Loading [MathJax]/jax/output/SVG/jax.js
Research article

Vanishing diffusion limit and boundary layers for a nonlinear hyperbolic system with damping and diffusion


  • Received: 12 July 2023 Revised: 27 August 2023 Accepted: 19 September 2023 Published: 09 October 2023
  • We consider an initial and boundary value problem for a nonlinear hyperbolic system with damping and diffusion. This system was derived from the Rayleigh–Benard equation. Based on a new observation of the structure of the system, two identities are found; then, the following results are proved by using the energy method. First, the well-posedness of the global large solution is established; then, the limit with a boundary layer as some diffusion coefficient tending to zero is justified. In addition, the L2 convergence rate in terms of the diffusion coefficient is obtained together with the estimation of the thickness of the boundary layer.

    Citation: Xu Zhao, Wenshu Zhou. Vanishing diffusion limit and boundary layers for a nonlinear hyperbolic system with damping and diffusion[J]. Electronic Research Archive, 2023, 31(10): 6505-6524. doi: 10.3934/era.2023329

    Related Papers:

    [1] Daniel Špale, Petr Stehlík . Stationary patterns in bistable reaction-diffusion cellular automata. Mathematical Biosciences and Engineering, 2022, 19(6): 6072-6087. doi: 10.3934/mbe.2022283
    [2] Alan Dyson . Traveling wave solutions to a neural field model with oscillatory synaptic coupling types. Mathematical Biosciences and Engineering, 2019, 16(2): 727-758. doi: 10.3934/mbe.2019035
    [3] Yuanfei Li, Xuejiao Chen . Spatial decay bound and structural stability for the double-diffusion perturbation equations. Mathematical Biosciences and Engineering, 2023, 20(2): 2998-3022. doi: 10.3934/mbe.2023142
    [4] Ali Moussaoui, Vitaly Volpert . The influence of immune cells on the existence of virus quasi-species. Mathematical Biosciences and Engineering, 2023, 20(9): 15942-15961. doi: 10.3934/mbe.2023710
    [5] Marcin Choiński, Mariusz Bodzioch, Urszula Foryś . A non-standard discretized SIS model of epidemics. Mathematical Biosciences and Engineering, 2022, 19(1): 115-133. doi: 10.3934/mbe.2022006
    [6] Chichia Chiu, Jui-Ling Yu . An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences and Engineering, 2007, 4(2): 187-203. doi: 10.3934/mbe.2007.4.187
    [7] Guangrui Li, Ming Mei, Yau Shu Wong . Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences and Engineering, 2008, 5(1): 85-100. doi: 10.3934/mbe.2008.5.85
    [8] Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262
    [9] Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141
    [10] Lin Zhang, Yongbin Ge, Xiaojia Yang . High-accuracy positivity-preserving numerical method for Keller-Segel model. Mathematical Biosciences and Engineering, 2023, 20(5): 8601-8631. doi: 10.3934/mbe.2023378
  • We consider an initial and boundary value problem for a nonlinear hyperbolic system with damping and diffusion. This system was derived from the Rayleigh–Benard equation. Based on a new observation of the structure of the system, two identities are found; then, the following results are proved by using the energy method. First, the well-posedness of the global large solution is established; then, the limit with a boundary layer as some diffusion coefficient tending to zero is justified. In addition, the L2 convergence rate in terms of the diffusion coefficient is obtained together with the estimation of the thickness of the boundary layer.





    [1] D. Y. Hsieh, On partial differential equations related to Lorenz system, J. Math. Phys., 28 (1987), 1589–1597. https://doi.org/10.1063/1.527465 doi: 10.1063/1.527465
    [2] Y. Kuramoto, T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Prog. Theoret. Phys., 54 (1975), 687–699. https://doi.org/10.1143/PTP.54.687 doi: 10.1143/PTP.54.687
    [3] S. Q. Tang, Dissipative Nonlinear Evolution Equations and Chaos, Ph.D Thesis, The Hong Kong University of Science and Technology in Hong Kong, 1995.
    [4] E. N. Lorenz, Deterministic nonperiodic flows, J. Atom. Sci., 20 (1963), 130–141. https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2 doi: 10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
    [5] D. Y. Hsieh, S. Q. Tang, Y. P Wang, L. X. Wu, Dissipative nonlinear evolution equations and chaos, Stud. Appl. Math., 101 (1998), 233–266. https://doi.org/10.1063/1.527465 doi: 10.1063/1.527465
    [6] S. Q. Tang, H. J. Zhao, Nonlinear stability for dissipative nonlinear evolution equations with ellipticity, J. Math. Anal. Appl., 233 (1999), 336–358. https://doi.org/10.1006/jmaa.1999.6316 doi: 10.1006/jmaa.1999.6316
    [7] R. J. Duan, C. J. Zhu, Asymptotics of dissipative nonlinear evolution equations with ellipticity: different end states, J. Math. Anal. Appl., 303 (2005), 15–35. https://doi.org/10.1016/j.jmaa.2004.06.007 doi: 10.1016/j.jmaa.2004.06.007
    [8] C. J. Zhu, Z. A. Wang, Decay rates of solutions to dissipative nonlinear equations with ellipticity, Z. Angew. Math. Phys., 55 (2004), 994–1014. https://doi.org/10.1007/s00033-004-3117-9 doi: 10.1007/s00033-004-3117-9
    [9] R. J. Duan, S. Q. Tang, C. J. Zhu, Asymptotics in nonlinear evolution system with dissipation and ellipticity on quadrant, J. Math. Anal. Appl., 323 (2006), 1152–1170. https://doi.org/10.1016/j.jmaa.2005.11.002 doi: 10.1016/j.jmaa.2005.11.002
    [10] L. Z. Ruan, C. J. Zhu, Boundary layer for nonlinear evolution equations with damping and diffusion, Disc. Cont. Dyna. Sys., 32 (2012), 331–352. https://doi.org/10.3934/dcds.2012.32.331 doi: 10.3934/dcds.2012.32.331
    [11] H. Y. Peng, L. Z. Ruan, J. L. Xiang, A note on boundary layer of a nonlinear evolution system with damping and diffusions, J. Math. Anal. Appl., 426 (2015), 1099–1129. https://doi.org/10.1016/j.jmaa.2015.01.053 doi: 10.1016/j.jmaa.2015.01.053
    [12] K. M. Chen, C. J. Zhu, The zero diffusion limit for nonlinear hyperbolic system with damping and diffusion, J. Hyper. Diff. Equation, 5 (2008), 767–783. https://doi.org/10.1142/S0219891608001696 doi: 10.1142/S0219891608001696
    [13] L. Z. Ruan, H. Y. Yin, Convergence rates of vanishing diffusion limit on nonlinear hyperbolic system with damping and diffusion, J. Math. Phys., 53 (2012), 103703. https://doi.org/10.1063/1.4751283 doi: 10.1063/1.4751283
    [14] L. Z. Ruan, Z. Y. Zhang, Global decaying solution to dissipative nonlinear evolution equations with ellipticity, Appl. Math. Comput., 217 (2011), 6054–6066. https://doi.org/10.1016/j.amc.2010.12.066 doi: 10.1016/j.amc.2010.12.066
    [15] K. Nishihara, Asymptotic profile of solutions to nonlinear dissipative evolution system with ellipticity, Z. Angew. Math. Phys., 57 (2006), 604–614. https://doi.org/10.1007/s00033-006-0062-9 doi: 10.1007/s00033-006-0062-9
    [16] Z. A. Wang, Optimal decay rates of solutions to dissipative nonlinear evolution equations with ellipticity, Z. Angew. Math. Phys., 57 (2006), 399-418. https://doi.org/10.1007/s00033-005-0030-9 doi: 10.1007/s00033-005-0030-9
    [17] H. Schlichting, J. Kestin, R. L. Street, Boundary Layer Theory, 7th Edition, McGraw-Hill, London, 1979.
    [18] H. Frid, V. Shelukhin, Boundary layers for the Navier–Stokes equations of compressible fluids, Comm. Math. Phys., 208 (1999), 309–330. https://doi.org/10.1007/s002200050760 doi: 10.1007/s002200050760
    [19] X. L. Qin, T. Yang, Z. A. Yao, W. S. Zhou, Vanishing shear viscosity and boundary layer for the Navier–Stokes equations with cylindrical symmetry, Arch. Rational Mech. Anal., 216 (2015), 1049–1086. https://doi.org/10.1007/s00205-014-0826-x doi: 10.1007/s00205-014-0826-x
    [20] L. Yao, T. Zhang, C. J. Zhu, Boundary layers for compressible Navier–Stokes equations with density–dependent viscosity and cylindrical symmetry, Ann. Inst. H. Poincaré Anal. NonLinéaire., 28 (2011), 677–709. https://doi.org/10.1016/j.anihpc.2011.04.006 doi: 10.1016/j.anihpc.2011.04.006
    [21] S. Jiang, J. W. Zhang, Boundary layers for the Navier–Stokes equations of compressible heat–conducting flows with cylindrical symmetry, SIAM J. Math. Anal. 41 (2009), 237–268. https://doi.org/10.1137/07070005X doi: 10.1137/07070005X
    [22] Q. Q. Hou, Z. A. Wang, K. Zhao, Boundary layer problem on a hyperbolic system arising from chemotaxis, J. Differ. Equations, 261 (2016), 5035–5070. https://doi.org/10.1016/j.jde.2016.07.018 doi: 10.1016/j.jde.2016.07.018
    [23] M. Sammartino, R. Caflisch, Zero viscosity limit for analytic solutions of the Navier–Stokes equations on a half-space, I. Existence for Euler and Prandtl equations, Comm. Math. Phys., 192 (1998), 433–461. https://doi.org/10.1007/s002200050304 doi: 10.1007/s002200050304
    [24] V. V. Shelukhin, A shock layer in parabolic perturbations of a scalar conservation law, in Proceedings of the Edinburgh Mathematical Society, 46 (2003), 315–328. https://doi.org/10.1017/S0013091502000548
    [25] V. V. Shelukhin, The limit of zero shear viscosity for compressible fluids, Arch. Rational Mech. Anal., 143 (1998), 357–374. https://doi.org/10.1007/s002050050109 doi: 10.1007/s002050050109
    [26] H. Y. Wen, T. Yang, C. J. Zhu, Optimal convergence rate of the vanishing shear viscosity limit for compressible Navier–Stokes equations with cylindrical symmetry, J. Math. Pures Appl., 146 (2021), 99–126. https://doi.org/10.1016/j.matpur.2020.09.003 doi: 10.1016/j.matpur.2020.09.003
    [27] E. Grenier, O. Guès, Boundary layers for viscous perturbations of noncharacteristic quasilinear problems, J. Differ. Equations, 143 (1998), 110–146. https://doi.org/10.1006/jdeq.1997.3364 doi: 10.1006/jdeq.1997.3364
    [28] W. S. Zhou, X. L. Qin, C. Y. Qu, Zero shear viscosity limit and boundary layer for the Navier–Stokes equations of compressible fluids between two horizontal parallel plates, Nonlinearity, 28 (2015), 1721–1743. https://10.1088/0951-7715/28/6/1721 doi: 10.1088/0951-7715/28/6/1721
    [29] L. Hsiao, H. Y. Jian, Global smooth solutions to the spatially periodic Cauchy problem for dissipative nonlinear evolution equations, J. Math. Anal. Appl., 213 (1997), 262–274. https://doi.org/10.1006/jmaa.1997.5535 doi: 10.1006/jmaa.1997.5535
    [30] D. L. Powers, Boundary Value Problems: and Partial Differential Equations, Academic Press, 2005.
    [31] H. Y. Jian, D. G. Chen, On the Cauchy problem for certain system of semilinear parabolic equation, Acta Math. Sin., 14 (1998), 27–34. https://doi.org/10.1007/BF02563880 doi: 10.1007/BF02563880
    [32] Z. A. Wang, Large time profile of solutions for a dissipative nonlinear evolution system with conservational form, J. Phys. A: Math. Gen., 38 (2005), 10955–10969. 10.1088/0305-4470/38/50/006 doi: 10.1088/0305-4470/38/50/006
    [33] W. Allegretto, Y. P. Lin, Z. Y. Zhang, Properties of global decaying solutions to the Cauchy problem of nonlinear evolution equations, Z. Angew. Math. Phys., 59 (2008), 848–868. https://doi.org/10.1007/s00033-008-7026-1 doi: 10.1007/s00033-008-7026-1
    [34] C. C. Chou, Y. F. Deng, Numerical solutions of a nonlinear evolution system with small dissipation on parallel processors, J. Sci. Comput., 13 (1998), 405–417. https://doi.org/10.1023/A:1023237317673 doi: 10.1023/A:1023237317673
    [35] L. Fan, N. T. Trouba, Convergence rates of vanishing diffusion limit on conservative form of Hsieh's equation, Stud. Appl. Math., 146 (2021), 753–776. https://doi.org/10.1111/sapm.12366 doi: 10.1111/sapm.12366
    [36] C. M. Dafermos, L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity, Nonlinear Anal., 6 (1982), 435–454. https://doi.org/10.1016/0362-546X(82)90058-X doi: 10.1016/0362-546X(82)90058-X
    [37] J. Simon, Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure, SIAM J. Math. Anal., 21 (1990), 1093–1117. https://doi.org/10.1137/0521061 doi: 10.1137/0521061
  • This article has been cited by:

    1. Elizabeth Lydon, Brian E. Moore, Propagation failure of fronts in discrete inhomogeneous media with a sawtooth nonlinearity, 2016, 22, 1023-6198, 1930, 10.1080/10236198.2016.1255209
    2. Brian E. Moore, Joseph M. Segal, Stationary bistable pulses in discrete inhomogeneous media, 2014, 20, 1023-6198, 1, 10.1080/10236198.2013.800868
    3. A. R. Humphries, Brian E. Moore, Erik S. Van Vleck, Front Solutions for Bistable Differential-Difference Equations with Inhomogeneous Diffusion, 2011, 71, 0036-1399, 1374, 10.1137/100807156
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1366) PDF downloads(48) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog