On Predator-Prey Systems and Small-Gain Theorems

  • Received: 01 May 2003 Accepted: 29 June 2018 Published: 01 November 2004
  • MSC : 34C12, 92D40, 93D25.

  • This paper deals with an almost global convergence result for Lotka-Volterra systems with predator-prey interactions. These systems can be written as (negative) feedback systems. The subsystems of the feedback loop are monotone control systems, possessing particular input-output properties. We use a small-gain theorem, adapted to a context of systems with multiple equilibrium points to obtain the desired almost global convergence result, which provides sufficient conditions to rule out oscillatory or more complicated behavior that is often observed in predator-prey systems.

    Citation: Patrick D. Leenheer, David Angeli, Eduardo D. Sontag. On Predator-Prey Systems and Small-Gain Theorems[J]. Mathematical Biosciences and Engineering, 2005, 2(1): 25-42. doi: 10.3934/mbe.2005.2.25

    Related Papers:

    [1] Yuanshi Wang, Donald L. DeAngelis . A mutualism-parasitism system modeling host and parasite with mutualism at low density. Mathematical Biosciences and Engineering, 2012, 9(2): 431-444. doi: 10.3934/mbe.2012.9.431
    [2] S. Nakaoka, Y. Saito, Y. Takeuchi . Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences and Engineering, 2006, 3(1): 173-187. doi: 10.3934/mbe.2006.3.173
    [3] P. Auger, N. H. Du, N. T. Hieu . Evolution of Lotka-Volterra predator-prey systems under telegraph noise. Mathematical Biosciences and Engineering, 2009, 6(4): 683-700. doi: 10.3934/mbe.2009.6.683
    [4] Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz . A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Mathematical Biosciences and Engineering, 2014, 11(3): 573-597. doi: 10.3934/mbe.2014.11.573
    [5] Sheng Wang, Lijuan Dong, Zeyan Yue . Optimal harvesting strategy for stochastic hybrid delay Lotka-Volterra systems with Lévy noise in a polluted environment. Mathematical Biosciences and Engineering, 2023, 20(4): 6084-6109. doi: 10.3934/mbe.2023263
    [6] Tingfu Feng, Leyun Wu . Global dynamics and pattern formation for predator-prey system with density-dependent motion. Mathematical Biosciences and Engineering, 2023, 20(2): 2296-2320. doi: 10.3934/mbe.2023108
    [7] Jinyu Wei, Bin Liu . Global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment. Mathematical Biosciences and Engineering, 2021, 18(1): 564-582. doi: 10.3934/mbe.2021031
    [8] Parvaiz Ahmad Naik, Muhammad Amer, Rizwan Ahmed, Sania Qureshi, Zhengxin Huang . Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect. Mathematical Biosciences and Engineering, 2024, 21(3): 4554-4586. doi: 10.3934/mbe.2024201
    [9] Jordi Ripoll, Jordi Font . Numerical approach to an age-structured Lotka-Volterra model. Mathematical Biosciences and Engineering, 2023, 20(9): 15603-15622. doi: 10.3934/mbe.2023696
    [10] Guichen Lu, Zhengyi Lu . Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences and Engineering, 2008, 5(3): 477-484. doi: 10.3934/mbe.2008.5.477
  • This paper deals with an almost global convergence result for Lotka-Volterra systems with predator-prey interactions. These systems can be written as (negative) feedback systems. The subsystems of the feedback loop are monotone control systems, possessing particular input-output properties. We use a small-gain theorem, adapted to a context of systems with multiple equilibrium points to obtain the desired almost global convergence result, which provides sufficient conditions to rule out oscillatory or more complicated behavior that is often observed in predator-prey systems.


  • This article has been cited by:

    1. Hamed Agahi, Mohammad Javad Yazdanpanah, Set‐point regulation of monotone systems using the monotone small‐gain theorem, 2013, 7, 1751-8652, 447, 10.1049/iet-cta.2012.0608
    2. Hamed Agahi, Mohamad J. Yazdanpanah, Constrained control approach for monotone systems: application to tumour chemotherapy, 2019, 13, 1751-8652, 996, 10.1049/iet-cta.2018.5265
    3. Patrick De Leenheer, David Angeli, Eduardo D. Sontag, Crowding effects promote coexistence in the chemostat, 2006, 319, 0022247X, 48, 10.1016/j.jmaa.2006.02.036
    4. Wieslaw Krajewski, Umberto Viaro, Locating the equilibrium points of a predator–prey model by means of affine state feedback, 2008, 345, 00160032, 489, 10.1016/j.jfranklin.2008.02.001
    5. Hamed Agahi, Application of the Hirsch Generic Convergence Statement to the Set‐Point Regulation of Excitable‐Transparent‐Monotone Systems, 2019, 21, 1561-8625, 2280, 10.1002/asjc.1839
    6. Tomáš Gedeon, Eduardo D. Sontag, Oscillations in multi-stable monotone systems with slowly varying feedback, 2007, 239, 00220396, 273, 10.1016/j.jde.2007.05.029
    7. Ivan Y. Tyukin, Erik Steur, Henk Nijmeijer, Cees van Leeuwen, 2008, Non-uniform small-gain theorems for systems with unstable invariant sets, 978-1-4244-3123-6, 5080, 10.1109/CDC.2008.4739503
    8. Pablo A. Iglesias, Brian Munsky, Eduardo D. Sontag, Domitilla Del Vecchio, 2007, Systems biology and control — A tutorial, 978-1-4244-1497-0, 1, 10.1109/CDC.2007.4435054
    9. M. Malisoff, P. DeLeenheer, A Small-Gain Theorem for Motone Systems With Multivalued Input-State Characteristics, 2006, 51, 0018-9286, 287, 10.1109/TAC.2005.863534
    10. E.D. Sontag, 2005, Molecular Systems Biology and Control: A Qualitative-Quantitative Approach, 0-7803-9567-0, 2314, 10.1109/CDC.2005.1582507
    11. Patrick De Leenheer, David Angeli, Eduardo D. Sontag, Monotone Chemical Reaction Networks, 2007, 41, 0259-9791, 295, 10.1007/s10910-006-9075-z
    12. Bhaskar DasGupta, German Andres Enciso, Eduardo Sontag, Yi Zhang, Algorithmic and complexity results for decompositions of biological networks into monotone subsystems, 2007, 90, 03032647, 161, 10.1016/j.biosystems.2006.08.001
    13. Ivan Y. Tyukin, Henk Nijmeijer, Cees van Leeuwen, Non-uniform Small-gain Theorems for Systems with Critical and Slow Relaxations, 2008, 41, 14746670, 6269, 10.3182/20080706-5-KR-1001.01058
    14. G.A. Enciso, H.L. Smith, E.D. Sontag, Nonmonotone systems decomposable into monotone systems with negative feedback, 2006, 224, 00220396, 205, 10.1016/j.jde.2005.05.007
    15. Bhaskar DasGupta, German A. Enciso, Eduardo Sontag, Yi Zhang, 2006, Chapter 23, 978-3-540-34597-8, 253, 10.1007/11764298_23
    16. Eduardo D. Sontag, Monotone and near-monotone biochemical networks, 2007, 1, 1872-5325, 59, 10.1007/s11693-007-9005-9
    17. H. Agahi, M.J. Yazdanpanah, Set-point Regulation of Constrained Strongly Monotone Systems, 2011, 44, 14746670, 11030, 10.3182/20110828-6-IT-1002.01979
    18. Hamed Agahi, A control approach for monotone systems with multi-valued characteristics: Application to an Ebola Virus model, 2020, 56, 09473580, 265, 10.1016/j.ejcon.2020.02.011
    19. 2016, 9780470601938, 183, 10.1002/9781119162254.ch06
    20. German A. Enciso, 2006, On the asymptotic behavior of a cyclic biochemical system with delay, 1-4244-0171-2, 2388, 10.1109/CDC.2006.377124
    21. Germán Andrés Enciso, A dichotomy for a class of cyclic delay systems, 2007, 208, 00255564, 63, 10.1016/j.mbs.2006.09.022
    22. Sun Chao, He Xiqin, 2006, Global Asymptotic Stability Criteria for the Interconnection of Monotone Control Systems, 978-7-81124-055-9, 543, 10.1109/CHICC.2006.4346777
    23. Daisuke INOUE, Shun-ichi AZUMA, Toshiharu SUGIE, Stability Analysis of Networked Monotone Systems, 2017, 53, 0453-4654, 493, 10.9746/sicetr.53.493
    24. 2014, 20140611, 978-1-4665-8459-4, 305, 10.1201/b16759-15
    25. David Angeli, Eduardo D. Sontag, Oscillations in I/O Monotone Systems Under Negative Feedback, 2008, 53, 0018-9286, 166, 10.1109/TAC.2007.911320
    26. Bartek Roszak, Edward J. Davison, Necessary and sufficient conditions for stabilizability of positive LTI systems, 2009, 58, 01676911, 474, 10.1016/j.sysconle.2009.02.003
    27. Eduardo D. Sontag, Molecular Systems Biology and Control, 2005, 11, 09473580, 396, 10.3166/ejc.11.396-435
    28. Eduardo D. Sontag, 2007, Chapter 5, 978-3-540-71987-8, 79, 10.1007/978-3-540-71988-5_5
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2624) PDF downloads(530) Cited by(28)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog