Parameter | Value | Parameter | Value | Parameter | Value |
0.9 | 0.1 | 0.6 | |||
0.8 | 0.05 | 0.3 | |||
0.6 | 0.2 | 0.35 | |||
0.23 | 0.05 | 0.05 | |||
1 | 1 | 4 | |||
3 | 8 | 5 |
Citation: Hsiu-Chuan Wei. Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325
[1] | Ekaterina Kldiashvili, Archil Burduli, Gocha Ghortlishvili . Application of Digital Imaging for Cytopathology under Conditions of Georgia. AIMS Medical Science, 2015, 2(3): 186-199. doi: 10.3934/medsci.2015.3.186 |
[2] | Anuj A. Shukla, Shreya Podder, Sana R. Chaudry, Bryan S. Benn, Jonathan S. Kurman . Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. AIMS Medical Science, 2022, 9(2): 348-361. doi: 10.3934/medsci.2022016 |
[3] | Nicole Lavender, David W. Hein, Guy Brock, La Creis R. Kidd . Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer. AIMS Medical Science, 2015, 2(4): 271-294. doi: 10.3934/medsci.2015.4.271 |
[4] | Masahiro Yasunaga, Shino Manabe, Masaru Furuta, Koretsugu Ogata, Yoshikatsu Koga, Hiroki Takashima, Toshirou Nishida, Yasuhiro Matsumura . Mass spectrometry imaging for early discovery and development of cancer drugs. AIMS Medical Science, 2018, 5(2): 162-180. doi: 10.3934/medsci.2018.2.162 |
[5] | Sherven Sharma, Pournima Kadam, Ram P Singh, Michael Davoodi, Maie St John, Jay M Lee . CCL21-DC tumor antigen vaccine augments anti-PD-1 therapy in lung cancer. AIMS Medical Science, 2021, 8(4): 269-275. doi: 10.3934/medsci.2021022 |
[6] | Ayomide Abe, Mpumelelo Nyathi, Akintunde Okunade . Lung cancer diagnosis from computed tomography scans using convolutional neural network architecture with Mavage pooling technique. AIMS Medical Science, 2025, 12(1): 13-27. doi: 10.3934/medsci.2025002 |
[7] | Timothy Hamerly, Margaret H. Butler, Steve T. Fisher, Jonathan K. Hilmer, Garth A. James, Brian Bothner . Mass Spectrometry Imaging of Chlorhexidine and Bacteria in a Model Wound. AIMS Medical Science, 2015, 2(3): 150-161. doi: 10.3934/medsci.2015.3.150 |
[8] | Prarthana Shrestha, Rik Kneepkens, Gijs van Elswijk, Jeroen Vrijnsen, Roxana Ion, Dirk Verhagen, Esther Abels, Dirk Vossen, and Bas Hulsken . Objective and Subjective Assessment of Digital Pathology Image Quality. AIMS Medical Science, 2015, 2(1): 65-78. doi: 10.3934/medsci.2015.1.65 |
[9] | Anne A. Adeyanju, Wonderful B. Adebagbo, Olorunfemi R. Molehin, Omolola R. Oyenihi . Exploring the multi-drug resistance (MDR) inhibition property of Sildenafil: phosphodiesterase 5 as a therapeutic target and a potential player in reversing MDR for a successful breast cancer treatment. AIMS Medical Science, 2025, 12(2): 145-170. doi: 10.3934/medsci.2025010 |
[10] | Salma M. AlDallal . Quick glance at Fanconi anemia and BRCA2/FANCD1. AIMS Medical Science, 2019, 6(4): 326-336. doi: 10.3934/medsci.2019.4.326 |
In mathematical modelling, the term diffusion is used to describe the motion of species from one region to another. Influenced by various natural factors, such as geographic, hydrological or climatic conditions and human activities, migrations occur between patches, which affects the population dynamics, for example the persistence and extinction of species [1,2,3,4,5,6,7,8]. The growth of species population is also affected by competition caused by disputing food, resources, territories and spouses, including intraspecific and interspecific competitions among populations. To see the effects of the diffusion and competition on population dynamics, we propose the following mathematical model with
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDijxj(t)−n∑j=1,j≠iDijαijxi(t)]dt, | (1) |
where
Recently, time delays have been widely used in biological and ecological models in order to get more realistic mathematical models, for example [9,10,11,12,13,14,15,16]. In this paper, we also consider the time delay, which is accounted for the diffusion. For example, birds cannot migrate immediately after they were born, so the time delay here is the time it takes for them to learn to fly before they can migrate, and death can also occur in the process. Then, from (1) we have the model with time delays as follows
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDije−djτijxj(t−τij)−n∑j=1,j≠iDijαijxi(t)]dt,i,j=1,2,…,n, | (2) |
where
x(θ)=(x1(θ),…,xn(θ))T=(ϕ1(θ),…,ϕn(θ))T=ϕ(θ)∈C([−τ,0];Rn+). | (3) |
Reference [17] suggests that the growth rate of organisms is generally affected by environmental fluctuations accounted for the disturbance of ecological environment in nature, consequently parameters in biologic models will exhibit random perturbations [18]. Thus, the deterministic models, like (2) are not applicable to capture the essential characters. In the past years, researchers have suggested the use of white noises to capture the main characters of these stochastic fluctuations, see [18,19,20,21,22,23,24,25,26,27] for example. Denote by
ri→ri+σidBi(t), |
with which the model (2) reads
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDije−djτijxj(t−τij)−n∑j=1,j≠iDijαijxi(t)]dt+σixi(t)dBi(t),i,j=1,2,…,n. | (4) |
We further consider the optimal harvesting problem of model (4). The research on the optimal harvesting of the population is of great significance to the utilization and development of resources, and can also help mankind to get the optimal strategy of harvesting in order to obtain the most long-term benefits [28,29,30,31,32,33,34,35]. Then, we reach the following model accounted for harvesting:
dxi(t)=xi(t)[ri−aiixi(t)−n∑j=1,j≠iaijxj(t)+n∑j=1,j≠iDije−djτijxj(t−τij)−n∑j=1,j≠iDijαijxi(t)]dt−hixi(t)dt+σixi(t)dBi(t),i,j=1,2,…,n, | (5) |
where
In the rest of the paper, we will devote ourselves to explore the dynamics and the optimal harvesting strategy of model (5). More precisely, in Section 2, we establish necessary conditions for persistence of species in mean and extinction of the species. In Section 3, we investigate conditions of stability, and prove asymptotic stability in distribution of the model, namely, there is a unique probability measure
For the convenience of the following discussion, we define some notations as follows
bi=ri−hi−0.5σ2i,qij=aii+n∑j=1,j≠iDijαij,ci=bi−n∑j=1,j≠iaijqjibj,i,j=1,…,n, |
and assume that
Following the same argument as in [37], we can prove the existence of the positive solution.
Lemma 2.1. Given initial value (3), model (5) admits a unique global positive solution
lim supt→+∞E|x(t)|p≤K. | (6) |
To show our main result of this section, we consider the following auxiliary equations
dΦi(t)=Φi(t)(ri−hi−aiiΦi(t)−n∑j=1,j≠iDijαijΦi(t))dt+σiΦi(t)dBi(t), | (7) |
dΨi(t)=Ψi(t)(ri−hi−aiiΨi(t)−n∑j=1,j≠iaijΦj(t)+n∑j=1,j≠iDije−djτijΦj(t−τij)−n∑j=1,j≠iDijαijΨi(t))dt+σiΨi(t)dBi(t), | (8) |
with initial value
Φi(θ)=Ψi(θ)=xi(θ),θ∈[−τ,0],i=1,2,…,n. |
By [38,Stochastic Comparison Theorem], we know that for
Ψi(θ)≤xi(θ)≤Φi(θ)a.s.,i=1,2,…,n. | (9) |
Remark 1. It is easy to see from [39] that the explicit solution of (7) is
Φi(t)=exp{bit+σiBi(t)}Φ−1i(0)+(aii+n∑j=1,j≠iDijαij)∫t0exp{bis+σiBi(s)}ds,i=1,2,…,n. | (10) |
Similar calculation gives
Ψi(t)=exp{bit−n∑j=1,j≠iaij∫t0Φj(s)ds+n∑j=1,j≠iDije−djτij∫t0Φj(s−τij)ds+σidBi(t)}×{Ψ−1i(0)+(aii+n∑j=1,j≠iDijαij)∫t0exp{bis−n∑j=1,j≠iaij∫s0Φj(u)du+n∑j=1,j≠iDije−djτij∫s0Φj(u−τij)du+σiBi(s)}ds}−1,i=1,2,…,n. | (11) |
Then, by using [40], we obtain the following.
Lemma 2.2. Let
limt→+∞t−1lnΦi(t)=0,limt→+∞t−1∫t0Φi(s)ds=biqij,a.s.,i=1,2,…,n. | (12) |
Based on Lemma 2, we assume:
Assumption 2.1.
Remark 2. A result due to Golpalsamy [10] and Assumption 2.1 imply that there exists a unique positive solution
{(a11+n∑j=2D1jα1j)x1+(a12−D12e−d2τ12)x2+…+(a1n−D1ne−dnτ1n)xn=b1≜r1−h1−12σ21,(a21−D21e−d1τ21)x1+(a22+n∑j=1,j≠2D2jα2j)x2+…+(a2n−D2ne−dnτ2n)xn=b2≜r2−h2−12σ22,…………………………………………………………………………,(an1−Dn1e−d1τn1)x1+(an2−Dn2e−d2τn2)x2+…+(ann+n−1∑j=1Dnjαnj)xn=bn≜rn−hn−12σ2n, | (13) |
in which
A=(a11+∑nj=2D1jα1ja12−D12e−d2τ12⋯a1n−D1ne−dnτ1na21−D21e−d1τ21a22+n∑j=1,j≠2D2jα2j⋯a2n−D2ne−dnτ2n⋮⋮⋱⋮an1−Dn1e−d1τn1an2−Dn2e−d2τn2⋯ann+∑n−1j=1Dnjαnj) |
and
Now we are in the position to show our main results.
Theorem 2.1. All species in system (5) are persistent in mean
limt→+∞t−1∫t0xi(s)ds=det(Ai)/det(A)>0a.s.,i=1,2,…,n. | (14) |
when Assumption 2.1 is satisfied.
Proof. Let
limt→+∞t−1∫tt−τijΦj(s)ds=limt→+∞(t−1∫t0Φj(s)ds−t−1∫t−τij0Φj(s)ds)=0, | (15) |
which together with (9) yields
limt→+∞t−1∫tt−τijxj(s)ds=0,i,j=1,2,…,n,j≠i. | (16) |
By using Itô's formula to (5), one can see that
t−1lnxi(t)−t−1lnxi(0)=bi−aiit−1∫t0xi(s)ds−n∑j=1,j≠iaijt−1∫t0xj(s)ds+n∑j=1,j≠iDije−djτijt−1∫t0xj(s−τij)ds−n∑j=1,j≠iDijαijt−1∫t0xj(s)ds+σit−1Bi(t)=bi−[aiit−1∫t0xi(s)ds+n∑j=1,j≠iaijt−1∫t0xj(s)ds−n∑j=1,j≠iDije−djτijt−1∫t0xj(s)ds+n∑j=1,j≠iDijαijt−1∫t0xi(s)ds]+n∑j=1,j≠iDije−djτijt−1[∫0−τijxj(s)ds −∫tt−τijxj(s)ds]+σit−1Bi(t),i,j=1,2…,n,i≠j. | (17) |
According to (16) together with the property of Brownian motion, we obtain
limt→+∞t−1[∫0−τijxj(s)ds−∫tt−τijxj(s)ds]=0, |
limt→+∞t−1Bi(t)=0,limt→+∞t−1lnxi(0)=0,a.s. |
We next to show that
limt→+∞t−1lnxi(t)=0,i=1,2,…,n. |
In view of (9) and (12), we have
lim inft→+∞t−1lnΨi(t)≤lim inft→+∞t−1lnxi(t)≤lim supt→+∞t−1lnxi(t)≤lim supt→+∞t−1lnΦi(t)=0. |
Therefore we obtain
lim inft→+∞t−1lnΨi(t)≥0a.s.,i=1,2,…,n. | (18) |
From (15) and (12), we get
limt→+∞t−1∫t0Φj(s−τij)ds=limt→+∞t−1(∫t0Φj(s)ds−∫tt−τijΦj(s)ds+∫0τijΦj(s)ds)=bjqji,a.s.,i,j=1,2…,n,i≠j. |
By using
bj/qji−ε≤t−1∫t0Φj(s−τij)ds≤bj/qji+ε,−ε≤t−1σiBi(t)≤ε. |
Applying these inequalities to (11), we have
1Ψi(t)=exp{−bit+n∑j=1,j≠iaij∫t0Φj(s)ds−n∑j=1,j≠iDije−djτij∫t0Φj(s−τij)ds−σiBi(t)}×{Ψ−1i(0)+(aii+n∑j=1,j≠iDijαij)∫t0exp{bis−n∑j=1,j≠iaij∫s0Φj(u)du+n∑j=1,j≠iDije−djτij∫s0Φj(u−τij)du+σiBi(s)}ds}=exp{−bit+n∑j=1,j≠iaij∫t0Φj(s)ds−n∑j=1,j≠iDije−djτij∫t0Φj(s−τij)ds−σiBi(t)}×{Ψ−1i(0)+(aii+n∑j=1,j≠iDijαij)∫T0exp{bis−n∑j=1,j≠iaij∫s0Φj(u)du+n∑j=1,j≠iDije−djτij∫s0Φj(u−τij)du+σiBi(s)}ds+(aii+n∑j=1,j≠iDijαij)∫tTexp{bis−n∑j=1,j≠iaij∫s0Φj(u)du+n∑j=1,j≠iDije−djτij∫s0Φj(u−τij)du+σiBi(s)}ds}≤exp{t[−bi+n∑j=1,j≠iaij(bjqji+ε)−n∑j=1,j≠iDije−djτij(bjqji−ε)+ε]}×{Ψ−1i(0)+Mij+(aii+n∑j=1,j≠iDijαij)∫tTexp{s[bi−n∑j=1,j≠iaij(bjqji−ε)+n∑j=1,j≠iDije−djτij(bjqji+ε)+ε]}ds},i,j=1,…,n, |
in which
Ψ−1i(0)+Mij≤(aii+n∑j=1,j≠iDijαij)∫tTexp{s[bi−n∑j=1,j≠iaij(bjqji−ε)+n∑j=1,j≠iDije−djτij(bjqji+ε)+ε]}ds. |
Hence for sufficiently large
1Ψi(t)≤exp{t[−bi+n∑j=1,j≠iaij(bjqji+ε)−n∑j=1,j≠iDije−djτij(bjqji−ε)+ε]}×2(aii+n∑j=1,j≠iDijαij)∫tTexp{s[bi−n∑j=1,j≠iaij(bjqji−ε)+n∑j=1,j≠iDije−djτij(bjqji+ε)+ε]}ds=2(aii+∑nj=1,j≠iDijαij)bi−∑nj=1,j≠iaij(bjqji−ε)+∑nj=1,j≠iDije−djτij(bjqji+ε)+ε×exp{t[−bi+n∑j=1,j≠iaij(bjqji+ε)−n∑j=1,j≠iDije−djτij(bjqji−ε)+ε]}×exp{[bi−n∑j=1,j≠iaij(bjqji−ε)+n∑j=1,j≠iDije−djτij(bjqji+ε)+ε](t−T)}. |
Rearranging this inequality shows that
t−1lnΨi(t)≥t−1lnbi−∑nj=1,j≠iaij(bjqji−ε)+∑nj=1,j≠iDije−djτij(bjqji+ε)+ε2(aii+∑nj=1,j≠iDijαij)−2ε(n∑j=1,j≠iaij+n∑j=1,j≠iDije−djτij+1)+[bi−n∑j=1,j≠iaij(bjqji−ε)+n∑j=1,j≠iDije−djτij(bjqji+ε)+ε]Tt. |
Since
Corollary 2.1. If there is a
In this section, we study the stability of the model. To this end, we suppose the following holds:
Assumption 3.1.
Then, we can prove the following.
Theorem 3.1. The system (5) is asymptotically stable in distribution if Assumption 3.1 holds.
Proof. Given two initial values
V(t)=n∑i=1|lnxϕii(t)−lnxψii(t)|+n∑i=1n∑j=1,j≠iDije−djτij∫tt−τij|xϕjj(s)−xψjj(s)|ds. |
Applying Itô's formula yields
d+V(t)=n∑i=1sgn(xϕii(t)−xψii(t))d(lnxϕii(t)−lnxψii(t))+n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t)−xψjj(t)|dt−n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t−τij)−xψjj(t−τij)|dt=n∑i=1sgn(xϕii(t)−xψii(t))[−aii(xϕii(t)−xψii(t))−n∑j=1,j≠iaij(xϕjj(t)−xψjj(t))+n∑j=1,j≠iDije−djτij(xϕjj(t−τij)−xψjj(t−τij))−n∑j=1,j≠iDijαij(xϕii(t)−xψii(t))]dt+n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t)−xψjj(t)|dt−n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t−τij)−xψjj(t−τij)|dt≤−n∑i=1aii|xϕii(t)−xψii(t)|dt+n∑i=1n∑j=1,j≠iaij|xϕjj(t)−xψjj(t)|dt+n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t−τij)−xψjj(t−τij)|dt+n∑i=1n∑j=1,j≠iDijαij|xϕii(t)−xψii(t)|dt+n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t)−xψjj(t)|dt−n∑i=1n∑j=1,j≠iDije−djτij|xϕjj(t−τij)−xψjj(t−τij)|dt=−n∑i=1(aii−n∑j=1,j≠iaji+n∑j=1,j≠iDijαij−n∑j=1,j≠iDjie−diτji)|xϕii(t)−xψii(t)|dt. |
Therefore
E(V(t))≤V(0)−n∑i=1(aii−n∑j=1,j≠iaji+n∑j=1,j≠iDijαij−n∑j=1,j≠iDjie−diτji)∫t0E|xϕii(s)−xψii(s)|ds. |
Together with
n∑i=1(aii−n∑j=1,j≠iaji+n∑j=1,j≠iDijαij−n∑j=1,j≠iDjie−diτji)∫t0E|xϕii(s)−xψii(s)|ds≤V(0)<∞. |
Hence we have
E(xi(t))=xi(0)+∫t0[E(xi(s))(ri−hi)−aiiE(xi(s))2−n∑j=1,j≠iaijE(xi(s)xj(s))+n∑j=1,j≠iDije−djτijE(xi(s)xj(s−τij))−n∑j=1,j≠iDijαijE(xi(s))2]ds=xi(0)+∫t0[E(xi(s))(ri−hi)−aiiE(xi(s))2−n∑j=1,j≠iaijE(xi(s)xj(s))−n∑j=1,j≠iDijαijE(xi(s))2]ds+n∑j=1,j≠iDije−djτij[∫0−τijE(xi(s)xj(s))ds+∫t0E(xi(s)xj(s))ds−∫tt−τijE(xi(s)xj(s))ds]≤xi(0)+∫t0[Exi(s)(ri−hi)−aiiE(xi(s))2−n∑j=1,j≠iaijE(xi(s)xj(s))−n∑j=1,j≠iDijαijE(xi(s))2]ds+n∑j=1,j≠iDije−djτij[∫0−τijE(xi(s)xj(s))ds+∫t0E(xi(s)xj(s))ds]. |
That is to say
dE(xi(t))dt≤E(xi(t))(ri−hi)−(aii+n∑j=1,j≠iDijαij)E(xi(t))2−n∑j=1,j≠iaijE(xi(t)xj(t))+n∑j=1,j≠iDije−djτijE(xi(t)xj(t))≤E(xi(t))ri≤riK, |
in which
limt→+∞E|xϕii(t)−xψii(t)|=0,a.s.,i=1,2,…,n. | (19) |
Denote
dL(P1,P2)=supv∈L|∫Rn+v(x)P1(dx)−∫Rn+v(x)P2(dx)|, |
where
L={v:C([−τ,0];R3+)→R:||v(x)−v(y)||≤∥x−y∥,|v(⋅)|≤1}. |
Since
supv∈L|Ev(x(t+s))−Ev(x(t))|≤ε. |
Therefore
limt→∞dL(p(t,ϕ,⋅),p(t,ξ,⋅))=0. |
Consequently,
limt→∞dL(p(t,ϕ,⋅),κ(⋅))≤limt→∞dL(p(t,ϕ,⋅),p(t,ξ,⋅))+limt→∞dL(p(t,ξ,⋅),κ(⋅))=0. |
This completes the proof of Theorem 3.1.
In this section, we consider the optimal harvesting problem of system (5). Our purpose is to find the optimal harvesting effort
(ⅰ)
(ⅱ) Every
Before we give our main results, we define
Θ=(θ1,θ2,…,θn)T=[A(A−1)T+I]−1G, | (20) |
in which
Assumption 4.1.
Theorem 4.1. Suppose Assumptions 3.1 and 4.1 hold, and If these following inequalities
θi≥0,bi∣hi=θi>0,ci∣hm=θm,m=1,2,…,n>0,i=1,⋯,n | (21) |
are satisfied. Then, for system (5) the optimal harvesting effort is
H∗=Θ=[A(A−1)T+I]−1G |
and the maximum of ESY is
Y∗=ΘTA−1(G−Θ). | (22) |
Proof. Denote
limt→+∞t−1∫t0HTx(s)ds=n∑i=1hilimt→+∞t−1∫t0xi(s)ds=HTA−1(G−H). | (23) |
Applying Theorem 4.1, there is a unique invariant measure
limt→+∞t−1∫t0HTx(s)ds=∫Rn+HTxρ(dx). | (24) |
Let
Y(H)=limt→+∞n∑i=1E(hixi(t))=limt→+∞E(HTx(t))=∫Rn+HTxμ(x)dx. | (25) |
Since the invariant measure of model (9) is unique, one has
∫Rn+HTxμ(x)dx=∫Rn+HTxρ(dx). | (26) |
In other words,
Y(H)=HTA−1(G−H). | (27) |
Assume that
dY(H)dH=dHTdHA−1(G−H)+ddH[(G−H)T(A−1)T]H=A−1G−[A−1+(A−1)T]H=0. | (28) |
Thus,
ddHT[dY(H)dH]=(ddH[(dY(H)dH)T])T=(ddH[GT(A−1)T−HT[A−1+(A−1)T]])T=−A−1−(A−1)T |
is negative defined, then
To see our analytical results more clearly, we shall give some numerical simulations in this section. Without loss of generality, we consider the following system
{dx1(t)=x1(t)[r1−h1−a11x1(t)−a12x2(t)+D12e−d2τ12x2(t−τ12)−D12α12x1(t)]dt+σ1x1(t)dB1(t),dx2(t)=x2(t)[r2−h2−a22x2(t)−a21x1(t)+D21e−d1τ21x1(t−τ21)−D21α21x2(t)]dt+σ2x2(t)dB2(t), | (29) |
which is the case when
x(θ)=ϕ(θ)∈C([−τ,0];R2+),τ=max{τ1,τ2}, |
where
Firstly, we discuss the persistence in mean of
Parameter | Value | Parameter | Value | Parameter | Value |
0.9 | 0.1 | 0.6 | |||
0.8 | 0.05 | 0.3 | |||
0.6 | 0.2 | 0.35 | |||
0.23 | 0.05 | 0.05 | |||
1 | 1 | 4 | |||
3 | 8 | 5 |
The initial values are
limt→+∞t−1∫t0x1(s)ds=det(A1)/det(A)=0.2268>0a.s., |
limt→+∞t−1∫t0x2(s)ds=det(A2)/det(A)=0.5964>0a.s.. |
Applying the Milstein numerical method in [47], we then obtained the numerical solution of system (29), see Figure 1. It shows that
Lastly, we consider the optimal harvesting strategy of system (29). It is easy to see that the Assumption 2.1 and Assumption 3.1 are satisfied. Furthermore, we have
Θ=(θ1,θ2)T=[A(A−1)T+I]−1(r1−0.5σ21,r2−0.5σ22)T=(0.4817,0.3820)T, |
in which
H∗=Θ=(θ1,θ2)T=[A(A−1)T+I]−1(r1−0.5σ21,r2−0.5σ22)T=(0.4817,0.3820)T, |
on the other hand, the maximum of ESY is
Y∗=ΘTA−1(r1−0.5σ21−θ1,r2−0.5σ22−θ2)T=0.1789. |
By using the Monte Carlo method (see [48]) and the parameters in Table 1, we can obtain Figure 3, showing our results in Theorem 4.1.
Parameter | Value | Parameter | Value | Parameter | Value |
| 2 | | 0.4452 | | 0.8 |
| 1.12 | | 0.3307 | | 0.67 |
| 0.6 | | 0.3307 | | 0.56 |
| 0.8 | | 0.6 | | 0.77 |
| 0.18 | | 0.35 | | 0.3 |
| 0.45 | | 0.22 | | 0.6 |
| 0.4 | | 0.3 | | 0.2 |
| 0.05 | | 0.05 | | 0.05 |
| 0.39 | | 0.57 | | 0.37 |
| 3 | | 3 | | 5 |
| 5 | | 4 | | 5.5 |
| 4 | | 5 | | 2.4 |
| 4 | | 2 | | 2.5 |
Next, we consider a case of three species.
{dx1(t)=x1(t)[r1−h1−a11x1(t)−(a12x2(t)+a13x3(t))+(D12e−d2τ12x2(t−τ12)+D13e−d3τ13x3(t−τ13))−(D12α12x1(t)+D13α13x1(t))]dt+σ1x1(t)dB1(t),dx2(t)=x2(t)[r2−h2−a22x2(t)−(a21x1(t)+a23x3(t))+(D21e−d1τ21x1(t−τ21)+D23e−d3τ23x3(t−τ23))−(D21α21x2(t)+D23α23x2(t))]dt+σ2x2(t)dB2(t),dx3(t)=x3(t)[r3−h3−a33x3(t)−(a31x1(t)+a32x2(t))+(D31e−d1τ31x1(t−τ31)+D32e−d2τ32x2(t−τ32))−(D31α31x3(t)+D32α32x3(t))]dt+σ3x3(t)dB3(t). | (30) |
We use the following parameter values:
The initial values are
\lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{1}(s) {\rm d}s = \det(A_{1})/\det(A) = 0.2543 \gt 0\;\;a.s., |
\lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{2}(s) {\rm d}s = \det(A_{2})/\det(A) = 0.1601 \gt 0\;\;a.s., |
\lim\limits_{t\rightarrow+\infty}t^{-1}\int_{0}^{t}x_{3}(s) {\rm d}s = \det(A_{3})/\det(A) = 0.0730 \gt 0\;\;a.s.. |
The numerical results of Theorem 2.1 when
The stable distribution for
To numerical illustrate the optimal harvesting effort of (30), we set
\Theta = (\theta_{1}, \theta_{2}, \theta_{3})^{T} = [A(A^{-1})^{T}+I]^{-1}(r_{1}-0.5\sigma_{1}^{2}, r_{2} -0.5\sigma_{2}^{2}, r_{3}-0.5\sigma_{3}^{2})^{T} = (1.1052, 0.5537, 0.1663)^{T}, |
which yield
In this paper, a stochastic n-species competitive model with delayed diffusions and harvesting has been considered. We studied the persistence in mean of every population, which is biologically significant because it shows that all populations can coexist in the community. Since the model (5) does not have a positive equilibrium point and its solution can not approach a positive value, we considered its asymptotically stable distribution. By using ergodic method, we obtained the optimal harvesting policy and the maximum harvesting yield of system (5). We have also done some numerical simulations of the situations for
Our studies showed some interesting results
(a) Both environmental disturbance and diffused time delay can effect the persistence and optimal harvesting effort of system (5)..
(b) Environmental noises have no effect on asymptotic stability in distribution of system (5), but the time delays have.
There are other meaningful aspects that can be studied further since our paper only consider the effects of white noises on population growth rate. In future, for example, we can consider the situation when white noises also have influences over harvesting (see [45]) and non-autonomous system (see [46]); the time delay will also be reflected in competition (see [49]). Furthermore, we can consider something more complex models such as the ones with regime-switching (see [50,51]) or Lévy jumps (see [14,42]).
This work was supported by the Research Fund for the Taishan Scholar Project of Shandong Province of China, and the SDUST Research Fund (2014TDJH102).
The authors declare that there is no conflict of interest regarding the publication of this paper.
[1] | D. R. Jutagir, B. B. Blomberg, C. S. Carver, et al., Social well-being is associated with less pro-inflammatory and pro-metastatic leukocyte gene expression in women after surgery for breast cancer, Breast Cancer Res. Treat., 165 (2017), 169–180. |
[2] | S. Katkuri and M. Gorantla, Awareness about breast cancer among women aged 15 years and above in urban slums: a cross sectional study, Int. J. Community Med. Public Health, 5 (2018), 929–932. |
[3] | A. Pawlik, M. Slomi´ nska-Wojewódzka and A. Herman-Antosiewicz, Sensitization of estrogen receptor-positive breast cancer cell lines to 4-hydroxytamoxifen by isothiocyanates present in cruciferous plants, Eur. J. Nutr., 55 (2016), 1165–1180. |
[4] | D. L. Holliday and V. Speirs, Choosing the right cell line for breast cancer research, Breast Cancer Res., 13 (2011), 215–215. |
[5] | R. L. Sutherland, R. E. Hall and I. W. Taylor, Cell proliferation kinetics of MCF-7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau-phase cells, Cancer Res., 43 (1983), 3998–4006. |
[6] | B. S. Katzenellenbogen, K. L. Kendra, M. J. Norman, et al., Proliferation, hormonal responsiveness, and estrogen receptor content of MCF-7 human breast cancer cells grown in the short-term and long-term absence of estrogens, Cancer Res., 47(1987), 4355–4360. |
[7] | A. Maton, Human biology and health, 1st edition, Prentice Hall, New Jersey, 1997. |
[8] | L. V. Rao, B. A. Ekberg, D. Connor, et al., Evaluation of a new point of care automated complete blood count (CBC) analyzer in various clinical settings, Clin. Chim. Acta., 389 (2008), 120–125. |
[9] | S. Bernard, E. Abdelsamad, P. Johnson, et al., Pediatric leukemia: diagnosis to treatment a review, J. Cancer Clin. Trials, 2(2017), 131. |
[10] | A. Shankar, J. J. Wang, E. Rochtchina, et al., Association between circulating white blood cell count and cancer mortality: a population-based cohort study, Arch. Intern. Med., 166 (2006), 188–194. |
[11] | K. Kim, J. Lee, N. J. Heo, et al., Differential white blood cell count and all-cause mortality in the Korean elderly, Exp. Gerontol., 48 (2013), 103–108. |
[12] | C. Ruggiero, E. J. Metter, A. Cherubini, et al., White blood cell count and mortality in the Baltimore Longitudinal Study of Aging, J. Am. Coll. Cardiol., 49 (2007), 1841–1850. |
[13] | D. S. Bell and J. H. O'Keefe, White cell count, mortality, and metabolic syndrome in the Baltimore longitudinal study of aging, J. Am. Coll. Cardiol., 50(2007), 1810. |
[14] | G. D. Friedman and B. H. Fireman, The leukocyte count and cancer mortality, Am. J. Epidemiol., 133 (1991), 376–380. |
[15] | M. H. Andersen, D. Schrama, P. thor Straten, et al., Cytotoxic T cells, J. Invest. Dermatol., 126 (2006), 32–41. |
[16] | J. Folkman and R. Kalluri, Cancer without disease, Nature, 427 (2004), 787. |
[17] | T. Fehm, V. Mueller, R. Marches, et al., Tumor cell dormancy: implications for the biology and treatment of breast cancer, Apmis, 116 (2008), 742–753. |
[18] | N. Almog, Molecular mechanisms underlying tumor dormancy, Cancer Lett., 294 (2010), 139–146. |
[19] | A. Friedman, Cancer as multifaceted disease, Math. Model. Nat. Pheno., 7(2012), 3–28. |
[20] | R. Eftimie, J. L. Bramson and D. J. Earn, Interactions between the immune system and cancer: a brief review of non-spatial mathematical models, Bull. Math. Biol., 73 (2011), 2–32. |
[21] | S. Banerjee and R. R. Sarkar, Delay-induced model for tumor–immune interaction and control of malignant tumor growth, Biosystems, 91 (2008), 268–288. |
[22] | H. Moore and N. K. Li, A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction, J. Theor. Biol., 227 (2004), 513–523. |
[23] | L. Anderson, S. Jang and J. Yu, Qualitative behavior of systems of tumor-CD4+-cytokine interactions with treatments, Math. Method. Appl. Sci., 38 (2015), 4330–4344. |
[24] | A. d'Onofrio, Metamodeling tumor–immune system interaction, tumor evasion and immunotherapy, Math. Comput. Model., 47 (2008), 614–637. |
[25] | A. Khar, Mechanisms involved in natural killer cell mediated target cell death leading to spontaneous tumour regression, J. Biosci., 22 (1997), 23–31. |
[26] | T. Boon and P. van der Bruggen, Human tumor antigens recognized by T lymphocytes, J. Exp. Med., 183 (1996), 725–729. |
[27] | D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor–immune interaction, J. Math. Biol., 37 (1998), 235–252. |
[28] | L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 238 (2006), 841–862. |
[29] | H. P. de Vladar and J. A. González, Dynamic response of cancer under the influence of immunological activity and therapy, J. Theor. Biol., 227 (2004), 335–348. |
[30] | U. Fory´ s, J. Waniewski and P. Zhivkov, Anti-tumor immunity and tumor anti-immunity in a mathematical model of tumor immunotherapy, J. Biol. Syst., 14 (2006), 13–30. |
[31] | R. W. De Boer, J. M. Karemaker and J. Strackee, Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects I: a spectral analysis approach, Med. Biol. Eng. Comput., 23 (1985), 352–358. |
[32] | A. Cappuccio, M. Elishmereni and Z. Agur, Cancer immunotherapy by interleukin-21: potential treatment strategies evaluated in a mathematical model, Cancer Res., 66 (2006), 7293–7300. |
[33] | N. Kronik, Y. Kogan, V. Vainstein, et al., Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics, Cancer Immunol. Immunother., 57 (2008), 425–439. |
[34] | A. M. Jarrett, J. M. Bloom, W. Godfrey, et al., Mathematical modelling of trastuzumab-induced immune response in an in vivo murine model of HER2+ breast cancer, Math. Med. Biol., (2018), dqy014. |
[35] | K. Annan, M. Nagel and H. A. Brock, A mathematical model of breast cancer and mediated immune system interactions, J. Math. Syst. Sci., 2(2012), 430–446. |
[36] | R. Roe-Dale, D. Isaacson and M. Kupferschmid, A mathematical model of breast cancer treatment with CMF and doxorubicin, Bull. Math. Biol., 73 (2011), 585–608. |
[37] | B. Ribba, N. H. Holford, P. Magni, et al., A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis, CPT Pharmacometrics Syst. Pharmacol., 3(2014), 1–10. |
[38] | R. Bhat and C. Watzl, Serial killing of tumor cells by human natural killer cells–enhancement by therapeutic antibodies, PloS One, 2 (2007), e326. |
[39] | T. Sutlu and E. Alici, Natural killer cell-based immunotherapy in cancer: current insights and future prospects, J. Intern. Med., 266 (2009), 154–181. |
[40] | T. R. Stravitz, T. Lisman, V. A. Luketic, et al., Minimal effects of acute liver injury/acute liver failure on hemostasis as assessed by thromboelastography, J. Hepatol., 56 (2012), 129–136. |
[41] | Y. Zhang, D. L. Wallace, C. M. De Lara, et al., In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection, Immunotherapy, 121(2007), 258–265. |
[42] | P. Wilding, L. J. Kricka, J. Cheng, et al., Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers, Anal. Biochem., 257(1998), 95–100. |
[43] | V. Pascal, N. Schleinitz, C. Brunet, et al., Comparative analysis of NK cell subset distribution in normal and lymphoproliferative disease of granular lymphocyte conditions, Eur. J. Immunol., 34(2004), 2930–2940. |
[44] | L. de Pillis, T. Caldwell, E. Sarapata, et al., Mathematical modeling of the regulatory T cell effects on renal cell carcinoma treatment, Discrete Continuous Dyn. Syst. Ser. B, 18(2013), 915–943. |
[45] | T. D. To, A. T. T. Truong, A. T. Nguyen, et al., Filtration of circulating tumour cells MCF-7 in whole blood using non-modified and modified silicon nitride microsieves, Int. J. Nanotechnol., 15(2018), 39–52. |
[46] | C. Chen, Y. Chen, D. Yao, et al., Centrifugalfilter device for detection of rare cells with immuno-binding, IEEE T. Nanobiosci., 14(2015), 864–869. |
[47] | P. Dua, V. Dua and E. N. Pistikopoulos, Optimal delivery of chemotherapeutic agents in cancer, Comput. Chem. Eng., 32(2008), 99–107. |
[48] | A. G. López, J. M. Seoane and M. A. Sanjuán, A validated mathematical model of tumor growth including tumor–host interaction, cell-mediated immune response and chemotherap, Bull. Math. Biol., 76(2014), 2884–2906. |
[49] | K. Liao, X. Bai and A. Friedman, The role of CD200–CD200R in tumor immune evasion, J. Theor. Biol., 328(2013), 65–76. |
[50] | M. C. Martins, A. M. A. Rocha, M. F. P. Costa, et al., Comparing immune-tumor growth models with drug therapy using optimal control, AIP Conf. Proc., 1738(2016), 300005. |
[51] | M. Fernandez, M. Zhou and L. Soto-Ortiz, A computational assessment of the robustness of cancer treatments with respect to immune response strength, tumor size and resistance, Int. J. Tumor Ther., 7(2018), 1–26. |
[52] | D. F. Tough and J. Sprent, Life span of naive and memory T cells, Stem Cells, 13(1995), 242–249. |
[53] | C. M. Rollings, L. V. Sinclair, H. J. M. Brady, et al., Interleukin-2 shapes the cytotoxic T cell proteome and immune environment–sensing programs, Sci. Signal., 11(2018), eaap8112. |
[54] | E. M. Janssen, E. E. Lemmens, T. Wolfe, et al., CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes, Nature, 421(2003), 852. |
[55] | I. Gruber, N. Landenberger, A. Staebler, et al., Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer, Anticancer Res., 33(2013), 2233–2238. |
[56] | D. Homann, L. Teyton and M. B. Oldstone, Differential regulation of antiviral T-cell immunity results in stable CD8+ but declining CD4+ T-cell memory, Nat. Med., 7(2001), 913–919. |
[57] | R. J. De Boer, D. Homann and A. S. Perelson, Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection, J. Immunol., 171(2003), 3928–3935. |
[58] | G. T. Skalski and J. F. Gilliam, Functional responses with predator interference: viable alternatives to the Holling type II model, Ecology, 82(2001), 3083–3092. |
[59] | H. Nawata, M. T. Chong, D. Bronzert, et al., Estradiol-independent growth of a subline of MCF-7 human breast cancer cells in culture, J. Biol. Chem., 256(1981), 6895–6902. |
[60] | R. Clarke, N. Brünner, B. S. Katzenellenbogen, et al., Progression of human breast cancer cells from hormone-dependent to hormone-independent growth both in vitro and in vivo, Proc. Natl. Acad. Sci. USA, 86(1989), 3649–3653. |
[61] | N. T. Telang, G. Li, M. Katdare, et al., The nutritional herb Epimedium grandiflorum inhibits the growth in a model for the Luminal A molecular subtype of breast cancer, Oncol. Lett., 13 (2017), 2477–2482. |
[62] | T. A. Caragine, M. Imai, A. B. Frey, et al., Expression of rat complement control protein Crry on tumor cells inhibits rat natural killer cell–mediated cytotoxicity, Blood, 100 (2002), 3304–3310. |
[63] | M. R. Müller, F. Grünebach, A. Nencioni, et al., Transfection of dendritic cells with RNA induces CD4-and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes, J. Immunol., 170 (2003), 5892–5896. |
[64] | J. Chen, E. Hui, T. Ip, et al., Dietary flaxseed enhances the inhibitory effect of tamoxifen on the growth of estrogen-dependent human breast cancer (mcf-7) in nude mice, Clin. Cancer Res., 10(2004), 7703–7711. |
[65] | P. V. Sivakumar, R. Garcia, K. S. Waggie, et al., Comparison of vascular leak syndrome in mice treated with IL21 or IL2, Comparative Med., 63 (2013), 13–21. |
[66] | C.Wu, T.Motosha, H.A.Abdel-Rahman, etal., Freeandprotein-boundplasmaestradiol-17during the menstrual cycle, J. Clin. Endocrinol. Metab., 43(1976), 436–445. |
[67] | E. Nikolopoulou, L. R. Johnson, D. Harris, et al., Tumour-immune dynamics with an immune checkpoint inhibitor, Lett. Biomath., 5(2018), S137–S159. |
[68] | P. Vacca, E. Munari, N. Tumino, et al., Human natural killer cells and other innate lymphoid cells in cancer: friends or foes? Immunol. Lett., 201(2018), 14–19. |
[69] | A. Cerwenka, J. Kopitz, P. Schirmacher, et al., HMGB1: the metabolic weapon in the arsenal of NK cells, Mol. Cell. Oncol., 3(2016), e1175538. |
[70] | I. J. Fidler, Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125i-5-iodo-2'-deoxyuridine, J. Natl. Cancer Inst., 4(1970), 773–782. |
[71] | G. G. Page and S. Ben-Eliyahu, A role for NK cells in greater susceptibility of young rats to metastatic formation, Dev. Comp. Immunol., 23(1999), 87–96. |
[72] | O. E. Franco, A. K. Shaw, D. W. Strand, et al., Cancer associated fibroblasts in cancer pathogenesis, Semin. Cell Dev. Bio., 21(2010), 33–39. |
[73] | G. P. Dunn, A. T. Bruce, H. Ikeda, et al., Cancer immunoediting: from immunosurveillance to tumor escape, Nat. Immunol., 3(2002), 991. |
[74] | D. Mittal, M. M. Gubin, R. D. Schreiber, et al., New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape, Curr. Opin. Immunol., 27(2014), 16–25. |
[75] | J. Nowak, P. Juszczynski and K. Warzocha, The role of major histocompatibility complex polymorphisms in the incidence and outcome of non-Hodgkin lymphoma, Curr. Immunol. Rev., 5(2009), 300–310. |
[76] | J. G. B. Alvarez, M. González-Cao, N. Karachaliou, et al., Advances in immunotherapy for treatment of lung cancer, Cancer Biol. Med., 12(2015), 209–222. |
[77] | M. E. Dudley and S. A. Rosenberg, Adoptive-cell-transfer therapy for the treatment of patients with cancer, Nat. Rev. Cancer, 3(2003), 666–675. |
[78] | M. Su, C. Huang and A. Dai, Immune checkpoint inhibitors: therapeutic tools for breast cancer, Asian Pac. J. Cancer Prev., 17 (2016), 905–910. |
[79] | M. Ebbo, L. Gérard, S. Carpentier, et al., Low circulating natural killer cell counts are associated with severe disease in patients with common variable immunodeficiency, EBioMedicine., 6(2016), 222–230. |
[80] | S. H. Jee, J. Y. Park, H. Kim, et al., White blood cell count and risk for all-cause, cardiovascular, and cancer mortality in a cohort of Koreans, Am. J. Epidemiol., 162 (2005), 1062–1069. |
[81] | W. B. Kannel, K. Anderson and T. W. Wilson, White blood cell count and cardiovascular disease: insights from the Framingham Study, Jama, 267 (1992), 1253–1256. |
[82] | K. L. Margolis, J. E. Manson, P. Greenland, et al., Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women's Health Initiative Observational Study, Arch. Intern. Med., 165(2005), 500–508. |
[83] | B. K. Duffy, H. S. Gurm, V. Rajagopal, et al., Usefulness of an elevated neutrophil to lymphocyte ratio in predicting long-term mortality after percutaneous coronary intervention, Am. J. Cardiol., 97 (2006), 993–996. |
[84] | B. D. Horne, J. L. Anderson, J. M. John, et al., Which white blood cell subtypes predict increased cardiovascular risk? J. Am. Coll. Cardiol., 45(2005), 1638–1643. |
[85] | R. N. O. Cobucci, H. Saconato, P. H. Lima, et al., Comparative incidence of cancer in HIV-AIDS patients and transplant recipients, Cancer Epidemiol., 36(2012), e69–e73. |
[86] | C. Bodelon, M. M. Madeleine, L. F. Voigt, et al., Is the incidence of invasive vulvar cancer increasing in the United States? Cancer Causes Control, 20(2009), 1779–1782. |
[87] | M. R. Shurin, Cancer as an immune-mediated disease, Immunotargets Ther., 1 (2012), 1–6. |
[88] | J. S. Lawrence, Leukopenia: its mechanism and therapy, J. Chronic. Dis., 6(1957), 351–364. |
[89] | P. Venigalla, B. Motwani, A. Nallari, et al., A patient on hydroxyurea for sickle cell disease who developed an opportunistic infection, Blood, 100(2002), 363–364. |
[90] | M. Iwamuro, S. Tanaka, A. Bessho, et al., Two cases of primary small cell carcinoma of the stomach, Acta. Med. Okayama, 63(2009), 293–298. |
[91] | A. O. O. Chan, I. O. L. Ng, C. M. Lam, et al., Cholestatic jaundice caused by sequential carbimazole and propylthiouracil treatment for thyrotoxicosis, Hong Kong Med. J., 9(2003), 377–380. |
[92] | J. H. Goodchild and M. Glick, A different approach to medical risk assessment, Endod. Topics, 4(2003), 1–8. |
[93] | S. E. Hankinson, Endogenous hormones and risk of breast cancer in postmenopausal women, Breast Dis., 24(2006), 3–15. |
[94] | R. Kaaks, S. Rinaldi, T. J. Key, et al., Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition, Endocr. Relat. Cancer, 12(2005), 1071–1082. |
[95] | S. A. Missmer, A. H. Eliassen, R. L. Barbieri, et al., Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women, J. Natl. Cancer Inst., 96(2004), 1856–1865. |
[96] | A. A. Arslan, R. E. Shore, Y. Afanasyeva, et al., Circulating estrogen metabolites and risk for breast cancer in premenopausal women, Cancer Epidemiol. Biomarkers Prev., 18(2009), 2273–2279. |
[97] | S. B. Brown and S. E. Hankinson, Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers, Steroids, 99(2015), 8–10. |
[98] | L. C. Houghton, D. Ganmaa, P. S. Rosenberg, et al., Associations of breast cancer risk factors with premenopausal sex hormones in women with very low breast cancer risk, Int. J. Environ. Res. Public Health, 13(2016), 1066. |
[99] | R. Kaaks, K. Tikk, D. Sookthai, et al., Premenopausal serum sex hormone levels in relation to breast cancer risk, overall and by hormone receptor status-results from the EPIC cohortk, Int. J. cancer, 134(2014), 1947–1957. |
[100] | A. Diefenbach, E. R. Jensen, A. M. Jamieson, et al., Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity, Nature, 413(2001), 165. |
[101] | A. Iannello and D. H. Raulet, Cold Spring Harbor symposia on quantitative biology, 1st edition, Cold Spring Harbor Laboratory Press, New York, 2013. |
[102] | M. B. Pampena and E. M. Levy, Natural killer cells as helper cells in dendritic cell cancer vaccines, Front. Immunol., 6 (2015), 1–8. |
[103] | E. Vivier, S. Ugolini, D. Blaise, et al., Targeting natural killer cells and natural killer T cells in cancer, Nat. Rev. Immunol., 12(2012), 239–252. |
[104] | G. Liu, X. Fan, Y. Cai, et al., Efficacy of dendritic cell-based immunotherapy produced from cord blood in vitro and in a humanized NSG mouse cancer model, Immunotherapy, 11(2019), 599–616. |
[105] | M. Schnekenburger, M. Dicato and M. F. Diederich, Anticancer potential of naturally occurring immunoepigenetic modulators: A promising avenue? Cancer, 125(2019), 1612–1628. |
[106] | X. Feng, L. Lu, K. Wang, et al., Low expression of CD80 predicts for poor prognosis in patients with gastric adenocarcinoma, Future Oncol., 15 (2019), 473–483. |
[107] | X. Lai and A. Friedman, Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: a mathematical model, PloS One, 12 (2017), e0178479. |
Parameter | Value | Parameter | Value | Parameter | Value |
| 2 | | 0.4452 | | 0.8 |
| 1.12 | | 0.3307 | | 0.67 |
| 0.6 | | 0.3307 | | 0.56 |
| 0.8 | | 0.6 | | 0.77 |
| 0.18 | | 0.35 | | 0.3 |
| 0.45 | | 0.22 | | 0.6 |
| 0.4 | | 0.3 | | 0.2 |
| 0.05 | | 0.05 | | 0.05 |
| 0.39 | | 0.57 | | 0.37 |
| 3 | | 3 | | 5 |
| 5 | | 4 | | 5.5 |
| 4 | | 5 | | 2.4 |
| 4 | | 2 | | 2.5 |
Parameter | Value | Parameter | Value | Parameter | Value |
0.9 | 0.1 | 0.6 | |||
0.8 | 0.05 | 0.3 | |||
0.6 | 0.2 | 0.35 | |||
0.23 | 0.05 | 0.05 | |||
1 | 1 | 4 | |||
3 | 8 | 5 |
Parameter | Value | Parameter | Value | Parameter | Value |
| 2 | | 0.4452 | | 0.8 |
| 1.12 | | 0.3307 | | 0.67 |
| 0.6 | | 0.3307 | | 0.56 |
| 0.8 | | 0.6 | | 0.77 |
| 0.18 | | 0.35 | | 0.3 |
| 0.45 | | 0.22 | | 0.6 |
| 0.4 | | 0.3 | | 0.2 |
| 0.05 | | 0.05 | | 0.05 |
| 0.39 | | 0.57 | | 0.37 |
| 3 | | 3 | | 5 |
| 5 | | 4 | | 5.5 |
| 4 | | 5 | | 2.4 |
| 4 | | 2 | | 2.5 |