An improved metaheuristic algorithm called the Crossover strategy integrated Secretary Bird Optimization Algorithm (CSBOA) is proposed in this work for solving real optimization problems. This improved algorithm integrated logistic-tent chaotic mapping initialization, an improved differential mutation operator, and crossover strategies with the Secretary Bird Optimization Algorithm (SBOA) for a better quality solution and faster convergence. To evaluate the performance of CSBOA, two sets of a standard benchmark set, CEC2017 and CEC2022, were applied first. The Wilcoxon rank sum test and Friedman test were also used to statistically compare the proposed CSBOA algorithm with seven common metaheuristics. The comparisons demonstrated that CSBOA is more competitive than other metaheuristic algorithms on most benchmark functions. Additionally, the performance of CSBOA was validated for two challenging engineering design case studies. Comparative results showed that CSBOA provides more accurate solutions than the SBOA and the other seven algorithms, suggesting viability in dealing with real global optimization problems.
Citation: Xiongfa Mai, Yan Zhong, Ling Li. The Crossover strategy integrated Secretary Bird Optimization Algorithm and its application in engineering design problems[J]. Electronic Research Archive, 2025, 33(1): 471-512. doi: 10.3934/era.2025023
An improved metaheuristic algorithm called the Crossover strategy integrated Secretary Bird Optimization Algorithm (CSBOA) is proposed in this work for solving real optimization problems. This improved algorithm integrated logistic-tent chaotic mapping initialization, an improved differential mutation operator, and crossover strategies with the Secretary Bird Optimization Algorithm (SBOA) for a better quality solution and faster convergence. To evaluate the performance of CSBOA, two sets of a standard benchmark set, CEC2017 and CEC2022, were applied first. The Wilcoxon rank sum test and Friedman test were also used to statistically compare the proposed CSBOA algorithm with seven common metaheuristics. The comparisons demonstrated that CSBOA is more competitive than other metaheuristic algorithms on most benchmark functions. Additionally, the performance of CSBOA was validated for two challenging engineering design case studies. Comparative results showed that CSBOA provides more accurate solutions than the SBOA and the other seven algorithms, suggesting viability in dealing with real global optimization problems.
| [1] |
Q. Li, S. Y. Liu, X. S. Yang, Influence of initialization on the performance of metaheuristic optimizers, Appl. Soft Comput., 91 (2020), 106193. https://doi.org/10.1016/j.asoc.2020.106193 doi: 10.1016/j.asoc.2020.106193
|
| [2] |
H. Su, D. Zhao, A. A. Heidari, L. Liu, X. Zhang, M. Mafarja, et al., RIME: A physics-based optimization, Neurocomputing, 532 (2023), 183–214. https://doi.org/10.1016/j.neucom.2023.02.010 doi: 10.1016/j.neucom.2023.02.010
|
| [3] |
X. Yu, N. Jiang, X. Wang, M. Li, A hybrid algorithm based on Grey Wolf Optimizer and differential evolution for UAV path planning, Expert Syst. Appl., 215 (2023), 119327. https://doi.org/10.1016/j.eswa.2022.119327 doi: 10.1016/j.eswa.2022.119327
|
| [4] | J. H. Holland, Genetic algorithms, Sci. Am., 267 (1992) 66–73. http://www.jstor.org/stable/24939139 |
| [5] |
R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11 (1997), 341–359. https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328
|
| [6] | E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, in 2007 IEEE Congress on Evolutionary Computation, (2007), 4661–4667. https://doi.org/10.1109/CEC.2007.4425083 |
| [7] |
E. H. Houssein, D. Oliva, N. A. Samee, N. F. Mahmoud, M. M. Emam, Liver Cancer Algorithm: A novel bio-inspired optimizer, Comput. Biol. Med., 165 (2023), 107389. https://doi.org/10.1016/j.compbiomed.2023.107389 doi: 10.1016/j.compbiomed.2023.107389
|
| [8] |
A. Taheri, K. RahimiZadeh, A. Beheshti, J. Baumbach, R. V. Rao, S. Mirjalili, et al., Partial reinforcement optimizer: An Evolutionary Optimization Algorithm, Expert Syst. Appl., 238 (2024), 122070. https://doi.org/10.1016/j.eswa.2023.122070 doi: 10.1016/j.eswa.2023.122070
|
| [9] |
B. Zheng, Y. Chen, C. Wang, A. A. Heidari, L. Liu, H. Chen, The moss growth optimization (MGO): Concepts and performance, J. Comput. Des. Eng., 11 (2024), 184–221. https://doi.org/10.1093/jcde/qwae080 doi: 10.1093/jcde/qwae080
|
| [10] |
S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671–680. https://doi.org/10.1126/science.220.4598.671 doi: 10.1126/science.220.4598.671
|
| [11] |
S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-verse optimizer: A nature-inspired algorithm for global optimization, Neural Comput. Appl., 27 (2016), 495–513. https://doi.org/10.1007/s00521-015-1870-7 doi: 10.1007/s00521-015-1870-7
|
| [12] |
A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowl. Based Syst., 191 (2020), 105190. https://doi.org/10.1016/j.knosys.2019.105190 doi: 10.1016/j.knosys.2019.105190
|
| [13] |
T. Sang-To, M. Hoang-Le, M. A. Wahab, T. Cuong-Le, An efficient Planet Optimization Algorithm for solving engineering problems, Sci. Rep., 12 (2022), 8362. https://doi.org/10.1038/s41598-022-12030-w doi: 10.1038/s41598-022-12030-w
|
| [14] |
M. Abdel-Basset, R. Mohamed, S. A. Abdel Azeem, M. Jameel, M. Abouhawwash, Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler's laws of planetary motion, Knowledge-Based Syst., 268 (2023), 110454. https://doi.org/10.1016/j.knosys.2023.110454 doi: 10.1016/j.knosys.2023.110454
|
| [15] |
L. Deng, S. Liu, Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design, Expert Syst. Appl., 225 (2023), 120069. https://doi.org/10.1016/j.eswa.2023.120069 doi: 10.1016/j.eswa.2023.120069
|
| [16] |
R. Sowmya, M. Premkumar, P. Jangir, Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems, Eng. Appl. Artif. Intell., 128 (2024), 107532. https://doi.org/10.1016/j.engappai.2023.107532 doi: 10.1016/j.engappai.2023.107532
|
| [17] | J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95-international Conference on Neural Networks, (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 |
| [18] |
S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Adv. Eng. Softw., 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
|
| [19] |
L. Wang, Q. Cao, Z. Zhang, S. Mirjalili, W. Zhao, Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems, Eng. Appl. Artif. Intell., 114 (2022), 105082. https://doi.org/10.1016/j.engappai.2022.105082 doi: 10.1016/j.engappai.2022.105082
|
| [20] |
F. A. Hashim, A. G. Hussien, Snake optimizer: A novel Meta-heuristic Optimization Algorithm, Knowledge Based Syst., 242 (2022), 108320. https://doi.org/10.1016/j.knosys.2022.10832 doi: 10.1016/j.knosys.2022.10832
|
| [21] |
H. Jia, H. Rao, C. Wen, S. Mirjalili, Crayfish Optimization Algorithm, Artif. Intell. Rev., 56 (2023), 1919–1979. https://doi.org/10.1007/s10462-023-10567-4 doi: 10.1007/s10462-023-10567-4
|
| [22] |
M. Abdel-Basset, R. Mohamed, M. Abouhawwash, Crested Porcupine Optimizer: A new nature-inspired metaheuristic, Knowledge Based Syst., 284 (2024), 111257. https://doi.org/10.1016/j.knosys.2023.111257 doi: 10.1016/j.knosys.2023.111257
|
| [23] |
M. H. Amiri, N. M. Hashjin, M. Montazeri, S. Mirjalili, N. Khodadadi, Hippopotamus Optimization Algorithm: A novel nature-inspired optimization algorithm, Sci. Rep., 14 (2024), 5032. https://doi.org/10.1038/s41598-024-54910-3 doi: 10.1038/s41598-024-54910-3
|
| [24] |
G. Dhiman, V. Kumar, Seagull Optimization Algorithm: Theory and its applications for large-scale industrial engineering problems, Knowledge Based Syst., 165 (2019), 169–196. https://doi.org/10.1016/j.knosys.2018.11.024 doi: 10.1016/j.knosys.2018.11.024
|
| [25] |
Y. Fu, D. Liu, J. Chen, L. He, Secretary Bird Optimization Algorithm: A new metaheuristic for solving global optimization problems, Artif. Intell. Rev., 57 (2024), 1–102. https://doi.org/10.1007/s10462-024-10729-y doi: 10.1007/s10462-024-10729-y
|
| [26] |
S. Abbasi, A. M. Rahmani, A. Balador, A. Sahafi, A fault-tolerant adaptive genetic algorithm for service scheduling in internet of vehicles, Appl. Soft Comput., 143 (2023), 110413. https://doi.org/10.1016/j.asoc.2023.110413 doi: 10.1016/j.asoc.2023.110413
|
| [27] |
B. Zhou, Z. Zhao, An adaptive artificial bee colony algorithm enhanced by deep Q-learning for milk-run vehicle scheduling problem based on supply hub, Knowledge Based Syst., 264 (2023), 110367. https://doi.org/10.1016/j.knosys.2023.110367 doi: 10.1016/j.knosys.2023.110367
|
| [28] |
Z. Wang, L. Shao, S. Yang, J. Wang, D. Li, CRLM: A cooperative model based on reinforcement learning and metaheuristic algorithms of routing protocols in wireless sensor networks, Comput. Netw., 236 (2023), 110019. https://doi.org/10.1016/j.comnet.2023.110019 doi: 10.1016/j.comnet.2023.110019
|
| [29] |
S. Deng, Y. Li, J. Wang, R. Cao, M. Li, A feature-thresholds guided genetic algorithm based on a multi-objective feature scoring method for high-dimensional feature selection, Appl. Soft Comput., 148 (2023), 110765. https://doi.org/10.1016/j.asoc.2023.110765 doi: 10.1016/j.asoc.2023.110765
|
| [30] |
C. Zhong, G. Li, Z. Meng, H. Li, W. He, A self-adaptive quantum equilibrium optimizer with artificial bee colony for feature selection, Comput. Biol. Med., 153 (2023), 106520. https://doi.org/10.1016/j.compbiomed.2022.106520 doi: 10.1016/j.compbiomed.2022.106520
|
| [31] |
Y. Jia, L. Qu, X. Li, Automatic path planning of unmanned combat aerial vehicle based on double-layer coding method with enhanced Grey Wolf Optimizer, Artif. Intell. Rev., 56 (2023), 12257–12314. https://doi.org/10.1007/s10462-023-10481-9 doi: 10.1007/s10462-023-10481-9
|
| [32] |
M. H. Nadimi-Shahraki, E. Moeini, S. Taghian, S. Mirjalili, Discrete improved Grey Wolf Optimizer for community detection, J. Bionic Eng., 20 (2023), 2331–2358. https://doi.org/10.1007/s42235-023-00387-1 doi: 10.1007/s42235-023-00387-1
|
| [33] |
D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
|
| [34] |
R. Zheng, H. Jia, L. Abualigah, S. Wang, D. Wu, An improved Remora Optimization Algorithm with autonomous foraging mechanism for global optimization problems, Math. Biosci. Eng., 19 (2022), 3994–4037. https://doi.org/10.3934/mbe.2022184 doi: 10.3934/mbe.2022184
|
| [35] |
R. Zheng, A. G. Hussien, R. Qaddoura, H. Jia, L. Abualigah, S. Wang, et al., A multi-strategy enhanced African vultures optimization algorithm for global optimization problems, J. Comput. Des. Eng., 10 (2023), 329–356. https://doi.org/10.1093/jcde/qwac135 doi: 10.1093/jcde/qwac135
|
| [36] |
C. Yuan, D. Zhao, A. Heidari, L. Liu, Y. Chen, H. Chen, Polar lights optimizer: Algorithm and applications in image segmentation and feature selection, Neurocomputing, 607 (2024), 128427. https://doi.org/10.1016/j.neucom.2024.128427 doi: 10.1016/j.neucom.2024.128427
|
| [37] |
D. Truong, J. Chou, Metaheuristic algorithm inspired by enterprise development for global optimization and structural engineering problems with frequency constraints, Eng. Struct., 318 (2024), 118679. https://doi.org/10.1016/j.engstruct.2024.118679 doi: 10.1016/j.engstruct.2024.118679
|
| [38] |
J. Ji, T. Wu, C. Yang, Neural population dynamics optimization algorithm: A novel brain-inspired meta-heuristic method, Knowledge Based Syst., 300 (2024), 112194. https://doi.org/10.1016/j.knosys.2024.112194 doi: 10.1016/j.knosys.2024.112194
|
| [39] |
H. Jia, X. Peng, C. Lang, Remora Optimization Algorithm, Expert Syst. Appl., 185 (2021), 115665. https://doi.org/10.1016/j.eswa.2021.115665 doi: 10.1016/j.eswa.2021.115665
|
| [40] |
H. Jia, Y. Li, D. Wu, H. Rao, C. Wen, L. Abualigah, Multi-strategy Remora Optimization Algorithm for solving multi-extremum problems, J. Comput. Des. Eng., 10 (2023), 1315–1349. https://doi.org/10.1093/jcde/qwad044 doi: 10.1093/jcde/qwad044
|
| [41] |
F. A. Hashim, R. R. Mostafa, R. Abu Khurma, R. Qaddoura, P. A. Castillo, A new approach for solving global optimization and engineering problems based on modified sea horse optimizer, J. Comput. Des. Eng., 11 (2024), 73–98. https://doi.org/10.1093/jcde/qwae001 doi: 10.1093/jcde/qwae001
|
| [42] |
S. Qin, J. Liu, X. Bai, G. Hu, A multi-strategy improvement Secretary Bird Optimization Algorithm for engineering optimization problems, Biomimetics, 9 (2024), 478, https://doi.org/10.3390/biomimetics9080478 doi: 10.3390/biomimetics9080478
|
| [43] | H. Qin, S. Yang, Z. Liu, G. Li, An improved Secretary Bird Optimization Algorithm, in Proceedings of the 2024 5th International Conference on Information Science, Parallel and Distributed Systems (ISPDS), (2024), 442–445. https://doi.org/10.1109/ISPDS62779.2024.10667529 |
| [44] |
S. Zheng, J. Huo, J. Yang, F. Cao, An energy-efficient multi-hop routing protocol for 3D bridge wireless sensor network based on secretary bird optimization algorithm, IEEE Sens. J., (2024). https://doi.org/10.1109/JSEN.2024.3464513 doi: 10.1109/JSEN.2024.3464513
|
| [45] |
Z. Pan, D. Lei, L. Wang, A knowledge-based two-population optimization algorithm for distributed energy-efficient parallel machines scheduling, IEEE Trans. Cybern., 52 (2022), 5051–5063. https://doi.org/10.1109/TCYB.2020.3026571 doi: 10.1109/TCYB.2020.3026571
|
| [46] |
F. Zhao, S. Di, L. Wang, A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem, IEEE Trans. Cybern., 53 (2023), 3337–3350. https://doi.org/10.1109/TCYB.2022.3192112 doi: 10.1109/TCYB.2022.3192112
|
| [47] |
F. Zhao, C. Zhuang, L. Wang, C. Dong, An iterative greedy algorithm with q-learning mechanism for the multiobjective distributed no-idle permutation flowshop scheduling, IEEE Trans. Syst., Man, Cybern. Syst., 54 (2024), 3207–3219. https://doi.org/10.1109/TSMC.2024.3358383 doi: 10.1109/TSMC.2024.3358383
|
| [48] |
K. H. Truong, P. Nallagownden, Z. Baharudin, D. N. Vo, A quasi-oppositional-chaotic symbiotic organisms search algorithm for global optimization problems, Appl. Soft Comput., 77 (2019), 567–583. https://doi.org/10.1016/j.asoc.2019.01.043 doi: 10.1016/j.asoc.2019.01.043
|
| [49] |
Y. Chen, D. Pi, S. Yang, Y. Xu, B. Wang, Y. Wang, A multi-strategy optimizer for energy minimization of multi-UAV-assisted mobile edge computing, Swarm Evol. Comput., 91 (2024), 101748. https://doi.org/10.1016/j.swevo.2024.101748 doi: 10.1016/j.swevo.2024.101748
|
| [50] |
L. Lan, S. Wang, Improved African vultures optimization algorithm for medical image segmentation, Multimedia Tools Appl., 83 (2024), 45241–45290. https://doi.org/10.1007/s11042-023-17189-6 doi: 10.1007/s11042-023-17189-6
|
| [51] |
J. Liu, Y. Deng, Y. Liu, L. Chen, Z. Hu, P. Wei, et al., A logistic-tent chaotic mapping Levenberg Marquardt Algorithm for improving positioning accuracy of grinding robot, Sci. Rep., 14 (2024). https://doi.org/10.1038/s41598-024-60402-1 doi: 10.1038/s41598-024-60402-1
|
| [52] |
A. B. Meng, Y. C. Chen, H. Yin, S. Z. Chen, Crisscross Optimization Algorithm and its application, Knowledge-Based Syst., 67 (2014), 218–229. https://doi.org/10.1016/j.knosys.2014.05.004 doi: 10.1016/j.knosys.2014.05.004
|
| [53] |
B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems, Comput. Ind. Eng., 158 (2021), 107408. https://doi.org/10.1016/j.cie.2021.107408 doi: 10.1016/j.cie.2021.107408
|
| [54] |
B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems, Int. J. Intell. Syst., 36 (2021), 5887–5958. https://doi.org/10.1002/int.22535 doi: 10.1002/int.22535
|
| [55] |
K. Hussain, M. N. M. Salleh, S. Cheng, Y. Shi, On the exploration and exploitation in popular swarm-based metaheuristic algorithms, Neural Comput. Appl., 31 (2019), 7665–7683. https://doi.org/10.1007/s00521-018-3592-0 doi: 10.1007/s00521-018-3592-0
|
| [56] |
B. Morales-Castañeda, D. Zaldivar, E. Cuevas, F. Fausto, A. Rodríguez, A better balance in metaheuristic algorithms: Does it exist, Swarm Evol. Comput., 54 (2020), 100671. https://doi.org/10.1016/j.swevo.2020.100671 doi: 10.1016/j.swevo.2020.100671
|
| [57] | G. Wu, R. Mallipeddi, P. N. Suganthan, Problem definitions and evaluation criteria for the CEC 2017 competition on constrained real-parameter optimization, 2017. |
| [58] | A. Kumar, K. V. Price, A. W. Mohamed, A. A. Hadi, Problem definitions and evaluation criteria for the CEC 2022 special session and competition on single objective bound constrained numerical optimization, 2022. |
| [59] |
P. B. Dao, On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines, Appl. Energy, 318 (2022), 119209. https://doi.org/10.1016/j.apenergy.2022.119209 doi: 10.1016/j.apenergy.2022.119209
|
| [60] | E. Sandgren, NIDP in mechanical design optimization, J. Mech. Design, 112 (1990), 223–229. |
| [61] |
J. S. Arora, Optimum design problem formulation, Introduction to Optimum Design, 2004 (2004), 15–54. https://doi.org/10.1016/B978-012064155-0/50002-1 doi: 10.1016/B978-012064155-0/50002-1
|
| [62] |
A. D. Belegundu, J. S. Arora, A study of mathematical programming methods for structural optimization. Part I: Theory, Int. J. Numer. Meth. Eng., 21 (1985), 1583–1599. https://doi.org/10.1002/nme.1620210904 doi: 10.1002/nme.1620210904
|
| [63] |
C. A. Coello, E. M. Montes, Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv. Eng. Inform., 16 (2002), 193–203. https://doi.org/10.1016/S1474-0346(02)00011-3 doi: 10.1016/S1474-0346(02)00011-3
|