1.11) |
where
α(t)=∫tt0θ(τ)dτ+α0 | (1.12) |
is called the thermal displacement variable. It is pertinent to note that these theories have received much attention in the recent years.
If we add the constitutive equation (1.9) to equation (1.7), we then obtain the following equations for
∂2α∂t2−kΔα=−∂u∂t. | (1.13) |
Our aim in this paper is to study the model consisting the equation (1.1) (
We consider the following initial and boundary value problem (for simplificity, we take
∂u∂t+Δ2u−Δf(u)=−Δ∂α∂t, | (2.1) |
∂2α∂t2−Δα=−∂u∂t, | (2.2) |
u=Δu=α=0onΓ, | (2.3) |
u|t=0=u0,α|t=0=α0,∂α∂t|t=0=α1, | (2.4) |
where
We make the following assumptions:
f is of class C2(R),f(0)=0, | (2.5) |
f′(s)⩾−c0,c0⩾0,s∈R, | (2.6) |
f(s)s⩾c1F(s)−c2⩾−c3,c1>0,c2,c3⩾0,s∈R, | (2.7) |
where
We futher assume that
u0∈H10(Ω)∩H2(Ω). | (2.8) |
Remark 2.1. We take here, for simplicity, Dirichlet boundary conditions. However, we can obtain the same results for Neumann boundary conditions, namely,
∂u∂ν=∂Δu∂ν=∂α∂ν=0onΓ, | (2.9) |
where
∂¯u∂t+Δ2¯u−Δ(f(u)−⟨f(u)⟩)=−Δ∂¯α∂t, | (2.10) |
∂2¯α∂t2−Δ¯α=−∂¯u∂t, | (2.11) |
where
v↦(‖(−Δ)−12¯v‖2+⟨v⟩2)12, |
where, here,
⟨.⟩=1vol(Ω)⟨.,1⟩H−1(Ω),H1(Ω). |
Furthermore,
v↦(‖¯v‖2+⟨v⟩2)12, |
v↦(‖∇¯v‖2+⟨v⟩2)12, |
and
v↦(‖Δ¯v‖2+⟨v⟩2)12 |
are norms in
|f(s)|⩽ϵF(s)+cϵ,∀ϵ>0,s∈R, | (2.12) |
which allows to deal with term
We denote by
Throughout this paper, the same letters
The estimates derived in this section are formal, but they can easily be justified within a Galerkin scheme.
We rewrite (2.1) in the equivalent form
(−Δ)−1∂u∂t−Δu+f(u)=∂α∂t. | (3.1) |
We multiply (3.1) by
ddt(‖∇u‖2+2∫ΩF(u)dx)+2‖∂u∂t‖2−1=2((∂α∂t,∂u∂t)). | (3.2) |
We then multiply (2.2) by
ddt(‖∇α‖2+‖∂α∂t‖2)=−2((∂α∂t,∂u∂t)). | (3.3) |
Summing (3.2) and (3.3), we find a differential inequality of the form
dE1dt+c‖∂u∂t‖2−1⩽c′,c>0, | (3.4) |
where
E1=‖∇u‖2+2∫ΩF(u)dx+‖∇α‖2+‖∂α∂t‖2 |
satisfies
E1⩾c(‖u‖H1(Ω)+∫ΩF(u)dx+‖α‖2H1(Ω)+‖∂α∂t‖2)−c′,c>0, | (3.5) |
hence estimates on
We multiply (3.1) by
12ddt‖Δu‖2+‖∂u∂t‖2=((Δf(u),∂u∂t))−((Δ∂α∂t,∂u∂t)), |
which yields, owing to (2.5) and the continuous embedding
ddt‖Δu‖2+‖∂u∂t‖2⩽Q(‖u‖H2(Ω))−2((Δ∂α∂t,∂u∂t)). | (3.6) |
Multiplying also (2.2) by
ddt(‖Δα‖2+‖∇∂α∂t‖2)=2((Δ∂α∂t,∂u∂t)). | (3.7) |
Summing then (3.6) and (3.7), we obtain
ddt(‖Δu‖2+‖Δα‖2+‖∇∂α∂t‖2)+‖∂u∂t‖2⩽Q(‖u‖H2(Ω)). | (3.8) |
In particular, setting
y=‖Δu‖2+‖Δα‖2+‖∇∂α∂t‖2, |
we deduce from (3.8) an inequation of the form
y′⩽Q(y). | (3.9) |
Let z be the solution to the ordinary differential equation
z′=Q(z),z(0)=y(0). | (3.10) |
It follows from the comparison principle that there exists
y(t)⩽z(t),∀t∈[0,T0], | (3.11) |
hence
‖u(t)‖2H2(Ω)+‖α(t)‖2H2(Ω)+‖∂α∂t(t)‖2H1(Ω)⩽Q(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩽T0. | (3.12) |
We now differentiate (3.1) with respect to time and have, noting that
(−Δ)−1∂∂t∂u∂t−Δ∂u∂t+f′(u)∂u∂t=Δα−∂u∂t. | (3.13) |
We multiply (3.13) by
ddt(t‖∂u∂t‖2−1)+32t‖∇∂u∂t‖2⩽ct(‖∂u∂t‖2+‖∇α‖2)+‖∂u∂t‖2−1, |
hence, noting that
ddt(t‖∂u∂t‖2−1)+t‖∇∂u∂t‖2⩽ct(‖∂u∂t‖2−1+‖∇α‖2)+‖∂u∂t‖2−1. | (3.14) |
In particular, we deduce from (3.4), (3.12), (3.14) and Gronwall's lemma that
‖∂u∂t‖2−1⩽1tQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t∈(0,T0]. | (3.15) |
Multiplying then (3.13) by
ddt‖∂u∂t‖2−1+‖∇∂u∂t‖2⩽c(‖∂u∂t‖2−1+‖∇α‖2). | (3.16) |
It thus follows from (3.4), (3.16) and Gronwall's lemma that
‖∂u∂t‖2−1⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω))‖∂u∂t(T0)‖2−1,t⩾T0, | (3.17) |
hence, owing to (3.15),
‖∂u∂t‖2−1⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾T0. | (3.18) |
We now rewrite (3.1) in the forme
−Δu+f(u)=hu(t),u=0onΓ, | (3.19) |
for
hu(t)=−(−Δ)−1∂u∂t+∂α∂t | (3.20) |
satisfies, owing to (3.4) and (3.18)
‖hu(t)‖⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾T0. | (3.21) |
We multiply (3.19) by
‖∇u‖2⩽c‖hu(t)‖2+c′. | (3.22) |
Then, multipying (3.19) by
‖Δu‖2⩽c(‖hu(t)‖2+‖∇u‖2). | (3.23) |
We thus deduce from
‖u(t)‖2H2(Ω)⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾T0, | (3.24) |
and, thus, owing to (3.12)
‖u(t)‖2H2(Ω)⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾0. | (3.25) |
Returning to (3.7), we have
ddt(‖Δα‖2+‖∇∂α∂t‖2)⩽‖Δ∂α∂t‖2+‖∂u∂t‖2. | (3.26) |
Noting that it follows from (3.4), (3.16) and (3.18) that
∫tT0(‖Δ∂α∂t‖2+‖∂u∂t‖2)dτ⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾T0, | (3.27) |
we finally deduce from (3.12) and
‖u(t)‖2H2(Ω)+‖α(t)‖2H2(Ω)+‖∂α∂t(t)‖2H1(Ω)⩽ectQ(‖u0‖H2(Ω),‖α0‖H2(Ω),‖α1‖H1(Ω)),t⩾0. | (3.28) |
We first have the following.
Theorem 4.1. We assume that
u,α∈L∞(0,T;H10(Ω)∩H2(Ω)),∂u∂t∈L2(0,T;H−1(Ω))and∂α∂t∈L∞(0,T;H10(Ω)). |
Proof. The proof is based on (3.28) and, e.g., a standard Galerkin scheme.
We have, concerning the uniqueness, the following.
Theorem 4.2. We assume that the assumptions of Theorem
Proof. Let
(u,α,∂α∂t)=(u(1),α(1),∂α(1)∂t)−(u(2),α(2),∂α(2)∂t) |
and
(u0,α0,α1)=(u(1)0,α(1)0,α(1)1)−(u(2)0,α(2)0,α(2)1). |
Then,
∂u∂t+Δ2u−Δ(f(u(1))−f(u(2)))=−Δ∂α∂t, | (4.1) |
∂2α∂t2−Δα=−∂u∂t, | (4.2) |
u=α=0on∂Ω, | (4.3) |
u|t=0=u0,α|t=0=α0,∂α∂t|t=0=α1. | (4.4) |
We multiply (4.1) by
ddt(‖∇u‖2+‖∇α‖2+‖∂α∂t‖2)+‖∂u∂t‖2−1⩽‖∇(f(u(1))−f(u(2)))‖2. | (4.5) |
Furthermore,
‖∇(f(u(1))−f(u(2))‖=‖∇(∫10f′(u(1)+s(u(2)−u(1)))dsu)‖⩽‖∫10f′(u(1)+s(u(2)−u(1)))ds∇u‖+‖∫10f″(u(1)+s(u(2)−u(1)))(∇u(1)+s∇(u(2)−u(1)))dsu‖⩽Q(‖u(1)0‖H2(Ω),‖u(2)0‖H2(Ω),‖α(1)0‖H1(Ω),‖α(2)0‖H1(Ω),‖α(1)1‖H1(Ω),‖α(2)1‖H1(Ω))×(‖∇u‖+‖|u||∇u(1)|‖+‖|u||∇u(2)|‖)⩽Q(‖u(1)0‖H2(Ω),‖u(2)0‖H2(Ω),‖α(1)0‖H1(Ω),‖α(2)0‖H1(Ω),‖α(1)1‖H1(Ω),‖α(2)1‖H1(Ω))‖∇u‖. | (4.6) |
We thus deduce from (4.5) and (4.6) that
ddt(‖∇u‖2+‖∇α‖2+‖∂α∂t‖2)+‖∂u∂t‖2−1⩽Q(‖u(1)0‖H2(Ω),‖u(2)0‖H2(Ω),‖α(1)0‖H1(Ω),‖α(2)0‖H1(Ω),‖α(1)1‖H1(Ω),‖α(2)1‖H1(Ω))‖∇u‖2. | (4.7) |
In particular, we have a differential inequality of the form
dE2dt⩽QE2, | (4.8) |
where
E2=‖∇u‖2+‖∇α‖2+‖∂α∂t‖2 |
satisfies
E2⩾c(‖u‖2H1(Ω)+‖α‖2H1(Ω)+‖∂α∂t‖2)−c′. | (4.9) |
It follows from
‖u(t)‖2H1(Ω)+‖α(t)‖2H1(Ω)+‖∂α∂t(t)‖2⩽ceQt(‖u0‖2H1(Ω)+‖α0‖2H1(Ω)+‖α1‖2),t⩾0, | (4.10) |
hence the uniqueness, as well as the continuous dependence with respect to the initial data in the
The authors wish to thank the referees for their careful reading of the paper and useful comments.
All authors declare no conflicts of interest in this paper.
[1] | D. J. Acheson, Elementary Fluid Dynamics, The Clarendon Press Oxford University Press, New York, 1990. |
[2] | V. S. Ajaev, Evolution of dry patches in evaporating liquid films, Phys. Rev. E, 72 (2005), 031605. |
[3] |
V. S. Ajaev, Spreading of thin volatile liquid droplets on uniformly heated surfaces, J. Fluid Mech., 528 (2005), 279-296. doi: 10.1017/S0022112005003320
![]() |
[4] | V. S. Ajaev, Interfacial Fluid Mechanics, Springer, New York, 2012. |
[5] |
V. S. Ajaev, E. Y. Gatapova, O. A. Kabov, Stability and break-up of thin liquid films on patterned and structured surfaces, Adv. Colloid Interface Sci., 228 (2016), 92-104. doi: 10.1016/j.cis.2015.11.011
![]() |
[6] |
V. S. Ajaev and G. M. Homsy, Steady vapor bubbles in rectangular microchannels, J. Colloid Interface Sci., 240 (2001), 259-271. doi: 10.1006/jcis.2001.7562
![]() |
[7] |
V. S. Ajaev, J. Klentzman, T. Gambaryan-Roisman, et al. Fingering instability of partially wetting evaporating liquids, J. Eng. Math., 73 (2012), 31-38. doi: 10.1007/s10665-010-9448-y
![]() |
[8] |
D. M. Anderson, M. K. Gupta, A. A. Voevodin, et al. Using amphiphilic nanostructures to enable long-range ensemble coalescence and surface rejuvenation in dropwise condensation, ACS Nano, 6 (2012), 3262-3268. doi: 10.1021/nn300183d
![]() |
[9] | D. G. Aronson, The porous medium equation. In Nonlinear diffusion problems (Montecatini Terme, 1985), volume 1224 of Lecture Notes in Math., pages 1-46. Springer, Berlin, 1986. |
[10] | M. Asgari and A. Moosavi, Coarsening dynamics of dewetting nanodroplets on chemically patterned substrates, Phys. Rev. E, 86 (2012), 016303. |
[11] | G. I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press, New York, 1996. |
[12] | G. I. Barenblatt, Scaling, Cambridge University Press, New York, 2003. |
[13] |
J. Becker, G. Grün, R. Seemann, et al. Complex dewetting scenarios captured by thin-film models, Nat. Mater., 2 (2003), 59-63. doi: 10.1038/nmat788
![]() |
[14] |
P. Beltrame and U. Thiele, Time integration and steady-state continuation for 2d lubrication equations, SIAM J. Appl. Dyn. Syst., 9 (2010), 484-518. doi: 10.1137/080718619
![]() |
[15] | F. Bernis, Finite speed of propagation and continuity of the interface for thin viscous flows, Adv. Differential Equ., 1 (1996), 337-368. |
[16] |
F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differ. Equations, 83 (1990), 179-206. doi: 10.1016/0022-0396(90)90074-Y
![]() |
[17] |
F. Bernis, J. Hulshof, J. R. King, Dipoles and similarity solutions of the thin film equation in the half-line, Nonlinearity, 13 (2000), 413-439. doi: 10.1088/0951-7715/13/2/305
![]() |
[18] |
A. L. Bertozzi, Symmetric singularity formation in lubrication-type equations for interface motion, SIAM J. Appl. Math., 56 (1996), 681-714. doi: 10.1137/S0036139994271972
![]() |
[19] | A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films, Notices of the American Mathematical Society, 45 (1998), 689-697. |
[20] | A. L. Bertozzi, M. P. Brenner, T. F. Dupont, et al. Singularities and similarities in interface flows. In Trends and perspectives in applied mathematics, pages 155-208. Springer, New York, 1994. |
[21] |
A. L. Bertozzi, G. Grün, T. P. Witelski, Dewetting films: bifurcations and concentrations, Nonlinearity, 14 (2001), 1569-1592. doi: 10.1088/0951-7715/14/6/309
![]() |
[22] |
A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: the moving contact line with a "porous media" cut-off of van der Waals interactions, Nonlinearity, 7 (1994), 1535-1564. doi: 10.1088/0951-7715/7/6/002
![]() |
[23] |
A. L. Bertozzi and M. C. Pugh, The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions, Commun. Pure Appl. Math., 49 (1996), 85-123. doi: 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO;2-2
![]() |
[24] |
A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Commun. Pure Appl. Math., 51 (1998), 625-661. doi: 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.0.CO;2-9
![]() |
[25] | A. L. Bertozzi and M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), 1323-1366. |
[26] | M. Bertsch, R. Dal Passo, H. Garcke, et al. The thin viscous flow equation in higher space dimensions, Adv. Differ. Equations, 3 (1998), 417-440. |
[27] |
J. Bischof, D. Scherer, S. Herminghaus, et al. Dewetting modes of thin metallic films: Nucleation of holes and spinodal dewetting, Phys. Rev. Lett., 77 (1996), 1536-1539. doi: 10.1103/PhysRevLett.77.1536
![]() |
[28] | S. Boatto, L. P. Kadanoff, P. Olla, Traveling-wave solutions to thin-film equations, Phys. Rev. E, 48 (1993), 4423-4431. |
[29] |
D. Bonn, J. Eggers, J. Indekeu, et al. Wetting and spreading, Rev. Mod. Phys., 81 (2009), 739-805. doi: 10.1103/RevModPhys.81.739
![]() |
[30] |
M. Bowen, J. Hulshof, J. R. King, Anomalous exponents and dipole solutions for the thin film equation, SIAM J. Appl. Math., 62 (2001), 149-179. doi: 10.1137/S0036139900366936
![]() |
[31] |
R. J. Braun, Dynamics of the tear film, Annu. Rev. Fluid Mech., 44 (2012), 267-297. doi: 10.1146/annurev-fluid-120710-101042
![]() |
[32] | L. Brusch, H. Kühne, U. Thiele, et al. Dewetting of thin films on heterogeneous substrates: Pinning versus coarsening, Phys. Rev. E, 66 (2002), 011602. |
[33] |
L. N. Brush and S. H. Davis, A new law of thinning in foam dynamics, J. Fluid Mech., 534 (2005), 227-236. doi: 10.1017/S0022112005004763
![]() |
[34] |
J. P. Burelbach, S. G. Bankoff, S. H. Davis, Nonlinear stability of evaporating/condensing liquid films, J. Fluid Mech., 195 (1988), 463-494. doi: 10.1017/S0022112088002484
![]() |
[35] |
J. A. Carrillo and G. Toscani, Long-time asymptotics for strong solutions of the thin film equation, Commun. Math. Phys., 225 (2002), 551-571. doi: 10.1007/s002200100591
![]() |
[36] |
A.-M. Cazabat and G. Guena, Evaporation of macroscopic sessile droplets, Soft Matter, 6 (2010), 2591-2612. doi: 10.1039/b924477h
![]() |
[37] |
S. J. Chapman, P. H. Trinh, T. P. Witelski, Exponential asymptotics for thin film rupture, SIAM J. Appl. Math., 73 (2013), 232-253. doi: 10.1137/120872012
![]() |
[38] |
K.-S. Chou and S.-Z. Du, Estimates on the Hausdorff dimension of the rupture set of a thin film, SIAM J. Math. Anal., 40 (2008), 790-823. doi: 10.1137/070685348
![]() |
[39] |
K.-S. Chou and Y.-C. Kwong, Finite time rupture for thin films under van der Waals forces, Nonlinearity, 20 (2007), 299-317. doi: 10.1088/0951-7715/20/2/004
![]() |
[40] |
P. Constantin, T. F. Dupont, R. E. Goldstein, et al. Droplet breakup in a model of the Hele-Shaw cell, Phys. Rev. E, 47 (1993), 4169-4181. doi: 10.1103/PhysRevE.47.4169
![]() |
[41] |
P. Constantin, T. Elgindi, H. Nguyen, et al. On singularity formation in a Hele-Shaw model, Commun. Math. Phys., 363 (2018), 139-171. doi: 10.1007/s00220-018-3241-6
![]() |
[42] |
R. V. Craster and O. K. Matar, Dynamics and stability of thin liquid films, Rev. Mod. Phys., 81(2009), 1131-1198. doi: 10.1103/RevModPhys.81.1131
![]() |
[43] |
M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), 851-1112. doi: 10.1103/RevModPhys.65.851
![]() |
[44] | B. Dai, L. G. Leal, A. Redondo, Disjoining pressure for nonuniform thin films, Phys. Rev. E, 78 (2008), 061602. |
[45] |
S. B. Dai, On a mean field model for 1D thin film droplet coarsening, Nonlinearity, 23 (2010), 325-340. doi: 10.1088/0951-7715/23/2/006
![]() |
[46] |
S. B. Dai, On the Ostwald ripening of thin liquid films, Commun. Math. Sci., 9 (2011), 143-160. doi: 10.4310/CMS.2011.v9.n1.a7
![]() |
[47] |
S. B. Dai and R. L. Pego, Universal bounds on coarsening rates for mean-field models of phase transitions, SIAM J. Math. Anal., 37 (2005), 347-371. doi: 10.1137/040618047
![]() |
[48] |
R. Dal Passo, H. Garcke, G. Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321-342. doi: 10.1137/S0036141096306170
![]() |
[49] |
R. Dal Passo, L. Giacomelli, A. Shishkov, The thin film equation with nonlinear diffusion, Commun. Part. Diff. Eq., 26 (2001), 1509-1557. doi: 10.1081/PDE-100107451
![]() |
[50] | M. C. Dallaston, M. A. Fontelos, D. Tseluiko, et al. Discrete self-similarity in interfacial hydrodynamics and the formation of iterated structures, Phys. Rev. Lett., 120 (2018), 34505. |
[51] |
M. C. Dallaston, D. Tseluiko, Z. Zheng, et al. Self-similar finite-time singularity formation in degenerate parabolic equations arising in thin-film flows, Nonlinearity, 30 (2017), 2647-2666. doi: 10.1088/1361-6544/aa6eb3
![]() |
[52] |
A. A. Darhuber and S. M. Troian, Principles of microfluidic actuation by modulation of surface stresses, Annu. Rev. Fluid Mech., 37 (2005), 425-455. doi: 10.1146/annurev.fluid.36.050802.122052
![]() |
[53] |
A. A. Darhuber, S. M. Troian, S. M. Miller, et al. Morphology of liquid microstructures on chemically patterned surfaces, J. Appl. Phys., 87 (2000), 7768-7775. doi: 10.1063/1.373452
![]() |
[54] | A. A. Darhuber, S. M. Troian, W. W. Reisner, Dynamics of capillary spreading along hydrophilic microstripes, Phys. Rev. E, 64 (2001), 031603. |
[55] | B. Davidovitch, E. Moro, H. A. Stone, Spreading of viscous fluid drops on a solid substrate assisted by thermal fluctuations, Phys. Rev. Lett., 95 (2005), 244505. |
[56] |
P. G. de Gennes, Wetting - statics and dynamics, Rev. Mod. Phys., 57 (1985), 827-863. doi: 10.1103/RevModPhys.57.827
![]() |
[57] | P. G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer Verlag, New York, 2003. |
[58] | M. di Bernardo, C. J. Budd, A. R. Champneys, et al. Piecewise-smooth Dynamical Systems, volume 163 of Applied Mathematical Sciences, Springer-Verlag London, Ltd., London, 2008. |
[59] | J. A. Diez, A. G. Gonzalez, L. Kondic, On the breakup of fluid rivulets, Phys. Fluids, 21 (2009), 082105. |
[60] | J. A. Diez and L. Kondic, On the breakup of fluid films of finite and infinite extent, Phys. Fluids, 19 (2007), 072107. |
[61] |
M. A. Durán-Olivencia, R. S. Gvalani, S. Kalliadasis, et al. Instability, rupture and fluctuations in thin liquid films: Theory and computations, J. Stat. Phys., 174 (2019), 579-604. doi: 10.1007/s10955-018-2200-0
![]() |
[62] |
M. Dziwnik, M. Korzec, A. Münch, et al. Stability analysis of unsteady, nonuniform base states in thin film equations, Multiscale Model. Sim., 12 (2014), 755-780. doi: 10.1137/130943352
![]() |
[63] | E. Weinan, Principles of Multiscale Modeling, Cambridge University Press, Cambridge, 2011. |
[64] |
J. Eggers, Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys., 69 (1997), 865-929. doi: 10.1103/RevModPhys.69.865
![]() |
[65] | J. Eggers and M. A. Fontelos, The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22 (2009), R1-R44. |
[66] | J. Eggers and M. A. Fontelos, Singularities: Formation, Structure, and Propagation, Cambridge University Press, 2015. |
[67] | J. Eggers and L. Pismen, Nonlocal description of evaporating drops, Phys. Fluids, 22 (2010), 112101. |
[68] |
C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423. doi: 10.1137/S0036141094267662
![]() |
[69] | S. Engelnkemper, S. V. Gurevich, H. Uecker, et al. Continuation for thin film hydrodynamics and related scalar problems. In Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, pages 459-501. Springer, 2019. |
[70] |
R. Enright, N. Miljkovic, J. L. Alvarado, et al. Dropwise condensation on micro-and nanostructured surfaces, Nanosc. Microsc. Therm., 18 (2014), 223-250. doi: 10.1080/15567265.2013.862889
![]() |
[71] | P. L. Evans, J. R. King, A. Münch, Intermediate-asymptotic structure of a dewetting rim with strong slip, Applied Mathematics Research Express, 2006 (2006), 25262. |
[72] |
P. L. Evans, J. R. King, A. Münch, The structure of a dewetting rim with strong slip: the long-time evolution, Multiscale Model. Sim., 16 (2018), 1365-1391. doi: 10.1137/15M1051221
![]() |
[73] | R. Fetzer, K. Jacobs, A. Munch, et al. New slip regimes and the shape of dewetting thin liquid films, Phys. Rev. Lett., 95 (2005), 127801. |
[74] |
J. Fischer and G. Grün, Existence of positive solutions to stochastic thin-film equations, SIAM J. Math. Anal., 50 (2018), 411-455. doi: 10.1137/16M1098796
![]() |
[75] |
L. S. Fisher and A. A. Golovin, Nonlinear stability analysis of a two-layer thin liquid film: Dewetting and autophobic behavior, J. Colloid Interf. Sci., 291 (2005), 515-528. doi: 10.1016/j.jcis.2005.05.024
![]() |
[76] | Y. Gao, H. Ji, J.-G. Liu, et al. A vicinal surface model for epitaxial growth with logarithmic free energy, Discrete & Continuous Dynamical Systems-B, 23 (2018), 4433-4453. |
[77] | Y. Gao, J.-G. Liu, X. Y. Lu, Gradient flow approach to an exponential thin film equation: global existence and latent singularity, ESAIM: Control, Optimisation and Calculus of Variations, 25 (2019), 49. |
[78] |
A. Ghatak, R. Khanna, A. Sharma, Dynamics and morphology of holes in dewetting thin films, J. Colloid Interf. Sci., 212 (1999), 483-494. doi: 10.1006/jcis.1998.6052
![]() |
[79] | L. Giacomelli, A fourth-order degenerate parabolic equation describing thin viscous flows over an inclined plane, Appl. Math. Lett., 12 (1999), 107-111. |
[80] |
L. Giacomelli, M. V. Gnann, F. Otto, Regularity of source-type solutions to the thin-film equation with zero contact angle and mobility exponent between 3/2 and 3, Eur. J. Appl. Math., 24 (2013), 735-760. doi: 10.1017/S0956792513000156
![]() |
[81] | L. Giacomelli and F. Otto, Rigorous lubrication approximation, Interfaces Free Bound., 5 (2003), 483-529. |
[82] | M.-H. Giga, Y. Giga, J. Saal, Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhäuser Boston, Ltd., Boston, MA, 2010. |
[83] |
K. Glasner and S. Orizaga, Improving the accuracy of convexity splitting methods for gradient flow equations, J. Comput. Phys., 315 (2016), 52-64. doi: 10.1016/j.jcp.2016.03.042
![]() |
[84] |
K. Glasner, F. Otto, T. Rump, et al. Ostwald ripening of droplets: The role of migration, Eur. J. Appl. Math., 20 (2009), 1-67. doi: 10.1017/S0956792508007559
![]() |
[85] |
K. B. Glasner, Spreading of droplets under the influence of intermolecular forces, Phys. Fluids, 15 (2003), 1837-1842. doi: 10.1063/1.1578076
![]() |
[86] | K. B. Glasner, Ostwald ripening in thin film equations, SIAM J. Appl. Math., 6 (2008), 473-493. |
[87] | K. B. Glasner and T. P. Witelski, Coarsening dynamics of dewetting films, Phys. Rev. E, 67 (2003), 016302. |
[88] |
K. B. Glasner and T. P. Witelski, Collision versus collapse of droplets in coarsening of dewetting thin films, Physica D, 209 (2005), 80-104. doi: 10.1016/j.physd.2005.06.010
![]() |
[89] |
M. V. Gnann and M. Petrache, The Navier-slip thin-film equation for 3D fluid films: existence and uniqueness, J. Differ. Equations, 265 (2018), 5832-5958. doi: 10.1016/j.jde.2018.07.015
![]() |
[90] |
R. E. Goldstein, A. I. Pesci, M. J. Shelley, Attracting manifold for a viscous topology transition, Phys. Rev. Lett., 75 (1995), 3665-3668. doi: 10.1103/PhysRevLett.75.3665
![]() |
[91] |
C. P. Grant, Spinodal decomposition for the Cahn-Hilliard equation, Commun. Part. Diff. Eq., 18 (1993), 453-490. doi: 10.1080/03605309308820937
![]() |
[92] |
M. B. Gratton and T. P. Witelski, Transient and self-similar dynamics in thin film coarsening, Physica D, 238 (2009), 2380-2394. doi: 10.1016/j.physd.2009.09.015
![]() |
[93] |
H. P. Greenspan, On the motion of a small viscous droplet that wets a surface, J. Fluid Mech., 84 (1978), 125-143. doi: 10.1017/S0022112078000075
![]() |
[94] |
G. Grün, K. Mecke, M. Rauscher, Thin-film flow influenced by thermal noise, J. Stat. Phys., 122 (2006), 1261-1291. doi: 10.1007/s10955-006-9028-8
![]() |
[95] |
G. Grün and M. Rumpf, Nonnegativity preserving convergent schemes for the thin film equation, Numer. Math., 87 (2000), 113-152. doi: 10.1007/s002110000197
![]() |
[96] |
G. Grün and M. Rumpf, Simulation of singularities and instabilities arising in thin film flow, Eur. J. Appl. Math., 12 (2001), 293-320. doi: 10.1017/S0956792501004429
![]() |
[97] | E. K. O. Hellen and J. Krug, Coarsening of sand ripples in mass transfer models, Phys. Rev. E, 66 (2002), 011304. |
[98] | D. Herde, U. Thiele, S. Herminghaus, et al. Driven large contact angle droplets on chemically heterogeneous substrates, EPL, 100 (2012), 16002. |
[99] |
S. Herminghaus, M. Brinkmann, R. Seemann, Wetting and dewetting of complex surface geometries, Annu. Rev. Mater. Res., 38 (2008), 101-121. doi: 10.1146/annurev.matsci.38.060407.130335
![]() |
[100] |
S. Herminghaus and F. Brochard, Dewetting though nucleation, C. R. Phys., 7 (2006), 1073-1081. doi: 10.1016/j.crhy.2006.10.021
![]() |
[101] | S. Herminghaus, K. Jacobs, K. Mecke, et al. Spinodal dewetting in liquid crystal and liquid metal films, Science, 282 (1998), 916-919. |
[102] |
L. M. Hocking, The influence of intermolecular forces on thin fluid layers, Phys. Fluids, 5 (1993), 793-798. doi: 10.1063/1.858627
![]() |
[103] |
C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interf. Sci., 35 (1971), 85-101. doi: 10.1016/0021-9797(71)90188-3
![]() |
[104] |
H. J. Hwang and T. P. Witelski, Short-time pattern formation in thin film equations, Discrete and Continuous Dynamical Systems. Series A, 23 (2009), 867-885. doi: 10.3934/dcds.2009.23.867
![]() |
[105] | J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York, 1992. |
[106] | K. Jacobs, R. Seemann, S. Herminghaus, Stability and dewetting of thin liquid films. In Polymer thin films, pages 243-265. World Scientific, 2008. |
[107] |
H. Ji and T. P. Witelski, Finite-time thin film rupture driven by modified evaporative loss, Physica D, 342 (2017), 1-15. doi: 10.1016/j.physd.2016.10.002
![]() |
[108] | H. Ji and T. P. Witelski, Instability and dynamics of volatile thin films, Phys. Rev. Fluids, 3 (2018), 024001. |
[109] | H. Ji and T. P. Witelski, Steady states and dynamics of a thin-film-type equation with nonconserved mass, Eur. J. Appl. Math., (2019), 1-34. |
[110] |
H. Jiang and W.-M. Ni, On steady states of van der Waals force driven thin film equations, Eur. J. Appl. Math., 18 (2007), 153-180. doi: 10.1017/S0956792507006936
![]() |
[111] | S. Kalliadasis, C. Ruyer-Quil, B. Scheid, et al. Falling Liquid Films, volume 176 of Applied Mathematical Sciences, Springer, London, 2012. |
[112] |
H. S. Kheshgi and L. E. Scriven, Dewetting - nucleation and growth of dry regions, Chem. Eng. Sci., 46 (1991), 519-526. doi: 10.1016/0009-2509(91)80012-N
![]() |
[113] |
J. R. King, Two generalisations of the thin film equation, Math. Comput. Model., 34 (2001), 737-756. doi: 10.1016/S0895-7177(01)00095-4
![]() |
[114] |
J. R. King and M. Bowen, Moving boundary problems and non-uniqueness for the thin film equation, Eur. J. Appl. Math., 12 (2001), 321-356. doi: 10.1017/S0956792501004405
![]() |
[115] |
J. R. King, A. Münch, B. Wagner, Linear stability of a ridge, Nonlinearity, 19 (2006), 2813-2831. doi: 10.1088/0951-7715/19/12/005
![]() |
[116] |
J. R. King, A. Münch, B. A. Wagner, Linear stability analysis of a sharp-interface model for dewetting thin films, J. Eng. Math., 63 (2009), 177-195. doi: 10.1007/s10665-008-9242-2
![]() |
[117] |
G. Kitavtsev, L. Recke, B. Wagner, Centre manifold reduction approach for the lubrication equation, Nonlinearity, 24 (2011), 2347-2369. doi: 10.1088/0951-7715/24/8/010
![]() |
[118] |
G. Kitavtsev, L. Recke, B. Wagner, Asymptotics for the spectrum of a thin film equation in a singular limit, SIAM J. Appl. Dyn. Syst., 11 (2012), 1425-1457. doi: 10.1137/100813488
![]() |
[119] | R. V. Kohn and F. Otto, Upper bounds on coarsening rates, Commun. Math. Phys., 229 (2002), 275-295. |
[120] |
R. Konnur, K. Kargupta, A. Sharma, Instability and morphology of thin liquid films on chemically heterogeneous substrates, Phys. Rev. Lett., 84 (2000), 931-934. doi: 10.1103/PhysRevLett.84.931
![]() |
[121] | M.-A. Y.-H. Lam, L. J. Cummings, L. Kondic, Computing dynamics of thin films via large scale GPU-based simulations, Journal of Computational Physics: X, 2 (2019), 100001. |
[122] | E. Lauga, M. P. Brenner, H. A. Stone, Microfluidics: The no-slip boundary condition. In J. Foss, C. Tropea, and A. Yarin, editors, Handbook of Experimental Fluid Dynamics, chapter 19, pages 1-27. Springer, 2007. |
[123] |
R. S. Laugesen and M. C. Pugh, Linear stability of steady states for thin film and Cahn-Hilliard type equations, Arch. Ration. Mech. An., 154 (2000), 3-51. doi: 10.1007/PL00004234
![]() |
[124] |
R. S. Laugesen and M. C. Pugh, Properties of steady states for thin film equations, Eur. J. Appl. Math., 11 (2000), 293-351. doi: 10.1017/S0956792599003794
![]() |
[125] |
R. S. Laugesen and M. C. Pugh, Energy levels of steady states for thin-film-type equations, J. Differ. Equations, 182 (2002), 377-415. doi: 10.1006/jdeq.2001.4108
![]() |
[126] | R. S. Laugesen and M. C. Pugh, Heteroclinic orbits, mobility parameters and stability for thin film type equations, Electron. J. Differ. Eq., 2002 (2002), 1-29. |
[127] |
R. N. Leach, F. Stevens, S. C. Langford, et al. Dropwise condensation: Experiments and simulations of nucleation and growth of water drops in a cooling system, Langmuir, 22 (2006), 8864-8872. doi: 10.1021/la061901+
![]() |
[128] | L. G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Cambridge University Press, 2007. |
[129] |
I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19 (1961), 35-50. doi: 10.1016/0022-3697(61)90054-3
![]() |
[130] |
R. Limary and P. F. Green, Dewetting instabilities in thin block copolymer films: nucleation and growth, Langmuir, 15 (1999), 5617-5622. doi: 10.1021/la981693o
![]() |
[131] |
R. Limary and P. F. Green, Dynamics of droplets on the surface of a structured fluid film: latestage coarsening, Langmuir, 19 (2003), 2419-2424. doi: 10.1021/la026560o
![]() |
[132] |
F. Liu, G. Ghigliotti, J. J. Feng, et al. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces, J. Fluid Mech., 752 (2014), 39-65. doi: 10.1017/jfm.2014.320
![]() |
[133] | W. Liu and T. P. Witelski, Steady-states of thin film droplets on chemically heterogeneous substrates, preprint, 2020. |
[134] |
A. M. Macner, S. Daniel, P. H. Steen, Condensation on surface energy gradient shifts drop size distribution toward small drops, Langmuir, 30 (2014), 1788-1798. doi: 10.1021/la404057g
![]() |
[135] |
J. A. Marqusee and J. Ross, Kinetics of phase transitions: Theory of Ostwald ripening, J. Chem. Phys., 79 (1983), 373-378. doi: 10.1063/1.445532
![]() |
[136] | L. C. Mayo, S. W. McCue, T. J. Moroney, et al. Simulating droplet motion on virtual leaf surfaces, Roy. Soc. Open Sci., 2 (2015), 140528. |
[137] | K. Mecke and M. Rauscher, On thermal fluctuations in thin film flow, Journal of Physics: Condensed Matter, 17 (2005), S3515. |
[138] |
N. Miljkovic, R. Enright, E. N. Wang, Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces, ACS Nano, 6 (2012), 1776-1785. doi: 10.1021/nn205052a
![]() |
[139] |
A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544. doi: 10.3934/Math.2017.2.479
![]() |
[140] |
V. Mitlin, Dewetting revisited: New asymptotics of the film stability diagram and the metastable regime of nucleation and growth of dry zones, J. Colloid Interf. Sci., 227 (2000), 371-379. doi: 10.1006/jcis.2000.6792
![]() |
[141] |
V. S. Mitlin, Dewetting of a solid surface: analogy with spinodal decomposition, J. Colloid Interf. Sci., 156 (1993), 491-497. doi: 10.1006/jcis.1993.1142
![]() |
[142] |
V. S. Mitlin and N. V. Petviashvili, Nonlinear dynamics of dewetting: kinetically stable structures, Phys. Lett. A, 192 (1994), 323-326. doi: 10.1016/0375-9601(94)90213-5
![]() |
[143] |
R. Mukherjee and A. Sharma, Instability, self-organization and pattern formation in thin soft films, Soft matter, 11 (2015), 8717-8740. doi: 10.1039/C5SM01724F
![]() |
[144] |
A. Münch and B. Wagner, Contact-line instability of dewetting thin films, Physica D, 209 (2005), 178-190. doi: 10.1016/j.physd.2005.06.027
![]() |
[145] |
A. Münch, B. Wagner, T. P. Witelski, Lubrication models with small to large slip lengths, J. Eng. Math., 53 (2005), 359-383. doi: 10.1007/s10665-005-9020-3
![]() |
[146] |
N. Murisic and L. Kondic, On evaporation of sessile drops with moving contact lines, J. Fluid Mech., 679 (2011), 219-246. doi: 10.1017/jfm.2011.133
![]() |
[147] |
T. G. Myers, Thin films with high surface tension, SIAM Review, 40 (1998), 441-462. doi: 10.1137/S003614459529284X
![]() |
[148] | C. Neto, K. Jacobs, R. Seemann, et al. Correlated dewetting patterns in thin polystyrene films, Journal of Physics: Condensed Matter, 15 (2003), S421-S426. |
[149] |
C. Neto, K. Jacobs, R. Seemann, et al. Satellite hole formation during dewetting: experiment and simulation, Journal of Physics: Condensed Matter, 15 (2003), 3355-3366. doi: 10.1088/0953-8984/15/19/334
![]() |
[150] |
B. Niethammer, Derivation of the LSW-theory for Ostwald ripening by homogenization methods, Arch. Ration. Mech. An., 147 (1999), 119-178. doi: 10.1007/s002050050147
![]() |
[151] | B. Niethammer, The mathematics of Ostwald ripening. In Geometric analysis and nonlinear partial differential equations, pages 649-663. Springer, Berlin, 2003. |
[152] |
B. Niethammer and R. L. Pego, Non-self-similar behavior in the LSW theory of Ostwald ripening, J. Stat. Phys., 95 (1999), 867-902. doi: 10.1023/A:1004546215920
![]() |
[153] |
B. Niethammer and R. L. Pego, On the initial-value problem in the Lifshitz-Slyozov-Wagner theory of Ostwald ripening, SIAM J. Math. Anal., 31 (2000), 467-485. doi: 10.1137/S0036141098338211
![]() |
[154] |
B. Niethammer and R. L. Pego, Well-posedness for measure transport in a family of nonlocal domain coarsening models, Indiana U. Math. J., 54 (2005), 499-530. doi: 10.1512/iumj.2005.54.2598
![]() |
[155] |
B. Niethammer and J. J. L. Velázquez, On the convergence to the smooth self-similar solution in the LSW model, Indiana U. Math. J., 55 (2006), 761-794. doi: 10.1512/iumj.2006.55.2854
![]() |
[156] | A. Novick-Cohen, The Cahn-Hilliard equation. In Handbook of differential equations: evolutionary equations. Vol. IV, Handb. Differ. Equ., pages 201-228. Elsevier/North-Holland, Amsterdam, 2008. |
[157] |
A. Novick-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 277-298. doi: 10.1016/0167-2789(84)90180-5
![]() |
[158] | J. R. Ockendon and H. Ockendon, Viscous Flow, Cambridge University, Cambridge, 1995. |
[159] |
A. Oron and S. G. Bankoff, Dewetting of a heated surface by an evaporating liquid film under conjoining/disjoining pressures, J. Colloid Interf. Sci., 218 (1999), 152-166. doi: 10.1006/jcis.1999.6390
![]() |
[160] |
A. Oron and S. G. Bankoff, Dynamics of a condensing liquid film under conjoining/disjoining pressures, Phys. Fluids, 13 (2001), 1107-1117. doi: 10.1063/1.1355022
![]() |
[161] |
A. Oron, S. H. Davis, S. G. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys., 69 (1997), 931-980. doi: 10.1103/RevModPhys.69.931
![]() |
[162] |
F. Otto, T. Rump, D. Slepcev, Coarsening rates for a droplet model: rigorous upper bounds, SIAM J. Math. Anal., 38 (2006), 503-529. doi: 10.1137/050630192
![]() |
[163] | S. B. G. O'Brien and L. W. Schwartz, Theory and Modeling of Thin Film Flows, In Encyclopedia of Surface and Colloid Science, pages 5283-5297. Marcel Dekker, 2002. |
[164] |
A. A. Pahlavan, L. Cueto-Felgueroso, A. E. Hosoi, et al. Thin films in partial wetting: Stability, dewetting and coarsening, J. Fluid Mech., 845 (2018), 642-681. doi: 10.1017/jfm.2018.255
![]() |
[165] | A. A. Pahlavan, L. Cueto-Felgueroso, G. H. McKinley, et al. Thin films in partial wetting: internal selection of contact-line dynamics, Phys. Rev. Lett., 115 (2015), 034502. |
[166] |
D. Peschka, S. Haefner, L. Marquant, et al. Signatures of slip in dewetting polymer films, P. Natl. Acad. Sci. USA, 116 (2019), 9275-9284. doi: 10.1073/pnas.1820487116
![]() |
[167] | L. M. Pismen, Spinodal dewetting in a volatile liquid film, Phys. Rev. E, 70 (2004), 021601. |
[168] |
L. M. Pismen and Y. Pomeau, Mobility and interactions of weakly nonwetting droplets, Phys. Fluids, 16 (2004), 2604-2612. doi: 10.1063/1.1758911
![]() |
[169] | A. Pototsky, M. Bestehorn, D. Merkt, et al. Alternative pathways of dewetting for a thin liquid two-layer film, Phys. Rev. E, 70 (2004), 025201. |
[170] | C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1992. |
[171] |
M. Rauscher and S. Dietrich, Wetting phenomena in nanofluidics, Annu. Rev. Mater. Res., 38 (2008), 143-172. doi: 10.1146/annurev.matsci.38.060407.132451
![]() |
[172] |
G. Reiter, Dewetting of thin polymer films, Phys. Rev. Lett., 68 (1992), 75-78. doi: 10.1103/PhysRevLett.68.75
![]() |
[173] |
S. N. Reznik and A. L. Yarin, Spreading of a viscous drop due to gravity and capillarity on a horizontal or an inclined dry wall, Phys. Fluids, 14 (2002), 118-132. doi: 10.1063/1.1426388
![]() |
[174] |
A. J. Roberts and Z. Li, An accurate and comprehensive model of thin fluid flows with inertia on curved substrates, J. Fluid Mech., 553 (2006), 33-73. doi: 10.1017/S0022112006008640
![]() |
[175] | N. O. Rojas, M. Argentina, E. Cerda, et al. Inertial lubrication theory, Phys. Rev. Lett., 104 (2010), 187801. |
[176] |
J. W. Rose, On the mechanism of dropwise condensation, Int. J. Heat Mass Tran., 10 (1967), 755-762. doi: 10.1016/0017-9310(67)90135-4
![]() |
[177] | J. W. Rose, Dropwise condensation theory and experiment: A review, Journal of Power Energy, 216 (2012), 115-128. |
[178] |
R. V. Roy, A. J. Roberts, M. E. Simpson, A lubrication model of coating flows over a curved substrate in space, J. Fluid Mech., 454 (2002), 235-261. doi: 10.1017/S0022112001007133
![]() |
[179] |
E. Ruckenstein and R. K. Jain, Spontaneous rupture of thin liquid films, Journal of the Chemical Society-Faraday Transactions II, 70 (1974), 132-147. doi: 10.1039/f29747000132
![]() |
[180] | K. Rykaczewski, A. T. Paxson, M. Staymates, et al. Dropwise condensation of low surface tension fluids on omniphobic surfaces, Scientific reports, 4 (2015), 4158. |
[181] |
E. Sander and T. Wanner, Monte Carlo simulations for spinodal decomposition, J. Stat. Phys., 95 (1999), 925-948. doi: 10.1023/A:1004550416829
![]() |
[182] |
E. Sander and T. Wanner, Unexpectedly linear behavior for the Cahn-Hilliard equation, SIAM J. Appl. Math., 60 (2000), 2182-2202. doi: 10.1137/S0036139999352225
![]() |
[183] | L. W. Schwartz, Unsteady simulation of viscous thin-layer flows. In P. A. Tyvand, editor, Free surface flows with viscosity, pages 203-233. Computational Mechanics Publications, Boston, 1997. |
[184] |
L. W. Schwartz, R. V. Roy, R. R. Eley, et al. Dewetting patterns in a drying liquid film, J. Colloid Interf. Sci., 234 (2001), 363-374. doi: 10.1006/jcis.2000.7312
![]() |
[185] |
L. W. Schwartz and D. E. Weidner, Modeling of coating flows on curved surfaces, J. Eng. Math., 29 (1995), 91-103. doi: 10.1007/BF00046385
![]() |
[186] |
R. Seemann, S. Herminghaus, K. Jacobs, Dewetting patterns and molecular forces: a reconciliation, Phys. Rev. Lett., 86 (2001), 5534-5537. doi: 10.1103/PhysRevLett.86.5534
![]() |
[187] |
A. Sharma, Many paths to dewetting of thin films, Eur. Phys. J. E, 12 (2003), 397-407. doi: 10.1140/epje/e2004-00008-5
![]() |
[188] |
A. Sharma and R. Khanna, Pattern formation in unstable thin liquid films, Phys. Rev. Lett., 81 (1998), 3463-3466. doi: 10.1103/PhysRevLett.81.3463
![]() |
[189] |
A. Sharma and G. Reiter, Instability of thin polymer films on coated substrates: rupture, dewetting, and drop formation, J. Colloid Interf. Sci., 178 (1996), 383-399. doi: 10.1006/jcis.1996.0133
![]() |
[190] |
A. Sharma and R. Verma, Pattern formation and dewetting in thin films of liquids showing complete macroscale wetting: From "pancakes" to "swiss cheese", Langmuir, 20 (2004), 10337-10345. doi: 10.1021/la048669x
![]() |
[191] | D. N. Sibley, A. Nold, N. Savva, et al. A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading, J. Eng. Math., 94 (2015), 19-41. |
[192] | V. M. Starov, M. G. Velarde, C. J. Radke, Wetting and Spreading Dynamics, CRC Press, Boca Raton Florida, 2007. |
[193] |
P. S. Stewart and S. H. Davis, Dynamics and stability of metallic foams: Network modeling, J. Rheol., 56 (2012), 543-574. doi: 10.1122/1.3695029
![]() |
[194] |
P. S. Stewart and S. H. Davis, Self-similar coalescence of clean foams, J. Fluid Mech., 722 (2013), 645-664. doi: 10.1017/jfm.2013.145
![]() |
[195] |
H. A. Stone, A. D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36 (2004), 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
![]() |
[196] |
U. Thiele, Open questions and promising new fields in dewetting, Eur. Phys. J. E, 12 (2003), 409-414. doi: 10.1140/epje/e2004-00009-4
![]() |
[197] | U. Thiele, Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth, Journal of Physics: Condensed Matter, 22 (2010), 084019. |
[198] |
U. Thiele, Patterned deposition at moving contact lines, Adv. Colloid Interfac., 206 (2014), 399-413. doi: 10.1016/j.cis.2013.11.002
![]() |
[199] |
U. Thiele, Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting, Colloids and Surfaces A, 553 (2018), 487-495. doi: 10.1016/j.colsurfa.2018.05.049
![]() |
[200] | U. Thiele, A. J. Archer, L. M. Pismen, Gradient dynamics models for liquid films with soluble surfactant, Phys. Rev. Fluids, 1 (2016), 083903. |
[201] | U. Thiele, A. J. Archer, M. Plapp, Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration, Phys. Fluids, 24 (2012), 102107. |
[202] | U. Thiele and E. Knobloch, Driven drops on heterogeneous substrates: Onset of sliding motion, Phys. Rev. Lett., 97 (2006), 204501. |
[203] |
U. Thiele, M. Mertig, W. Pompe, Dewetting of an evaporating thin liquid film: Heterogeneous nucleation and surface instability, Phys. Rev. Lett., 80 (1998), 2869-2872. doi: 10.1103/PhysRevLett.80.2869
![]() |
[204] | U. Thiele, M. G. Velarde, K. Neuffer, et al. Film rupture in the diffuse interface model coupled to hydrodynamics, Phys. Rev. E, 64 (2001), 031602. |
[205] |
D. Tseluiko and D. T. Papageorgiou, Nonlinear dynamics of electrified thin liquid films, SIAM J. Appl. Math., 67 (2007), 1310-1329. doi: 10.1137/060663532
![]() |
[206] |
D. Tseluiko, J. Baxter, U. Thiele, A homotopy continuation approach for analysing finite-time singularities in thin liquid films, IMA J. Appl. Math., 78 (2013), 762-776. doi: 10.1093/imamat/hxt021
![]() |
[207] | H. B. van Lengerich, M. J. Vogel, P. H. Steen, Coarsening of capillary drops coupled by conduit networks, Phys. Rev. E, 82 (2010), 66312. |
[208] |
F. Vandenbrouck, M. P. Valignat, A. M. Cazabat, Thin nematic films: metastability and spinodal dewetting, Phys. Rev. Lett., 82 (1999), 2693-2696. doi: 10.1103/PhysRevLett.82.2693
![]() |
[209] |
S. J. VanHook, M. F. Schatz, W. D. McCormick, et al. Long-wavelength surface-tension-driven Bénard convection: experiment and theory, J. Fluid Mech., 345 (1997), 45-78. doi: 10.1017/S0022112097006101
![]() |
[210] | J. L. Vázquez, The Porous Medium Equation, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007. |
[211] |
A. Vrij, Possible mechanism for spontaneous rupture of thin free liquid films, Discussions of the Faraday Society, 42 (1966), 23-33. doi: 10.1039/df9664200023
![]() |
[212] | C. Wagner, Theorie der alterung von niedershlagen durch umlosen (Ostwald-Reifung), Z. Elektrochem, 65 (1961), 581-591. |
[213] | M. H. Ward, Interfacial thin films rupture and self-similarity, Phys. Fluids, 23 (2011), 062105. |
[214] |
S. J. Watson, F. Otto, B. Y. Rubinstein, et al. Coarsening dynamics of the convective Cahn-Hilliard equation, Physica D, 178 (2003), 127-148. doi: 10.1016/S0167-2789(03)00048-4
![]() |
[215] | T. Wei and F. Duan, Interfacial stability and self-similar rupture of evaporating liquid layers under vapor recoil, Phys. Fluids, 28 (2016), 124106. |
[216] |
G. M. Whitesides, The origins and the future of microfluidics, Nature, 442 (2006), 368-373. doi: 10.1038/nature05058
![]() |
[217] |
M. B. Williams and S. H. Davis, Nonlinear theory of film rupture, J. Colloid Interf. Sci., 90 (1982), 220-228. doi: 10.1016/0021-9797(82)90415-5
![]() |
[218] | T. P. Witelski, Computing finite-time singularities in interfacial flows. In G. Sabidussi, editor, Modern Methods in Scientific Computing and Applications, NATO ASI series proceedings, pages 451-487. Kluwer, 2002. |
[219] |
T. P. Witelski and A. J. Bernoff, Stability of self-similar solutions for van der Waals driven thin film rupture, Phys. Fluids, 11 (1999), 2443-2445. doi: 10.1063/1.870138
![]() |
[220] |
T. P. Witelski and A. J. Bernoff, Dynamics of three-dimensional thin film rupture, Physica D, 147 (2000), 155-176. doi: 10.1016/S0167-2789(00)00165-2
![]() |
[221] |
T. P. Witelski, A. J. Bernoff, A. L. Bertozzi, Blowup and dissipation in a critical-case unstable thin film equation, Eur. J. Appl. Math., 15 (2004), 223-256. doi: 10.1017/S0956792504005418
![]() |
[222] |
T. P. Witelski and M. Bowen, ADI schemes for higher-order nonlinear diffusion equations, Appl. Numer. Math., 45 (2003), 331-351. doi: 10.1016/S0168-9274(02)00194-0
![]() |
[223] |
Q. Wu and H. Wong, A slope-dependent disjoining pressure for non-zero contact angles, J. Fluid Mech., 506 (2004), 157-185. doi: 10.1017/S0022112004008420
![]() |
[224] |
W. W. Zhang and J. R. Lister, Similarity solutions for van der Waals rupture of a thin film on a solid substrate, Phys. Fluids, 11 (1999), 2454-2462. doi: 10.1063/1.870110
![]() |
[225] | L. Zhornitskaya and A. L. Bertozzi, Positivity-preserving numerical schemes for lubrication-type equations, SIAM J. Numer. Anal., 37 (2000), 523-555. |