Citation: Raili Kajaste, Markku Hurme, Pekka Oinas. Methanol-Managing greenhouse gas emissions in the production chain by optimizing the resource base[J]. AIMS Energy, 2018, 6(6): 1074-1102. doi: 10.3934/energy.2018.6.1074
[1] | Swati Shinde, Madhura Kalbhor, Pankaj Wajire . DeepCyto: a hybrid framework for cervical cancer classification by using deep feature fusion of cytology images. Mathematical Biosciences and Engineering, 2022, 19(7): 6415-6434. doi: 10.3934/mbe.2022301 |
[2] | Kai Zhang, Xinwei Wang, Hua Liu, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Ming Ma . Mathematical analysis of a human papillomavirus transmission model with vaccination and screening. Mathematical Biosciences and Engineering, 2020, 17(5): 5449-5476. doi: 10.3934/mbe.2020294 |
[3] | Simphiwe M. Simelane, Justin B. Munyakazi, Phumlani G. Dlamini, Oluwaseun F. Egbelowo . Projections of human papillomavirus vaccination and its impact on cervical cancer using the Caputo fractional derivative. Mathematical Biosciences and Engineering, 2023, 20(7): 11605-11626. doi: 10.3934/mbe.2023515 |
[4] | Eminugroho Ratna Sari, Fajar Adi-Kusumo, Lina Aryati . Mathematical analysis of a SIPC age-structured model of cervical cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 6013-6039. doi: 10.3934/mbe.2022281 |
[5] | Linda J. S. Allen, P. van den Driessche . Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences and Engineering, 2006, 3(3): 445-458. doi: 10.3934/mbe.2006.3.445 |
[6] | Vitalii V. Akimenko, Fajar Adi-Kusumo . Stability analysis of an age-structured model of cervical cancer cells and HPV dynamics. Mathematical Biosciences and Engineering, 2021, 18(5): 6155-6177. doi: 10.3934/mbe.2021308 |
[7] | Najat Ziyadi . A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences and Engineering, 2017, 14(1): 339-358. doi: 10.3934/mbe.2017022 |
[8] | Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045 |
[9] | Nengkai Wu, Dongyao Jia, Chuanwang Zhang, Ziqi Li . Cervical cell extraction network based on optimized yolo. Mathematical Biosciences and Engineering, 2023, 20(2): 2364-2381. doi: 10.3934/mbe.2023111 |
[10] | Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019 |
[1] |
Räuchle K, Plass L, Wernicke HJ, et al. (2016) Methanol for renewable energy storage and utilization. Energ Technol 4: 193–200. doi: 10.1002/ente.201500322
![]() |
[2] |
Su LW, Li XR, Sun ZY (2013) Flow chart of methanol in China. Renew Sust Energ Rev 28: 541–550. doi: 10.1016/j.rser.2013.08.020
![]() |
[3] | MCGroup (2018) Methanol: 2018 World Market Outlook and Forecast up to 2027. Available from: https://mcgroup.co.uk/researches/methanol. |
[4] | IHS. Methanol, Marc Alvarado, February 2016. Available from: http://www.methanol.org/wp-content/uploads/2016/07/Marc-Alvarado-Global-Methanol-February-2016-IMPCA-for-upload-to-website.pdf. |
[5] |
Brynolf S, Fridell E, Andersson K (2014) Environmental assessment of marine fuels: Liquefied natural gas, liquefied biogas, methanol and bio-methanol. J Clean Prod 74: 86–95. doi: 10.1016/j.jclepro.2014.03.052
![]() |
[6] |
Pontzen F, Liebner W, Gronemann V, et al. (2011) CO2-based methanol and DME-Efficient technologies for industrial scale production. Catal Today 171: 242–250. doi: 10.1016/j.cattod.2011.04.049
![]() |
[7] | Bermúdez JM, Ferrera-Lorenzo N, Luque S, et al. (2013) New process for producing methanol from coke oven gas by means of CO2 reforming. Comparison with conventional process. Fuel Process Technol 115: 215–221. |
[8] | Saunois M, Jackson RB, Bousquet P, et al. (2016) The growing role of methane in anthropogenic climate change. Environ Res Lett 11: 1–5. |
[9] |
Riaz A, Zahedi G, Klemes JJ (2013) A review of cleaner production methods for the manufacture of methanol. J Clean Prod 57: 19–37. doi: 10.1016/j.jclepro.2013.06.017
![]() |
[10] |
Anicic B, Trop P, Goricanec D (2014) Comparison between two methods of methanol production from carbon dioxide. Energy 77: 279–289. doi: 10.1016/j.energy.2014.09.069
![]() |
[11] |
Tidona B, Koppold C, Bansode A, et al. (2013) CO2 hydrogenation to methanol at pressures up to 950 bar. J Supercrit Fluid 78: 70–77. doi: 10.1016/j.supflu.2013.03.027
![]() |
[12] |
Narvaez A, Chadwick D, Kershenbaum L (2014) Small-medium scale polygeneration systems: Methanol and power production. Appl Energy 113: 1109–1117. doi: 10.1016/j.apenergy.2013.08.065
![]() |
[13] |
Soltanieh M, Azar KM, Saber M (2012) Development of a zero emission integrated system for co-production of electricity and methanol through renewable hydrogen and CO2 capture. Int J Greenhouse Gas Control 7: 145–152. doi: 10.1016/j.ijggc.2012.01.008
![]() |
[14] |
Zhang Y, Cruz J, Zhang S, et al. (2013) Process simulation and optimization of methanol production coupled to tri-reforming process. Int J Hydrogen Energ 38: 13617–13630. doi: 10.1016/j.ijhydene.2013.08.009
![]() |
[15] | Minutillo M, Perna A (2010) A novel approach for treatment of CO2 from fossil fired power plants. Part B: The energy suitability of integrated tri-reforming power plants (ITRPPs) for methanol production. Int J Hydrogen Energ 35: 7012–7020. |
[16] |
Matzen M, Demirel Y (2016) Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: Alternative fuels production and life-cycle assessment. J Clean Prod 139: 1068–1077. doi: 10.1016/j.jclepro.2016.08.163
![]() |
[17] | Meerman JC, Ramírez A, Turkenburg WC, et al. (2011) Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment. Renew Sust Energ Rev 15: 2563–2587. |
[18] |
Van Rens G, Huisman G, De Lathouder H, et al. (2011) Performance and exergy analysis of biomass-to-fuel plants producing methanol, dimethylether or hydrogen. Biomass Bioenerg 35: S145–S154. doi: 10.1016/j.biombioe.2011.05.020
![]() |
[19] |
Melin K, Kohl T, Koskinen J, et al. (2015) Performance of biofuel process utilising separate lignin and carbohydrate processing. Bioresource Technol 192: 397–409. doi: 10.1016/j.biortech.2015.05.022
![]() |
[20] | Melin K, Kohl T, Koskinen J, et al. (2016) Enhanced biofuel processes utilizing separate lignin and carbohydrate processing of lignocellulose. Biofuels 7: 31–54. |
[21] |
Trop P, Anicic B, Goricanec D (2014) Production of methanol from a mixture of torrefied biomass and coal. Energy 77: 125–132. doi: 10.1016/j.energy.2014.05.045
![]() |
[22] |
Holmgren KM, Berntsson T, Andersson E, et al. (2012) System aspects of biomass gasification with methanol synthesis-process concepts and energy analysis. Energy 45: 817–828. doi: 10.1016/j.energy.2012.07.009
![]() |
[23] |
Holmgren KM, Andersson E, Berntsson T, et al. (2014) Gasification-based methanol production from biomass in industrial clusters: Characterisation of energy balances and greenhouse gas emissions. Energy 69: 622–637. doi: 10.1016/j.energy.2014.03.058
![]() |
[24] |
Andersson J, Lundgren J, Marklund M (2014) Methanol production via pressurized entrained flow biomass gasification-Techno-economic comparison of integrated vs. stand-alone production. Biomass Bioenerg 64: 256–268. doi: 10.1016/j.biombioe.2014.03.063
![]() |
[25] |
Ortiz FJG, Serrera A, Galera S, et al. (2013) Methanol synthesis from syngas obtained by supercritical water reforming of glycerol. Fuel 105: 739–751. doi: 10.1016/j.fuel.2012.09.073
![]() |
[26] |
Bludowsky T, Agar DW (2009) Thermally integrated bio-syngas-production for biorefineries. Chem Eng Res Des 87: 1328–1339. doi: 10.1016/j.cherd.2009.03.012
![]() |
[27] |
Boretti A (2013) Renewable hydrogen to recycle CO2 to methanol. Int J Hydrogen Energ 38: 1806–1812. doi: 10.1016/j.ijhydene.2012.11.097
![]() |
[28] | Trudewind CA, Schreiber A, Haumann D (2014) Photocatalytic methanol and methane production using captured CO2 from coal-fired power plants. Part I-a Life Cycle Assessment. J Clean Prod 70: 27–37. |
[29] | Bai Z, Liu Q, Lei J, et al. (2015)>A polygeneration system for the methanol production and the power generation with the solar-biomass thermal gasification. Energ Convers Manage 102: 190–201. |
[30] | Bertau H, Offermanns H, Plass L, et al. (2014) Methanol: The Basic Chemical and Energy Feedstock of the Future. Heidelberg: Springer. |
[31] | ISO (2006a) Environmental Management-Life Cycle Assessment-Principles and Framework. ISO 14040:2006. ISO/IEC. |
[32] | ISO (2006b) Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISO 14044:2006. ISO/IEC. |
[33] |
Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bio-ethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15: 53–66. doi: 10.1007/s11367-009-0124-2
![]() |
[34] |
Kajaste R (2014) Chemicals from biomass-managing greenhouse gas emissions in biorefinery production chains-a review. J Clean Prod 75: 1–10. doi: 10.1016/j.jclepro.2014.03.070
![]() |
[35] |
Matzen M, Alhajji M, Demirel Y (2015) Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix. Energy 93: 343–353. doi: 10.1016/j.energy.2015.09.043
![]() |
[36] |
Minutillo A, Perna A (2009) A novel approach for treatment of CO2 from fossil fired power plants, Part A: The integrated systems ITRPP. Int J Hydrogen Energ 34: 4014–4020. doi: 10.1016/j.ijhydene.2009.02.069
![]() |
[37] |
Barkley ZR, Lauvaux T, Davis KJ, et al. (2017) Quantifying methane emissions from natural gas production in north-eastern Pennsylvania. Atmos Chem Phys 17: 13941–13966. doi: 10.5194/acp-17-13941-2017
![]() |
[38] | Moro A, Lonza L (2017) Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transport Res D-Tr E 64: 5–14. |
[39] |
Moretti C, Moro A, Edwards R, et al. (2017) Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products. Appl Energy 206: 372–381. doi: 10.1016/j.apenergy.2017.08.183
![]() |
[40] |
Zhang C, Jun KW, Gao R, et al. (2017) Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: Techno-economic analysis. Fuel 190: 303–311. doi: 10.1016/j.fuel.2016.11.008
![]() |
[41] |
Di X, Liping L, Weifeng S, et al. (2017) Life cycle sustainability assessment of chemical processes: A vector based three-dimensional algorithm coupled with AHP. Ind Eng Chem Res 56: 11216–11227. doi: 10.1021/acs.iecr.7b02041
![]() |
[42] |
Van-Dal ÉS, Bouallou C (2013) Design and simulation of a methanol production plant from CO2 hydrogenation. J Clean Prod 57: 38–45. doi: 10.1016/j.jclepro.2013.06.008
![]() |
[43] |
Dumont MN, von der Assen N, Sternberg A, et al. (2012) Assessing the environmental potential of carbon dioxide utilization: A graphical targeting approach. Comput Aided Chem Eng 31: 1407–1411. doi: 10.1016/B978-0-444-59506-5.50112-7
![]() |
[44] |
Yu Y, Jing L, Weifeng S, et al. (2018) High-efficiency utilization of CO2 in the methanol production by a novel parallel-series system combining steam and dry methane reforming. Energy 158: 820–829. doi: 10.1016/j.energy.2018.06.061
![]() |
1. | Oluwaseun Sharomi, Tufail Malik, A model to assess the effect of vaccine compliance on Human Papillomavirus infection and cervical cancer, 2017, 47, 0307904X, 528, 10.1016/j.apm.2017.03.025 | |
2. | Aliya A. Alsaleh, Abba B. Gumel, Analysis of Risk-Structured Vaccination Model for the Dynamics of Oncogenic and Warts-Causing HPV Types, 2014, 76, 0092-8240, 1670, 10.1007/s11538-014-9972-4 | |
3. | Fei Xu, Ross Cressman, Voluntary vaccination strategy and the spread of sexually transmitted diseases, 2016, 274, 00255564, 94, 10.1016/j.mbs.2016.02.004 | |
4. | A. Omame, D. Okuonghae, R.A. Umana, S.C. Inyama, Analysis of a co-infection model for HPV-TB, 2020, 77, 0307904X, 881, 10.1016/j.apm.2019.08.012 | |
5. | A. Omame, R. A. Umana, D. Okuonghae, S. C. Inyama, Mathematical analysis of a two-sex Human Papillomavirus (HPV) model, 2018, 11, 1793-5245, 1850092, 10.1142/S1793524518500924 | |
6. | Raúl Peralta, Cruz Vargas-De-León, Augusto Cabrera, Pedro Miramontes, Dynamics of High-Risk Nonvaccine Human Papillomavirus Types after Actual Vaccination Scheme, 2014, 2014, 1748-670X, 1, 10.1155/2014/542923 | |
7. | Fernando Saldaña, Andrei Korobeinikov, Ignacio Barradas, Optimal Control against the Human Papillomavirus: Protection versus Eradication of the Infection, 2019, 2019, 1085-3375, 1, 10.1155/2019/4567825 | |
8. | Andrew Omame, Daniel Okuonghae, A co‐infection model for oncogenic human papillomavirus and tuberculosis with optimal control and Cost‐Effectiveness Analysis, 2021, 0143-2087, 10.1002/oca.2717 | |
9. | A. Omame, D. Okuonghae, S. C. Inyama, 2020, Chapter 4, 978-981-15-2285-7, 107, 10.1007/978-981-15-2286-4_4 | |
10. | Kai Zhang, Yunpeng Ji, Qiuwei Pan, Yumei Wei, Yong Ye, Hua Liu, Sensitivity analysis and optimal treatment control for a mathematical model of Human Papillomavirus infection, 2020, 5, 2473-6988, 2646, 10.3934/math.2020172 | |
11. | ALIYA A. ALSALEH, ABBA B. GUMEL, DYNAMICS ANALYSIS OF A VACCINATION MODEL FOR HPV TRANSMISSION, 2014, 22, 0218-3390, 555, 10.1142/S0218339014500211 | |
12. | Tufail Malik, Mudassar Imran, Raja Jayaraman, Optimal control with multiple human papillomavirus vaccines, 2016, 393, 00225193, 179, 10.1016/j.jtbi.2016.01.004 | |
13. | Ana Gradíssimo, Robert D. Burk, Molecular tests potentially improving HPV screening and genotyping for cervical cancer prevention, 2017, 17, 1473-7159, 379, 10.1080/14737159.2017.1293525 | |
14. | Abba B. Gumel, Jean M.-S. Lubuma, Oluwaseun Sharomi, Yibeltal Adane Terefe, Mathematics of a sex-structured model for syphilis transmission dynamics, 2018, 41, 01704214, 8488, 10.1002/mma.4734 | |
15. | Shasha Gao, Maia Martcheva, Hongyu Miao, Libin Rong, A two-sex model of human papillomavirus infection: Vaccination strategies and a case study, 2022, 536, 00225193, 111006, 10.1016/j.jtbi.2022.111006 | |
16. | Fernando Saldaña, José A Camacho-Gutiérrez, Geiser Villavicencio-Pulido, Jorge X. Velasco-Hernández, Modeling the transmission dynamics and vaccination strategies for human papillomavirus infection: An optimal control approach, 2022, 112, 0307904X, 767, 10.1016/j.apm.2022.08.017 | |
17. | A. Omame, D. Okuonghae, U. E. Nwafor, B. U. Odionyenma, A co-infection model for HPV and syphilis with optimal control and cost-effectiveness analysis, 2021, 14, 1793-5245, 10.1142/S1793524521500509 | |
18. | Shasha Gao, Maia Martcheva, Hongyu Miao, Libin Rong, The impact of vaccination on human papillomavirus infection with disassortative geographical mixing: a two-patch modeling study, 2022, 84, 0303-6812, 10.1007/s00285-022-01745-z | |
19. | 丽娜 王, Dynamic Analysis of a Kind of HPV Transmission Model Incorporating Media Impact and Early Screening, 2024, 13, 2324-7991, 3845, 10.12677/aam.2024.138366 | |
20. | Arsène Jaurès Ouemba Tassé, Berge Tsanou, Cletus Kwa Kum, Jean Lubuma, A mathematical model on the impact of awareness and traditional medicine in the control of Ebola: case study of the 2014–2016 outbreaks in Sierra Leone and Liberia, 2024, 0272-4960, 10.1093/imamat/hxae025 | |
21. | Roya Khalili Amirabadi, Omid S. Fard, Mohsen Jalaeian Farimani, Towards optimal control of HPV model using safe reinforcement learning with actor–critic neural networks, 2025, 264, 09574174, 125783, 10.1016/j.eswa.2024.125783 | |
22. | Henok Desalegn Desta, Getachew Teshome Tilahun, Tariku Merga Tolasa, Mulugeta Geremew Geleso, Francisco R. Villatoro, Mathematical Model of Human Papillomavirus (HPV) Dynamics With Double‐Dose Vaccination and Its Impact on Cervical Cancer, 2024, 2024, 1026-0226, 10.1155/ddns/9971859 | |
23. | Sylas Oswald, Eunice Mureithi, Berge Tsanou, Michael Chapwanya, Kijakazi Mashoto, Crispin Kahesa, MCMC-Driven mathematical modeling of the impact of HPV vaccine uptake in reducing cervical cancer, 2025, 24682276, e02633, 10.1016/j.sciaf.2025.e02633 | |
24. | A. El-Mesady, Tareq M. Al-shami, Hegagi Mohamed Ali, Optimal control efforts to reduce the transmission of HPV in a fractional-order mathematical model, 2025, 2025, 1687-2770, 10.1186/s13661-024-01991-8 |