Loading [Contrib]/a11y/accessibility-menu.js

Permanence for two-species Lotka-Volterra cooperative systems with delays

  • Received: 01 August 2007 Accepted: 29 June 2018 Published: 01 June 2008
  • MSC : 92D30.

  • In this paper, a two-species Lotka-Volterra cooperative delay sys- tem is considered, and the relationships between the delays and the permanence are obtained. Some sufficient conditions for the permanence under the assumption of smallness of the delays are obtained. Two examples are given to illustrate the theorems.

    Citation: Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays[J]. Mathematical Biosciences and Engineering, 2008, 5(3): 477-484. doi: 10.3934/mbe.2008.5.477

    Related Papers:

    [1] Suqing Lin, Zhengyi Lu . Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences and Engineering, 2006, 3(1): 137-144. doi: 10.3934/mbe.2006.3.137
    [2] Yuanshi Wang, Donald L. DeAngelis . A mutualism-parasitism system modeling host and parasite with mutualism at low density. Mathematical Biosciences and Engineering, 2012, 9(2): 431-444. doi: 10.3934/mbe.2012.9.431
    [3] Mengqing Zhang, Qimin Zhang, Jing Tian, Xining Li . The asymptotic stability of numerical analysis for stochastic age-dependent cooperative Lotka-Volterra system. Mathematical Biosciences and Engineering, 2021, 18(2): 1425-1449. doi: 10.3934/mbe.2021074
    [4] S. Nakaoka, Y. Saito, Y. Takeuchi . Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences and Engineering, 2006, 3(1): 173-187. doi: 10.3934/mbe.2006.3.173
    [5] Sheng Wang, Lijuan Dong, Zeyan Yue . Optimal harvesting strategy for stochastic hybrid delay Lotka-Volterra systems with Lévy noise in a polluted environment. Mathematical Biosciences and Engineering, 2023, 20(4): 6084-6109. doi: 10.3934/mbe.2023263
    [6] Xiaomeng Ma, Zhanbing Bai, Sujing Sun . Stability and bifurcation control for a fractional-order chemostat model with time delays and incommensurate orders. Mathematical Biosciences and Engineering, 2023, 20(1): 437-455. doi: 10.3934/mbe.2023020
    [7] Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk . A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences and Engineering, 2013, 10(3): 861-872. doi: 10.3934/mbe.2013.10.861
    [8] Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020
    [9] Junjing Xiong, Xiong Li, Hao Wang . The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium. Mathematical Biosciences and Engineering, 2019, 16(4): 2717-2737. doi: 10.3934/mbe.2019135
    [10] Jinyu Wei, Bin Liu . Global dynamics of a Lotka-Volterra competition-diffusion-advection system for small diffusion rates in heterogenous environment. Mathematical Biosciences and Engineering, 2021, 18(1): 564-582. doi: 10.3934/mbe.2021031
  • In this paper, a two-species Lotka-Volterra cooperative delay sys- tem is considered, and the relationships between the delays and the permanence are obtained. Some sufficient conditions for the permanence under the assumption of smallness of the delays are obtained. Two examples are given to illustrate the theorems.


  • This article has been cited by:

    1. Martin P. Arciga-Alejandre, Jorge Sanchez-Ortiz, Francisco J. Ariza-Hernandez, Gabriel Catalan-Angeles, A Multi-Stage Homotopy Perturbation Method for the Fractional Lotka-Volterra Model, 2019, 11, 2073-8994, 1330, 10.3390/sym11111330
    2. Jinglei Tian, Yongguang Yu, Hu Wang, Stability and Bifurcation of Two Kinds of Three-Dimensional Fractional Lotka-Volterra Systems, 2014, 2014, 1024-123X, 1, 10.1155/2014/695871
    3. Yukihiko Nakata, Yoshiaki Muroya, Permanence for nonautonomous Lotka–Volterra cooperative systems with delays, 2010, 11, 14681218, 528, 10.1016/j.nonrwa.2009.01.002
    4. Xiangdong Xie, Fengde Chen, Kun Yang, Yalong Xue, Global Attractivity of an Integrodifferential Model of Mutualism, 2014, 2014, 1085-3375, 1, 10.1155/2014/928726
    5. Mengqing Zhang, Qimin Zhang, Jing Tian, Xining Li, The asymptotic stability of numerical analysis for stochastic age-dependent cooperative Lotka-Volterra system, 2021, 18, 1551-0018, 1425, 10.3934/mbe.2021074
    6. YUKIHIKO NAKATA, PERMANENCE FOR THE LOTKA–VOLTERRA COOPERATIVE SYSTEM WITH SEVERAL DELAYS, 2009, 02, 1793-5245, 267, 10.1142/S1793524509000716
    7. Changyou Wang, Linrui Li, Qiuyan Zhang, Rui Li, Dynamical behaviour of a Lotka–Volterra competitive-competitive–cooperative model with feedback controls and time delays, 2019, 13, 1751-3758, 43, 10.1080/17513758.2019.1568600
    8. Ahmadjan Muhammadhaji, Zhidong Teng, Mehbuba Rehim, Dynamical Behavior for a Class of Delayed Competitive–Mutualism Systems, 2015, 23, 0971-3514, 281, 10.1007/s12591-014-0226-6
    9. Xinyuan Liao, Xianhua Tang, Shengfan Zhou, Existence of traveling wavefronts in a cooperative systems with discrete delays, 2009, 215, 00963003, 1806, 10.1016/j.amc.2009.07.032
    10. Guichen Lu, Zhengyi Lu, Yoichi Enatsu, Permanence for Lotka–Volterra systems with multiple delays, 2011, 12, 14681218, 2552, 10.1016/j.nonrwa.2011.03.004
    11. Changyou Wang, Linrui Li, Yuqian Zhou, Rui Li, On a delay ratio-dependent predator–prey system with feedback controls and shelter for the prey, 2018, 11, 1793-5245, 1850095, 10.1142/S179352451850095X
    12. Zhao Jiang, Azhar Halik, Ahmadjan Muhammadhaji, Dynamics in an n-Species Lotka–Volterra Cooperative System with Delays, 2023, 12, 2075-1680, 501, 10.3390/axioms12050501
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2555) PDF downloads(448) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog