Research article

On exponential decay properties of solutions of the (3 + 1)-dimensional modified Zakharov-Kuznetsov equation

  • Received: 15 October 2024 Revised: 23 December 2024 Accepted: 20 January 2025 Published: 24 January 2025
  • We study here the special decay properties of real solutions to the initial value problem associated with the (3 + 1)-dimensional modified Zakharov-Kuznetsov equation. More precisely, we prove the properties of exponential decay of order $ 3/2 $ above the plane $ x+y+z = 0 $ as time evolves. This property is related with the persistence properties of the solution flow in weighted Sobolev spaces and sharp unique continuation properties of solutions to this problem.

    Citation: Gezi Chong, Jianxia He. On exponential decay properties of solutions of the (3 + 1)-dimensional modified Zakharov-Kuznetsov equation[J]. Electronic Research Archive, 2025, 33(1): 447-470. doi: 10.3934/era.2025022

    Related Papers:

  • We study here the special decay properties of real solutions to the initial value problem associated with the (3 + 1)-dimensional modified Zakharov-Kuznetsov equation. More precisely, we prove the properties of exponential decay of order $ 3/2 $ above the plane $ x+y+z = 0 $ as time evolves. This property is related with the persistence properties of the solution flow in weighted Sobolev spaces and sharp unique continuation properties of solutions to this problem.



    加载中


    [1] V. E. Zakharov, E. A. Kuznetsov, On three-dimensional solitons, Zhurnal Eksp. Teoret. Fiz, 66 (1974), 594–597.
    [2] D. Lannes, F. Linares, J. C. Saut, The Cauchy problem for the Euler-Poisson equation and derivation of the Zakharov-Kuznetsov equation, in Studies in Phase Space Analysis with Applications to PDEs. Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Springer, New York, 84 (2013), 181–213. https://doi.org/10.1007/978-1-4614-6348-1_10
    [3] E. Bustamante, P. Isaza, J. Mejía, On the support of solutions to the Zakharov-Kuznetsov equation, J. Differ. Equations, 251 (2011), 2728–2736. https://doi.org/10.1016/j.jde.2011.05.013 doi: 10.1016/j.jde.2011.05.013
    [4] L. Cossetti, L. Fanelli, F. Linares, Uniqueness results for Zakharov-Kuznetsov equation, Commun. Partial Differ. Equations, 44 (2019), 504–544. https://doi.org/10.1080/03605302.2019.1581803 doi: 10.1080/03605302.2019.1581803
    [5] A. Grünrock, S. Herr, The Fourier restriction method norm for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 34 (2014), 2061–2068. https://doi.org/10.3934/dcds.2014.34.2061 doi: 10.3934/dcds.2014.34.2061
    [6] S. Kinoshita, Global Well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 (2021), 451–505. https://doi.org/10.1016/J.ANIHPC.2020.08.003 doi: 10.1016/J.ANIHPC.2020.08.003
    [7] L. Molinet, D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equations and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 347–371. https://doi.org/10.1016/J.ANIHPC.2013.12.003 doi: 10.1016/J.ANIHPC.2013.12.003
    [8] M. J. Shan, Global well-posedness and global attractor for two-dimensional Zakharov-Kuznetsov equation, Acta Math. Sin., 36 (2020), 969–1000. https://doi.org/10.1007/s10114-020-9381-6 doi: 10.1007/s10114-020-9381-6
    [9] H. A. Biagioni, F. Linares, Well-posedness results for the modified Zakharov-Kuznetsov equation, in Nonlinear Equations: Methods, Models and Applications, Birkhäuser, Basel, 54 (2003), 181–189.
    [10] F. Linares, A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), 1323–1339. https://doi.org/10.1137/080739173 doi: 10.1137/080739173
    [11] F. Linares, A. Pastor, Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal., 260 (2011), 1060–1085. https://doi.org/10.1016/j.jfa.2010.11.005 doi: 10.1016/j.jfa.2010.11.005
    [12] F. Ribaud, S. Vento, A note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations, C. R. Math., 350 (2012), 499–503. https://doi.org/10.1016/j.crma.2012.05.007 doi: 10.1016/j.crma.2012.05.007
    [13] F. Linares, J. C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547–565. https://doi.org/10.3934/dcds.2009.24.547 doi: 10.3934/dcds.2009.24.547
    [14] H. Koch, N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^{s}(\mathbb{R})$, Int. Math. Res. Not., 2003 (2003), 1449–1464. https://doi.org/10.1155/S1073792803211260 doi: 10.1155/S1073792803211260
    [15] E. Bustamante, J. Jiménez Urrea, J. Mejía, On the unique continuation property of solutions of the three-dimensional Zakharov-Kuznetsov equation, Nonlinear Anal. Real World Appl., 39 (2018), 537–553. https://doi.org/10.1016/j.nonrwa.2017.08.003 doi: 10.1016/j.nonrwa.2017.08.003
    [16] S. Herr, S. Kinoshita, Subcritical well-posedness results for the Zakharov-Kuznetsov equation in dimension three and higher, Ann. Inst. Fourier, 73 (2023), 1203–1267. https://doi.org/10.5802/aif.3547 doi: 10.5802/aif.3547
    [17] F. Ribaud, S. Vento, Well-posedness results for the three-dimensional Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 44 (2012), 2289–2304. https://doi.org/10.1137/110850566 doi: 10.1137/110850566
    [18] A. Grünrock, A remark on the modified Zakharov-Kuznetsov equation in three space dimensions, Math. Res. Lett., 21 (2014), 127–131. https://dx.doi.org/10.4310/MRL.2014.v21.n1.a10 doi: 10.4310/MRL.2014.v21.n1.a10
    [19] S. Kinoshita, Well-posedness for the Cauchy problem of the modified Zakharov-Kuznetsov equation, Funkcialaj Ekvacioj, 65 (2022), 139–158. https://doi.org/10.1619/fesi.65.139 doi: 10.1619/fesi.65.139
    [20] K. K. Ali, A. R. Seadawy, A. Yokus, R. Yilmazer, H. Bulut, Propagation of dispersive wave solutions for (3+1)-dimensional nonlinear modified Zakharov-Kuznetsov equation in plasma physics, Int. J. Mod. Phys. B, 34 (2020), 2050227. https://doi.org/10.1142/S0217979220502276 doi: 10.1142/S0217979220502276
    [21] E. Deléage, F. Linares, Well-posedness for the initial value problem associated to the Zakharov-Kuznetsov (ZK) equation in asymmetric spaces, Partial Differ. Equations Appl., 4 (2023). https://doi.org/10.1007/s42985-023-00223-5 doi: 10.1007/s42985-023-00223-5
    [22] P. Isaza, C. A. León, On optimal exponential decay properties of solutions to the Korteweg-de Vries equation, J. Differ. Equations, 263 (2017), 5189–5215. https://doi.org/10.1016/j.jde.2017.06.013 doi: 10.1016/j.jde.2017.06.013
    [23] N. A. Larkin, E. Tronco, Decay of small solutions for the Zakharov-Kuznetsov equation posed on a half-strip, Bol. Soc. Paran. Mat., 31 (2013), 57–64. https://doi.org/10.5269/bspm.v31i1.15303 doi: 10.5269/bspm.v31i1.15303
    [24] N. A. Larkin, Exponential decay of the $H^{1}$-norm for the 2D Zakharov-Kuznetsov equation on a half-strip, J. Math. Anal. Appl., 405 (2013), 326–335. https://doi.org/10.1016/j.jmaa.2013.04.011 doi: 10.1016/j.jmaa.2013.04.011
    [25] A. J. Mendez, O. Riaño, On decay properties for solutions of the Zakharov-Kuznetsov equation, Nonlinear Anal. Real World Appl., 81 (2025), 104183. https://doi.org/10.1016/j.nonrwa.2024.104183 doi: 10.1016/j.nonrwa.2024.104183
    [26] L. Escauriaza, C. E. Kenig, G. Ponce, L. Vega, On uniqueness properties of solutions of the k-generalized KdV equations, J. Funct. Anal., 244 (2007), 504–535. https://doi.org/10.1016/j.jfa.2006.11.004 doi: 10.1016/j.jfa.2006.11.004
    [27] G. Fonseca, G. Ponce, The IVP for the Benjamin-Ono equation in weighted Sobolev spaces, J. Funct. Anal., 260 (2011), 436–459. https://doi.org/10.1016/j.jfa.2010.09.010 doi: 10.1016/j.jfa.2010.09.010
    [28] C. Kenig, G. Ponce, L. Vega, On unique continuation for nonlinear Schrödinger equations, Commun. Pure Appl. Math., 56 (2003), 1247–1262. https://doi.org/10.1002/cpa.10094 doi: 10.1002/cpa.10094
    [29] L. Escauriaza, C. E. Kenig, G. Ponce, L. Vega, On uniqueness properties of solutions of Schrödinger equations, Commun. Partial Differ. Equations, 31 (2006), 1811–1823. https://doi.org/10.1080/03605300500530446 doi: 10.1080/03605300500530446
    [30] J. C. Saut, B. Scheurer, Unique continuation for some evolution equations, J. Differ. Equations, 66 (1987), 118–139. https://doi.org/10.1016/0022-0396(87)90043-X doi: 10.1016/0022-0396(87)90043-X
    [31] G. Fonseca, M. Pachón, Well-posedness for the two dimensional generalized Zakharov-Kuznetsov equation in anisotropic weighted Sobolev spaces, J. Math. Anal. Appl., 443 (2016), 566–584. https://doi.org/10.1016/j.jmaa.2016.05.028 doi: 10.1016/j.jmaa.2016.05.028
    [32] E. Bustamante, J. Jiménez Urrea, J. Mejía, The Zakharov-Kuznetsov equation in weighted Sobolev spaces, J. Math. Anal. Appl., 433 (2016), 149–175. https://doi.org/10.1016/j.jmaa.2015.07.024 doi: 10.1016/j.jmaa.2015.07.024
    [33] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Stud. Appl. Math. Ad. Math. Suppl. Stud., 8 (1983), 527–620.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(848) PDF downloads(31) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog