Ex. 1 | Ex. 2 | |
|
||
(4.6) & (4.7) | (4.6) & (4.8) | |
Citation: Ahsan Javed, Awais Ahmad, Ali Tahir, Umair Shabbir, Muhammad Nouman, Adeela Hameed. Potato peel waste-its nutraceutical, industrial and biotechnological applacations[J]. AIMS Agriculture and Food, 2019, 4(3): 807-823. doi: 10.3934/agrfood.2019.3.807
[1] | Victor Ginting . An adjoint-based a posteriori analysis of numerical approximation of Richards equation. Electronic Research Archive, 2021, 29(5): 3405-3427. doi: 10.3934/era.2021045 |
[2] | Hao Wang, Wei Yang, Yunqing Huang . An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28(2): 961-976. doi: 10.3934/era.2020051 |
[3] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu .
Convergence and quasi-optimality of |
[4] | Hsueh-Chen Lee, Hyesuk Lee . An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29(4): 2755-2770. doi: 10.3934/era.2021012 |
[5] | Shuhao Cao . A simple virtual element-based flux recovery on quadtree. Electronic Research Archive, 2021, 29(6): 3629-3647. doi: 10.3934/era.2021054 |
[6] | Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang . A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29(3): 2375-2389. doi: 10.3934/era.2020120 |
[7] | Jun Pan, Yuelong Tang . Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365 |
[8] | Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang . Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29(1): 1859-1880. doi: 10.3934/era.2020095 |
[9] | Fenglin Huang, Yanping Chen, Tingting Lin . An error estimator for spectral method approximation of flow control with state constraint. Electronic Research Archive, 2022, 30(9): 3193-3210. doi: 10.3934/era.2022162 |
[10] | Chunmei Wang . Simplified weak Galerkin finite element methods for biharmonic equations on non-convex polytopal meshes. Electronic Research Archive, 2025, 33(3): 1523-1540. doi: 10.3934/era.2025072 |
The subject of investigation in this paper is numerical solutions of the Richards Equation [23]. This equation is a governing mathematical principle for modeling the water flow in an unsaturated porous medium that is driven by the gravity and capillarity that disregards air flow. Since ability to construct closed form solutions to this equation is very limited (see for example [25,18,22,24] for some related effort on the subject), a reliance on numerical approximations is a necessity. However, even with the emergence of many advances of computing technology, this equation remains one of the most challenging problems in porous media flow and transport. Recent review on its numerical solutions can be found in [17].
There are several outstanding issues attributed to the challenge. Richards Equation is strongly nonlinear, which appears as the dependence of the soil unsaturated hydraulic conductivity (
The mixed-form (or coupled-form) of Richards Equation in one dimensional soil column is written as follows:
{∂tϑ(u)−∂z(κ(u)∂z(u−z))=0,in(a,b)×(0,T),u(z,0)=u0(z),z∈(a,b),BoundaryConditions:Bau=ga(t),Bb=gb(t). | (1.1) |
Two typical boundary conditions are
{Bau=κ(u)∂z(u−z)|(a,t),Bbu=u(b,t)}or{Bau=u(a,t),Bbu=u(b,t)}. |
Here we assume that
The major theme in this paper is two-fold. One aspect centers on the development of a numerical approximation of Richards Equation in space-time finite element methods obtained from an appropriate variational formulation. Space-time finite element methods have been previously used for parabolic equations (see for example [20]) and for reaction-diffusion system (see for example [15]). A recent work on application of control volume finite element in combination with method of lines for solving Richards Equation is recorded in [10]. To the best of the author's knowledge, there has not been any attempt to apply space-time finite element methods technique to Richards Equation. In particular, a finite volume element spatial discretization (with linear finite element) is employed due to its inherent local mass conservation property. This is an important trait commonly desired and in some cases imperative in order to produce reliable numerical simulations of flow and transport in porous media (see for example [5,8,16]). The space-time variational formulation in combination with a certain variational crime in the form of numerical integration techniques would in turn yield implementable time marching schemes for approximate solution of Richards Equation.
The other aspect is concerned with an a posteriori error estimation of the resulting numerical approximation. In this regard, some investigations on a posteriori error analysis of numerical methods for Richards Equation are already available. Bause and Knabner [3] use adaptive mixed hybrid finite element discretizations to solve Richards Equation, where the adaptivity is performed under an a posteriori error indicator that is based on either superconvergence or residual of the approximation. Baron et al. [2] employ Discrete Duality Finite Volume (DDFV) scheme along with second-order backward differentiation formula to solve the equation. They derive an a posteriori error bound of the approximation using the equilibrated fluxes method. Bernardi et al. [4] perform a semi discretization of Richards Equation by finite element method and apply Backward Euler scheme to get the full discretization. Then a posteriori error bounds are derived that aim at distinguishing components of contribution of spatial discretization from temporal discretization.
In many practical situations, it may not be necessary to measure global property of the approximate solution. More often, an accuracy is desired only for some specified quantities of interest associated with the numerical approximation, which is usually expressed as a functional of the approximate solution. For this purpose, a suitable a posteriori analysis is based on duality, adjoint operators governing the generalized Green's function, and a variational formulation. This approach is adopted in this paper. It is also suitable because, as mentioned before, the numerical approximation of Richards Equation is based on certain variational equations. Utilizations of adjoint equations are not new (see for example [21] for an extensive exposition on their applications). On various roles of adjoint methodologies in performing a posteriori error estimations of numerical methods for differential equations, one can consult [19,15,11,13,12,14,1] and references therein.
The rest of this paper is organized as follows. A space-time variational equation governing the numerical approximation of Richards Equation is derived in Section 2. The description includes examples of application of numerical integration to produce the time marching schemes. Section 3 carries out the formulation of an adjoint-based a posteriori error analysis of the quantities of interest calculated using the approximate solution. Since the variational equation of the solution is nonlinear, an appropriate linearization is conducted that would make construction of the corresponding adjoint equation amenable. Some numerical examples to demonstrate performance of the numerical methods and the error estimators are shown in Section 4. Here much of the effort is devoted to illustrate global accuracy of numerical methods and reliability of the error estimators in terms of their capability to decompose the total error into relevant components. A comparison to the actual error in some specified quantities of interest is conducted. Finally, the conclusion and future work is discussed in Section 5.
In what follows, we assume that
{Bau=κ(u)∂z(u−z)|(a,t)=ga(t),Bbu=u(b,t)=0}. | (2.1) |
are supplied to (1.1). Denoting
H1D={w:[a,b]→R:w∈L2(a,b),w′∈L2(a,b),w(b)=0}, |
the solution of (1.1) supplied with (2.1) satisfies
{⟨∂tϑ(u),v⟩+A(u;u,v)+ga(t)v(a)=0,∀v∈H1D,⟨u(⋅,0),v⟩=⟨u0,v⟩,∀v∈H1D. | (2.2) |
Here
A(w;u,v)=⟨κ(w)∂z(u−z),∂zv⟩. |
The spatial domain
Xh={w∈H1D : winτj islinear ∀τj∈Th}=span{ϕj}M−1j=0, |
where
The finite volume approximations rely on a local conservation property associated with the governing equation, in particular with respect to the second order differential operator in (1.1). To fix the idea, consider
∫τ∗−∂z(κ(u)∂z(u−z))dz=−κ(u)∂z(u−z)|∂τ∗:=−κ(u)∂z(u−z)|zrzl. | (2.3) |
The above
Yh={η∈L2(a,b) : ηinτ∗ isconstant ∀τ∗j∈T∗h}=span{ϕ∗j}M−1j=0, |
where
‖Jhv−v‖≤h2‖∂zv‖,forv∈H1D, | (2.4) |
where
⟨χ,Jhv−v⟩≤h2‖χ‖‖∂zv‖,forχ∈L2(a,b),v∈H1D. | (2.5) |
To express (2.3) in a variational setting, define
Ah(w;u,v)=∑τ∗j∈T∗h−κ(w)∂z(u−z)|∂τ∗j∖a[Jhv](zj). |
Exclusion of
Proposition 2.1. Let
A(w;u,v)=Ah(w;u,v)+εA(w;u,v), | (2.6) |
where
εA(w;u,v)=∑τj∈Th∫τj∂z(κ(w)∂z(u−z))(Jhv−v)dz. | (2.7) |
Furthermore, when
|εA(w;u,v)|≤Cκ2h‖∂zw∂z(u−z)‖‖∂zv‖, | (2.8) |
where
Proof. For any
∫τj−∂z(κ(w)∂z(u−z))vdz=∫τjκ(w)∂z(u−z)∂zvdz−κ(w)∂z(u−z)v|∂τj, |
which when applied to
A(w;u,v)=∑τj∈Th∫τjκ(w)∂z(u−z)∂zvdz=∑τj∈Th(∫τj−∂z(κ(w)∂z(u−z))vdz+κ(w)∂z(u−z)v|∂τj∖a). | (2.9) |
For
∫Ke−∂z(κ(w)∂z(u−z))Jhvdz=−κ(w)∂z(u−z)|∂Ke[Jhv](zj), | (2.10) |
for
∂zu|∂τ∗j=∑e=j,j+1∂zu|∂Ke+∂zu|x+jx−j, |
we may apply (2.10) in
Ah(w;u,v)=∑τj∈Th(∫τj−∂z(κ(w)∂z(u−z))Jhvdz+κ(w)∂z(u−z)Jhv|∂τj∖a). | (2.11) |
Subtraction of (2.9) from (2.11) and recalling that
Furthermore, when
∂z(κ(w)∂z(u−z))=κ′(w)∂zw∂z(u−z)+0, |
so using this identity and the Cauchy-Schwarz inequality,
|εA(w;u,v)|=|∑τj∈Th∫τjκ′(w)∂zw∂z(u−z)(Jhv−v)dz|≤Cκ∑τj∈Th‖∂zw∂z(u−z)‖L2(τj)‖Jhv−v‖L2(τj)≤Cκ‖∂zw∂z(u−z)‖‖Jhv−v‖≤Cκ2h‖∂zw∂z(u−z)‖‖∂zv‖. |
This completes the proof.
Remark 2.1. The foregoing exposition gives an indication that
In a similar fashion to the spatial variable, we partition
Wqh(In)={v:[a,b]×In→R:w(z,t)=q∑j=0tjvj,n(z),withvj,n∈Xh}. | (2.12) |
We denote by
{N∑n=1Rh,n(˜u;˜u,w)=0foreveryw∈Wqh,⟨˜u−0,χ⟩=⟨u0,χ⟩foreveryχ∈Xh, | (2.13) |
where
Rh,n(˜u;˜u,w)=∫In(⟨∂tϑ(˜u),Jhw⟩+Ah(˜u;˜u,w)+ga(t)w(a,t))dt+⟨[ϑ(˜u)]n−1,Jhw+n−1⟩. | (2.14) |
Notice that the first equation in (2.13) is a global formulation in that the integration is over
Rh,n(˜u;˜u,v)=0foreveryv∈Wqh(In). | (2.15) |
In what follows, we describe two specific examples that transform (2.15) into computable algebraic schemes.
Here
˜u|In=˜u+n−1=˜u−n=v0,n∈Xh, | (2.16) |
which for every
knAh(v0,n;v0,n,w0)+w0(a)∫Inga(t)dt+⟨ϑ(v0,n)−ϑ(˜u−n−1),Jhw0⟩=0, | (2.17) |
for
v0,n=M−1∑j=0Uj,nϕj, | (2.18) |
then
G(Un)=0, | (2.19) |
where
Here
˜u|In=v0,n+tv1,n,t∈In,v0,n,v1,n∈Xh, | (2.20) |
which implies that
˜u|In=tn−tkn˜u+n−1+t−tn−1kn˜u−n,t∈In,˜u+n−1,˜u−n∈Xh. | (2.21) |
Choosing
∫In⟨∂tϑ(˜u),Jhw⟩dt+⟨[ϑ(˜u)]n−1,Jhw+n−1⟩=k−1n∫In⟨ϑ(˜u)−ϑ(˜u−n−1),Jhψ+n−1⟩dt. |
In a similar fashion, using
∫In⟨∂tϑ(˜u),Jhw⟩dt+⟨[ϑ(˜u)]n−1,Jhw+n−1⟩=k−1n∫In⟨ϑ(˜u−n)−ϑ(˜u),Jhψ−n⟩dt. |
Thus
{∫In⟨ϑ(˜u)−ϑ(˜u−n−1),Jhψ+n−1⟩dt+∫In(tn−t)(Ah(˜u;˜u,ψ+n−1)+ga(t)ψ+n−1(a))dt=0,∫In⟨ϑ(˜u−n)−ϑ(˜u),Jhψ−n⟩dt+∫In(t−tn−1)(Ah(˜u;˜u,ψ−n)+ga(t)ψ−n(a))dt=0, | (2.22) |
where
˜u+n−1=M−1∑j=0U+j,n−1ϕj,˜u−n=M−1∑j=0U−j,nϕj. | (2.23) |
Setting
(U+0,n−1,U+1,n−1,⋯,U+M−1,n−1)=U+n−1∈RM |
and
(U−0,n,U−1,n,⋯,U−M−1,n)=U−n∈RM, |
and
G(Un)=0, | (2.24) |
where
The preceding description is a derivation of algebraic equations governing the approximation that is faithful to the variational equation (2.15) and the choice of polynomial degree of the temporal variable. Still, for a completely implementable scheme, one must rely on further approximation of the integrations appeared in (2.17) and (2.9). In the current setting, there are two integrations that need to be approximated: the spatial integration
Furthermore, what is more crucial in this case is how
∫Inga(t)dt≈knga(tn) |
is adequate.
Derivation of numerical integrations for (2.9) is a bit more involved. A viable option is the following two point Gaussian quadrature
∫Inf(t)dt≈kn22∑ℓ=1f(tℓ,n),wheret1,n=−kn2√3+tn−1+tn2andt2,n=kn2√3+tn−1+tn2. | (2.25) |
With this, set
˜u1,n=˜u(⋅,t1,n)=γ˜u+n−1+(1−γ)˜u−n,˜u2,n=˜u(⋅,t2,n)=(1−γ)˜u+n−1+γ˜u−n, | (2.26) |
where
G+n,i(Un)=122∑ℓ=1⟨ϑ(˜uℓ,n)−ϑ(˜u−n−1),ϕ∗i⟩+knc+ℓ(Ah(˜uℓ,n;˜uℓ,n,ϕi)+ga(tℓ,n)δi0)G−n,i(Un)=122∑ℓ=1⟨ϑ(˜u−n)−ϑ(˜uℓ,n),ϕ∗i⟩+knc−ℓ(Ah(˜uℓ,n;˜uℓ,n,ϕi)+ga(tℓ,n)δi0) |
where
The approach proceeds with the construction of algebraic equations for
˜u−n=1−γ1−2γ˜u1,n−γ1−2γ˜u2,n, | (2.27) |
which is obtained from (2.26). Thus, with
In many realistic situations, it is often desirable to achieve an acceptable level of accuracy of a numerical approximation in some quantities of interest. Relevant examples include average water content over a certain region and at some time instances or the water content at some locations. Along this line of argument, it may be computationally infeasible as well as very inefficient to attempt to control the error in a global fashion when all that is required is accuracy on those aforementioned quantities. A practical alternative is to estimate the error of the numerical approximation in the specified quantity of interest, whose representation is expressed as a functional of
[Q(u)](T)=⟨ϑ(u(⋅,T)),ψT⟩+∫T0(⟨ϑ(u),ψ⟩+u(a,t)ψa)dt, | (3.1) |
for given data
To derive the error in approximating
The nonlinearity in Richards Equation stems from
˜uσ=˜u+σ(u−˜u),forσ∈[0,1], | (3.2) |
the Mean Value Theorem for integral gives
ϑ(u)−ϑ(˜u)=¯ϑ′(u−˜u),where¯ϑ′=∫10ϑ′(˜uσ)dσ. | (3.3) |
Furthermore, setting
F(w)=κ(w)∂z(w−z), | (3.4) |
its Fréchet derivative is
F′(w)v=κ(w)∂zv+(κ′(w)∂z(w−z))v | (3.5) |
Utilizing again the Mean Value Theorem for integral, one gets
F(u)−F(˜u)=∫10F′(uσ)(u−˜u)dσ=¯κ∂z(u−˜u)+¯v(u−˜u), | (3.6) |
where
¯κ=∫10κ(˜uσ)dσand¯v=∫10κ′(˜uσ)∂z(˜uσ−z)dσ. | (3.7) |
At this stage, we are in a position to formulate the adjoint problem. For
{−⟨w,¯ϑ′∂tφ⟩+⟨∂zw,¯κ∂zφ⟩+⟨w,¯v∂zφ⟩=⟨w,¯ϑ′ψ⟩+w(a,t)ψa,t<T,⟨w(⋅,T),¯ϑ′φ(⋅,T)⟩=⟨w(⋅,T),¯ϑ′ψT⟩, | (3.8) |
for every
Rn(˜u;˜u,w)=∫In(⟨∂tϑ(˜u),w⟩+A(˜u;˜u,w)+ga(t)w(a,t))dt+⟨[ϑ(˜u)]n−1,w+n−1⟩. | (3.9) |
Theorem 3.1. For
[Q(u)](T)−[Q(˜u)](T)=E0+E1+E2+E3, | (3.10) |
where
E0=⟨ϑ(u0)−ϑ(˜u−0),φ0⟩,E1=−N∑n=1Rh,n(˜u;˜u,φ),E2=−N∑n=1εA,n(˜u;˜u,φ)dt,E3=−N∑n=1εh,n(˜u;φ), | (3.11) |
with
εA,n(˜u;˜u,w)=∫InεA(˜u;˜u,w)dt,εh,n(˜u;w)=∫In⟨∂tϑ(˜u),w−Jhw⟩dt+⟨[ϑ(˜u)]n−1,(w−Jhw)+n−1⟩. | (3.12) |
Proof. Substitute
−⟨e,¯ϑ′∂tφ⟩+⟨∂ze,¯κ∂zφ⟩+⟨e,¯v∂zφ⟩=−⟨ϑ(u)−ϑ(˜u),∂tφ⟩+⟨κ(u)∂z(u−z)−κ(˜u)∂z(˜u−z),∂zφ⟩=−(⟨∂tϑ(˜u),φ⟩+A(˜u;˜u,φ)+g(t)φ(a,t))−∂t⟨ϑ(u)−ϑ(˜u),φ⟩, | (3.13) |
where we have used the first equation in (2.2). Since
⟨e,¯ϑ′ψ⟩+e(a,t)ψa=⟨ϑ(u)−ϑ(˜u),ψ⟩+(u(a,t)−˜u(a,t))ψa, | (3.14) |
integration of (3.8) over
⟨ϑ(un)−ϑ(˜u−n),φ−n⟩+∫In(⟨ϑ(u)−ϑ(˜u),ψ⟩+(u−˜u))(a,t)ψa)dt=⟨ϑ(un−1)−ϑ(˜u−n−1),φ+n−1⟩−Rn(˜u;˜u,φ), | (3.15) |
where
[Q(u)](T)−[Q(˜u)](T)=⟨ϑ(u0)−ϑ(˜u−0),φ0⟩−N∑n=1Rn(˜u;˜u,φ). | (3.16) |
The residual
Rn(˜u;˜u,φ)=Rh,n(˜u;˜u,φ)+δRn(˜u;˜u,φ), | (3.17) |
where
δRn(˜u;˜u,w)=Rn(˜u;˜u,w)−Rh,n(˜u;˜u,w)=∫In⟨∂tϑ(˜u),w−Jhw⟩dt+⟨[ϑ(˜u)]n−1,(w−Jhw)+n−1⟩+∫In(A(˜u;˜u,w)−Ah(˜u;˜u,w))dt=εh,n(˜u;w)+∫InεA(˜u;˜u,w)dt=εh,n(˜u;w)+εA,n(˜u;˜u,w). | (3.18) |
Putting(3.18) to (3.17) and in turn to (3.16) completes the proof.
Theorem 3.2. For
[Q(u)](T)−[Q(˜u)](T)=E0+E1+E2+E3, | (3.19) |
where
E0=⟨ϑ(u0)−ϑ(˜u−0),φ0⟩,E1=−N∑n=1Rn(˜u;˜u,φ−πqhφ),E2=−N∑n=1εA,n(˜u;˜u,Πqhφ),E3=−N∑n=1εh,n(˜u;πqhφ), | (3.20) |
and
Proof. Most derivation steps follow the proof of Theorem 3.1 up to (3.16):
[Q(u)](T)−[Q(˜u)](T)=⟨ϑ(u0)−ϑ(˜u−0),φ0⟩−N∑n=1Rn(˜u;˜u,φ). | (3.21) |
At this stage, we intend to insert (2.15), which is valid when the test function is
Rn(˜u;˜u,φ)=Rn(˜u;˜u,φ−πqhφ)+Rn(˜u;˜u,πqhφ)=Rn(˜u;˜u,φ−πqhφ)+Rn(˜u;˜u,πqhφ)−Rh,n(˜u;˜u,πqhφ)=Rn(˜u;˜u,φ−πqhφ)+εA,n(˜u;˜u,πqhφ)+εh,n(˜u;πqhφ), | (3.22) |
where similar equation to (3.18) has been used, and
Several numerical examples are presented in this section to achieve two goals: 1) to investigate the global/norm-based accuracy of the proposed approximation, and 2) to validate the robustness of error estimators that are derived from Theorem 3.1 and Theorem 3.2. While the former cannot satisfactorily substitute for a rigorous a priori error analysis, at least it should give an illustrative indicator on the global convergence property of the approximation. With respect to the latter, we only concentrate on the estimators' accuracy in predicting error and their capability to decompose it into relevant components. Various pertinent applications of the proposed error estimators to other aspects in numerical simulation of Richards Equation, such as its role in adaptivity, will be a subject of future work.
A uniform set of discretization parameters
While the proposed procedures enjoy a flexibility in their implementation, a closed form solution of Richards Equation is needed for the purpose of assessing their performance. As alluded to in the introduction, it is only on a very rare occasion that a closed form solution of Richards Equation is available. One such instance is when the constitutive relations are expressed as
κ(u)=κseαu,andϑ(u)=ϑr+(ϑs−ϑr)eαu, | (4.1) |
where
u(z,t)=α−1ln(κ−1sw(z,t)), | (4.2) |
where
w(z,t)=C1+C2eαz+eαz/2∞∑n=1wn(t)ϕn(z),with | (4.3) |
wn(t)=wn(0)e−μnt,μn=κs(α2+4λ2n)4α(ϑs−ϑr)>0,wn(0)=1⟨ϕn,ϕn⟩∫L0(κseαu0(z)−C1−C2eαz)e−αz/2ϕn(z)dz. | (4.4) |
The pair
{−ϕ′′n=λ2nϕnin(a,b),˜Baϕn=0,˜Bbϕn=0, | (4.5) |
where
Two examples are considered in the numerical experiments whose data are listed in Table 4.1. Solution profiles of these examples are shown in Figure 4.1 and Figure 4.2. The axes on these figures are flipped to follow the plotting style for profiles associated with Richards Equation (see for example [25,24]). The initial condition is
Ex. 1 | Ex. 2 | |
|
||
(4.6) & (4.7) | (4.6) & (4.8) | |
u0(z)=α−1ln(κ−1sf(z)), | (4.6) |
where for Ex. 1,
f(z)=C1+C2eαz+Aeαz/2sin(λ1z),λ1=π/b,C2=κs(eαga−eαgb)1−eαb,C1=κseαga−C2,A=4λ1(κse−α(65+b/2)−C1e−αb/2−C2eαb/2)((α/2)2+λ21)b, | (4.7) |
and for Ex. 2,
f(z)=C1+C2eαz+e−α(b−z)/26000∑n=1Ansin(λn(b−z)),λnisgovernedbytan(λnb)+2λnα=0,C1=−ga,C2=κseαgb−C1eαb,An=αcosh(αb/2)sin(λnb)−2λncos(λnb)sinh(αb/2)(α/2)2+λ2n4λnga2λnb−sin(2λn). | (4.8) |
In this subsection, a set of numerical experiments to investigate accuracy of the approximation is presented. We solve the two examples whose data are listed in Table 4.1.
Table 4.2 and Table 4.3 list the errors of approximation
FVEM-dG0 | FVEM-dG1 | ||
12 | 1 | 58.0082e-03 | 14.5267e-03 |
24 | 1 | 58.1606e-03 | 15.1200e-03 |
48 | 1 | 58.1991e-03 | 15.2688e-03 |
96 | 1 | 58.2087e-03 | 15.3060e-03 |
12 | 2 | 32.5818e-03 | 0.6939e-03 |
24 | 2 | 32.5477e-03 | 0.8597e-03 |
48 | 2 | 32.5396e-03 | 0.9086e-03 |
96 | 2 | 32.5376e-03 | 0.9211e-03 |
12 | 4 | 17.3786e-03 | 0.2823e-03 |
24 | 4 | 17.2600e-03 | 0.0916e-03 |
48 | 4 | 17.2310e-03 | 0.1222e-03 |
96 | 4 | 17.2238e-03 | 0.1344e-03 |
12 | 8 | 9.0728e-03 | 0.3586e-03 |
24 | 8 | 8.9160e-03 | 0.0793e-03 |
48 | 8 | 8.8779e-03 | 0.0154e-03 |
96 | 8 | 8.8685e-03 | 0.0153e-03 |
FVEM-dG0 | FVEM-dG1 | ||
5 | 4 | 4.9527e-02 | 5.0631e-02 |
10 | 4 | 2.0846e-02 | 1.8016e-02 |
20 | 4 | 1.0534e-02 | 0.4128e-02 |
40 | 4 | 0.8508e-02 | 0.0992e-02 |
5 | 8 | 4.9824e-02 | 5.0641e-02 |
10 | 8 | 1.8868e-02 | 1.7991e-02 |
20 | 8 | 0.6907e-02 | 0.4088e-03 |
40 | 8 | 0.4671e-02 | 0.0965e-02 |
5 | 16 | 5.0159e-02 | 5.0645e-02 |
10 | 16 | 1.8208e-02 | 1.7988e-02 |
20 | 16 | 0.5197e-02 | 0.4079e-02 |
40 | 16 | 0.2637e-02 | 0.0959e-02 |
5 | 32 | 5.0382e-02 | 5.0647e-02 |
10 | 32 | 1.8027e-02 | 1.7988e-02 |
20 | 32 | 0.4504e-02 | 0.4077e-02 |
40 | 32 | 0.1646e-02 | 0.0958e-02 |
Ex. 1 | Ex. 2 | |
|
0.231831624739998887 | 0.129975678959476710 |
|
0.221196137487056291 | 0.111225678959476525 |
First, the accuracy of FVEM-dG1 generally outperforms that of FVEM-dG0, which is especially evident when solving Ex. 1 (see Table 4.2). The approximation error for Ex. 1 seems to be dominated by component of the temporal discretization. For a fixed
As mentioned, the error equation for a quantity of interest
To test the proposed error estimators, we consider two quantities of interest:
● The spatial average of water content at time
[Q(u)](T)=1b−a∫baϑ(u(z,T))dz. | (4.9) |
To calculate the adjoint solution associated with this quantity, the corresponding adjoint data is
● The total average of water content over
[Q(u)](T)=1T∫T01b−a∫baϑ(u(z,t))dzdt. | (4.10) |
The corresponding adjoint data is
The true values of these quantities of interest for the two examples are listed in Table 4.4.
The approximate solution is
Table 4.5 and Table 4.6 demonstrate performance of the error estimator for the above quantities of interest when solving Ex. 1. In these tables, the error has been decomposed according to the components of error listed in Theorem 3.1. As in the accuracy assessment results, four different number of elements (
Err. Est. | Eff. | ||||||
12 | 1 | -5.5601e-05 | 6.6298e-03 | 2.6571e-04 | 2.2485e-05 | 6.8623e-03 | 1.149 |
24 | 1 | -1.3843e-05 | 6.6974e-03 | 1.3440e-04 | 5.3567e-06 | 6.8233e-03 | 1.139 |
48 | 1 | -3.4568e-06 | 6.7142e-03 | 6.7378e-05 | 1.3220e-06 | 6.7794e-03 | 1.131 |
96 | 1 | -8.6396e-07 | 6.7184e-03 | 3.3706e-05 | 3.2943e-07 | 6.7515e-03 | 1.126 |
12 | 2 | -4.4365e-05 | 3.8268e-03 | 7.1941e-05 | 3.6142e-05 | 3.8906e-03 | 1.120 |
24 | 2 | -1.1046e-05 | 3.8548e-03 | 3.9509e-05 | 8.5556e-06 | 3.8918e-03 | 1.120 |
48 | 2 | -2.7579e-06 | 3.8617e-03 | 2.0874e-05 | 2.1051e-06 | 3.8820e-03 | 1.120 |
96 | 2 | -6.8914e-07 | 3.8635e-03 | 1.0730e-05 | 5.2410e-07 | 3.8740e-03 | 1.115 |
12 | 4 | -3.9779e-05 | 2.0010e-03 | 2.5003e-05 | 4.3906e-05 | 2.0310e-03 | 1.067 |
24 | 4 | -9.9212e-06 | 2.0128e-03 | 1.2165e-06 | 1.0291e-05 | 2.0254e-03 | 1.069 |
48 | 4 | -2.4774e-06 | 2.0158e-03 | 6.9258e-06 | 2.5084e-06 | 2.0227e-03 | 1.069 |
96 | 4 | -6.1911e-07 | 2.0165e-03 | 3.7657e-06 | 6.2266e-07 | 2.0203e-03 | 1.068 |
12 | 8 | -3.8042e-05 | 1.0175e-03 | 1.9493e-05 | 4.6704e-05 | 1.0457e-03 | 1.037 |
24 | 8 | -9.4764e-06 | 1.0227e-03 | 5.0975e-06 | 1.1390e-05 | 1.0297e-03 | 1.036 |
48 | 8 | -2.3676e-06 | 1.0240e-03 | 2.3602e-06 | 2.7559e-06 | 1.0268e-03 | 1.036 |
96 | 8 | -5.9172e-07 | 1.0244e-03 | 1.3885e-06 | 6.8063e-07 | 1.0258e-03 | 1.036 |
Err. Est. | Eff. | ||||||
12 | 1 | -7.6641e-05 | -5.9702e-03 | 6.5348e-06 | 2.7273e-05 | -6.0131e-03 | 1.290 |
24 | 1 | -1.9082e-05 | -5.9818e-03 | 1.6059e-06 | 6.7751e-06 | -5.9925e-03 | 1.290 |
48 | 1 | -4.7653e-06 | -5.9847e-03 | 3.9971e-07 | 1.6907e-06 | -5.9874e-03 | 1.290 |
96 | 1 | -1.1910e-06 | -5.9854e-03 | 9.9817e-08 | 4.2248e-07 | -5.9861e-03 | 1.290 |
12 | 2 | -7.4772e-05 | -3.0291e-03 | 1.6147e-05 | 2.5436e-05 | -3.0623e-03 | 1.123 |
24 | 2 | -1.8616e-05 | -3.0342e-03 | 3.9483e-06 | 6.3250e-06 | -3.0426e-03 | 1.123 |
48 | 2 | -4.6488e-06 | -3.0355e-03 | 9.8092e-07 | 1.5784e-06 | -3.0376e-03 | 1.123 |
96 | 2 | -1.1619e-06 | -3.0358e-03 | 2.4483e-07 | 3.9441e-07 | -3.0363e-03 | 1.123 |
12 | 4 | -7.4397e-05 | -1.5584e-03 | 2.3449e-05 | 2.4137e-05 | -1.5852e-03 | 1.057 |
24 | 4 | -1.8523e-05 | -1.5609e-03 | 5.7189e-06 | 6.0235e-06 | -1.5677e-03 | 1.057 |
48 | 4 | -4.6257e-06 | -1.5615e-03 | 1.4158e-06 | 1.5036e-06 | -1.5632e-03 | 1.057 |
96 | 4 | -1.1561e-06 | -1.5617e-03 | 3.5295e-07 | 3.7571e-07 | -1.5621e-03 | 1.057 |
12 | 8 | -7.4326e-05 | -7.9524e-04 | 2.7824e-05 | 2.3365e-05 | -8.1837e-04 | 1.027 |
24 | 8 | -1.8504e-05 | -7.9647e-04 | 6.8634e-06 | 5.8679e-06 | -8.0225e-04 | 1.027 |
48 | 8 | -4.6210e-06 | -7.9678e-04 | 1.6962e-06 | 1.4661e-06 | -7.9824e-04 | 1.027 |
96 | 8 | -1.1549e-06 | -7.9686e-04 | 4.2208e-07 | 3.6638e-07 | -7.9722e-04 | 1.027 |
Notice that values in the tables give an indication that the error in
The component
The component
Next we utilize the proposed error estimator to the numerical solution of Ex. 2. Table 4.7 and Table 4.8 show the breakdown of error for each of the quantities of interest. Again, following the accuracy assessment results, four different number of elements (
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -6.2164e-08 | -3.6456e-07 | 1.0290e-02 | 1.0253e-02 | 0.977 |
10 | 4 | -1.3302e-05 | 3.3879e-09 | -4.6917e-09 | 3.9111e-03 | 3.8978e-03 | 0.993 |
20 | 4 | -5.7876e-06 | 9.9041e-10 | -2.2824e-10 | 1.0090e-03 | 1.0032e-03 | 0.998 |
40 | 4 | -2.7053e-06 | 5.6955e-10 | -3.8568e-11 | 2.4965e-04 | 2.4695e-04 | 0.999 |
5 | 8 | -3.6107e-05 | -4.3218e-08 | -3.5113e-07 | 1.1133e-02 | 1.1096e-02 | 0.974 |
10 | 8 | -1.3302e-05 | 1.8737e-10 | -4.7768e-10 | 4.3243e-03 | 4.3110e-03 | 0.993 |
20 | 8 | -5.7876e-06 | 1.9063e-11 | -6.0320e-12 | 1.0842e-03 | 1.0784e-03 | 0.998 |
40 | 8 | -2.7053e-06 | 5.5338e-12 | -4.5001e-13 | 2.6644e-04 | 2.6373e-02 | 0.999 |
5 | 16 | -3.6121e-05 | 6.8028e-08 | -4.5382e-07 | 1.1595e-02 | 1.1559e-02 | 0.973 |
10 | 16 | -1.3302e-05 | 1.6801e-11 | -8.8583e-11 | 4.5811e-03 | 4.5678e-03 | 0.992 |
20 | 16 | -5.7876e-06 | 5.2323e-13 | -3.2271e-13 | 1.1290e-03 | 1.1232e-03 | 0.998 |
40 | 16 | -2.7053e-06 | 4.0884e-14 | -2.5154e-14 | 2.7647e-04 | 2.7376e-04 | 0.999 |
5 | 32 | -3.6089e-05 | -4.4295e-08 | 4.5726e-08 | 1.1837e-02 | 1.1801e-02 | 0.972 |
10 | 32 | -1.3302e-05 | 2.5330e-12 | -2.9891e-11 | 4.7280e-03 | 4.7144e-03 | 0.992 |
20 | 32 | -5.7876e-06 | 2.6583e-14 | -9.4480e-14 | 1.1545e-03 | 1.1487e-03 | 0.998 |
40 | 32 | -2.7053e-06 | -1.0436e-14 | -1.8777e-14 | 2.8211e-04 | 2.7941e-04 | 0.999 |
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -4.6874e-03 | -7.6435e-08 | 7.2999e-03 | 2.5763e-03 | 0.921 |
10 | 4 | -1.3302e-05 | -4.6875e-03 | -8.4587e-10 | 3.3265e-03 | -1.3743e-03 | 1.026 |
20 | 4 | -5.7876e-06 | -4.6875e-03 | -3.4359e-11 | 9.8963e-04 | -3.7036e-03 | 1.001 |
40 | 4 | -2.7054e-06 | -4.6875e-03 | -4.2724e-12 | 2.5707e-04 | -4.4331e-03 | 1.000 |
5 | 8 | -3.6102e-05 | -2.3437e-03 | -4.6414e-08 | 7.2458e-03 | 4.8659e-03 | 0.950 |
10 | 8 | -1.3302e-05 | -2.3437e-03 | -6.5517e-11 | 3.5887e-03 | 1.2316e-03 | 0.961 |
20 | 8 | -5.7876e-06 | -2.3437e-03 | -7.0707e-13 | 1.0899e-03 | -1.2596e-03 | 1.004 |
40 | 8 | -2.7054e-06 | -2.3437e-03 | -4.9054e-14 | 2.8339e-04 | -2.0631e-03 | 1.000 |
5 | 16 | -3.6105e-05 | -1.1719e-03 | -7.9249e-08 | 7.1892e-03 | 5.9812e-03 | 0.956 |
10 | 16 | -1.3302e-05 | -1.1719e-03 | -1.0129e-11 | 3.7626e-03 | 2.5774e-03 | 0.977 |
20 | 16 | -5.7876e-06 | -1.1719e-03 | -6.6506e-14 | 1.1637e-03 | -1.3957e-05 | 1.823 |
40 | 16 | -2.7054e-06 | -1.1719e-03 | -1.1789e-14 | 3.0287e-04 | -8.7171e-04 | 1.001 |
5 | 32 | -3.6103e-05 | -5.8593e-04 | -2.1637e-08 | 7.1541e-03 | 6.5320e-03 | 0.959 |
10 | 32 | -1.3302e-06 | -5.8594e-04 | -3.1392e-12 | 3.8643e-03 | 3.2650e-03 | 0.979 |
20 | 32 | -5.7876e-06 | -5.8594e-04 | -4.6973e-14 | 1.2132e-03 | 6.2149e-04 | 0.988 |
40 | 32 | -2.7054e-06 | -5.8594e-04 | -1.1491e-14 | 3.1628e-04 | -2.7236e-04 | 1.002 |
The result in Table 4.8 shows that
Tables 4.9 to 4.12 present the decomposition of error for Ex. 1 and Ex. 2 into various components as dictated by Theorem 3.2. The columns for
12 | 1 | 6.9104e-03 | 7.5953e-06 | 0 |
24 | 1 | 6.8352e-03 | 1.8846e-06 | 6.9389e-18 |
48 | 1 | 6.7824e-03 | 4.6724e-07 | 3.4694e-18 |
96 | 1 | 6.7523e-03 | 1.1620e-07 | 6.9389e-18 |
12 | 2 | 3.8392e-03 | 6.1045e-06 | 8.9582e-05 |
24 | 2 | 3.8789e-03 | 1.5228e-06 | 2.2428e-05 |
48 | 2 | 3.8787e-03 | 3.7986e-07 | 5.6090e-06 |
96 | 2 | 3.8732e-03 | 9.4827e-08 | 1.4024e-06 |
12 | 4 | 1.9444e-03 | 5.6811e-06 | 1.1982e-04 |
24 | 4 | 2.0038e-03 | 1.4190e-06 | 3.0033e-05 |
48 | 4 | 2.0173e-03 | 3.5462e-07 | 7.5129e-06 |
96 | 4 | 2.0189e-03 | 8.8625e-08 | 1.8785e-06 |
12 | 8 | 9.4839e-04 | 5.5176e-06 | 1.2981e-04 |
24 | 8 | 1.0052e-03 | 1.3769e-06 | 3.2575e-05 |
48 | 8 | 1.0206e-03 | 3.4421e-07 | 8.1499e-06 |
96 | 8 | 1.0243e-03 | 8.6050e-08 | 2.0378e-06 |
12 | 1 | -5.9364e-03 | 0 | 0 |
24 | 1 | -5.9734e-03 | 0 | 0 |
48 | 1 | -5.9826e-03 | 0 | 0 |
96 | 1 | -5.9849e-03 | 0 | 0 |
12 | 2 | -3.0501e-03 | 2.5710e-06 | 5.9998e-05 |
24 | 2 | -3.0397e-03 | 6.4271e-07 | 1.5112e-05 |
48 | 2 | -3.0369e-03 | 1.6068e-07 | 3.7850e-06 |
96 | 2 | -3.0361e-03 | 4.0169e-08 | 9.4670e-07 |
12 | 4 | -1.6024e-03 | 4.3468e-06 | 8.7251e-05 |
24 | 4 | -1.5722e-03 | 1.0865e-06 | 2.1970e-05 |
48 | 4 | -1.5644e-03 | 2.7161e-07 | 5.5023e-06 |
96 | 4 | -1.5624e-03 | 6.7902e-08 | 1.3762e-06 |
12 | 8 | -8.5030e-04 | 5.5588e-06 | 1.0069e-04 |
24 | 8 | -8.1048e-04 | 1.3899e-06 | 2.5351e-05 |
48 | 8 | -8.0031e-04 | 3.4750e-07 | 6.3488e-06 |
96 | 8 | -7.9774e-04 | 8.6875e-08 | 1.5879e-06 |
5 | 4 | 1.0289e-02 | -7.6351e-08 | 3.0166e-07 |
10 | 4 | 3.9111e-03 | -5.9250e-10 | 4.6158e-09 |
20 | 4 | 1.0090e-03 | -1.7676e-11 | 1.7694e-10 |
40 | 4 | 2.4965e-04 | -1.9490e-12 | 2.1193e-11 |
5 | 8 | 1.1134e-02 | 7.3138e-08 | -1.3466e-06 |
10 | 8 | 4.3243e-03 | -6.0938e-11 | 1.1118e-09 |
20 | 8 | 1.0842e-03 | -4.8331e-13 | 1.1840e-11 |
40 | 8 | 2.6644e-04 | -2.7270e-14 | 6.6398e-13 |
5 | 16 | 1.1601e-02 | 8.7291e-08 | -5.8431e-06 |
10 | 16 | 4.5811e-03 | -1.1412e-11 | 3.7774e-10 |
20 | 16 | 1.1290e-03 | -3.7491e-14 | 1.0044e-12 |
40 | 16 | 2.7647e-04 | -4.7254e-15 | 1.7396e-14 |
5 | 32 | 1.1833e-02 | 2.1590e-08 | 3.9613e-06 |
10 | 32 | 4.7277e-03 | -3.8970e-12 | 1.8867e-10 |
20 | 32 | 1.1545e-03 | -1.9623e-14 | 1.5073e-13 |
40 | 32 | 2.8211e-04 | -4.4201e-15 | -2.7756e-17 |
5 | 4 | 2.6123e-03 | -7.7482e-09 | 1.1954e-07 |
10 | 4 | -1.3610e-03 | -5.0964e-11 | 1.2934e-09 |
20 | 4 | -3.6979e-03 | -1.4624e-12 | 4.4327e-11 |
40 | 4 | -4.4304e-03 | -1.6102e-13 | 5.1326e-12 |
5 | 8 | 4.9021e-03 | 6.9429e-09 | -1.0375e-07 |
10 | 8 | 1.2450e-03 | -5.4195e-12 | 2.1318e-10 |
20 | 8 | -1.2539e-03 | -4.3805e-14 | 1.8653e-12 |
40 | 8 | -2.0604e-03 | -3.6394e-15 | 9.6166e-14 |
5 | 16 | 6.0183e-03 | 1.5114e-08 | -1.0262e-06 |
10 | 16 | 2.5907e-03 | -1.0270e-12 | 5.4566e-11 |
20 | 16 | -8.1695e-06 | -9.7700e-15 | 1.0732e-13 |
40 | 16 | -8.6900e-04 | -2.1094e-15 | 1.2386e-15 |
5 | 32 | 6.5684e-03 | 3.4467e-09 | -3.0913e-07 |
10 | 32 | 3.2783e-03 | -3.6607e-13 | 2.2585e-11 |
20 | 32 | 6.2727e-04 | -8.8020e-15 | 1.0911e-14 |
40 | 32 | -2.6966e-04 | -2.1545e-15 | -4.1980e-16 |
This paper investigates the application of adjoint-based a posteriori error analysis for numerical approximation of Richards Equation. Construction of the approximate solution is cast into space-time variational formulation, specifically using the finite volume element in spatial variable and discontinuous Galerkin finite element in temporal variable. The resulting error estimators have the capability to predict components of error in certain quantities of interest that are expressed as a functional of the solution. The two examples give a strong indication that the error estimators are robust and capable to predict the error satisfactorily.
As for future work, we are interested in exploring further applications of the error estimators, in particular as to how they are applied to the setting of multidimensional problems. Owing to the various challenges persistent in the approximations of Richards Equation, a utilization of adaptivity is perhaps the only judicious route. Here the adaptivity is multi-faceted, not only as it pertains to local spatial refinement and dynamic time stepping, but also as it relates to determining optimal number of iterations when solving the nonlinear algebraic system. In this regard, the prospect of adjoint-based approach to estimate the components of error seems to be very promising.
Another interesting subject, which is not pursued in the present work, is a rigorous mathematical analysis of the proposed approximation. It must begin with establishing the existence of an approximate solution of (2.15). Here a potentially useful tool is either the Banach Fixed Point Theorem or the Brouwer Fixed Point Theorem. It should then be followed by a careful convergence analysis with the ultimate goal of showing the existence of a limit of the sequence of approximate solutions as
[1] | FAO (2013, 2016) Food Agriculture Organization of the United Nations Statistics Division. |
[2] |
Paleologou I, Vasiliou A, Grigorakis S, et al. (2016) Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Convers Bior 6: 289-299. doi: 10.1007/s13399-015-0181-7
![]() |
[3] |
Chiellini E, Cinelli P, Chiellini F, et al. (2004) Environmentally degradable bio‐based polymeric blends and composites. Macromol Biosci 4: 218-231. doi: 10.1002/mabi.200300126
![]() |
[4] | Chang K (2019) Polyphenol antioxidants from potato peels: Extraction optimization and application to stabilizing lipid oxidation in foods. In: Proceedings of Proceedings of the National Conference on Undergraduate Research (NCUR), New York, NY, USA. |
[5] |
Nelson M (2010) Utilization and application of wet potato processing coproducts for finishing cattle. J Anim Sci 88: E133-E142. doi: 10.2527/jas.2009-2502
![]() |
[6] |
Liang S, McDonald AG, Coats ER, et al. (2014) Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Manag 34: 2022-2027. doi: 10.1016/j.wasman.2014.07.009
![]() |
[7] |
Bhushan S, Kalia K, Sharma M, et al. (2008) Processing of apple pomace for bioactive molecules. Crit Rev Biotechnol 28: 285-296. doi: 10.1080/07388550802368895
![]() |
[8] |
Arapoglou D, Varzakas T, Vlyssides A, et al. (2010) Ethanol production from potato peel waste (PPW). Waste Manag 30: 1898-1902. doi: 10.1016/j.wasman.2010.04.017
![]() |
[9] |
Mohdaly AAA, Hassanien MFR, Mahmoud A, et al. (2013) Phenolics extracted from potato, sugar beet, and sesame processing by-products. INT J Food Prop 16: 1148-1168. doi: 10.1080/10942912.2011.578318
![]() |
[10] | Sepelev I, Galoburda R (2015) Industrial potato peel waste application in food production: A review. Res Rural Dev 1: 130-136. |
[11] | Pathak PD, Mandavgane SA, Kulkarni BD, et al. (2015) Fruit peel waste as a novel low-cost bio adsorbent. Rev Chem Eng 31: 361-381. |
[12] |
Maldonado AFS, Mudge E, Gänzle MG, et al. (2014) Extraction and fractionation of phenolic acids and glycoalkaloids from potato peels using acidified water/ethanol-based solvents. Food Res Int 65: 27-34. doi: 10.1016/j.foodres.2014.06.018
![]() |
[13] | Jeddou KB, Chaari F, Maktouf S, et al. (2016) Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels. Food Chem205: 97-105. |
[14] |
Liang S, McDonald AG (2014) Chemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. J Agric Food Chem 62: 8421-8429. doi: 10.1021/jf5019406
![]() |
[15] |
Liang S, Han Y, Wei L, et al. (2015) Production and characterization of bio-oil and bio-char from pyrolysis of potato peel wastes. Biomass Convers Bior 5: 237-246. doi: 10.1007/s13399-014-0130-x
![]() |
[16] | Onyeneho SN, Hettiarachchy NS (1993) Antioxidant activity, fatty acids and phenolic acids compositions of potato peels. J Sci Food Agric62: 345-350. |
[17] | Camire ME, Violette D, Dougherty MP, et al. (1997) Potato peel dietary fiber composition: Effects of peeling and extrusion cooking processes. J Agric Food Chem45: 1404-1408. |
[18] |
Camire ME, Zhao J, Violette DA, et al. (1993) In vitro binding of bile acids by extruded potato peels. J Agric Food Chem 41: 2391-2394. doi: 10.1021/jf00036a033
![]() |
[19] | Mahmood A, Greenman J, Scragg A, et al. (1998) Orange and potato peel extracts: Analysis and use as Bacillus substrates for the production of extracellular enzymes in continuous culture. Enzyme Microb Technol22: 130-137. |
[20] |
Ballesteros MN, Cabrera RM, Saucedo MS, et al. (2001) Dietary fiber and lifestyle influence serum lipids in free living adult men. J Am Coll Nutr 20: 649-655. doi: 10.1080/07315724.2001.10719163
![]() |
[21] | Lazarov K, Werman MJ (1996) Hypocholesterolaemic effect of potato peels as a dietary fibre source. Med Sci Res 24: 581-582. |
[22] |
Alonso A, Beunza JJ, Bes-Rastrollo M, et al. (2006) Vegetable protein and fiber from cereal are inversely associated with the risk of hypertension in a Spanish cohort. Arch Med Res 37: 778-786. doi: 10.1016/j.arcmed.2006.01.007
![]() |
[23] |
Erkkilä AT, Lichtenstein AH (2006) Fiber and cardiovascular disease risk: How strong is the evidence. J Cardiovasc Nurs 21: 3-8. doi: 10.1097/00005082-200601000-00003
![]() |
[24] |
Camire ME, Zhao J, Dougherty MP, et al. (1995) In Vitro binding of benzo [a] pyrene by extruded potato peels. J Agric Food Chem 43: 970-973. doi: 10.1021/jf00052a024
![]() |
[25] | Kyzas GZ, Deliyanni EA (2015) Modified activated carbons from potato peels as green environmental-friendly adsorbents for the treatment of pharmaceutical effluents. Chem Eng Res Des97: 135-144. |
[26] | Abd-El-Magied MM (1991) Effect of dietary fibre of potato peel on the rheological and organoleptic characteristics of biscuits. Egypt J Food Sci 19: 293-300. |
[27] | Al-Weshahy A, Rao V (2012) Potato peel as a source of important phytochemical antioxidant nutraceuticals and their role in human health-A review. In: Phytochemicals as Nutraceuticals-Global Approaches to Their Role in Nutrition and Health, InTech. |
[28] |
Panda SK, Mishra SS, Kayitesi E, et al. (2016) Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes. Environ Res 146: 161-172. doi: 10.1016/j.envres.2015.12.035
![]() |
[29] |
Saldaña, MD, Valdivieso-Ramirez CS (2015) Pressurized fluid systems: Phytochemical production from biomass. J Supercrit Fluid 96: 228-244. doi: 10.1016/j.supflu.2014.09.037
![]() |
[30] | Fadel M (1999) Utilization of potato chips industry by products for the production of thermostable bacterial alpha amylase using solid state fermentation system. 1.-effect of incubation period, temperature, moisture level and inoculum size. Egypt J Microbiol. |
[31] |
Mukherjee AK, Adhikari H, Rai SK, et al. (2008) Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation. Biochem Eng J 39: 353-361. doi: 10.1016/j.bej.2007.09.017
![]() |
[32] | Sharma N, Tiwari DP, Singh SK, et al. (2014) The efficiency appraisal for removal of malachite green by potato peel and neem bark: isotherm and kinetic studies. Int J Chem Environ Eng 5: 83-88. |
[33] | Prasad AGD, Pushpa HN (2007) Antimicrobial activity of potato peel waste. Asian J Microbiol Biotechnol Environ Sci 9: 559-561. |
[34] | Sharma D, Ansari MJ, Gupta S, et al. (2015) Structural characterization and antimicrobial activity of a biosurfactant obtained from Bacillus pumilus DSVP18 grown on potato peels. Jundishapur J Microbiol 8: e21257. |
[35] | Arapoglou D, Vlyssides A, Varzakas T, et al. (2009) Alternative ways for potato industries waste utilisation. In: Proceedings of Proceedings of the 11th International Conference on Environmental Science and Technolo gy, Chaina, Crete, Greece, 3-5. |
[36] | Fu BR, Sun Y, WANG YX, et al. (2013) Construction of biogas fermentation system based on feedstock of potato residue.J Northeast Agric Univ 44: 102-106. |
[37] |
Sanaei-Moghadam A, Abbaspour-Fard MH, Aghel H, et al. (2014) Enhancement of biogas production by co-digestion of potato pulp with cow manure in a CSTR system. Appl Biochem Biotechnol 173: 1858-1869. doi: 10.1007/s12010-014-0972-5
![]() |
[38] |
Liang S, McDonald AG (2015) Anaerobic digestion of pre-fermented potato peel wastes for methane production. Waste Manag 46: 197-200. doi: 10.1016/j.wasman.2015.09.029
![]() |
[39] | Datta R, Henry M (2006) Lactic acid: Recent advances in products, processes and technologies-a review. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 81: 1119-1129. |
[40] | Priyanga K, Reji A, Bhagat JK, et al. (2016) Production of organic manure from potato peel waste. Int J Chem Tech Res 9: 845-847. |
[41] | Pandit N, Ahmad N, Maheshwari S, et al. (2012) Vermicomposting biotechnology an eco-loving approach for recycling of solid organic wastes into valuable biofertilizers. J Biofertil Biopestic 3: 1-8. |
[42] | Muhondwa J, Martienssen M, Burkhardt M, et al. (2015) Feasibility of anaerobic digestion of potato peels for biogas as mitigation of greenhouse gases emission potential. Int J Environ Res 9: 481-488 |
[43] |
Tiwari V, Maji S, Kumar S, et al. (2016) Use of kitchen waste based bio-organics for strawberry (Fragaria x ananassa Duch) production. Afr J Agric Res 11: 259-265. doi: 10.5897/AJAR2015.10349
![]() |
[44] |
Chintagunta AD, Jacob S, Banerjee R, et al. (2016) Integrated bioethanol and biomanure production from potato waste. Waste Manag 49: 320-325. doi: 10.1016/j.wasman.2015.08.010
![]() |
[45] |
Shukla J, Kar R (2006) Potato peel as a solid state substrate for thermostable α-amylase production by thermophilic Bacillus isolates. World J Microb Biot 22: 417-422. doi: 10.1007/s11274-005-9049-5
![]() |
[46] | Jadhav SA, Kataria PK, Bhise KK, et al. (2013) Amylase production from potato and banana peel waste. Int J Curr Microbiol App Sci 2: 410-414. |
[47] | Mabrouk ME, El Ahwany AM (2008) Production of 946-mannanase by Bacillus amylolequifaciens 10A1 cultured on potato peels. Afr J Biotechnol 7: 1123-1128. |
[48] |
Dos Santos TC, Gomes DPP, Bonomo RCF, et al. (2012) Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem 133: 1299-1304. doi: 10.1016/j.foodchem.2011.11.115
![]() |
[49] |
Mukherjee S, Bandyopadhayay B, Basak B, et al. (2012) An improved method of optimizing the extraction of polyphenol oxidase from potato (Solanum tuberosum L.) Peel. Not Sci Biol 4: 98-107. doi: 10.15835/nsb417186
![]() |
[50] |
Niphadkar SS, Vetal MD, Rathod VK, et al. (2015) Purification and characterization of polyphenol oxidase from waste potato peel by aqueous two-phase extraction. Prep Biochem Biotechnol 45: 632-649. doi: 10.1080/10826068.2014.940970
![]() |
[51] | Da Silva Batista M, Guimarães CO, Marra LC, et al. (2015) Bio-oil production from waste potato peel and rice hush. Rev Eletrônica Gest Educ Tecnol 19: 220-227. |
[52] |
Izmirlioglu G, Demirci A (2012) Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Appl Sci 2: 738-753. doi: 10.3390/app2040738
![]() |
[53] | Afsar N, Özgür E, Gürgan M, et al. (2011) Hydrogen productivity of photosynthetic bacteria on dark fermenter effluent of potato steam peels hydrolysate. Int J Hydrogen Energ36: 432-438. |
[54] |
Panagiotopoulos IA, Karaoglanoglou LS, Koullas DP, et al. (2015) Technical suitability mapping of feedstocks for biological hydrogen production. J Clean Prod 102: 521-528. doi: 10.1016/j.jclepro.2015.04.055
![]() |
[55] |
Im HW, Suh BS, Lee SU, et al. (2008) Analysis of phenolic compounds by high-performance liquid chromatography and liquid chromatography/mass spectrometry in potato plant flowers, leaves, stems, and tubers and in home-processed potatoes. J Agric Food Chem 56: 3341-3349. doi: 10.1021/jf073476b
![]() |
[56] | Lee J, Finn CE (2007) Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J Sci Food Agric87: 2665-2675. |
[57] | Rodríguez-Meizoso I, Marin FR, Herrero M, et al. (2006) Subcritical water extraction of nutraceuticals with antioxidant activity from oregano. Chemical and functional characterization. J Pharmaceut Biomed 41: 1560-1565. |
[58] |
Yeung YY, Hong S, Corey EJ, et al. (2006) A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid. J Am Chem Soc 128: 6310-6311. doi: 10.1021/ja0616433
![]() |
[59] |
Mansour EH, Khalil AH (2000) Evaluation of antioxidant activity of some plant extracts and their application to ground beef patties. Food Chem 69: 135-141. doi: 10.1016/S0308-8146(99)00234-4
![]() |
[60] |
Kanatt SR, Chander R, Radhakrishna P, et al. (2005) Potato peel extract a natural antioxidant for retarding lipid peroxidation in radiation processed lamb meat. J Agric Food Chem 53: 1499-1504. doi: 10.1021/jf048270e
![]() |
[61] |
Formanek Z, Lynch A, Galvin K, et al. (2003) Combined effects of irradiation and the use of natural antioxidants on the shelf-life stability of overwrapped minced beef. Meat Sci 63: 433-440. doi: 10.1016/S0309-1740(02)00063-3
![]() |
[62] |
Mohdaly AA, Sarhan MA, Smetanska I, et al. (2010) Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J Sci Food Agric 90: 218-226. doi: 10.1002/jsfa.3796
![]() |
[63] | Rommi K, Rahikainen J, Vartiainen J, et al. (2016) Potato peeling costreams as raw materials for biopolymer film preparation. J Appl Polym Sci 133: 1-11. |
[64] |
Nara K, Miyoshi T, Honma T, et al. (2006) Antioxidative activity of bound-form phenolics in potato peel. Biosci Biotechnol Biochem 70: 1489-1491. doi: 10.1271/bbb.50552
![]() |
[65] |
Arun K, Chandran J, Dhanya R, et al. (2015) Comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato. Food Biosci 9: 36-46. doi: 10.1016/j.fbio.2014.10.003
![]() |
[66] | Shimoi K, Okitsu A, Green M, et al. (2001) Oxidative DNA damage induced by high glucose and its suppression in human umbilical vein endothelial cells. Mutat Res-Fund Mol M 480: 371-378. |
[67] | Singh N, Kamath V, Rajini P, et al. (2005) Attenuation of hyperglycemia and associated biochemical parameters in STZ-induced diabetic rats by dietary supplementation of potato peel powder. Clin Chim Acta353: 165-175. |
[68] | El Bohi KM, Hashimoto Y, Muzandu K, et al. (2009) Protective effect of Pleurotus cornucopiae mushroom extract on carbon tetrachloride-induced hepatotoxicity. Jpn J Vet Res 57: 109-118. |
[69] |
Singh N, Rajini P (2008) Antioxidant-mediated protective effect of potato peel extract in erythrocytes against oxidative damage. Chem Biol Interact 173: 97-104. doi: 10.1016/j.cbi.2008.03.008
![]() |
[70] |
Jaeschke H, Gores GJ, Cederbaum AI, et al. (2002) Mechanisms of hepatotoxicity. Toxicol Sci 65: 166-176. doi: 10.1093/toxsci/65.2.166
![]() |
[71] |
Tasaduq S, Singh K, Sethi S, et al. (2003) Hepatocurative and antioxidant profile of HP-1, a polyherbal phytomedicine. Hum Exp Toxicol 22: 639-645. doi: 10.1191/0960327103ht406oa
![]() |
[72] |
Mohammed NMS, Salim HAM (2017) Adsorption of Cr (Vi) ion from aqueous solutions by solid waste of potato peels. Sci J Uni Zakho 5: 254-258. doi: 10.25271/2017.5.3.392
![]() |
[73] |
Bibi S, Farooqi A, Yasmin A, et al. (2017) Arsenic and fluoride removal by potato peel and rice husk (PPRH) ash in aqueous environments. Int J Phytoremediat 19: 1029-1036. doi: 10.1080/15226514.2017.1319329
![]() |
[74] | Guechi EK, Hamdaoui O (2016) Evaluation of potato peel as a novel adsorbent for the removal of Cu (Ⅱ) from aqueous solutions: equilibrium, kinetic, and thermodynamic studies. Desalin Water Treat57: 10677-10688. |
[75] |
Kyzas GZ, Deliyanni EA, Matis KA, et al. (2016) Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption. Colloids Surf, A 490: 74-83. doi: 10.1016/j.colsurfa.2015.11.038
![]() |
[76] | Mahale KK, Mokhasi HR, Ashoka H, et al. (2016) Biosorption of nickel (Ⅱ) from aqueous solutions using potato peel. Res J Chem Environ Sci 4: 96-101. |
[77] | Mutongo F, Kuipa O, Kuipa PK, et al. (2014) Removal of Cr (VI) from aqueous solutions using powder of potato peelings as a low cost sorbent. Bioinorg Chem Appl 2014: 1-7. |
Ex. 1 | Ex. 2 | |
|
||
(4.6) & (4.7) | (4.6) & (4.8) | |
FVEM-dG0 | FVEM-dG1 | ||
12 | 1 | 58.0082e-03 | 14.5267e-03 |
24 | 1 | 58.1606e-03 | 15.1200e-03 |
48 | 1 | 58.1991e-03 | 15.2688e-03 |
96 | 1 | 58.2087e-03 | 15.3060e-03 |
12 | 2 | 32.5818e-03 | 0.6939e-03 |
24 | 2 | 32.5477e-03 | 0.8597e-03 |
48 | 2 | 32.5396e-03 | 0.9086e-03 |
96 | 2 | 32.5376e-03 | 0.9211e-03 |
12 | 4 | 17.3786e-03 | 0.2823e-03 |
24 | 4 | 17.2600e-03 | 0.0916e-03 |
48 | 4 | 17.2310e-03 | 0.1222e-03 |
96 | 4 | 17.2238e-03 | 0.1344e-03 |
12 | 8 | 9.0728e-03 | 0.3586e-03 |
24 | 8 | 8.9160e-03 | 0.0793e-03 |
48 | 8 | 8.8779e-03 | 0.0154e-03 |
96 | 8 | 8.8685e-03 | 0.0153e-03 |
FVEM-dG0 | FVEM-dG1 | ||
5 | 4 | 4.9527e-02 | 5.0631e-02 |
10 | 4 | 2.0846e-02 | 1.8016e-02 |
20 | 4 | 1.0534e-02 | 0.4128e-02 |
40 | 4 | 0.8508e-02 | 0.0992e-02 |
5 | 8 | 4.9824e-02 | 5.0641e-02 |
10 | 8 | 1.8868e-02 | 1.7991e-02 |
20 | 8 | 0.6907e-02 | 0.4088e-03 |
40 | 8 | 0.4671e-02 | 0.0965e-02 |
5 | 16 | 5.0159e-02 | 5.0645e-02 |
10 | 16 | 1.8208e-02 | 1.7988e-02 |
20 | 16 | 0.5197e-02 | 0.4079e-02 |
40 | 16 | 0.2637e-02 | 0.0959e-02 |
5 | 32 | 5.0382e-02 | 5.0647e-02 |
10 | 32 | 1.8027e-02 | 1.7988e-02 |
20 | 32 | 0.4504e-02 | 0.4077e-02 |
40 | 32 | 0.1646e-02 | 0.0958e-02 |
Ex. 1 | Ex. 2 | |
|
0.231831624739998887 | 0.129975678959476710 |
|
0.221196137487056291 | 0.111225678959476525 |
Err. Est. | Eff. | ||||||
12 | 1 | -5.5601e-05 | 6.6298e-03 | 2.6571e-04 | 2.2485e-05 | 6.8623e-03 | 1.149 |
24 | 1 | -1.3843e-05 | 6.6974e-03 | 1.3440e-04 | 5.3567e-06 | 6.8233e-03 | 1.139 |
48 | 1 | -3.4568e-06 | 6.7142e-03 | 6.7378e-05 | 1.3220e-06 | 6.7794e-03 | 1.131 |
96 | 1 | -8.6396e-07 | 6.7184e-03 | 3.3706e-05 | 3.2943e-07 | 6.7515e-03 | 1.126 |
12 | 2 | -4.4365e-05 | 3.8268e-03 | 7.1941e-05 | 3.6142e-05 | 3.8906e-03 | 1.120 |
24 | 2 | -1.1046e-05 | 3.8548e-03 | 3.9509e-05 | 8.5556e-06 | 3.8918e-03 | 1.120 |
48 | 2 | -2.7579e-06 | 3.8617e-03 | 2.0874e-05 | 2.1051e-06 | 3.8820e-03 | 1.120 |
96 | 2 | -6.8914e-07 | 3.8635e-03 | 1.0730e-05 | 5.2410e-07 | 3.8740e-03 | 1.115 |
12 | 4 | -3.9779e-05 | 2.0010e-03 | 2.5003e-05 | 4.3906e-05 | 2.0310e-03 | 1.067 |
24 | 4 | -9.9212e-06 | 2.0128e-03 | 1.2165e-06 | 1.0291e-05 | 2.0254e-03 | 1.069 |
48 | 4 | -2.4774e-06 | 2.0158e-03 | 6.9258e-06 | 2.5084e-06 | 2.0227e-03 | 1.069 |
96 | 4 | -6.1911e-07 | 2.0165e-03 | 3.7657e-06 | 6.2266e-07 | 2.0203e-03 | 1.068 |
12 | 8 | -3.8042e-05 | 1.0175e-03 | 1.9493e-05 | 4.6704e-05 | 1.0457e-03 | 1.037 |
24 | 8 | -9.4764e-06 | 1.0227e-03 | 5.0975e-06 | 1.1390e-05 | 1.0297e-03 | 1.036 |
48 | 8 | -2.3676e-06 | 1.0240e-03 | 2.3602e-06 | 2.7559e-06 | 1.0268e-03 | 1.036 |
96 | 8 | -5.9172e-07 | 1.0244e-03 | 1.3885e-06 | 6.8063e-07 | 1.0258e-03 | 1.036 |
Err. Est. | Eff. | ||||||
12 | 1 | -7.6641e-05 | -5.9702e-03 | 6.5348e-06 | 2.7273e-05 | -6.0131e-03 | 1.290 |
24 | 1 | -1.9082e-05 | -5.9818e-03 | 1.6059e-06 | 6.7751e-06 | -5.9925e-03 | 1.290 |
48 | 1 | -4.7653e-06 | -5.9847e-03 | 3.9971e-07 | 1.6907e-06 | -5.9874e-03 | 1.290 |
96 | 1 | -1.1910e-06 | -5.9854e-03 | 9.9817e-08 | 4.2248e-07 | -5.9861e-03 | 1.290 |
12 | 2 | -7.4772e-05 | -3.0291e-03 | 1.6147e-05 | 2.5436e-05 | -3.0623e-03 | 1.123 |
24 | 2 | -1.8616e-05 | -3.0342e-03 | 3.9483e-06 | 6.3250e-06 | -3.0426e-03 | 1.123 |
48 | 2 | -4.6488e-06 | -3.0355e-03 | 9.8092e-07 | 1.5784e-06 | -3.0376e-03 | 1.123 |
96 | 2 | -1.1619e-06 | -3.0358e-03 | 2.4483e-07 | 3.9441e-07 | -3.0363e-03 | 1.123 |
12 | 4 | -7.4397e-05 | -1.5584e-03 | 2.3449e-05 | 2.4137e-05 | -1.5852e-03 | 1.057 |
24 | 4 | -1.8523e-05 | -1.5609e-03 | 5.7189e-06 | 6.0235e-06 | -1.5677e-03 | 1.057 |
48 | 4 | -4.6257e-06 | -1.5615e-03 | 1.4158e-06 | 1.5036e-06 | -1.5632e-03 | 1.057 |
96 | 4 | -1.1561e-06 | -1.5617e-03 | 3.5295e-07 | 3.7571e-07 | -1.5621e-03 | 1.057 |
12 | 8 | -7.4326e-05 | -7.9524e-04 | 2.7824e-05 | 2.3365e-05 | -8.1837e-04 | 1.027 |
24 | 8 | -1.8504e-05 | -7.9647e-04 | 6.8634e-06 | 5.8679e-06 | -8.0225e-04 | 1.027 |
48 | 8 | -4.6210e-06 | -7.9678e-04 | 1.6962e-06 | 1.4661e-06 | -7.9824e-04 | 1.027 |
96 | 8 | -1.1549e-06 | -7.9686e-04 | 4.2208e-07 | 3.6638e-07 | -7.9722e-04 | 1.027 |
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -6.2164e-08 | -3.6456e-07 | 1.0290e-02 | 1.0253e-02 | 0.977 |
10 | 4 | -1.3302e-05 | 3.3879e-09 | -4.6917e-09 | 3.9111e-03 | 3.8978e-03 | 0.993 |
20 | 4 | -5.7876e-06 | 9.9041e-10 | -2.2824e-10 | 1.0090e-03 | 1.0032e-03 | 0.998 |
40 | 4 | -2.7053e-06 | 5.6955e-10 | -3.8568e-11 | 2.4965e-04 | 2.4695e-04 | 0.999 |
5 | 8 | -3.6107e-05 | -4.3218e-08 | -3.5113e-07 | 1.1133e-02 | 1.1096e-02 | 0.974 |
10 | 8 | -1.3302e-05 | 1.8737e-10 | -4.7768e-10 | 4.3243e-03 | 4.3110e-03 | 0.993 |
20 | 8 | -5.7876e-06 | 1.9063e-11 | -6.0320e-12 | 1.0842e-03 | 1.0784e-03 | 0.998 |
40 | 8 | -2.7053e-06 | 5.5338e-12 | -4.5001e-13 | 2.6644e-04 | 2.6373e-02 | 0.999 |
5 | 16 | -3.6121e-05 | 6.8028e-08 | -4.5382e-07 | 1.1595e-02 | 1.1559e-02 | 0.973 |
10 | 16 | -1.3302e-05 | 1.6801e-11 | -8.8583e-11 | 4.5811e-03 | 4.5678e-03 | 0.992 |
20 | 16 | -5.7876e-06 | 5.2323e-13 | -3.2271e-13 | 1.1290e-03 | 1.1232e-03 | 0.998 |
40 | 16 | -2.7053e-06 | 4.0884e-14 | -2.5154e-14 | 2.7647e-04 | 2.7376e-04 | 0.999 |
5 | 32 | -3.6089e-05 | -4.4295e-08 | 4.5726e-08 | 1.1837e-02 | 1.1801e-02 | 0.972 |
10 | 32 | -1.3302e-05 | 2.5330e-12 | -2.9891e-11 | 4.7280e-03 | 4.7144e-03 | 0.992 |
20 | 32 | -5.7876e-06 | 2.6583e-14 | -9.4480e-14 | 1.1545e-03 | 1.1487e-03 | 0.998 |
40 | 32 | -2.7053e-06 | -1.0436e-14 | -1.8777e-14 | 2.8211e-04 | 2.7941e-04 | 0.999 |
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -4.6874e-03 | -7.6435e-08 | 7.2999e-03 | 2.5763e-03 | 0.921 |
10 | 4 | -1.3302e-05 | -4.6875e-03 | -8.4587e-10 | 3.3265e-03 | -1.3743e-03 | 1.026 |
20 | 4 | -5.7876e-06 | -4.6875e-03 | -3.4359e-11 | 9.8963e-04 | -3.7036e-03 | 1.001 |
40 | 4 | -2.7054e-06 | -4.6875e-03 | -4.2724e-12 | 2.5707e-04 | -4.4331e-03 | 1.000 |
5 | 8 | -3.6102e-05 | -2.3437e-03 | -4.6414e-08 | 7.2458e-03 | 4.8659e-03 | 0.950 |
10 | 8 | -1.3302e-05 | -2.3437e-03 | -6.5517e-11 | 3.5887e-03 | 1.2316e-03 | 0.961 |
20 | 8 | -5.7876e-06 | -2.3437e-03 | -7.0707e-13 | 1.0899e-03 | -1.2596e-03 | 1.004 |
40 | 8 | -2.7054e-06 | -2.3437e-03 | -4.9054e-14 | 2.8339e-04 | -2.0631e-03 | 1.000 |
5 | 16 | -3.6105e-05 | -1.1719e-03 | -7.9249e-08 | 7.1892e-03 | 5.9812e-03 | 0.956 |
10 | 16 | -1.3302e-05 | -1.1719e-03 | -1.0129e-11 | 3.7626e-03 | 2.5774e-03 | 0.977 |
20 | 16 | -5.7876e-06 | -1.1719e-03 | -6.6506e-14 | 1.1637e-03 | -1.3957e-05 | 1.823 |
40 | 16 | -2.7054e-06 | -1.1719e-03 | -1.1789e-14 | 3.0287e-04 | -8.7171e-04 | 1.001 |
5 | 32 | -3.6103e-05 | -5.8593e-04 | -2.1637e-08 | 7.1541e-03 | 6.5320e-03 | 0.959 |
10 | 32 | -1.3302e-06 | -5.8594e-04 | -3.1392e-12 | 3.8643e-03 | 3.2650e-03 | 0.979 |
20 | 32 | -5.7876e-06 | -5.8594e-04 | -4.6973e-14 | 1.2132e-03 | 6.2149e-04 | 0.988 |
40 | 32 | -2.7054e-06 | -5.8594e-04 | -1.1491e-14 | 3.1628e-04 | -2.7236e-04 | 1.002 |
12 | 1 | 6.9104e-03 | 7.5953e-06 | 0 |
24 | 1 | 6.8352e-03 | 1.8846e-06 | 6.9389e-18 |
48 | 1 | 6.7824e-03 | 4.6724e-07 | 3.4694e-18 |
96 | 1 | 6.7523e-03 | 1.1620e-07 | 6.9389e-18 |
12 | 2 | 3.8392e-03 | 6.1045e-06 | 8.9582e-05 |
24 | 2 | 3.8789e-03 | 1.5228e-06 | 2.2428e-05 |
48 | 2 | 3.8787e-03 | 3.7986e-07 | 5.6090e-06 |
96 | 2 | 3.8732e-03 | 9.4827e-08 | 1.4024e-06 |
12 | 4 | 1.9444e-03 | 5.6811e-06 | 1.1982e-04 |
24 | 4 | 2.0038e-03 | 1.4190e-06 | 3.0033e-05 |
48 | 4 | 2.0173e-03 | 3.5462e-07 | 7.5129e-06 |
96 | 4 | 2.0189e-03 | 8.8625e-08 | 1.8785e-06 |
12 | 8 | 9.4839e-04 | 5.5176e-06 | 1.2981e-04 |
24 | 8 | 1.0052e-03 | 1.3769e-06 | 3.2575e-05 |
48 | 8 | 1.0206e-03 | 3.4421e-07 | 8.1499e-06 |
96 | 8 | 1.0243e-03 | 8.6050e-08 | 2.0378e-06 |
12 | 1 | -5.9364e-03 | 0 | 0 |
24 | 1 | -5.9734e-03 | 0 | 0 |
48 | 1 | -5.9826e-03 | 0 | 0 |
96 | 1 | -5.9849e-03 | 0 | 0 |
12 | 2 | -3.0501e-03 | 2.5710e-06 | 5.9998e-05 |
24 | 2 | -3.0397e-03 | 6.4271e-07 | 1.5112e-05 |
48 | 2 | -3.0369e-03 | 1.6068e-07 | 3.7850e-06 |
96 | 2 | -3.0361e-03 | 4.0169e-08 | 9.4670e-07 |
12 | 4 | -1.6024e-03 | 4.3468e-06 | 8.7251e-05 |
24 | 4 | -1.5722e-03 | 1.0865e-06 | 2.1970e-05 |
48 | 4 | -1.5644e-03 | 2.7161e-07 | 5.5023e-06 |
96 | 4 | -1.5624e-03 | 6.7902e-08 | 1.3762e-06 |
12 | 8 | -8.5030e-04 | 5.5588e-06 | 1.0069e-04 |
24 | 8 | -8.1048e-04 | 1.3899e-06 | 2.5351e-05 |
48 | 8 | -8.0031e-04 | 3.4750e-07 | 6.3488e-06 |
96 | 8 | -7.9774e-04 | 8.6875e-08 | 1.5879e-06 |
5 | 4 | 1.0289e-02 | -7.6351e-08 | 3.0166e-07 |
10 | 4 | 3.9111e-03 | -5.9250e-10 | 4.6158e-09 |
20 | 4 | 1.0090e-03 | -1.7676e-11 | 1.7694e-10 |
40 | 4 | 2.4965e-04 | -1.9490e-12 | 2.1193e-11 |
5 | 8 | 1.1134e-02 | 7.3138e-08 | -1.3466e-06 |
10 | 8 | 4.3243e-03 | -6.0938e-11 | 1.1118e-09 |
20 | 8 | 1.0842e-03 | -4.8331e-13 | 1.1840e-11 |
40 | 8 | 2.6644e-04 | -2.7270e-14 | 6.6398e-13 |
5 | 16 | 1.1601e-02 | 8.7291e-08 | -5.8431e-06 |
10 | 16 | 4.5811e-03 | -1.1412e-11 | 3.7774e-10 |
20 | 16 | 1.1290e-03 | -3.7491e-14 | 1.0044e-12 |
40 | 16 | 2.7647e-04 | -4.7254e-15 | 1.7396e-14 |
5 | 32 | 1.1833e-02 | 2.1590e-08 | 3.9613e-06 |
10 | 32 | 4.7277e-03 | -3.8970e-12 | 1.8867e-10 |
20 | 32 | 1.1545e-03 | -1.9623e-14 | 1.5073e-13 |
40 | 32 | 2.8211e-04 | -4.4201e-15 | -2.7756e-17 |
5 | 4 | 2.6123e-03 | -7.7482e-09 | 1.1954e-07 |
10 | 4 | -1.3610e-03 | -5.0964e-11 | 1.2934e-09 |
20 | 4 | -3.6979e-03 | -1.4624e-12 | 4.4327e-11 |
40 | 4 | -4.4304e-03 | -1.6102e-13 | 5.1326e-12 |
5 | 8 | 4.9021e-03 | 6.9429e-09 | -1.0375e-07 |
10 | 8 | 1.2450e-03 | -5.4195e-12 | 2.1318e-10 |
20 | 8 | -1.2539e-03 | -4.3805e-14 | 1.8653e-12 |
40 | 8 | -2.0604e-03 | -3.6394e-15 | 9.6166e-14 |
5 | 16 | 6.0183e-03 | 1.5114e-08 | -1.0262e-06 |
10 | 16 | 2.5907e-03 | -1.0270e-12 | 5.4566e-11 |
20 | 16 | -8.1695e-06 | -9.7700e-15 | 1.0732e-13 |
40 | 16 | -8.6900e-04 | -2.1094e-15 | 1.2386e-15 |
5 | 32 | 6.5684e-03 | 3.4467e-09 | -3.0913e-07 |
10 | 32 | 3.2783e-03 | -3.6607e-13 | 2.2585e-11 |
20 | 32 | 6.2727e-04 | -8.8020e-15 | 1.0911e-14 |
40 | 32 | -2.6966e-04 | -2.1545e-15 | -4.1980e-16 |
Ex. 1 | Ex. 2 | |
|
||
(4.6) & (4.7) | (4.6) & (4.8) | |
FVEM-dG0 | FVEM-dG1 | ||
12 | 1 | 58.0082e-03 | 14.5267e-03 |
24 | 1 | 58.1606e-03 | 15.1200e-03 |
48 | 1 | 58.1991e-03 | 15.2688e-03 |
96 | 1 | 58.2087e-03 | 15.3060e-03 |
12 | 2 | 32.5818e-03 | 0.6939e-03 |
24 | 2 | 32.5477e-03 | 0.8597e-03 |
48 | 2 | 32.5396e-03 | 0.9086e-03 |
96 | 2 | 32.5376e-03 | 0.9211e-03 |
12 | 4 | 17.3786e-03 | 0.2823e-03 |
24 | 4 | 17.2600e-03 | 0.0916e-03 |
48 | 4 | 17.2310e-03 | 0.1222e-03 |
96 | 4 | 17.2238e-03 | 0.1344e-03 |
12 | 8 | 9.0728e-03 | 0.3586e-03 |
24 | 8 | 8.9160e-03 | 0.0793e-03 |
48 | 8 | 8.8779e-03 | 0.0154e-03 |
96 | 8 | 8.8685e-03 | 0.0153e-03 |
FVEM-dG0 | FVEM-dG1 | ||
5 | 4 | 4.9527e-02 | 5.0631e-02 |
10 | 4 | 2.0846e-02 | 1.8016e-02 |
20 | 4 | 1.0534e-02 | 0.4128e-02 |
40 | 4 | 0.8508e-02 | 0.0992e-02 |
5 | 8 | 4.9824e-02 | 5.0641e-02 |
10 | 8 | 1.8868e-02 | 1.7991e-02 |
20 | 8 | 0.6907e-02 | 0.4088e-03 |
40 | 8 | 0.4671e-02 | 0.0965e-02 |
5 | 16 | 5.0159e-02 | 5.0645e-02 |
10 | 16 | 1.8208e-02 | 1.7988e-02 |
20 | 16 | 0.5197e-02 | 0.4079e-02 |
40 | 16 | 0.2637e-02 | 0.0959e-02 |
5 | 32 | 5.0382e-02 | 5.0647e-02 |
10 | 32 | 1.8027e-02 | 1.7988e-02 |
20 | 32 | 0.4504e-02 | 0.4077e-02 |
40 | 32 | 0.1646e-02 | 0.0958e-02 |
Ex. 1 | Ex. 2 | |
|
0.231831624739998887 | 0.129975678959476710 |
|
0.221196137487056291 | 0.111225678959476525 |
Err. Est. | Eff. | ||||||
12 | 1 | -5.5601e-05 | 6.6298e-03 | 2.6571e-04 | 2.2485e-05 | 6.8623e-03 | 1.149 |
24 | 1 | -1.3843e-05 | 6.6974e-03 | 1.3440e-04 | 5.3567e-06 | 6.8233e-03 | 1.139 |
48 | 1 | -3.4568e-06 | 6.7142e-03 | 6.7378e-05 | 1.3220e-06 | 6.7794e-03 | 1.131 |
96 | 1 | -8.6396e-07 | 6.7184e-03 | 3.3706e-05 | 3.2943e-07 | 6.7515e-03 | 1.126 |
12 | 2 | -4.4365e-05 | 3.8268e-03 | 7.1941e-05 | 3.6142e-05 | 3.8906e-03 | 1.120 |
24 | 2 | -1.1046e-05 | 3.8548e-03 | 3.9509e-05 | 8.5556e-06 | 3.8918e-03 | 1.120 |
48 | 2 | -2.7579e-06 | 3.8617e-03 | 2.0874e-05 | 2.1051e-06 | 3.8820e-03 | 1.120 |
96 | 2 | -6.8914e-07 | 3.8635e-03 | 1.0730e-05 | 5.2410e-07 | 3.8740e-03 | 1.115 |
12 | 4 | -3.9779e-05 | 2.0010e-03 | 2.5003e-05 | 4.3906e-05 | 2.0310e-03 | 1.067 |
24 | 4 | -9.9212e-06 | 2.0128e-03 | 1.2165e-06 | 1.0291e-05 | 2.0254e-03 | 1.069 |
48 | 4 | -2.4774e-06 | 2.0158e-03 | 6.9258e-06 | 2.5084e-06 | 2.0227e-03 | 1.069 |
96 | 4 | -6.1911e-07 | 2.0165e-03 | 3.7657e-06 | 6.2266e-07 | 2.0203e-03 | 1.068 |
12 | 8 | -3.8042e-05 | 1.0175e-03 | 1.9493e-05 | 4.6704e-05 | 1.0457e-03 | 1.037 |
24 | 8 | -9.4764e-06 | 1.0227e-03 | 5.0975e-06 | 1.1390e-05 | 1.0297e-03 | 1.036 |
48 | 8 | -2.3676e-06 | 1.0240e-03 | 2.3602e-06 | 2.7559e-06 | 1.0268e-03 | 1.036 |
96 | 8 | -5.9172e-07 | 1.0244e-03 | 1.3885e-06 | 6.8063e-07 | 1.0258e-03 | 1.036 |
Err. Est. | Eff. | ||||||
12 | 1 | -7.6641e-05 | -5.9702e-03 | 6.5348e-06 | 2.7273e-05 | -6.0131e-03 | 1.290 |
24 | 1 | -1.9082e-05 | -5.9818e-03 | 1.6059e-06 | 6.7751e-06 | -5.9925e-03 | 1.290 |
48 | 1 | -4.7653e-06 | -5.9847e-03 | 3.9971e-07 | 1.6907e-06 | -5.9874e-03 | 1.290 |
96 | 1 | -1.1910e-06 | -5.9854e-03 | 9.9817e-08 | 4.2248e-07 | -5.9861e-03 | 1.290 |
12 | 2 | -7.4772e-05 | -3.0291e-03 | 1.6147e-05 | 2.5436e-05 | -3.0623e-03 | 1.123 |
24 | 2 | -1.8616e-05 | -3.0342e-03 | 3.9483e-06 | 6.3250e-06 | -3.0426e-03 | 1.123 |
48 | 2 | -4.6488e-06 | -3.0355e-03 | 9.8092e-07 | 1.5784e-06 | -3.0376e-03 | 1.123 |
96 | 2 | -1.1619e-06 | -3.0358e-03 | 2.4483e-07 | 3.9441e-07 | -3.0363e-03 | 1.123 |
12 | 4 | -7.4397e-05 | -1.5584e-03 | 2.3449e-05 | 2.4137e-05 | -1.5852e-03 | 1.057 |
24 | 4 | -1.8523e-05 | -1.5609e-03 | 5.7189e-06 | 6.0235e-06 | -1.5677e-03 | 1.057 |
48 | 4 | -4.6257e-06 | -1.5615e-03 | 1.4158e-06 | 1.5036e-06 | -1.5632e-03 | 1.057 |
96 | 4 | -1.1561e-06 | -1.5617e-03 | 3.5295e-07 | 3.7571e-07 | -1.5621e-03 | 1.057 |
12 | 8 | -7.4326e-05 | -7.9524e-04 | 2.7824e-05 | 2.3365e-05 | -8.1837e-04 | 1.027 |
24 | 8 | -1.8504e-05 | -7.9647e-04 | 6.8634e-06 | 5.8679e-06 | -8.0225e-04 | 1.027 |
48 | 8 | -4.6210e-06 | -7.9678e-04 | 1.6962e-06 | 1.4661e-06 | -7.9824e-04 | 1.027 |
96 | 8 | -1.1549e-06 | -7.9686e-04 | 4.2208e-07 | 3.6638e-07 | -7.9722e-04 | 1.027 |
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -6.2164e-08 | -3.6456e-07 | 1.0290e-02 | 1.0253e-02 | 0.977 |
10 | 4 | -1.3302e-05 | 3.3879e-09 | -4.6917e-09 | 3.9111e-03 | 3.8978e-03 | 0.993 |
20 | 4 | -5.7876e-06 | 9.9041e-10 | -2.2824e-10 | 1.0090e-03 | 1.0032e-03 | 0.998 |
40 | 4 | -2.7053e-06 | 5.6955e-10 | -3.8568e-11 | 2.4965e-04 | 2.4695e-04 | 0.999 |
5 | 8 | -3.6107e-05 | -4.3218e-08 | -3.5113e-07 | 1.1133e-02 | 1.1096e-02 | 0.974 |
10 | 8 | -1.3302e-05 | 1.8737e-10 | -4.7768e-10 | 4.3243e-03 | 4.3110e-03 | 0.993 |
20 | 8 | -5.7876e-06 | 1.9063e-11 | -6.0320e-12 | 1.0842e-03 | 1.0784e-03 | 0.998 |
40 | 8 | -2.7053e-06 | 5.5338e-12 | -4.5001e-13 | 2.6644e-04 | 2.6373e-02 | 0.999 |
5 | 16 | -3.6121e-05 | 6.8028e-08 | -4.5382e-07 | 1.1595e-02 | 1.1559e-02 | 0.973 |
10 | 16 | -1.3302e-05 | 1.6801e-11 | -8.8583e-11 | 4.5811e-03 | 4.5678e-03 | 0.992 |
20 | 16 | -5.7876e-06 | 5.2323e-13 | -3.2271e-13 | 1.1290e-03 | 1.1232e-03 | 0.998 |
40 | 16 | -2.7053e-06 | 4.0884e-14 | -2.5154e-14 | 2.7647e-04 | 2.7376e-04 | 0.999 |
5 | 32 | -3.6089e-05 | -4.4295e-08 | 4.5726e-08 | 1.1837e-02 | 1.1801e-02 | 0.972 |
10 | 32 | -1.3302e-05 | 2.5330e-12 | -2.9891e-11 | 4.7280e-03 | 4.7144e-03 | 0.992 |
20 | 32 | -5.7876e-06 | 2.6583e-14 | -9.4480e-14 | 1.1545e-03 | 1.1487e-03 | 0.998 |
40 | 32 | -2.7053e-06 | -1.0436e-14 | -1.8777e-14 | 2.8211e-04 | 2.7941e-04 | 0.999 |
Err. Est. | Eff. | ||||||
5 | 4 | -3.6102e-05 | -4.6874e-03 | -7.6435e-08 | 7.2999e-03 | 2.5763e-03 | 0.921 |
10 | 4 | -1.3302e-05 | -4.6875e-03 | -8.4587e-10 | 3.3265e-03 | -1.3743e-03 | 1.026 |
20 | 4 | -5.7876e-06 | -4.6875e-03 | -3.4359e-11 | 9.8963e-04 | -3.7036e-03 | 1.001 |
40 | 4 | -2.7054e-06 | -4.6875e-03 | -4.2724e-12 | 2.5707e-04 | -4.4331e-03 | 1.000 |
5 | 8 | -3.6102e-05 | -2.3437e-03 | -4.6414e-08 | 7.2458e-03 | 4.8659e-03 | 0.950 |
10 | 8 | -1.3302e-05 | -2.3437e-03 | -6.5517e-11 | 3.5887e-03 | 1.2316e-03 | 0.961 |
20 | 8 | -5.7876e-06 | -2.3437e-03 | -7.0707e-13 | 1.0899e-03 | -1.2596e-03 | 1.004 |
40 | 8 | -2.7054e-06 | -2.3437e-03 | -4.9054e-14 | 2.8339e-04 | -2.0631e-03 | 1.000 |
5 | 16 | -3.6105e-05 | -1.1719e-03 | -7.9249e-08 | 7.1892e-03 | 5.9812e-03 | 0.956 |
10 | 16 | -1.3302e-05 | -1.1719e-03 | -1.0129e-11 | 3.7626e-03 | 2.5774e-03 | 0.977 |
20 | 16 | -5.7876e-06 | -1.1719e-03 | -6.6506e-14 | 1.1637e-03 | -1.3957e-05 | 1.823 |
40 | 16 | -2.7054e-06 | -1.1719e-03 | -1.1789e-14 | 3.0287e-04 | -8.7171e-04 | 1.001 |
5 | 32 | -3.6103e-05 | -5.8593e-04 | -2.1637e-08 | 7.1541e-03 | 6.5320e-03 | 0.959 |
10 | 32 | -1.3302e-06 | -5.8594e-04 | -3.1392e-12 | 3.8643e-03 | 3.2650e-03 | 0.979 |
20 | 32 | -5.7876e-06 | -5.8594e-04 | -4.6973e-14 | 1.2132e-03 | 6.2149e-04 | 0.988 |
40 | 32 | -2.7054e-06 | -5.8594e-04 | -1.1491e-14 | 3.1628e-04 | -2.7236e-04 | 1.002 |
12 | 1 | 6.9104e-03 | 7.5953e-06 | 0 |
24 | 1 | 6.8352e-03 | 1.8846e-06 | 6.9389e-18 |
48 | 1 | 6.7824e-03 | 4.6724e-07 | 3.4694e-18 |
96 | 1 | 6.7523e-03 | 1.1620e-07 | 6.9389e-18 |
12 | 2 | 3.8392e-03 | 6.1045e-06 | 8.9582e-05 |
24 | 2 | 3.8789e-03 | 1.5228e-06 | 2.2428e-05 |
48 | 2 | 3.8787e-03 | 3.7986e-07 | 5.6090e-06 |
96 | 2 | 3.8732e-03 | 9.4827e-08 | 1.4024e-06 |
12 | 4 | 1.9444e-03 | 5.6811e-06 | 1.1982e-04 |
24 | 4 | 2.0038e-03 | 1.4190e-06 | 3.0033e-05 |
48 | 4 | 2.0173e-03 | 3.5462e-07 | 7.5129e-06 |
96 | 4 | 2.0189e-03 | 8.8625e-08 | 1.8785e-06 |
12 | 8 | 9.4839e-04 | 5.5176e-06 | 1.2981e-04 |
24 | 8 | 1.0052e-03 | 1.3769e-06 | 3.2575e-05 |
48 | 8 | 1.0206e-03 | 3.4421e-07 | 8.1499e-06 |
96 | 8 | 1.0243e-03 | 8.6050e-08 | 2.0378e-06 |
12 | 1 | -5.9364e-03 | 0 | 0 |
24 | 1 | -5.9734e-03 | 0 | 0 |
48 | 1 | -5.9826e-03 | 0 | 0 |
96 | 1 | -5.9849e-03 | 0 | 0 |
12 | 2 | -3.0501e-03 | 2.5710e-06 | 5.9998e-05 |
24 | 2 | -3.0397e-03 | 6.4271e-07 | 1.5112e-05 |
48 | 2 | -3.0369e-03 | 1.6068e-07 | 3.7850e-06 |
96 | 2 | -3.0361e-03 | 4.0169e-08 | 9.4670e-07 |
12 | 4 | -1.6024e-03 | 4.3468e-06 | 8.7251e-05 |
24 | 4 | -1.5722e-03 | 1.0865e-06 | 2.1970e-05 |
48 | 4 | -1.5644e-03 | 2.7161e-07 | 5.5023e-06 |
96 | 4 | -1.5624e-03 | 6.7902e-08 | 1.3762e-06 |
12 | 8 | -8.5030e-04 | 5.5588e-06 | 1.0069e-04 |
24 | 8 | -8.1048e-04 | 1.3899e-06 | 2.5351e-05 |
48 | 8 | -8.0031e-04 | 3.4750e-07 | 6.3488e-06 |
96 | 8 | -7.9774e-04 | 8.6875e-08 | 1.5879e-06 |
5 | 4 | 1.0289e-02 | -7.6351e-08 | 3.0166e-07 |
10 | 4 | 3.9111e-03 | -5.9250e-10 | 4.6158e-09 |
20 | 4 | 1.0090e-03 | -1.7676e-11 | 1.7694e-10 |
40 | 4 | 2.4965e-04 | -1.9490e-12 | 2.1193e-11 |
5 | 8 | 1.1134e-02 | 7.3138e-08 | -1.3466e-06 |
10 | 8 | 4.3243e-03 | -6.0938e-11 | 1.1118e-09 |
20 | 8 | 1.0842e-03 | -4.8331e-13 | 1.1840e-11 |
40 | 8 | 2.6644e-04 | -2.7270e-14 | 6.6398e-13 |
5 | 16 | 1.1601e-02 | 8.7291e-08 | -5.8431e-06 |
10 | 16 | 4.5811e-03 | -1.1412e-11 | 3.7774e-10 |
20 | 16 | 1.1290e-03 | -3.7491e-14 | 1.0044e-12 |
40 | 16 | 2.7647e-04 | -4.7254e-15 | 1.7396e-14 |
5 | 32 | 1.1833e-02 | 2.1590e-08 | 3.9613e-06 |
10 | 32 | 4.7277e-03 | -3.8970e-12 | 1.8867e-10 |
20 | 32 | 1.1545e-03 | -1.9623e-14 | 1.5073e-13 |
40 | 32 | 2.8211e-04 | -4.4201e-15 | -2.7756e-17 |
5 | 4 | 2.6123e-03 | -7.7482e-09 | 1.1954e-07 |
10 | 4 | -1.3610e-03 | -5.0964e-11 | 1.2934e-09 |
20 | 4 | -3.6979e-03 | -1.4624e-12 | 4.4327e-11 |
40 | 4 | -4.4304e-03 | -1.6102e-13 | 5.1326e-12 |
5 | 8 | 4.9021e-03 | 6.9429e-09 | -1.0375e-07 |
10 | 8 | 1.2450e-03 | -5.4195e-12 | 2.1318e-10 |
20 | 8 | -1.2539e-03 | -4.3805e-14 | 1.8653e-12 |
40 | 8 | -2.0604e-03 | -3.6394e-15 | 9.6166e-14 |
5 | 16 | 6.0183e-03 | 1.5114e-08 | -1.0262e-06 |
10 | 16 | 2.5907e-03 | -1.0270e-12 | 5.4566e-11 |
20 | 16 | -8.1695e-06 | -9.7700e-15 | 1.0732e-13 |
40 | 16 | -8.6900e-04 | -2.1094e-15 | 1.2386e-15 |
5 | 32 | 6.5684e-03 | 3.4467e-09 | -3.0913e-07 |
10 | 32 | 3.2783e-03 | -3.6607e-13 | 2.2585e-11 |
20 | 32 | 6.2727e-04 | -8.8020e-15 | 1.0911e-14 |
40 | 32 | -2.6966e-04 | -2.1545e-15 | -4.1980e-16 |