Research article Special Issues

Discrete time darwinian dynamics and semelparity versus iteroparity

  • Received: 16 November 2018 Accepted: 07 February 2019 Published: 06 March 2019
  • We derive and analyze a Darwinian dynamic model based on a general di erence equation population model under the assumption of a trade-o between fertility and survival. Both inherent and density dependent terms are functions of a phenotypic trait (subject to Darwinian evolution) and its population mean. We prove general theorems about the existence and stability of extinction equilibria and the bifurcation of positive equilibria when extinction equilibria destabilize. We apply these results, together with the Evolutionarily Stable Strategy (ESS) Maximum Principle, to the model when both semelparous and iteroparous traits are available to individuals in the population. We find that if the density terms in the population model are trait independent, then only semelparous equilibria are ESS. When density terms do depend on the trait, then in a neighborhood of a bifurcation point it is again the case that only semelparous equilibria are ESS. However, we also show by simulations that ESS iteroparous (and also non-ESS semelparous) equilibria can arise outside a neighborhood of bifurcation points when density e ects depend in a hierarchical manner on the trait.

    Citation: J. M. Cushing. Discrete time darwinian dynamics and semelparity versus iteroparity[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 1815-1835. doi: 10.3934/mbe.2019088

    Related Papers:

    [1] Jim M. Cushing . A Darwinian version of the Leslie logistic model for age-structured populations. Mathematical Biosciences and Engineering, 2025, 22(6): 1263-1279. doi: 10.3934/mbe.2025047
    [2] J. M. Cushing, Simon Maccracken Stump . Darwinian dynamics of a juvenile-adult model. Mathematical Biosciences and Engineering, 2013, 10(4): 1017-1044. doi: 10.3934/mbe.2013.10.1017
    [3] J. M. Cushing . Nonlinear semelparous Leslie models. Mathematical Biosciences and Engineering, 2006, 3(1): 17-36. doi: 10.3934/mbe.2006.3.17
    [4] Manuel Molina, Manuel Mota, Alfonso Ramos . Mathematical modeling in semelparous biological species through two-sex branching processes. Mathematical Biosciences and Engineering, 2024, 21(6): 6407-6424. doi: 10.3934/mbe.2024280
    [5] Andrei Korobeinikov, Conor Dempsey . A continuous phenotype space model of RNA virus evolution within a host. Mathematical Biosciences and Engineering, 2014, 11(4): 919-927. doi: 10.3934/mbe.2014.11.919
    [6] A. Q. Khan, M. Tasneem, M. B. Almatrafi . Discrete-time COVID-19 epidemic model with bifurcation and control. Mathematical Biosciences and Engineering, 2022, 19(2): 1944-1969. doi: 10.3934/mbe.2022092
    [7] Lina Hao, Meng Fan, Xin Wang . Effects of nutrient enrichment on coevolution of a stoichiometric producer-grazer system. Mathematical Biosciences and Engineering, 2014, 11(4): 841-875. doi: 10.3934/mbe.2014.11.841
    [8] Zenab Alrikaby, Xia Liu, Tonghua Zhang, Federico Frascoli . Stability and Hopf bifurcation analysis for a Lac operon model with nonlinear degradation rate and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 1729-1749. doi: 10.3934/mbe.2019083
    [9] Baojun Song, Wen Du, Jie Lou . Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1651-1668. doi: 10.3934/mbe.2013.10.1651
    [10] Fang Liu, Yanfei Du . Spatiotemporal dynamics of a diffusive predator-prey model with delay and Allee effect in predator. Mathematical Biosciences and Engineering, 2023, 20(11): 19372-19400. doi: 10.3934/mbe.2023857
  • We derive and analyze a Darwinian dynamic model based on a general di erence equation population model under the assumption of a trade-o between fertility and survival. Both inherent and density dependent terms are functions of a phenotypic trait (subject to Darwinian evolution) and its population mean. We prove general theorems about the existence and stability of extinction equilibria and the bifurcation of positive equilibria when extinction equilibria destabilize. We apply these results, together with the Evolutionarily Stable Strategy (ESS) Maximum Principle, to the model when both semelparous and iteroparous traits are available to individuals in the population. We find that if the density terms in the population model are trait independent, then only semelparous equilibria are ESS. When density terms do depend on the trait, then in a neighborhood of a bifurcation point it is again the case that only semelparous equilibria are ESS. However, we also show by simulations that ESS iteroparous (and also non-ESS semelparous) equilibria can arise outside a neighborhood of bifurcation points when density e ects depend in a hierarchical manner on the trait.




    [1] D. Roff, Evolution of Life Histories: Theory and Analysis, Chapman & Hall, 1992.
    [2] S. C. Stearns, The Evolution of Life Histories, Oxford University Press, 2004.
    [3] R. A. Fisher, The Genetical Theory of Natural Selection: A Complete Variorum Edition, Oxford University Press, 1930
    [4] L. C. Cole, The population consequences of life history phenomena, Quar. Rev. Biol. 29 (1954), 103–137.
    [5] P. W. Hughes, Between semelparity and iteroparity: empirical evidence for a continuum of modes of parity, Ecol. Evol. 7 (2017), 8232–8261.
    [6] E. L. Charnov and W. M. Schaffer, Life history consequences of natural selection: Cole's result revisited, Amer. Nat. 107 (1973), 791–793.
    [7] T. Vincent and J. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics, Cambridge University Press, 2005.
    [8] B. McGill and J. Brown, Evolutionary game theory and adaptive dynamics of continuous traits, Ann. Rev. Ecol., Evol. Syst. 38 (2007), 403–435.
    [9] R. Lande, A quantitative genetic theory of life history evolution, Ecol. 33 (1982), 607–615.
    [10] J. Lush, Animal Breeding Plans , Iowa State College Press, 1937.
    [11] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Func. Analy. 7 (1970), 487–513.
    [12] J. M. Cushing, Backward bifurcations and strong Allee effects in matrix models for the dynamics of structured populations, J. Biol. Dyn. 8 (2014), 57–73.
    [13] J. M. Cushing, On the dynamics of a class of Darwinian matrix models, Nonl. Dyn. Syst. Theory 10 (2010), 103–116.
    [14] J. M. Cushing and Simon MacCracken Stump, Darwinian dynamics of a juvenile-adult model, Math. Biosci. Engr. 10 (2013), 1017–1044.
    [15] J. M. Cushing, F. Martins, A. A. Pinto, et. al., A bifurcation theorem for evolutionary matrix models with multiple traits, J. Math. Biol. 75 (2017), 491–520.
    [16] E. P. Meissen, K. R. Salau and J. M. Cushing, A global bifurcation theorem for Darwinian matrix models, J. Diff. Eqs. Appl. 22 (2016), 1114–1136.
  • This article has been cited by:

    1. Usman A. Danbaba, Salisu M. Garba, Modeling the transmission dynamics of Zika with sterile insect technique, 2018, 41, 01704214, 8871, 10.1002/mma.5336
    2. Hajar Besbassi, Khalid Hattaf, Noura Yousfi, Abdul Qadeer Khan, Stability and Hopf Bifurcation of a Generalized Chikungunya Virus Infection Model with Two Modes of Transmission and Delays, 2020, 2020, 1607-887X, 1, 10.1155/2020/5908976
    3. Hammami Pachka, Tran Annelise, Kemp Alan, Tshikae Power, Kgori Patrick, Chevalier Véronique, Paweska Janusz, Jori Ferran, Rift Valley fever vector diversity and impact of meteorological and environmental factors on Culex pipiens dynamics in the Okavango Delta, Botswana, 2016, 9, 1756-3305, 10.1186/s13071-016-1712-1
    4. Alessandra Lo Presti, Eleonora Cella, Silvia Angeletti, Massimo Ciccozzi, Molecular epidemiology, evolution and phylogeny of Chikungunya virus: An updating review, 2016, 41, 15671348, 270, 10.1016/j.meegid.2016.04.006
    5. Helena Sofia Rodrigues, M. Teresa T. Monteiro, Delfim F. M. Torres, Alan Zinober, Dengue disease, basic reproduction number and control, 2012, 89, 0020-7160, 334, 10.1080/00207160.2011.554540
    6. Salisu M. Garba, Usman A. Danbaba, Jacek Banasiak, Modeling the effect of temperature variability on malaria control strategies, 2020, 15, 0973-5348, 65, 10.1051/mmnp/2020044
    7. Louis Clément Gouagna, Jean-Sébastien Dehecq, Didier Fontenille, Yves Dumont, Sébastien Boyer, Seasonal variation in size estimates of Aedes albopictus population based on standard mark–release–recapture experiments in an urban area on Reunion Island, 2015, 143, 0001706X, 89, 10.1016/j.actatropica.2014.12.011
    8. Shangbing Ai, Jia Li, Junliang Lu, Mosquito-Stage-Structured Malaria Models and Their Global Dynamics, 2012, 72, 0036-1399, 1213, 10.1137/110860318
    9. Helena Sofia Rodrigues, M. Teresa T. Monteiro, Delfim F.M. Torres, Vaccination models and optimal control strategies to dengue, 2014, 247, 00255564, 1, 10.1016/j.mbs.2013.10.006
    10. Anne Fischer, Kurt Chudej, Hans Josef Pesch, Optimal vaccination and control strategies against dengue, 2019, 42, 0170-4214, 3496, 10.1002/mma.5594
    11. Y. Dumont, J. Thuilliez, Human behaviors: A threat to mosquito control?, 2016, 281, 00255564, 9, 10.1016/j.mbs.2016.08.011
    12. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 6, 978-3-319-53206-6, 179, 10.1007/978-3-319-53208-0_6
    13. Diana P. Iyaloo, Pascal Degenne, Khouaildi Bin Elahee, Danny Lo Seen, Ambicadutt Bheecarry, Annelise Tran, ALBOMAURICE: A predictive model for mapping Aedes albopictus mosquito populations in Mauritius, 2021, 13, 23527110, 100638, 10.1016/j.softx.2020.100638
    14. Irfan A. Rather, Hilal A. Parray, Jameel B. Lone, Woon K. Paek, Jeongheui Lim, Vivek K. Bajpai, Yong-Ha Park, Prevention and Control Strategies to Counter Dengue Virus Infection, 2017, 7, 2235-2988, 10.3389/fcimb.2017.00336
    15. Grant D. Brown, Aaron T. Porter, Jacob J. Oleson, Jessica A. Hinman, Approximate Bayesian computation for spatial SEIR(S) epidemic models, 2018, 24, 18775845, 27, 10.1016/j.sste.2017.11.001
    16. Marguerite Robinson, Anne Conan, Veasna Duong, Sowath Ly, Chantha Ngan, Philippe Buchy, Arnaud Tarantola, Xavier Rodó, Michael J. Turell, A Model for a Chikungunya Outbreak in a Rural Cambodian Setting: Implications for Disease Control in Uninfected Areas, 2014, 8, 1935-2735, e3120, 10.1371/journal.pntd.0003120
    17. D. Moulay, M.A. Aziz-Alaoui, M. Cadivel, The chikungunya disease: Modeling, vector and transmission global dynamics, 2011, 229, 00255564, 50, 10.1016/j.mbs.2010.10.008
    18. Kiran Bala Bhuyan, Arpita Arsmika Sahu, T. Sarita Achari, Tapan Kumar Barik, 2020, Chapter 10, 978-981-15-9455-7, 209, 10.1007/978-981-15-9456-4_10
    19. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 4, 978-3-319-53206-6, 83, 10.1007/978-3-319-53208-0_4
    20. José V.J. Silva, Louisa F. Ludwig-Begall, Edmilson F. de Oliveira-Filho, Renato A.S. Oliveira, Ricardo Durães-Carvalho, Thaísa R.R. Lopes, Daisy E.A. Silva, Laura H.V.G. Gil, A scoping review of Chikungunya virus infection: epidemiology, clinical characteristics, viral co-circulation complications, and control, 2018, 188, 0001706X, 213, 10.1016/j.actatropica.2018.09.003
    21. Shousheng Zhu, Nathalie Verdière, Lilianne Denis-Vidal, Djalil Kateb, Identifiability analysis and parameter estimation of a chikungunya model in a spatially continuous domain, 2018, 34, 1476945X, 80, 10.1016/j.ecocom.2017.12.004
    22. UA Danbaba, SM Garba, Stability Analysis and Optimal Control for Yellow Fever Model with Vertical Transmission, 2020, 6, 2349-5103, 10.1007/s40819-020-00860-z
    23. Xinzhi Liu, Peter Stechlinski, Application of control strategies to a seasonal model of chikungunya disease, 2015, 39, 0307904X, 3194, 10.1016/j.apm.2014.10.035
    24. Jing Chen, John C. Beier, Robert Stephen Cantrell, Chris Cosner, Douglas O. Fuller, Yongtao Guan, Guoyan Zhang, Shigui Ruan, Modeling the importation and local transmission of vector-borne diseases in Florida: The case of Zika outbreak in 2016, 2018, 455, 00225193, 342, 10.1016/j.jtbi.2018.07.026
    25. Gerhart Knerer, Christine S. M. Currie, Sally C. Brailsford, Donald S. Shepard, The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model, 2020, 14, 1935-2735, e0008805, 10.1371/journal.pntd.0008805
    26. Xianning Liu, Yan Wang, Xiao-Qiang Zhao, Dynamics of a periodic Chikungunya model with temperature and rainfall effects, 2020, 90, 10075704, 105409, 10.1016/j.cnsns.2020.105409
    27. Tridip Sardar, Sourav Kumar Sasmal, Joydev Chattopadhyay, Estimating dengue type reproduction numbers for two provinces of Sri Lanka during the period 2013–14, 2016, 7, 2150-5594, 187, 10.1080/21505594.2015.1096470
    28. Marcos Amaku, Francisco Antonio Bezerra Coutinho, Silvia Martorano Raimundo, Luis Fernandez Lopez, Marcelo Nascimento Burattini, Eduardo Massad, A Comparative Analysis of the Relative Efficacy of Vector-Control Strategies Against Dengue Fever, 2014, 76, 0092-8240, 697, 10.1007/s11538-014-9939-5
    29. Ying Liu, Kate Lillepold, Jan C. Semenza, Yesim Tozan, Mikkel B.M. Quam, Joacim Rocklöv, Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones, 2020, 182, 00139351, 109114, 10.1016/j.envres.2020.109114
    30. Taofeek O. Alade, On the generalized Chikungunya virus dynamics model with distributed time delays, 2020, 2195-268X, 10.1007/s40435-020-00723-x
    31. Najmul Haider, Francesco Vairo, Giuseppe Ippolito, Alimuddin Zumla, Richard A. Kock, Basic Reproduction Number of Chikungunya Virus Transmitted by Aedes Mosquitoes, 2020, 26, 1080-6040, 2429, 10.3201/eid2610.190957
    32. Martial L. Ndeffo-Mbah, David P. Durham, Laura A. Skrip, Elaine O. Nsoesie, John S. Brownstein, Durland Fish, Alison P. Galvani, Evaluating the effectiveness of localized control strategies to curtail chikungunya, 2016, 6, 2045-2322, 10.1038/srep23997
    33. K. C. Patidar, Nonstandard finite difference methods: recent trends and further developments, 2016, 22, 1023-6198, 817, 10.1080/10236198.2016.1144748
    34. Helena Sofia Rodrigues, M. Teresa T. Monteiro, Delfim F. M. Torres, Sensitivity Analysis in a Dengue Epidemiological Model, 2013, 2013, 2314-4777, 1, 10.1155/2013/721406
    35. Yan Wang, Xianning Liu, Stability and Hopf bifurcation of a within-host chikungunya virus infection model with two delays, 2017, 138, 03784754, 31, 10.1016/j.matcom.2016.12.011
    36. Ahmed M. Elaiw, Sami E. Almalki, A.D. Hobiny, Ahmed Farouk, Stability of delayed CHIKV dynamics model with cell-to-cell transmission, 2020, 38, 10641246, 2425, 10.3233/JIFS-179531
    37. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Global dynamics of delayed CHIKV infection model with multitarget cells, 2019, 60, 1598-5865, 303, 10.1007/s12190-018-1215-7
    38. Eminugroho Ratna Sari, Nur Insani, Dwi Lestari, The Preventive Control of a Dengue Disease Using Pontryagin Minimum Principal, 2017, 855, 1742-6588, 012045, 10.1088/1742-6596/855/1/012045
    39. A. M. Elaiw, S. E. Almalki, A. D. Hobiny, Stability of CHIKV infection models with CHIKV-monocyte and infected-monocyte saturated incidences, 2019, 9, 2158-3226, 025308, 10.1063/1.5085804
    40. Carrie A. Manore, Richard S. Ostfeld, Folashade B. Agusto, Holly Gaff, Shannon L. LaDeau, Samuel V. Scarpino, Defining the Risk of Zika and Chikungunya Virus Transmission in Human Population Centers of the Eastern United States, 2017, 11, 1935-2735, e0005255, 10.1371/journal.pntd.0005255
    41. Annelise Tran, Grégory L'Ambert, Guillaume Lacour, Romain Benoît, Marie Demarchi, Myriam Cros, Priscilla Cailly, Mélaine Aubry-Kientz, Thomas Balenghien, Pauline Ezanno, A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations, 2013, 10, 1660-4601, 1698, 10.3390/ijerph10051698
    42. Derdei Bichara, Carlos Castillo-Chavez, Vector-borne diseases models with residence times – A Lagrangian perspective, 2016, 281, 00255564, 128, 10.1016/j.mbs.2016.09.006
    43. Lin Ling, Guirong Jiang, Tengfei Long, The dynamics of an SIS epidemic model with fixed-time birth pulses and state feedback pulse treatments, 2015, 39, 0307904X, 5579, 10.1016/j.apm.2015.01.022
    44. Claire Dufourd, Yves Dumont, Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control, 2013, 66, 08981221, 1695, 10.1016/j.camwa.2013.03.024
    45. Xianning Liu, Yan Wang, Xiao-Qiang Zhao, Dynamics of a climate-based periodic Chikungunya model with incubation period, 2020, 80, 0307904X, 151, 10.1016/j.apm.2019.11.038
    46. Joanna Waldock, Nastassya L. Chandra, Jos Lelieveld, Yiannis Proestos, Edwin Michael, George Christophides, Paul E. Parham, The role of environmental variables onAedes albopictusbiology and chikungunya epidemiology, 2013, 107, 2047-7724, 224, 10.1179/2047773213Y.0000000100
    47. Folashade B. Agusto, Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus, 2017, 22, 1553-524X, 687, 10.3934/dcdsb.2017034
    48. Helena Sofia Rodrigues, M. Teresa T. Monteiro, Delfim F. M. Torres, Seasonality effects on dengue: basic reproduction number, sensitivity analysis and optimal control, 2016, 39, 01704214, 4671, 10.1002/mma.3319
    49. K.F. Gurski, A simple construction of nonstandard finite-difference schemes for small nonlinear systems applied to SIR models, 2013, 66, 08981221, 2165, 10.1016/j.camwa.2013.06.034
    50. Jayanta Kumar Ghosh, Uttam Ghosh, Susmita Sarkar, Qualitative Analysis and Optimal Control of a Two-Strain Dengue Model with its Co-infections, 2020, 6, 2349-5103, 10.1007/s40819-020-00905-3
    51. Yu-Han Kao, Marisa C. Eisenberg, Practical unidentifiability of a simple vector-borne disease model: Implications for parameter estimation and intervention assessment, 2018, 25, 17554365, 89, 10.1016/j.epidem.2018.05.010
    52. Laith Yakob, Archie C. A. Clements, Michael George Roberts, A Mathematical Model of Chikungunya Dynamics and Control: The Major Epidemic on Réunion Island, 2013, 8, 1932-6203, e57448, 10.1371/journal.pone.0057448
    53. Clelia F. Oliva, Maxime Jacquet, Jeremie Gilles, Guy Lemperiere, Pierre-Olivier Maquart, Serge Quilici, François Schooneman, Marc J. B. Vreysen, Sebastien Boyer, Basil Brooke, The Sterile Insect Technique for Controlling Populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: Mating Vigour of Sterilized Males, 2012, 7, 1932-6203, e49414, 10.1371/journal.pone.0049414
    54. HELENA SOFIA RODRIGUES, M. TERESA T. MONTEIRO, DELFIM F. M. TORRES, Dengue in Cape Verde: Vector Control and Vaccination, 2013, 20, 0889-8480, 208, 10.1080/08898480.2013.831711
    55. Roumen Anguelov, Yves Dumont, Ivric Valaire Yatat Djeumen, Sustainable vector/pest control using the permanent sterile insect technique, 2020, 43, 0170-4214, 10391, 10.1002/mma.6385
    56. Rebecca C. Christofferson, Daniel M. Chisenhall, Helen J. Wearing, Christopher N. Mores, Lisa FP. Ng, Chikungunya Viral Fitness Measures within the Vector and Subsequent Transmission Potential, 2014, 9, 1932-6203, e110538, 10.1371/journal.pone.0110538
    57. Sylvestre Aureliano Carvalho, Stella Olivia da Silva, Iraziet da Cunha Charret, Mathematical modeling of dengue epidemic: control methods and vaccination strategies, 2019, 138, 1431-7613, 223, 10.1007/s12064-019-00273-7
    58. Taofeek O. Alade, Ahmed M. Elaiw, Saud M. Alsulami, Stability dynamics of a delayed generalized Chikungunya virus infection model, 2021, 65, 1598-5865, 575, 10.1007/s12190-020-01405-9
    59. A. M. Elaiw, S. E. Almalki, A. D. Hobiny, Global properties of saturated chikungunya virus dynamics models with cellular infection and delays, 2019, 2019, 1687-1847, 10.1186/s13662-019-2409-5
    60. Folashade B. Agusto, Shamise Easley, Kenneth Freeman, Madison Thomas, Mathematical Model of Three Age-Structured Transmission Dynamics of Chikungunya Virus, 2016, 2016, 1748-670X, 1, 10.1155/2016/4320514
    61. Annelise Tran, Morgan Mangeas, Marie Demarchi, Emmanuel Roux, Pascal Degenne, Marion Haramboure, Gilbert Le Goff, David Damiens, Louis-Clément Gouagna, Vincent Herbreteau, Jean-Sébastien Dehecq, Suzanne Touzeau, Complementarity of empirical and process-based approaches to modelling mosquito population dynamics with Aedes albopictus as an example—Application to the development of an operational mapping tool of vector populations, 2020, 15, 1932-6203, e0227407, 10.1371/journal.pone.0227407
    62. Djamila Moulay, Yoann Pigné, A metapopulation model for chikungunya including populations mobility on a large-scale network, 2013, 318, 00225193, 129, 10.1016/j.jtbi.2012.11.008
    63. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention, 2012, 9, 1551-0018, 369, 10.3934/mbe.2012.9.369
    64. Thomas Sochacki, Frédéric Jourdain, Yvon Perrin, Harold Noel, Marie-Claire Paty, Henriette de Valk, Alexandra Septfons, Frédéric Simard, Didier Fontenille, Benjamin Roche, Imported chikungunya cases in an area newly colonised by Aedes albopictus: mathematical assessment of the best public health strategy, 2016, 21, 1560-7917, 10.2807/1560-7917.ES.2016.21.18.30221
    65. Hamadjam Abboubakar, Jean Claude Kamgang, Leontine Nkague Nkamba, Daniel Tieudjo, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, 2018, 76, 0303-6812, 379, 10.1007/s00285-017-1146-1
    66. Yanyuan Xing, Zhiming Guo, Jian Liu, Backward bifurcation in a malaria transmission model, 2020, 14, 1751-3758, 368, 10.1080/17513758.2020.1771443
    67. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Analysis of latent CHIKV dynamics models with general incidence rate and time delays, 2018, 12, 1751-3758, 700, 10.1080/17513758.2018.1503349
    68. Ahmed M. Elaiw, Taofeek O. Alade, Saud M. Alsulami, Analysis of within-host CHIKV dynamics models with general incidence rate, 2018, 11, 1793-5245, 1850062, 10.1142/S1793524518500626
    69. Catherine Hierlihy, Lisa Waddell, Ian Young, Judy Greig, Tricia Corrin, Mariola Mascarenhas, Abdallah M. Samy, A systematic review of individual and community mitigation measures for prevention and control of chikungunya virus, 2019, 14, 1932-6203, e0212054, 10.1371/journal.pone.0212054
    70. Helena Sofia Rodrigues, M. Teresa T. Monteiro, Delfim F. M. Torres, Ana Clara Silva, Carla Sousa, Cláudia Conceição, 2015, Chapter 32, 978-3-319-16117-4, 593, 10.1007/978-3-319-16118-1_32
    71. XINZHI LIU, PETER STECHLINSKI, SWITCHING VACCINATION SCHEMES FOR VECTOR-BORNE DISEASES WITH SEASONAL FLUCTUATIONS, 2017, 25, 0218-3390, 441, 10.1142/S0218339017500218
    72. M. Chapwanya, Y. Dumont, On crop vector-borne diseases. Impact of virus lifespan and contact rate on the traveling-wave speed of infective fronts, 2018, 34, 1476945X, 119, 10.1016/j.ecocom.2017.08.002
    73. Hamadjam Abboubakar, Jean Claude Kamgang, Daniel Tieudjo, Backward bifurcation and control in transmission dynamics of arboviral diseases, 2016, 278, 00255564, 100, 10.1016/j.mbs.2016.06.002
    74. Xinzhi Liu, Peter Stechlinski, 2017, Chapter 7, 978-3-319-53206-6, 227, 10.1007/978-3-319-53208-0_7
    75. Léa Douchet, Marion Haramboure, Thierry Baldet, Gregory L’Ambert, David Damiens, Louis Clément Gouagna, Jeremy Bouyer, Pierrick Labbé, Annelise Tran, Comparing sterile male releases and other methods for integrated control of the tiger mosquito in temperate and tropical climates, 2021, 11, 2045-2322, 10.1038/s41598-021-86798-8
    76. Harrison Watts, Arti Mishra, Dang H. Nguyen, Tran D. Tuong, Dynamics of a vector-host model under switching environments, 2021, 0, 1553-524X, 0, 10.3934/dcdsb.2021029
    77. Guangming Qiu, Sanyi Tang, Mengqi He, Binxiang Dai, Analysis of a High-Dimensional Mathematical Model for Plant Virus Transmission with Continuous and Impulsive Roguing Control, 2021, 2021, 1607-887X, 1, 10.1155/2021/6177132
    78. Habeeb M. Al-Solami, Alawiah M. S. Alhebshi, H. Abdo, S. R. Mahmuod, Afaf S. Alwabli, Naser Alkenani, A bio-mathematical approach to control the Anopheles mosquito using sterile males technology, 2022, 15, 1793-5245, 10.1142/S1793524522500371
    79. S. A. Abdullahi, N. Hussaini, A. G. Habib, Mathematical Model of In-host Dynamics of Snakebite Envenoming, 2022, 2714-4704, 193, 10.46481/jnsps.2022.548
    80. Mourad Chamekh, Mohamed Ali Latrach, Fadel Jday, Multi-step semi-analytical solutions for a chikungunya virus system, 2023, 2731-6734, 10.1007/s43994-023-00027-8
    81. Taofeek O. Alade, Mohammad Alnegga, Samson Olaniyi, Afeez Abidemi, Mathematical modelling of within-host Chikungunya virus dynamics with adaptive immune response, 2023, 2363-6203, 10.1007/s40808-023-01737-y
    82. Ramakant Prasad, Surendra Kumar Sagar, Shama Parveen, Ravins Dohare, Mathematical modeling in perspective of vector-borne viral infections: a review, 2022, 11, 2314-8543, 10.1186/s43088-022-00282-4
    83. C. Gokila, M. Sambath, The threshold for a stochastic within-host CHIKV virus model with saturated incidence rate, 2021, 14, 1793-5245, 2150042, 10.1142/S179352452150042X
    84. Ahmed Alshehri, Miled El Hajji, Mathematical study for Zika virus transmission with general incidence rate, 2022, 7, 2473-6988, 7117, 10.3934/math.2022397
    85. Hamadjam Abboubakar, Reinhard Racke, Mathematical modeling, forecasting, and optimal control of typhoid fever transmission dynamics, 2021, 149, 09600779, 111074, 10.1016/j.chaos.2021.111074
    86. Chatthai Thaiprayoon, Jutarat Kongson, Weerawat Sudsutad, Jehad Alzabut, Sina Etemad, Shahram Rezapour, Analysis of a nonlinear fractional system for Zika virus dynamics with sexual transmission route under generalized Caputo-type derivative, 2022, 68, 1598-5865, 4273, 10.1007/s12190-021-01663-1
    87. Nur ’Izzati Hamdan, Adem Kilicman, Mathematical Modelling of Dengue Transmission with Intervention Strategies Using Fractional Derivatives, 2022, 84, 0092-8240, 10.1007/s11538-022-01096-2
    88. Y. Dumont, I.V. Yatat–Djeumen, Sterile insect technique with accidental releases of sterile females. Impact on mosquito-borne diseases control when viruses are circulating, 2022, 343, 00255564, 108724, 10.1016/j.mbs.2021.108724
    89. Yan Wang, Yazhi Li, Xinzhi Ren, Xianning Liu, A periodic dengue model with diapause effect and control measures, 2022, 108, 0307904X, 469, 10.1016/j.apm.2022.03.043
    90. Yan Wang, Yazhi Li, Lili Liu, Xianning Liu, A periodic Chikungunya model with virus mutation and transovarial transmission, 2022, 158, 09600779, 112002, 10.1016/j.chaos.2022.112002
    91. Mohammad Enamul Hoque Kayesh, Ibrahim Khalil, Michinori Kohara, Kyoko Tsukiyama-Kohara, Increasing Dengue Burden and Severe Dengue Risk in Bangladesh: An Overview, 2023, 8, 2414-6366, 32, 10.3390/tropicalmed8010032
    92. Mlyashimbi Helikumi, Gideon Eustace, Steady Mushayabasa, Jan Rychtar, Dynamics of a Fractional-Order Chikungunya Model with Asymptomatic Infectious Class, 2022, 2022, 1748-6718, 1, 10.1155/2022/5118382
    93. Jing Chen, Xi Huo, André B.B. Wilke, John C. Beier, Chalmers Vasquez, William Petrie, Robert Stephen Cantrell, Chris Cosner, Shigui Ruan, Linking mathematical models and trap data to infer the proliferation, abundance, and control of Aedes aegypti, 2023, 239, 0001706X, 106837, 10.1016/j.actatropica.2023.106837
    94. Preety Kalra, Indu Ratti, Mathematical Modeling on Yellow Fever with Effect of Awareness Through Media, 2022, 2267, 1742-6588, 012034, 10.1088/1742-6596/2267/1/012034
    95. Frédéric Jourdain, Henriette de Valk, Harold Noël, Marie-Claire Paty, Grégory L’Ambert, Florian Franke, Damien Mouly, Jean-Claude Desenclos, Benjamin Roche, Xavier Rodo, Estimating chikungunya virus transmission parameters and vector control effectiveness highlights key factors to mitigate arboviral disease outbreaks, 2022, 16, 1935-2735, e0010244, 10.1371/journal.pntd.0010244
    96. Brianne M. Hibl, Natalie J. M. Dailey Garnes, Alexander R. Kneubehl, Megan B. Vogt, Jennifer L. Spencer Clinton, Rebecca R. Rico-Hesse, Michael R. Holbrook, Mosquito-bite infection of humanized mice with chikungunya virus produces systemic disease with long-term effects, 2021, 15, 1935-2735, e0009427, 10.1371/journal.pntd.0009427
    97. Zhimin Li, Xiao-Qiang Zhao, Global dynamics of a Nonlocal Periodic Reaction–Diffusion Model of Chikungunya Disease, 2023, 1040-7294, 10.1007/s10884-023-10267-1
    98. María Guadalupe Vázquez-Peña, Cruz Vargas-De-León, Jorge Fernando Camacho-Pérez, Jorge Velázquez-Castro, Analysis and Bayesian estimation of a model for Chikungunya dynamics with relapse: An outbreak in Acapulco, Mexico, 2023, 20, 1551-0018, 18123, 10.3934/mbe.2023805
    99. Rubin Fandio, Hamadjam Abboubakar, Henri Paul Ekobena Fouda, Anoop Kumar, Kottakkaran Sooppy Nisar, Mathematical modelling and projection of Buruli ulcer transmission dynamics using classical and fractional derivatives: A case study of Cameroon, 2023, 26668181, 100589, 10.1016/j.padiff.2023.100589
    100. Abdoulaye Kaboré, Boureima Sangaré, Bakary Traoré, Mathematical model of mosquito population dynamics with constants and periodic releases of Wolbachia -infected males , 2024, 32, 2769-0911, 10.1080/27690911.2024.2372581
    101. Jayanta Kumar Ghosh, Partha Biswas, Sudhanshu Kumar Biswas, Susmita Sarkar, Uttam Ghosh, Qualitative and optimal control analysis of a two-serotype dengue model with saturated incidence in co-infection, 2024, 0228-6203, 1, 10.1080/02286203.2024.2414955
    102. Samia Shaikh, Padakanti Sandeep Chary, Neelesh Kumar Mehra, Nano-interventions for dengue: a comprehensive review of control, detection and treatment strategies, 2025, 0925-4692, 10.1007/s10787-025-01655-8
    103. Gopal Chandra Sikdar, Pritam Saha, Uttam Ghosh, Effect of cross-immunity on the transmission of a two serotypes co-infected dengue model under deterministic and stochastic environments, 2025, 0924-090X, 10.1007/s11071-025-11172-6
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5441) PDF downloads(674) Cited by(10)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog