Loading [MathJax]/jax/output/SVG/jax.js
Research article

An accelerated and accurate process for the initial guess calculation in Digital Image Correlation algorithm

  • The Digital Image Correlation (DIC) is now an effective method for measuring displacement in engineering fields. DIC includes a coarse search scheme with pixel-size accuracy for finding an initial guess (IG) followed by an iteration procedure to successively find the accurate/true displacements. The closer IG to the true displacement values, the higher the likelihood of convergence and the more efficient the convergence of the subsequent Newton-Raphson (NR) iteration procedure. This study introduced and verified a novel fuzzy-logic based approximation scheme intending to provide more accurate IG values after the standard full-field IG search scheme. The results based on numerical experiments showed that the novel step of IG searching scheme provided considerably more accurate IG values and reduced the computational costs of finding IG values by up to 88.5% compared to the standard scheme. Furthermore, the overall computational costs including the subsequent NR iteration procedure were reduced by 31.5%, which is substantial. To further test and demonstrate the robustness, accuracy and effectiveness of the novel DIC procedure, a large number of numerical experiments using images simulating a wide range of rigid body motions (rotation, translation) and tensile testing conditions was utilized. The results had a 98.8% accuracy rate and a 99% precision rate. The DIC procedure provided therefore efficient and accurate displacement/deformation measurements in different types of loading conditions which are used for studying the mechanics of acrylic medical bone cements that are of interest in our research laboratory.

    Citation: Juan Zhang, Huizhong Lu, Gamal Baroud. An accelerated and accurate process for the initial guess calculation in Digital Image Correlation algorithm[J]. AIMS Materials Science, 2018, 5(6): 1223-1241. doi: 10.3934/matersci.2018.6.1223

    Related Papers:

    [1] Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao . Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29(3): 2489-2516. doi: 10.3934/era.2020126
    [2] Bin Wang . Random periodic sequence of globally mean-square exponentially stable discrete-time stochastic genetic regulatory networks with discrete spatial diffusions. Electronic Research Archive, 2023, 31(6): 3097-3122. doi: 10.3934/era.2023157
    [3] Linlin Tan, Bianru Cheng . Global well-posedness of 2D incompressible Navier–Stokes–Darcy flow in a type of generalized time-dependent porosity media. Electronic Research Archive, 2024, 32(10): 5649-5681. doi: 10.3934/era.2024262
    [4] Gezi Chong, Jianxia He . On exponential decay properties of solutions of the (3 + 1)-dimensional modified Zakharov-Kuznetsov equation. Electronic Research Archive, 2025, 33(1): 447-470. doi: 10.3934/era.2025022
    [5] Guo-Niu Han, Huan Xiong . Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29(1): 1841-1857. doi: 10.3934/era.2020094
    [6] Jiangshan Wang, Lingxiong Meng, Hongen Jia . Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28(3): 1191-1205. doi: 10.3934/era.2020065
    [7] Xu Zhao, Wenshu Zhou . Vanishing diffusion limit and boundary layers for a nonlinear hyperbolic system with damping and diffusion. Electronic Research Archive, 2023, 31(10): 6505-6524. doi: 10.3934/era.2023329
    [8] Yongwei Yang, Yang Yu, Chunyun Xu, Chengye Zou . Passivity analysis of discrete-time genetic regulatory networks with reaction-diffusion coupling and delay-dependent stability criteria. Electronic Research Archive, 2025, 33(5): 3111-3134. doi: 10.3934/era.2025136
    [9] Hami Gündoğdu . Impact of damping coefficients on nonlinear wave dynamics in shallow water with dual damping mechanisms. Electronic Research Archive, 2025, 33(4): 2567-2576. doi: 10.3934/era.2025114
    [10] Jin Li, Yongling Cheng . Barycentric rational interpolation method for solving time-dependent fractional convection-diffusion equation. Electronic Research Archive, 2023, 31(7): 4034-4056. doi: 10.3934/era.2023205
  • The Digital Image Correlation (DIC) is now an effective method for measuring displacement in engineering fields. DIC includes a coarse search scheme with pixel-size accuracy for finding an initial guess (IG) followed by an iteration procedure to successively find the accurate/true displacements. The closer IG to the true displacement values, the higher the likelihood of convergence and the more efficient the convergence of the subsequent Newton-Raphson (NR) iteration procedure. This study introduced and verified a novel fuzzy-logic based approximation scheme intending to provide more accurate IG values after the standard full-field IG search scheme. The results based on numerical experiments showed that the novel step of IG searching scheme provided considerably more accurate IG values and reduced the computational costs of finding IG values by up to 88.5% compared to the standard scheme. Furthermore, the overall computational costs including the subsequent NR iteration procedure were reduced by 31.5%, which is substantial. To further test and demonstrate the robustness, accuracy and effectiveness of the novel DIC procedure, a large number of numerical experiments using images simulating a wide range of rigid body motions (rotation, translation) and tensile testing conditions was utilized. The results had a 98.8% accuracy rate and a 99% precision rate. The DIC procedure provided therefore efficient and accurate displacement/deformation measurements in different types of loading conditions which are used for studying the mechanics of acrylic medical bone cements that are of interest in our research laboratory.


    The porous media fluid defined in a two-dimensional semi-infinite pipe has received extensive attention. Liu et al. [1] defined a semi-infinite strip pipe whose generatrix is parallel to the coordinate axis (see Figure 1) and obtained the Phragmén-Lindelöf alternative result of shallow water equations.

    Figure 1.  Cylindrical pipe 1.

    Payne and Schaefer [2] considered the case that the generatrix is not parallel to the coordinate axis (see Figure 2) and obtained the Phragmén-Lindelöf alternative for the biharmonic equation.

    Figure 2.  Cylindrical pipe 2.

    Recently, Li and Chen [3] considered the Darcy equations on a semi-infinite channel which was defined as

    R={(x1,x2)|x1>a,0<x2<h(x1)},

    where a>0 and h(x1) is a smooth curve in the plane. They proved that the solutions of Darcy equations grow polynomially or decay exponentially as a spatial variable x1. For more on such studies, one can see [2,4,5,6].

    In this paper, we consider the convergence result on the Soret coefficient of the Darcy model in R. The importance of this type of convergence result was discussed by Hirsch and Smale [7] and there have been a lot of results. At first, people mainly focused on the structural stability of the solutions of various systems of partial differential equations in bounded domains (see [8,9,10,11,12,13,14]). Later, many scholars extended the study of structural stability to the case that there are two kinds of interface links in a bounded region (see [15,16,17,18]). Li et al. [19,20] considered the structural stability of Brinkman-Forechheimer equations and the thermoelastic equations of type III on a three-dimensional semi-infinite cylinder, respectively. The generatrix of the cylinder was parallel to the coordinate axis. However, the stability of partial differential equations on a two-dimensional pipe has not received enough attention. It is especially emphasized that the generatrix of the pipe considered in this paper is not parallel to the coordinate axis.

    We investigate the following double-diffusive Darcy flow of a fluid through a porous medium in R which can be written as (see [21])

    uα=p,α+gαT+hαC, in R×(0,τ), (1.1)
    uα,α=0, in R×(0,τ), (1.2)
    tT+uαT,α=ΔT, in R×(0,τ), (1.3)
    tC+uαC,α=ΔC+σΔT, in R×(0,τ), (1.4)

    where α=1,2. uα,p,T and C represent the velocity, pressure, temperature, and concentration of the flow, respectively. gα and hα are bounded functions. σ>0 is the Soret coefficient. For simplicity, we assume g and h satisfy |g|, |h|1. In this paper, we also use the summation convention summed from 1 to 2, and a comma is used to indicate differentiation. e.g., uα,βuα,β=2α,β=1(uαxβ)2.

    The initial-boundary conditions can be written as

    uα(x1,0,t)=uα(x1,h(x1),t)=0, x1a,0<t<τ, (1.5)
    T(x1,0,t)=T(x1,h(x1),t)=0, x1a,0<t<τ, (1.6)
    C(x1,0,t)=C(x1,h(x1),t)=0, x1a,0<t<τ, (1.7)
    uα(a,x2,t)=Fα(x2,t), 0<x2<h(a),0<t<τ, (1.8)
    T(a,x2,t)=H(x2,t),C(a,x2,t)=˜H(x2,t), 0<x2<h(a),0<t<τ, (1.9)
    T(x1,x2,0)=T0(x1,x2), C(x1,x2,0)=C0(x1,x2), (x1,x2)R, (1.10)

    where T0 and C0 are given functions. Fα, H and ˜H are differentiable functions which are assumed to satisfy the appropriate compatibility conditions

    Fα(h(a),t)=H(h(a),t)=˜H(h(a),t)=0.

    Now, we let v(x1,x2,t) denote a stream function which satisfies

    u1=v,2,u2=v,1.

    Equations (1.1)–(1.8) can be converted to

    Δv=gTgThChC, in R×(0,τ), (1.11)
    tT+vT=ΔT, in R×(0,τ), (1.12)
    tC+vC=ΔC+σΔT, in R×(0,τ), (1.13)
    v(x1,0,t)=v(x1,h(x1),t)=0, x1a,0<t<τ, (1.14)
    vn(x1,0,t)=vn(x1,h(x1),t)=0, x1a,0<t<τ, (1.15)
    T(x1,0,t)=T(x1,h(x1),t)=0, x1a,0<t<τ, (1.16)
    C(x1,0,t)=C(x1,h(x1),t)=0, x1a,0<t<τ, (1.17)
    v(a,x2,t)=˜F1(x2,t)=x20F1(s,t)ds, 0<x2<h(a),0<t<τ, (1.18)
    v,1(a,x2,t)=˜F2(x2,t)=F2(x2,t), 0<x2<h(a),0<t<τ, (1.19)
    T(a,x2,t)=H(x2,t), C(a,x2,t)=˜H(x2,t), 0<x2<h(a),0<t<τ, (1.20)
    T(x1,x2,0)=T0(x1,x2), C(x1,x2,0)=C0(x1,x2), (x1,x2)R, (1.21)

    where vn is the outward normal derivative of v, g=(g1,g2), h=(h1,h2) and =(x2,x1).

    In the next section, we give several lemmas that have been derived in the literature. In Section 3, we derive an important lemma that can be used to derive our main result. In Section 4, we obtain the convergence result on the Soret coefficient and give some concrete examples. Section 5 shows the summary and outlook of this paper.

    We also introduce the notations

    Rz={(x1,x2)|x1z>a,0<x2<h(x1)},
    Lz={(x1,x2)|x1=za,0<x2<h(z)},

    where z is a running variable along the x1 axis.

    Here are some lemmas that will be often used in this paper.

    Lemma 2.1 (see [5,22]) If w(x1,0)=w(x1,h)=0 and wn(x1,0)=wn(x1,h)=0, then the following Wirtinger type inequality holds

    Lzw2dx2h2π2Lz(w,2)2dx2,

    where z>0 is a moving point on the x1 axis.

    Lemma 2.2 If φ(x1,0)=φ(x1,h)=0 and φ0, as x1, then

    Rzφ4dx2dξ(Rzφ2dx2dξ)(Rzφ,αφ,αdx2dξ).

    Proof. Since φ(x1,0)=φ(x1,h)=0, we have

    φ2(x1,x2)=2x20φζφ(x1,ζ)dζ=2hx2φζφ(x1,ζ)dζh0|φx2φ(x1,x2)|dx2. (2.1)

    Since φ0, as x1, we have

    φ2(x1,x2)=2x1φξφ(ξ,x2)dξ2x1|φξφ(ξ,x2)|dξ. (2.2)

    Combining Eqs (2.1) and (2.2) and integrating over Rz, we obtain

    Rzφ4(ξ,x2)dx2dξ2[Rz|φx2φ(ξ,x2)|dx2dξ][Rz|φξφ(ξ,x2)|dx2dξ]2Rzφ2dx2dξ(Rz(φξ)2dx2dξ)12(Rz(φx2)2dx2dξ)12.

    Using Young's inequality, we can obtain Lemma 2.2.

    Using a similar method of papers [9,23,24], we can have the following lemma.

    Lemma 2.3 Assume that T0,HL, then

    sup[0,τ]||T||Tm,

    where Tm=max{||T0||, sup[0,τ]H(η)}.

    If C0,˜HL and σ=0 in (1.4), we can also have

    sup[0,τ]||C||Cm, (2.3)

    where Cm=max{||C0||, sup[0,τ]˜H(η)}.

    To obtain our main result, we shall use the following result which can be written as follows.

    Lemma 2.4 (see [3]) Let (v,T,C) be a solution of the Eqs (1.1)–(1.10) in R and  za such that F(z,t)<0. Then for any fixed t

    t0Rzeωη[14β2ωT2+14ωC2+12β1v,αv,α+12β2T,αT,α+12C,αC,α]dx2dξdη+12eωtzLξ[β2T2+C2]dx2dξm1e2m3za1h(ζ)dζ+m2em3za1h(ζ)dζ

    holds, where β1,β2,ω,m1,m2 and m3 are positive constants which depends on the middle parameter σ and boundary conditions of the equation; also F(z,t) has been defined as

    F(z,t)=t0Lzeωη[β1vv,1+β2TT,1+CC,1]dx2dη+β1t0Lzeωη[g2Tv+h2Cv]dx2dη+t0Lzeωη[12β2T2v,212C2v,2+σCT,1]dx2dη.

    Remark 2.1 Lemma 2.4 shows that the solution of Eqs (1.11)–(1.21) decays exponentially with z. Only in this case, the study of structural stability is meaningful. Lemma 2.4 will also provide a priori bounds for the estimate of nonlinear terms (see e.g., (3.55) and (3.56)).

    Remark 2.2 Li and Chen [3] considered several special cases of h(z), e.g., h(z)=h a constant, h(z)k1zτ1 and h(z)k2z(lnz)τ2, where k1,k2>0 and 0<τ1,τ21. In the fourth section, we will also consider several special cases with h(z)=h as a constant, τ1=12,k1=1 and τ1=23,k1=1.

    Lemma 2.5 (see [3]) Assume that (v,T,C) are solutions of Eqs (1.1)–(1.10). If F(z,t)<0 for any za, then

    t0Reωη[14β2ωT2+14ωC2+12β1v,αv,α+12β2T,αT,α+12C,αC,α]dx2dξdη+12eωtR[β2T2+C2]dx2dξr(t),

    where r(t) is a positive known function which depends only on t.

    Now, we derive a bound of Rv,αv,αdx2dξ.

    Lemma 2.6 Assume that ˜F1,˜F2,H,˜HL(R), then

    Rv,αv,αdx2dξϵ1, (2.4)

    where

    ϵ1=2sup[0,τ]{La|˜F1˜F2|dx2dξ+La|g2H˜F1|dx2dξ+La|h2˜H˜F1|dx2dξ}+4max{1β2,1}reωτ.

    Additionally, r is the maximum value of r(t) in [0,τ].

    Proof. Using Eq (1.11), we have

    R[Δv+gT+gT+hC+hC]vdx2dξ=0.

    Using Eqs (1.18)–(1.20) it follows that

    Rv,αv,αdx2dξ=La˜F1˜F2dx2dξLag2H˜F1dx2dξLah2˜H˜F1dx2dξRvgTdx2dξRvhCdx2dξLa|˜F1˜F2|dx2dξ+La|g2H˜F1|dx2dξ+La|h2˜H˜F1|dx2dξ+12Rv,αv,αdx2dξ+RT2dx2dξ+RC2dx2dξ. (2.5)

    Using Lemma 2.5 in Eq (2.5), we can get Lemma 2.6.

    In this section, we derive the convergence result when the Soret coefficient σ0. To do this, we let (v,T,C) be the solution of Eqs (1.11)–(1.21). Furthermore, let (v,T,C) be the solution to the following equations

    Δv=gTgThChC, in R×(0,τ), (3.1)
    tT+vT=ΔT, in R×(0,τ), (3.2)
    tC+vC=ΔC, in R×(0,τ), (3.3)
    v(x1,0,t)=v(x1,h(x1),t)=0, x1a,0<t<τ, (3.4)
    vn(x1,0,t)=vn(x1,h(x1),t)=0, x1a,0<t<τ, (3.5)
    T(x1,0,t)=T(x1,h(x1),t)=0, x1a,0<t<τ, (3.6)
    C(x1,0,t)=C(x1,h(x1),t)=0, x1a,0<t<τ, (3.7)
    v(a,x2,t)=˜F1(x2,t)=x20F1(s,t)ds, 0<x2<h(a),0<t<τ, (3.8)
    v,1(a,x2,t)=˜F2(x2,t)=F2(x2,t), 0<x2<h(a),0<t<τ, (3.9)
    T(a,x2,t)=H(x2,t), C(a,x2,t)=˜H(x2,t), 0<x2<h(a),0<t<τ, (3.10)
    T(x1,x2,0)=T0(x1,x2), C(x1,x2,0)=C0(x1,x2), (x1,x2)R. (3.11)

    Remark 3.1 We note that Lemmas 2.4 and 2.5 also hold for (v,T,C).

    Now, we let

    w=vv, θ=TT, Σ=CC.

    Then (w,θ,Σ) satisfies

    Δw=gθgθhΣhΣ, in R×(0,τ), (3.12)
    tθ+wT+vθ=Δθ, in R×(0,τ), (3.13)
    tΣ+vΣ+wC=ΔΣ+σΔT, in R×(0,τ), (3.14)
    w(x1,0,t)=w(x1,h(x1),t)=0, x1a,0<t<τ, (3.15)
    wn(x1,0,t)=wn(x1,h(x1),t)=0, x1a,0<t<τ, (3.16)
    θ(x1,0,t)=θ(x1,h(x1),t)=0, x1a,0<t<τ, (3.17)
    Σ(x1,0,t)=Σ(x1,h(x1),t)=0, x1a,0<t<τ, (3.18)
    w(a,x2,t)=w,1(a,x2,t)=0, 0<x2<h(a),0<t<τ, (3.19)
    θ(a,x2,t)=Σ(a,x2,t)=0, 0<x2<h(a),0<t<τ, (3.20)
    θ(x1,x2,0)=Σ(x1,x2,0)=0, (x1,x2)R. (3.21)

    We establish the following auxiliary functions

    E1(z,t)=t0Rzeωηww,1dx2dξdη+t0Rzeωηg2θwdx2dξdη+t0Rzeωηh2Σwdx2dξdηA1(z,t)+A2(z,t)+A3(z,t), (3.22)
    E2(z,t)=t0Rzeωηθθ,1dx2dξdη12t0Rzeωηθ2v,2dx2dξdη+t0RzeωηθTw,2dx2dξdη+t0Rzeωη(ξz)wθTdx2dξdηB1(z,t)+B2(z,t)+B3(z,t)+B4(z,t), (3.23)
    E3(z,t)=t0RzeωηΣΣ,1dx2dξdη12t0RzeωηΣ2v,2dx2dξdηt0Rzeωηw,2CΣdx2dξdη+σt0RzeωηΣT,1dx2dξdη+t0Rzeωη(ξz)wΣCdx2dξdη+σt0Rzeωη(ξz)T,αΣ,αdx2dξdηC1(z,t)+C2(z,t)+C3(z,t)+C4(z,t)+C5(z,t)+C6(z,t), (3.24)

    where ω is an arbitrary positive constant.

    Using the divergence theorem and Eqs (3.12)-(3.21), we have

    E1(z,t)=t0Rzeωη(ξz),αww,αdx2dξdη+t0Rzeωηg2θwdx2dξdη+t0Rzeωηh2Σwdx2dξdη=t0Rzeωη(ξz)w,αw,αdx2dξdη+t0Rzeωη(ξz)gwθdx2dξdη+t0Rzeωη(ξz)hwΣdx2dξdη. (3.25)

    Similarly, we have

    E2(z,t)=t0Rzeωη(ξz)[12ωθ2+θ,αθ,α]dx2dξdη+12eωtRz(ξz)θ2dx2dξ, (3.26)

    and

    E3(z,t)=t0Rzeωη(ξz)[12ωΣ2+Σ,αΣ,α]dx2dξdη+12eωtRzeωη(ξz)Σ2dx2dξ. (3.27)

    We also define

    E(z,t)=E1(z,t)+δ2E2(z,t)+δ3E3(z,t)=t0Rzeωη(ξz)[12δ2ωθ2+12δ3ωΣ2+w,αw,α+δ2θ,αθ,α+δ3Σ,αΣ,α]dx2dξdη+12eωtRz(ξz)[δ2θ2+δ3Σ2]dx2+t0Rzeωη(ξz)gwθdx2dξdη+t0Rzeωη(ξz)hwΣdx2dξdη, (3.28)

    where δ2 and δ3 are positive constants.

    Using the Cauchy-Schwarz inequality, we have

    |t0Rzeωη(ξz)gwθdx2dξdη|t0Rzeωη(ξz)θ2dx2dξdη+14t0Rzeωη(ξz)w,αw,αdx2dξdη, (3.29)
    |t0Rzeωη(ξz)hwΣdx2dξdη|t0Rzeωη(ξz)Σ2dx2dξdη+14t0Rzeωη(ξz)w,αw,αdx2dξdη. (3.30)

    Inserting Eqs (3.29) and (3.30) into Eq (3.28) and choosing ω=max{4δ3,4δ2}, we have

    E(z,t)t0Rzeωη(ξz)[14δ2ωθ2+14ωδ3Σ2+12w,αw,α+δ2θ,αθ,α+δ3Σ,αΣ,α]dx2dξdη+12eωtRz(ξz)[δ2θ2+δ3Σ2]dx2dξ. (3.31)

    From Eq (3.28), we have

    zE(z,t)=t0Rzeωη[12δ2ωθ2+12δ3ωΣ2+w,αw,α+δ2θ,αθ,α+δ3Σ,αΣ,α]dx2dξdη+12eωtRz[δ2θ2+δ3Σ2]dx2dξ+t0Rzeωηgwθdx2dξdη+t0RzeωηhwΣdx2dξdη. (3.32)

    Using the Cauchy-Schwarz inequality, we have

    |t0Rzeωηgwθdx2dξdη|t0Rzeωηθ2dx2dξdη+14t0Rzeωηw,αw,αdx2dξdη, (3.33)
    |t0RzeωηhwΣdx2dξdη|t0RzeωηΣ2dx2dξdη+14t0Rzeωηw,αw,αdx2dξdη. (3.34)

    Inserting Eqs (3.33) and (3.34) into Eq (3.32), we have

    zE(z,t)t0Rzeωη[34δ2ωθ2+34ωδ3Σ2+32w,αw,α+δ2θ,αθ,α+δ3Σ,αΣ,α]dx2dξdη+12eωtRz[δ2θ2+δ3Σ2]dx2dξ, (3.35)

    and

    zE(z,t)t0Rzeωη[14δ2ωθ2+14ωδ3Σ2+12w,αw,α+δ2θ,αθ,α+δ3Σ,αΣ,α]dx2dξdη+12eωtRz[δ2θ2+δ3Σ2]dx2dξ. (3.36)

    Based on Eqs (3.22)–(3.24) and using Eq (3.36), we have the following lemma.

    Lemma 3.1. Assume that T0,C0,H,˜HC, 1h(z)C(R) and the function E(z,t) is defined in Eq (3.28). Then E(z,t) satisfies

    E(z,t)n1h(z)[zE(z,t)]+4σ2δ3β3β2ωm1e2m3za1h(ζ)dζ+4σ2δ3β3β2ωm2em3za1h(ζ)dζ+4β2σ2m1ze2m3ξa1h(ζ)dζdξ+4β2σ2m2zem3ξa1h(ζ)dζdξ, (3.37)

    where n1 is a positive constant.

    Proof. Using the Hölder inequality, Young's inequality and Lemma 2.1, we have

    A1(z,t)[t0Rzeωηw2dx2dξdηt0Rzeωη(w,1)2dx2dξdη]12hπ[t0Rzeωη(w,2)2dx2dξdηt0Rzeωη(w,1)2dx2dξdη]12h2πt0Rzeωηw,αw,αdx2dξdη, (3.38)
    A2(z,t)[t0Rzeωηw2dx2dξdηt0Rzeωηθ2dx2dξdη]1222hπδ2ω[12t0Rzeωη(w,2)2dx2dξdη14δ2ωt0Rzeωηθ2dx2dξdη]122hδ2ωπ[12t0Rzeωηw,αw,αdx2dξdη+14δ2ωt0Rzeωηθ2dx2dξdη], (3.39)
    A3(z,t)2hδ3ωπ[12t0Rzeωηw,αw,αdx2dξdη+14ωδ3t0RzeωηΣ2dx2dξdη]. (3.40)

    Combining Eqs (3.22) and (3.38)–(3.40), we obtain

    E1(z,t)hπ[1+2δ2ω+2δ3ω]t0Rzeωη12w,αw,αdx2dξdη+2hδ2ωπt0Rzeωη14δ2ωθ2dx2dξdη+2hδ3ωπt0Rzeωη14ωδ3Σ2dx2dξdη. (3.41)

    Using the Hölder inequality, Young's inequality, Lemmas 2.1, 2.3, 2.5 and Eq (2.5), we have

    B1(z,t)[t0Rzeωηθ2dx2dξdηt0Rzeωη(θ,1)2dx2dξdη]12hπ[t0Rzeωη(θ,2)2dx2dξdηt0Rzeωη(θ,1)2dx2dξdη]12hπδ212δ2t0Rzeωηθ,αθ,αdx2dξdη, (3.42)
    B2(z,t)12t0[Rzeωη(v,2)2dx2dξRzeωηθ4dx2dξ]12dη12t0[Reωη(v,2)2dx2dξRzeωηθ2dx2dξ]12dηϵ12δ2πt0[Rzeωηθ2dx2dξRzeωηθ,αθ,αdx2dξ]12dηhϵ12δ2πt0Rzeωηδ2θ,αθ,αdx2dξdη, (3.43)
    B3(z,t)Tm[t0Rzeωη(w,2)2dx2dξdη]12[t0Rzeωηθ2dx2dξdη]12hπδ2Tm[12t0Rzeωηw,αw,αdx2dξdη]12[δ2t0Rzeωηθ,αθ,αdx2dξdη]12hπ2δ2Tm[12t0Rzeωηw,αw,αdx2dξdη+δ2t0Rzeωηθ,αθ,αdx2dξdη]. (3.44)

    Using Lemma 2.3, we have

    B4(z,t)12T2mt0Rzeωη(ξz)w,αw,αdx2dξdη+12t0Rzeωη(ξz)θ,αθ,αdx2dξdη. (3.45)

    Inserting Eqs (3.42) and (3.45) into Eq (3.23), we obtain

    E2(z,t)[hπδ2+hπ2δ2Tm+hϵ12δ2π]t0Rzeωηδ2θ,αθ,αdx2dξdη+hπ2δ2Tm[12t0Rzeωηw,αw,αdx2dξdη]+12T2mt0Rzeωη(ξz)w,αw,αdx2dξdη+12t0Rzeωη(ξz)θ,αθ,αdx2dξdη. (3.46)

    Similarly, we have

    C1(z,t)hπ[t0Rzeωη(Σ,2)2dx2dξdηt0Rzeωη(Σ,1)2dx2dξdη]12h2δ3πδ3t0RzeωηΣ,αΣ,αdx2dξdη, (3.47)
    C2(z,t)12t0[Rzeωη(v,2)2dx2dξRzeωηΣ4dx2dξ]12dηhϵ12δ3πδ3t0RzeωηΣ,αΣ,αdx2dξdη, (3.48)
    C3(z,t)Cm[t0Rzeωη(w,2)2dx2dξdη]12[t0RzeωηΣ2dx2dξdη]12hπ2δ3Cm[12t0Rzeωηw,αw,αdx2dξdη+δ3t0RzeωηΣ,αΣ,αdx2dξdη], (3.49)
    C4(z,t)14ωδ3t0RzeωηΣ2dx2dξdη+σ2β3ωt0Rzeωη(T,1)2dx2dξdη, (3.50)
    C5(z,t)14δ3t0Rzeωη(ξz)w,αw,αdx2dξdη+C2mδ3t0Rzeωη(ξz)Σ,αΣ,αdx2dξdη (3.51)

    and

    C6(z,t)1δ3σ2t0Rzeωη(ξz)T,αT,αdx2dξdη+14δ3t0Rzeωη(ξz)Σ,αΣ,αdx2dξdη. (3.52)

    Inserting Eqs (3.47)–(3.52) into Eq (3.24), we obtain

    E3(z,t)[h2δ3π+hπ2δ3Cm+hϵ12δ3π]δ3t0RzeωηΣ,αΣ,αdx2dξdη+hπ2δ3Cm[12t0Rzeωηw,αw,αdx2dξdη]+14ωδ3t0RzeωηΣ2dx2dξdη+[14δ3+C2mδ3]t0Rzeωη(ξz)Σ,αΣ,αdx2dξdη+14δ3t0Rzeωη(ξz)w,αw,αdx2dξdη+σ2β3ωt0Rzeωη(T,1)2dx2dξdη+1δ3σ2t0Rzeωη(ξz)T,αT,αdx2dξdη. (3.53)

    Now, inserting Eqs (3.41), (3.46) and (3.53) into Eq (3.28), choosing δ2<12T2m,δ3<14C2m and noting Eqs (3.36) and (3.31), we obtain

    E(z,t)12E(z,t)+12n1h(z)[zE(z,t)]+σ2δ3β3ωt0Rzeωη(T,1)2dx2dξdη+σ2t0Rzeωη(ξz)T,αT,αdx2dξdη, (3.54)

    where

    12n1max{1π[1+2δ2ω+2δ3ω]+Tmπ2δ2+Cmπ2δ3,1+2δ2ωπ,12δ3π+1π2δ3Cm+ϵ12δ3π,hπδ2+1π2δ2Tm+ϵ12δ2π}.

    From Lemma 2.4, we have

    t0RzeωηT,αT,αdx2dξdη2β2m1e2m3za1h(ζ)dζ+2β2m2em3za1h(ζ)dζ. (3.55)

    Integrating Eq (3.55) from z to , we get

    t0Rzeωη(ξz)T,αT,αdx2dξdη2β2m1ze2m3ξa1h(ζ)dζdξ+2β2m2zem3ξa1h(ζ)dζdξ. (3.56)

    Combining Eqs (3.54)–(3.56), we can obtain Lemma 3.1.

    Based on Lemma 3.1, we derive our main results in this section. To do this, integrating Eq (3.37) from a to z, we obtain

    E(z,t)E(a,t)e1n1za1h(ζ)dζ+4m1δ3σ2n1β3β2ωe1n1za1h(ζ)dζza1h(ξ)eξa{1n1h(ζ)2m3h(ζ)}dζdξ+4m2σ2δ3n1β3β2ωe1n1za1h(ζ)dζza1h(ξ)eξa{1n1h(ζ)m3h(ζ)}dζdξ+4m1σ2n1β2e1n1za1h(ζ)dζza1h(τ)e1n1τa1h(ζ)dζτe2m3ξa1h(ζ)dζdξdτ+4m2σ2n1β2e1n1za1h(ζ)dζza1h(τ)e1n1τa1h(ζ)dζτem3ξa1h(ζ)dζdξdτ. (4.1)

    To get the convergence results on the Soret coefficient, we have to derive the upper bound for E(a,t). To do this, we choose z=a in Eq (3.37) to get

    E(a,t)n1h(a)[zE(a,t)]+4δ3σ2β3β2ωm1+4δ3σ2β3β2ωm2+4β2σ2m1ae2m3ξa1h(ζ)dζdξ+4β2σ2m2aem3ξa1h(ζ)dζdξ. (4.2)

    By differentiating Eqs (3.22)–(3.24), then choosing z=a and using Eqs (3.19) and (3.20), it can be obtained that

    zE(a,t)=zE1(a,t)δ2zE2(a,t)δ3zE3(a,t)=δ2t0ReωηwθTdx2dξdη+δ3t0ReωηwΣCdx2dξdη+δ3σt0ReωηT,αΣ,αdx2dξdη. (4.3)

    Using the Hölder inequality, Young's inequality and Lemmas 2.3 and 2.5, we have

    δ2t0ReωηwθTdx2dξdη12δ2T2mt0Reωηw,αw,αdx2dξdη+12δ2t0Reωηθ,αθ,αdx2dξdη, (4.4)
    δ3t0ReωηwΣCdx2dξdηδ3C2mt0Reωηw,αw,αdx2dξdη+14δ3t0ReωηΣ,αΣ,αdx2dξdη, (4.5)
    δ3σt0ReωηT,αΣ,αdx2dξdηδ3σ2t0ReωηT,αT,αdx2dξdη+14δ3t0ReωηΣ,αΣ,αdx2dξdη2β2δ3σ2r(t)+14δ3t0ReωηΣ,αΣ,αdx2dξdη. (4.6)

    On the other hand, we choose z=a in Eq (3.36) to get

    zE(a,t)t0Reωη[14δ2ωθ2+14ωδ3Σ2+12w,αw,α+δ2θ,αθ,α+δ3Σ,αΣ,α]dx2dξdη+12eωtR[δ2θ2+δ3Σ2]dx2dξ. (4.7)

    Inserting Eqs (4.4)–(4.6) into Eq (4.3) and noting Eq (4.7), we get

    zE(a,t)12[zE(a,t)]+2β2δ3σ2r(t),

    or

    zE(a,t)4β2δ3σ2r(t). (4.8)

    Inserting Eq (4.8) into Eq (4.2), we have

    E(a,t)n2σ2+4β2σ2m1ae2m3ξa1h(ζ)dζdξ+4β2σ2m2aem3ξa1h(ζ)dζdξ, (4.9)

    where n2=n1(h(a)+h32(a))4β2δ3r(t)+4δ3β3β2ωm1+4δ3β3β2ωm2.

    Now, inserting Eq (4.9) into Eq (4.1) and in light of Eq (3.31), we can obtain the following theorem.

    Theorem 4.1 Letting (w,θ,Σ) is solution of Eqs (3.12)–(3.21) with T0,C0,H,˜HC, then

    (w,θ,Σ)0, as σ0.

    Specifically

    t0Rzeωη(ξz)[14δ2ωθ2+14ωδ3Σ2+12w,αw,α+δ2θ,αθ,α+δ3Σ,αΣ,α]dx2dξdη+12eωtRz(ξz)[δ2θ2+δ3Σ2]dx2dξn2σ2e1n1za1h(ζ)dζ+4β2σ2m1ae2m3ξa1h(ζ)dζdξe1n1za1h(ζ)dζ+4β2σ2m2aem3ξa1h(ζ)dζdξe1n1za1h(ζ)dζ+4m1δ3σ2n1β3β2ωe1n1za1h(ζ)dζza1h(ξ)eξa{1n1h(ζ)2m3h(ζ)}dζdξ+4m2σ2δ3n1β3β2ωe1n1za1h(ζ)dζza1h(ξ)eξa{1n1h(ζ)m3h(ζ)}dζdξ+4m1σ2n1β2e1n1za1h(ζ)dζza1h(τ)e1n1τa1h(ζ)dζτe2m3ξa1h(ζ)dζdξdτ+4m2σ2n1β2e1n1za1h(ζ)dζza1h(τ)e1n1τa1h(ζ)dζτem3ξa1h(ζ)dζdξdτ. (4.10)

    Next, we give some examples.

    Remark 4.1 If h(z)=h is a positive constant, then

    za1h(ζ)dζ=1h(za).

    Therefore, we have

    τem3ξa1h(ζ)dζdξ=hm3em3h(τa), τe2m3ξa1h(ζ)dζdξ=h2m3e2m3h(τa). (4.11)

    Choosing n1 such that 1n12m3 and 1n1m3, then

    za1h(ξ)eξa{1n1h(ζ)m3h(ζ)}dζdξ=1hzae[1n1hm3h](ξa)dξ=1[1n1m3][e[1n1hm3h](za)1], (4.12)
    za1h(ξ)eξa{1n1h(ζ)2m3h(ζ)}dζdξ=1[1n12m3][e[1n1h2m3h](za)1], (4.13)

    and

    za1h(τ)e1n1τa1h(ζ)dζτe2m3ξa1h(ζ)dζdξdτ=h2m3[1n12m3][e[1n1h2m3h](za)1], (4.14)
    za1h(τ)e1n1τa1h(ζ)dζτem3ξa1h(ζ)dζdξdτ=hm3[1n1m3][e[1n1hm3h](za)1]. (4.15)

    Inserting Eqs (4.11)–(4.15) into Eq (4.10), we get

    t0Rzeωη(ξz)[14δ2ωθ2+14ωδ3Σ2+12w,αw,α+δ2θ,αθ,α+δ3Σ,αΣ,α]dx2dξdη+12eωtRz(ξz)[δ2θ2+δ3Σ2]dx2dξn4σ2en3(za)+n5σ2[e2m3h(za)en3(za)]+n6σ2[em3h(za)en3(za)], (4.16)

    where

    n3=1n1h,n4=n2+2m1hm3β2+4m2hm3β2,n5=2m1δ3n1β3β2ω1[1n1m3]+2m1n1β2h2m3[1n12m3]n6=4m2δ3n1β3β2ω1[1n1m3]+4m2n1β2hm3[1n1m3].

    From Eq (4.16), we can conclude that Theorem 4.1 not only shows the convergence of the solutions of Eqs (3.12)–(3.21) on the coefficient σ, but it also shows a exponentially decay result as z.

    Remark 4.2. If h(z)=z, then

    za1h(ζ)dζ=za1ζdζ=2(za).

    Therefore

    zem3ξa1h(ζ)dζdξ=ze2m3[ξa]dξ=z1m3ξd{e2m3[ξa]}1m3ze2m3[za], (4.17)
    ze2m3ξa1h(ζ)dζdξ12m3ze4m3[za]. (4.18)

    Moreover, we also have

    za1h(ξ)eξa{1n1h(ζ)2m3h(ζ)}dζdξ=za1ξe2[1n12m3][ξa]dξ=11n12m3[e2[1n12m3][za]1], (4.19)
    za1h(ξ)eξa{1n1h(ζ)m3h(ζ)}dζdξ=11n1m3[e2[1n1m3][za]1], (4.20)
    za1h(τ)e1n1τa1h(ζ)dζτe2m3ξa1h(ζ)dζdξdτ=12m3zae2[1n12m3][τa]dτ12m3[1n12m3]z[e2[1n12m3][za]1], (4.21)

    and

    za1h(τ)e1n1τa1h(ζ)dζτem3ξa1h(ζ)dζdξdτ1m3[1n1m3]z[e2[1n1m3][za]1]. (4.22)

    Inserting Eqs (4.19)–(4.22) into Eq (4.10), we obtain

    t0Rzeωη(ξz)[14δ2ωθ2+14ωδ3Σ2+12w,αw,α+δ2θ,αθ,α+δ3Σ,αΣ,α]dx2dξdη+12eωtRz(ξz)[δ2θ2+δ3Σ2]dx2dξn7σ2e2n1(za)+4m1δ3σ2n1β3β2ω11n12m3[e4m3[za]e2n1(za)]+4m2σ2δ3n1β3β2ω11n1m3[e2m3[za]e2n1(za)]+4m1σ2n1β212m3[1n12m3]z[e4m3[za]e2n1(za)]+4m2σ2n1β21m3[1n1m3]z[e2m3[za]e2n1(za)], (4.23)

    where

    n7=n2+2m1am3β2+4m2am3β2.

    From Eq (4.23), we can conclude that Theorem 4.1 not only shows the convergence of the solutions of Eqs (3.12)–(3.21) on the coefficient σ, but it also shows a exponentially decay result as z. Obviously, the decay rate is slightly slower than that in Remark 3.1.

    Remark 4.3. If h(z) satisfies

    h(z)=z23, (4.24)

    then

    za1hdζ=za1ζ23dζ=3[3z3a].

    Therefore, we have

    τe2m3ξa1h(ζ)dζdξ=τe6m3(3ξ3a)dξ=12m3τξ23d[e6m3(3ξ3a)]12m3τ23τd[e6m3(3ξ3a)]=12m3τ23e6m3(3τ3a), (4.25)
    τem3ξa1h(ζ)dζdξ1m3τ23e3m3(3τ3a). (4.26)

    Choosing n1>3, we get

    za1h(ξ)eξa{1n1h(ζ)2m3h(ζ)}dζdξ=za1ξ23e[3n16m3](3ξ3a)dξ=33n16m3[e[3n16m3](3ξ3a)1], (4.27)
    za1h(ξ)eξa{1n1h(ζ)m3h(ζ)}dζdξ33n13m3[e[3n13m3](3ξ3a)1], (4.28)

    and

    za1h(τ)e1n1τa1h(ζ)dζτe2m3ξa1h(ζ)dζdξdτ=12m3zae[3n16m3](3τ3a)dτ12m3[3n16m3]z23[e[3n16m3](3τ3a)1], (4.29)
    za1h(τ)e1n1τa1h(ζ)dζτem3ξa1h(ζ)dζdξdτ12m3[3n13m3]z23[e[3n13m3](3τ3a)1]. (4.30)

    Inserting Eqs (4.27)–(4.30) into Eq (4.10), we obtain

    t0Rzeωη(ξz)[14δ2ωθ2+14ωδ3Σ2+12w,αw,α+δ2θ,αθ,α+δ3Σ,αΣ,α]dx2dξdη+12eωtRz(ξz)[δ2θ2+δ3Σ2]dx2dξn8σ2e3n1[3z3a]+4m1δ3σ2n1β3β2ω33n16m3[e6m3(3ξ3a)e3n1[3z3a]]+4m2σ2δ3n1β3β2ω33n13m3[e3m3(3ξ3a)e3n1[3z3a]]+4m1σ2n1β212m3[3n16m3]z23[e6m3(3z3a)e3n1[3z3a]]+4m2σ2n1β21m3[3n13m3]z23[e3m3(3z3a)e3n1[3z3a]], (4.31)

    where

    n8=n2+2m1a23m3β2+4m2a23β2m3.

    In this case, the inequality (Eq 4.31) not only shows the convergence of the solutions of Eqs (3.12)–(3.21) on the coefficient σ, but it also shows a exponentially decay result as z.

    In this paper, the convergence of the solutions of Eqs (3.12)–(3.21) on the coefficient σ has been obtained and three examples have been given. Obviously, the convergence of various systems of partial differential equations defined on R is rare. But Eq (1.1) is linear. It will be meaningful to study nonlinear equations (e.g., Brinkman equations, Forchheimer equations) by using the method in this paper.

    The authors express their heartfelt thanks to the editors and referees who have provided some important suggestions. This work is supported by the Tutor System Rroject of Guangzhou Huashang College (2021HSDS16).

    All authors declare no conflicts of interest in this paper.

    [1] Bruck HA, McNeil SR, Sutton MA, et al. (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29: 261–267. doi: 10.1007/BF02321405
    [2] Pan B, Qian K, Xie H, et al. (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas Sci Technol 20: 1–17.
    [3] Hild F, Roux S (2009) Digital Image Correlation: From Displacement Measurement to Identification of Elastic Properties-a Review. Strain 42: 69–80.
    [4] Iizaka S, Sugama J, Nakagami G, et al. (2011) Concurrent validation and reliability of digital image analysis of granulation tissue color for clinical pressure ulcers. Wound Repair Regen 19: 455–463. doi: 10.1111/j.1524-475X.2011.00686.x
    [5] Zhang ZF, Kang YL, Wang HW, et al. (2006) A novel coarse-fine search scheme for digital image correlation method. Measurement 39: 710–718. doi: 10.1016/j.measurement.2006.03.008
    [6] Pan B, Li L, Tong W (2013) Fast, Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations. Exp Mech 53: 1277–1289. doi: 10.1007/s11340-013-9717-6
    [7] Pan B (2013) An Evaluation of Convergence Criteria for Digital Image Correlation Using Inverse Compositional Gauss-Newton Algorithm. Strain 50: 48–56.
    [8] Pan B, Xie HM, Wang ZY, et al. (2008) Study on subset size selection in digital image correlation for speckle patterns. Opt Express 16: 7037–7048. doi: 10.1364/OE.16.007037
    [9] Wang YQ, Sutton MA, Bruck HA, et al. (2009) Quantitative Error Assessment in Pattern Matching: Effects of Intensity Pattern Noise, Interpolation, Strain and Image Contrast on Motion Measurements. Strain 45: 160–178. doi: 10.1111/j.1475-1305.2008.00592.x
    [10] Schreier HW, Sutton MA (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 42: 303–310. doi: 10.1007/BF02410987
    [11] Tong W (2005) An Evaluation of Digital Image Correlation Criteria for Strain Mapping Applications. Strain 41: 167–175. doi: 10.1111/j.1475-1305.2005.00227.x
    [12] Zhang Y, Yan L, Liou F (2018) Improved initial guess with semi-subpixel level accuracy in digital image correlation by feature-based method. Opt Las Eng 104: 149–158. doi: 10.1016/j.optlaseng.2017.05.014
    [13] Pan B, Lu Z, Xie H (2010) Mean intensity gradient: An effective global prameter for quality assessment of the speckle patterns used in digital image correlation. Opt Las Eng 48: 469–477. doi: 10.1016/j.optlaseng.2009.08.010
    [14] Niu Y, Shao S, Park SB, et al. (2017) A novel speckle-free digital image correlation method for in-situ sarpage characterization. IEEE Trans Compon Packag Manuf Technol 7: 276–284.
    [15] Pan B, Asundi A, Xie HM, et al. (2009) Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurement. Opt Las Eng 47: 865–874. doi: 10.1016/j.optlaseng.2008.10.014
    [16] Liu X, Li R, Zhao H, et al. (2015) Quality assessment of speckle patterns for digital image correlation-Shannon entropy. Optik 126: 4205–4211.
    [17] Zhang J, Sweedy A, Gitzhofer F, et al. (2018) A novel method for repeatedly generating speckle patterns used in digital image correlation. Opt Las Eng 100: 259–266. doi: 10.1016/j.optlaseng.2017.09.012
    [18] Zhong F, Quan C (2018) Efficient digital image correlation using gradient orientation. Opt Las Eng 106: 417–426.
    [19] Pan B, Wang Y, Tian L (2017) Automated initial guess in digital image correlation aided by Fourier-Mellin transform. Opt Eng 56: 1–7.
    [20] He H, Zhou R, Zou Y, et al. (2018) A comprehensive method for accurate strain distribution measurement of cell substrate subjected to large deformation. J Healthc Eng 2018: 1–10.
    [21] Zhang L, Wang T, Jiang Z, et al. (2015) High accuracy digital image correlation powered by GPU-based parallel computing. Opt Las Eng 69: 7–12. doi: 10.1016/j.optlaseng.2015.01.012
    [22] Vila M, Ginebra M, Gil F, et al. (1999) Effect of porosity and environment on the mechanical behavior of acrylic bone cement modified with acrylonitrile-butadiene-styrene particles: I. Fracture toughness. J Biomed Mater Res 48: 121–127. doi: 10.1002/(SICI)1097-4636(1999)48:2<121::AID-JBM5>3.0.CO;2-P
    [23] Bashoor-Zadeh M, Baroud G, Bohner M (2009) Geometric analysis of porous bone substitutes using micro-computed tomography and fuzzy distance transform. Acta Biomater 6: 864–875.
    [24] Darabi A, Chandelier F, Baroud B (2009) Thickness analysis and reconstruction of trabecular bone and bone substitute microstructure based on fuzzy distance map using both ridge and thinning skeletonization. Can J Elect Comput E 34: 57–62. doi: 10.1109/CJECE.2009.5291208
    [25] Saha PK, Wehrli FW, Gomberg BR (2002) PK Saha and FW Wehrli and BR Gomberg. Comput Vis Image Underst 86: 171–190. doi: 10.1006/cviu.2002.0974
    [26] Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39: 2915–2921. doi: 10.1117/1.1314593
    [27] Vendroux G, KnaussWG(1998) Submicron Deformation Field Measurements 2: Improved Digital Image Correlation. Exp Mech 38: 86–91.
    [28] Pan B, Li K (2011) A fast digital image correlation method for deformation measurement. Opt Las Eng 49: 841–847. doi: 10.1016/j.optlaseng.2011.02.023
    [29] Pan B, Yu L,Wu D (2013) High-accuracy 2D digital image correlation measurements with bilateral telecentric lenses: Error analysis and experimental verification. Exp Mech 53: 1719–1733. doi: 10.1007/s11340-013-9774-x
    [30] Lu H, Cary PD (2000) Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient. Exp Mech 40: 393–400. doi: 10.1007/BF02326485
    [31] Zhou P, Goodson KE (2001) Subpixel displacement and deformation gradient measurement using digital image/speckle correlation (DISC). Opt Eng 40: 1613–1620. doi: 10.1117/1.1387992
    [32] Pan B (2009) Reliability-guided digital image correlation for image deformation measurement. Appl Opt 48: 1535–1542. doi: 10.1364/AO.48.001535
  • This article has been cited by:

    1. Zhiqing Li, Wenbin Zhang, Yuanfei Li, Structural stability for Forchheimer fluid in a semi-infinite pipe, 2023, 31, 2688-1594, 1466, 10.3934/era.2023074
    2. Jincheng Shi, Yan Liu, Spatial decay estimates for the coupled system of wave-plate type with thermal effect, 2025, 10, 2473-6988, 338, 10.3934/math.2025016
    3. Naiqiao Qing, Jincheng Shi, Yan Liu, Yunfeng Wen, Spatial decay estimates for a coupled system of wave-plate type, 2025, 33, 2688-1594, 1144, 10.3934/era.2025051
    4. Naiqiao Qing, Jincheng Shi, Yunfeng Wen, Spatial Decay Estimates for the Moore–Gibson–Thompson Heat Equation Based on an Integral Differential Inequality, 2025, 14, 2075-1680, 265, 10.3390/axioms14040265
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4119) PDF downloads(626) Cited by(1)

Figures and Tables

Figures(10)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog