Processing math: 100%

Evolution of Lotka-Volterra predator-prey systems under telegraph noise

  • Received: 01 April 2009 Accepted: 29 June 2018 Published: 01 September 2009
  • MSC : 34C12, 60H10, 92D25.

  • In this paper we study a Lotka-Volterra predator-prey system with prey logistic growth under the telegraph noise. The telegraph noise switches at random two prey-predator models. The aim of this work is to determine the subset of omega-limit set of the system and show out the existence of a stationary distribution. We also focus on persistence of the predator and thus we look for conditions that allow persistence of the predator and prey community. We show that the asymptotic behaviour highly depends on the value of some constant λ which is useful to make suitable predictions about the persistence of the system.

    Citation: P. Auger, N. H. Du, N. T. Hieu. Evolution of Lotka-Volterra predator-prey systems under telegraph noise[J]. Mathematical Biosciences and Engineering, 2009, 6(4): 683-700. doi: 10.3934/mbe.2009.6.683

    Related Papers:

    [1] Yuanshi Wang, Donald L. DeAngelis . A mutualism-parasitism system modeling host and parasite with mutualism at low density. Mathematical Biosciences and Engineering, 2012, 9(2): 431-444. doi: 10.3934/mbe.2012.9.431
    [2] Patrick D. Leenheer, David Angeli, Eduardo D. Sontag . On Predator-Prey Systems and Small-Gain Theorems. Mathematical Biosciences and Engineering, 2005, 2(1): 25-42. doi: 10.3934/mbe.2005.2.25
    [3] Sheng Wang, Lijuan Dong, Zeyan Yue . Optimal harvesting strategy for stochastic hybrid delay Lotka-Volterra systems with Lévy noise in a polluted environment. Mathematical Biosciences and Engineering, 2023, 20(4): 6084-6109. doi: 10.3934/mbe.2023263
    [4] Laura Martín-Fernández, Gianni Gilioli, Ettore Lanzarone, Joaquín Míguez, Sara Pasquali, Fabrizio Ruggeri, Diego P. Ruiz . A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system. Mathematical Biosciences and Engineering, 2014, 11(3): 573-597. doi: 10.3934/mbe.2014.11.573
    [5] Xueqing He, Ming Liu, Xiaofeng Xu . Analysis of stochastic disease including predator-prey model with fear factor and Lévy jump. Mathematical Biosciences and Engineering, 2023, 20(2): 1750-1773. doi: 10.3934/mbe.2023080
    [6] Yansong Pei, Bing Liu, Haokun Qi . Extinction and stationary distribution of stochastic predator-prey model with group defense behavior. Mathematical Biosciences and Engineering, 2022, 19(12): 13062-13078. doi: 10.3934/mbe.2022610
    [7] B. Spagnolo, D. Valenti, A. Fiasconaro . Noise in ecosystems: A short review. Mathematical Biosciences and Engineering, 2004, 1(1): 185-211. doi: 10.3934/mbe.2004.1.185
    [8] S. Nakaoka, Y. Saito, Y. Takeuchi . Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences and Engineering, 2006, 3(1): 173-187. doi: 10.3934/mbe.2006.3.173
    [9] Guilherme M Lopes, José F Fontanari . Influence of technological progress and renewability on the sustainability of ecosystem engineers populations. Mathematical Biosciences and Engineering, 2019, 16(5): 3450-3464. doi: 10.3934/mbe.2019173
    [10] Vaibhava Srivastava, Eric M. Takyi, Rana D. Parshad . The effect of "fear" on two species competition. Mathematical Biosciences and Engineering, 2023, 20(5): 8814-8855. doi: 10.3934/mbe.2023388
  • In this paper we study a Lotka-Volterra predator-prey system with prey logistic growth under the telegraph noise. The telegraph noise switches at random two prey-predator models. The aim of this work is to determine the subset of omega-limit set of the system and show out the existence of a stationary distribution. We also focus on persistence of the predator and thus we look for conditions that allow persistence of the predator and prey community. We show that the asymptotic behaviour highly depends on the value of some constant λ which is useful to make suitable predictions about the persistence of the system.


  • This article has been cited by:

    1. Nguyen Huu Du, Nguyen Hai Dang, Asymptotic behavior of Kolmogorov systems with predator-prey type in random environment, 2014, 13, 1534-0392, 2693, 10.3934/cpaa.2014.13.2693
    2. XINYU BO, GUANGYING LV, WENJUN LIU, ALI MOUSSAOUI, OPTIMAL HARVEST CONTROL OF PREDATOR–PREY SYSTEMS IN FISHERIES WITH STAGE STRUCTURE AND ADDITIONAL FOOD SUPPLY, 2025, 33, 0218-3390, 221, 10.1142/S0218339025500032
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2511) PDF downloads(510) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog